Data di esame: PROVA

LAUREA IN BIOLOGIA MOLECOLARE

CHIMICA FISICA

Nome e cognome.....

Numero di matricola.

Note:	
1.	Lo studente ha a disposizione per questo compito 90 minuti.
2.	Per ogni <u>risposta corretta</u> saranno assegnati <u>3 punti</u> , per ogni <u>risposta sbagliata</u> saranno tolti
	2 punti; a ogni quesito senza risposta saranno assegnati 0 punti.
3.	La domanda aperta finale è obbligatoria (almeno l'impostazione) e, in caso di risposta
	completa e corretta, vale 5 punti.
4.	Non è consentito consultare libri, dispense, quaderni o altro materiale.
5.	E' possibile utilizzare la calcolatrice.
1.	4.0 mol di N_2 vengono mescolate con 4.0 mol di O_2 alla temperatura di 60 °C. Quanto vale ΔS_{mix} ?

- 2. Quanto vale il lavoro quando 2.0 mol di un gas perfetto monoatomico contenuto in un cilindro a pareti adiabatiche e munito di pistone scorrevole, inizialmente alla pressione di 100 Pa e alla temperatura di 298 K, si espandono isotermicamente in maniera reversibile fino a raddoppiare il volume inizialmente occupato?
 - a. -3.43 KJ

a. -44 KJ K⁻¹
b. 0 KJ K⁻¹
c. 44 KJ K⁻¹

- b. -3430 KJ
- c. 3.43 KJ mol⁻¹
- 3. Quanto vale ΔH° della reazione di combustione del benzene a 80 °C, sapendo che a 25 °C e 1.0 atm ΔH° =-3267.6 KJ mol⁻¹ e che le capacità termiche, che possono considerarsi

indipendenti dalla temperatura, sono: $C_{P CO2(g)}$ =37.11 J K⁻¹ mol⁻¹, $C_{P C6H6(l)}$ =136.1 J K⁻¹ mol⁻¹ e $C_{P H2O(l)}$ =75.291 J K⁻¹ mol⁻¹.

$$C_6H_{6(l)}+(15/2)O_{2(g)} \rightarrow 6CO_{2(g)}+3H_2O_{(l)}$$

- a. -1631.25 KJ mol⁻¹
- b. -3262.5 KJ mol⁻¹
- c. -3267.6 KJ mol⁻¹ (non varia)
- 4. Il rendimento di una macchina di Carnot che lavora con due sorgenti a temperature rispettivamente pari a 10 °C e 1000 °C vale:
 - a. 1
 - b. 0.99
 - c. 0.78
- 5. La variazione di entropia di un sistema sottoposto ad una trasformazione *adiabatica irreversibile* è:
 - a. 0 poiché non c'è scambio di calore.
 - b. Diversa da 0 e uguale a quella che si calcola se la stessa trasformazione viene eseguita in modo reversibile.
 - c. Diversa da 0 e sempre maggiore di quella che si calcola se la stessa trasformazione viene eseguita in modo reversibile.
- 6. Al punto critico nel diagramma di stato dell'acqua
 - a. Scompare la linea di fase gas-liquido.
 - b. Coesistono le tre fasi solido-liquido-areiforme.
 - c. Non c'è punto critico nel diagramma di fase dell'acqua.
- 7. I modi normali di vibrazione del metano CH₄ sono:
 - a. 9 e sono tutti IR attivi.
 - b. 15 ma solo alcuni sono IR attivi.
 - c. 9 ma sono IR attivi solo quelli che fanno cambiare il momento di dipolo elettrico della molecola.
- 8. Fluorescenza e fosforescenza sono
 - a. Entrambi processi radiativi che avvengono su scale dei tempi diverse.
 - b. La fluorescenza è un processo radiativo, la fosforescenza no.
 - c. Entrambi processi radiativi che avvengono su scale dei tempi diverse e si originano rispettivamente da uno stato di singoletto e da uno stato di tripletto.
- 9. La velocità media di una reazione chimica

- a. Diminuisce al procedere della reazione.
- b. E' costante.
- c. Coincide con la velocità istantanea solo nel caso di reazioni del primo ordine.
- 10. Qual è la lunghezza d'onda di un fotone con energia 6.626 x10⁻³⁴ J?
 - a. 1 m
 - b. $3x10^8$ m
 - c. 0.33×10^{-8} m.

Problema

Una miscela contiene inizialmente quantità equimolari di CO, H₂, CO₂ e H₂O e viene posta in un reattore di 5.0 L alla temperatura di 1000 °C dove la reazione:

$$CO_{(g)}+H_2O_{(g)} \leftarrow \rightarrow CO_{2(g)}+H_{2(g)}$$

raggiunge l'equilibrio. A equilibrio raggiunto la pressione totale è 3.82 atm. Trovare la pressione parziale dei singoli componenti all'equilibrio, sapendo che la costante di equilibrio è 0.63. Da che parte si sposta l'equilibrio se si abbassa la temperatura fino a 500 °C?

 $(\Delta H^{\circ}_{f, CO(g)} = -26.41 \text{ KJ mol}^{-1}, \Delta H^{\circ}_{f, H2O(g)} = -241.82 \text{ KJ mol}^{-1}, \Delta H^{\circ}_{f, CO2(g)} = -94.051 \text{ KJ mol}^{-1})$