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SIR model

¨  It is a compartmental model 
¨ All N individuals of the population are 

categorized into one of 3 classes:
¨ Susceptible (S): sane but without immunity
¨ Infected (I): have the disease and spread it
¨ Recovered (R): the disease ended and they 

are immune to it (or they are dead)
¨  Individuals can transit from S to I and  

from I to R, where they stay forever



SIR model

¨  Individual-wise, the model is just a  
state-machine with two main transitions

¨ However, the model just considers the 
overall amount of individuals in each state
¨ equal to S, I, R, respectively. S + I + R = N
¨ take s = S/N, x = I/N, r = R/N:   s + x + r = 1

S I R



Usual SIR model assumptions

¨ Homogeneous mixing: all people are in 
contact à contagion rate = βx, with β > 0

¨ Memoryless recovery: disease time is 
exponentially distributed with parameter µ 
à which implies 𝔼[sickness duration] = 1/µ

¨ Closed system (no arrivals/departures)
¨ Deterministic (1st order approx) – while in 

reality there are elements of chance

S I R
the more I, the stronger the transition



SIR model equations

¨ Take s =s (t ), x =x (t ), r =r (t ), with t = time
¨ We can write the following equations

all quantities >0
thus s (t ) decreases and
r (t ) increases as t goes by
ds /dt + dx /dt + dr /dt = 0
because closed system

deterministic eq.s: no uncertainty

ds
dt

= −βsx 

dx
dt

= βsx −µx

dr
dt

= µx



Known SIR approximations

¨ populations do not uniformly mix: model 
works well only for closed environments

¨ population is discrete: quantization error
¨ deterministic model: if y individuals are 

expected to change state, it is so
¨ big N helps 2nd and 3rd points (law of large 

numbers) but is troublesome for the 1st 
¨ duration of known diseases is ~fixed and 

not exponential - yet, simpler math



Basic reproductive ratio R0

¨ Only susceptible individuals at the time 0: 
s (0)=s0 ≈ 1  à spreading only if x ʹ(0) > 0

                                  à at t = 0:   β/µ > 1

¨ The parameter R0 = β/µ is called basic 
reproductive ratio and is often associated 
with the strength of the epidemics

dx
dt

= βsx −µx > 0



Basic reproductive ratio R0

¨ Numerical solutions of SIR show R0’s role 
β=1.125, µ=0.5, S(0)=4490, I(0)=10 β=1.125, µ=1.0, S(0)=4490, I(0)=10 

R0=2.25R0=1.125



Basic reproductive ratio R0

¨ Formally, R0 = 𝔼[#secondary infections 
caused by an infected individual at time 0]
¨ estimates of R0 available for various 

infections (albeit with high variability) 
Disease How R0 Disease How R0

Measles Airborne 12-18 Rubella Airborne 5-7
Pertussis Airborne 12-17 Mumps Airborne 4-7
Diphtheria Saliva 6-7 HIV/AIDS Sexual 2-5
Smallpox Contact 5-7 SARS Airborne 2-5

Polio Fecal-oral 5-7 Influenza‘18 Airborne 2-3



Physical meaning of parameters 

¨ How can we derive the parameters of the 
SIR model? If time measured in days:
¨ µ = 1/𝔼[#days spent being sick]
¨ during its infectious days (typically 1/µ) an 

individual causes R0 contagions (at most: 
true at time 0 when everybody else is S)

à infection rate per infected = R0 / (1/µ) = β 
¨ β = rate of “contagious contacts” combining:    

      p[contagion | contact] × p[contact]



Counteracting epidemics

¨ How to lower R0 =β/µ for a weaker disease
¨ Either decrease β:

¨ reduce contagion prob. in case of contact 
(e.g., no physical proximity, use protections)

¨ reduce mixing probability (e.g. quarantine)
¨ Or increase µ (make recovery faster)

¨ if infected individuals recover sooner, they 
have fewer chances to infect others



Herd immunity

¨ Or: vaccination! This implies that s(0) < 1
¨ some individuals start in class R already

¨ Under the simplifying assumptions of SIR, 
the disease does not break out if vaccination 
rate is high enough (higher threshold)
¨  recall initial spreading condition: β s0 - µ > 0

¨ But it does not require to vaccinate 
everybody (or does it? we will see)



Herd immunity

¨ Depending on R0 one can compute the 
minimum required share of vaccinations
¨ we need r0 = 1-s0 > 1-β/µ =1-R0
¨ e.g., if R0=4.0, >75% of the population 

should be vaccinated so dx /dt < 0 at t =0
¨  Important disclaimer: true only under 

assumptions (homogeneous mixing)
¨ in reality you need a much higher rate!



An application for game theory?

¨ Vaccinations require cooperation
¨ the individual behavior of selfish players is 

not to vaccinate themselves (easier) and 
rely on herd immunity

¨ however, then nobody vaccinates and there 
is no herd immunity whatsoever

¨ A prisoner / conspiracy theorist – dilemma!



Model variations

¨ SI model
¨ the disease is chronic, or cannot be healed

¨ SIS model
¨ healing = susceptible again (common cold)

S I ds
dt

= −βsx, dx
dt

= βsx

S I dx
dt

= −
ds
dt

= βsx −µx



Analytical solution of SI model

¨ We start with the SI model (simpler)
¨ as a matter of fact, only one equation:

dx /dt =βsx ,      where s = 1-x
¨ Solve differential eq.:  dx / [β(1-x )x ] = dt 

or:  1 / [β(1-x ) ] dx + 1 / [βx ] dx = dt
à -log |1-x | / β  + log |x | / β  = t +C
     x /(1-x ) = eβ(t +C ) = A eβt    with A =x0 /(1-x0 )

¨ Thus x(t ) = x0 eβt

1− x0 + x0 eβt



Analytical solution of SI model

¨ Solution                                  is a sigmoid

¨ S-shaped function, starts as an exponential  
(almost all are S) 
but then saturates

¨ from x0 to 100% 
(consequence of 
SI assumptions)

x(t ) = x0 eβt

1− x0 + x0 eβt

called the logistic curve



Analytical solution of SIS model

¨ For the SIS model we can write
dx /dt  = β(1- x ) x - µ x ,      where s = 1-x

¨  Its solution is

   with int.constant C =  β x0 / (β - µ  - β x0)

¨ This results in

x(t ) = (1−µ / β) C e(β−µ)t

1+C e(β−µ)t

can be omitted as x0 is typically small

x(t ) = x0
(β−µ)e(β−µ)t

β−µ +βx0 e(β−µ)t



Analytical solution of SIS model

¨ The logistic curve is again a sigmoid  
but its limit is (β-µ)/β as opposed to 1 of SI
¨ It is also visible that the infection dies out if 
β < µ as seen for SIR

¨ For β > µ: an endemic 
steady-state is the  
saturation point, at 
which, on average, 
#cured = #contagions 



SIR model

¨ This model cannot be fully solved in 
closed form (previous plots are numerical)

¨ We can start from SIR equations (1)+(3)
¨ deriving x yields

¨ and integrating:
  (if we set r0 = 0)

¨ Thus, s exponentially decays in r

ds
dt

= −βsx 

dr
dt

= µx

1
s
ds
dt

= −
β
µ
dr
dt

s = s0 e
−R0 r



SIR model: asymptotic regime

¨ A remark on equation 
¨ r  increases with t  but the exponential term 

never goes to 0 à however contagious the 
disease, there are individuals avoiding it 
(note: true under the limits of quantization)

¨ the reason is that in the SIR model, the 
infected individuals cease to be contagious  
à the disease extinguishes as x goes to 0 

s = s0  e−R0 r



SIR model: asymptotic regime

¨  If                   , the fraction of individuals 
avoiding the disease must be > e-R0

¨ of course if R0 > 1

¨ Asymptotic share  
of susceptible is 
depending on R0

s = s0 e
−R0 r



Connection with random graphs

¨ Whatever the expression of R0, threshold 
criterion R0 >1 has a random graph 
interpretation: 〈k〉 >1 for a GC to appear
¨ same graph for |GC| and r∞  of SIR

Subcritical
〈k〉 < 1

Supercritical 
〈k〉 > 1

Connected 
〈k〉 > ln N

Critical 
〈k〉 = 1

〈k〉 



SIR model: asymptotic regime

¨ At t = ∞ we only have this fraction of 
individuals spared by the epidemics +the 
others (now recovered): x ∞ must be 0

s ∞ + r ∞ = s0 e-R0 r ∞ + r ∞ = 1
¨ This last equation is relevant since r ∞ 

gives the share of the population that 
contracted the disease at any time
¨ we assumed r0 = 0 and we have x ∞=0 



SIR model: asymptotic regime

¨ The asymptotic values can be used to 
characterize SIR parameters 
¨ Asymptotic equation s0 e-R0 r ∞ + r ∞ = 1 

relates R0 with the fraction of individuals 
that ever got infected at one point

¨ Other relationships are possible including 
non-asymptotic case where x (t ) ≠ 0 

¨ Especially, characterizing R0 gives a  
rough idea of the “infection strength”



Importance of R0 so far

¨ Threshold behavior: spreading if R0 > 1
¨ Vaccination rate is 1-1/R0

¨ under homogeneous mixing
¨  Initial trend: exponential with coefficient R0

¨ this can be useful for estimates
¨ %spared depends on it ( must be > e-R0)

¨ this is actually easier to estimate ex-post

¨ More when we introduce demography!


