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SIR model

It is a compartmental model

All N individuals of the population are

categorized into one of 3 classes:
Susceptible (S): sane but without immunity
Infected (I): have the disease and spread it
Recovered (R): the disease ended and they
are immune to it (or they are dead)

Individuals can transit from S to | and
from | to R, where they stay forever



SIR model

o Individual-wise, the model is just a
state-machine with two main transitions

i

o However, the model just considers the

overall amount of individuals in each state
nequal to S, I, R, respectively. S+ 1+ R=N
rtake s=S/N, x=I/N, r=R/N: s+ x+r=1




Usual SIR model assumptions

Homogeneous mixing: all people are in
contact - contagion rate = fx, with >0

Memoryless recovery: disease time is
exponentially distributed with parameter u
- which implies E[sickness duration] = 1/u
Closed system (no arrivals/departures)
Deterministic (15t order approx) — while in
reality there are elements of chance



SIR model equations

Take s =s(t), x =x(t), r=r(t), with t =time
We can write the following equations

ds _ _Bsx all quantities >0

dt thus s(t) decreases and

d x r(t) increases as t goes by
— =PBSX —ux

dt ds/dt+dx/dt+dr/dt=0

dr because closed system
ar

deterministic eq.s: no uncertainty



Known SIR approximations

populations do not uniformly mix: model
works well only for closed environments
population is discrete: quantization error
deterministic model: if y individuals are
expected to change state, it is so

big N helps 2" and 3 points (law of large
numbers) but is troublesome for the 15t

duration of known diseases is ~fixed and
not exponential - yet, simpler math



Basic reproductive ratio R,

Only susceptible individuals at the time O:
S(0)=s,=1 —-> spreading only if x'(0) >0

d—X=ﬁSX—MX>O - at t=0: p/p>1

dt

The parameter R, = /u is called basic
reproductive ratio and is often associated
with the strength of the epidemics



Basic reproductive ratio R,

- Numerical solutions of SIR show R,’s role
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Basic reproductive ratio R,

Formally, R, = E[#secondary infections

caused by an infected individual at time 0]
estimates of R, available for various
infections (albeit with high variability)

Disease How R, Disease How | R,
Measles | Airborne |12-18 Rubella | Airborne | 5-7
Pertussis | Airborne | 12-17 Mumps Airborne | 4-7
Diphtheria| Saliva 6-7 HIV/AIDS | Sexual | 2-5
Smallpox | Contact 5-7 SARS Airborne | 2-5

Polio Fecal-oral | 5-7 | Influenza‘18 | Airborne | 2-3




Physical meaning of parameters

How can we derive the parameters of the
SIR model? If time measured in days:
u = 1/E[#days spent being sick]
during its infectious days (typically 1/u) an
individual causes R, contagions (at most:
true at time 0 when everybody else is S)
—> infection rate per infected = R,/ (1/p) =
B = rate of “contagious contacts” combining:
p[contagion | contact] x p[contact]



Counteracting epidemics

How to lower R, =p/u for a weaker disease

Either decrease :
reduce contagion prob. in case of contact
(e.g., no physical proximity, use protections)
reduce mixing probability (e.g. quarantine)

Or increase n (make recovery faster)
If infected individuals recover sooner, they
have fewer chances to infect others



Herd immunity

Or: vaccination! This implies that s(0) < 1
some individuals start in class R already

Under the simplifying assumptions of SIR,
the disease does not break out if vaccination

rate is high enough (higher threshold)
recall initial spreading condition: B s, - 1> 0

But it does not require to vaccinate
everybody (or does it? we will see)



Herd immunity

Depending on R, one can compute the
minimum required share of vaccinations
we need r, = 1-5, > 1-f/u=1-R,
e.g., if R;=4.0, >75% of the population
should be vaccinated so dx/dt <0 at t=0

Important disclaimer: true only under

assumptions (homogeneous mixing)
in reality you need a much higher rate!



An application for game theory?

Vaccinations require cooperation
the individual behavior of selfish players is
not to vaccinate themselves (easier) and
rely on herd immunity
however, then nobody vaccinates and there
IS no herd immunity whatsoever

A prisoner / conspiracy theorist — dilemmal



Model variations
1

71 Sl model
—the disease is chronic, or cannot be healed

B %o g

1 SIS model
healing = susceptible again (common cold)

S LTI

dt dt




Analytical solution of SI model

We start with the SI model (simpler)
as a matter of fact, only one equation:
dx/dt=psx, where s=1-x
Solve differential eq.: dx/[B(1-x)x]=dt
or: 1/[B(1-x)]dx+1/[Bx]dx=dt
-2 -logl1-x1/B +logixl/p =t+C
x/(1-x) = ePlt+C) = A eft  with A =x,/(1-x;)

Bt
Thus X(t) _ Xp € :
1- X, + X, eP




Analytical solution of SI model

o Solution x(t) = is a sigmoid

Bt
1-Xy,+ Xp€

11S-shaped function, starts as an exponential
(almost all are S)
but then saturates

cfrom x, to 100%
(consequence of
S| assumptions)




Analytical solution of SIS model
_

- For the SIS model we can write
dx/dt=p(1-x) x-ux, where s=1-x
Ce(ﬁ_u)t
1+ CelP !

with int.constant C= B x, / (B - u-
can be omitted as x; is typical aII

(p—w)er
P —w+PXo et

0 lts solutionis x(t) = (1-u/B)

- This results in x(f) = x,



Analytical solution of SIS model

The logistic curve is again a sigmoid
but its limit is (B-u)/B as opposed to 1 of SI
t is also visible that the infection dies out if

3 < as seen for SIR
~or B> u: an endemic

steady-state is the
saturation point, at
which, on average, |

#cured = #contagions




SIR model

This model cannot be fully solved in
closed form (previous plots are numerical)
We can start from SIR equations (1)+(3)

ds deriving xyields 1 4g B dr
= —ﬁSX =
dt s dt u dt
dr and integrating: S=s, o-Por

T ux (if we set r,=0)

Thus, s exponentially decays in r



SIR model: asymptotic regime

A remark on equation s=s, €™’

r increases with t but the exponential term
never goes to 0 > however contagious the
disease, there are individuals avoiding it
(note: true under the limits of quantization)
the reason is that in the SIR model, the
infected individuals cease to be contagious
-> the disease extinguishes as x goes to O



SIR model: asymptotic regime

-~ If s=s,e™" the fraction of individuals

avoiding the disease must be > e
—of course if Ry >1 - N
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Connection with random graphs

Whatever the expression of R, threshold

criterion Ry>1 has a random graph

interpretation: (k)>1 for a GC to appear
same graph for IGCI| and r,, of SIR
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SIR model: asymptotic regime

At t = o we only have this fraction of

individuals spared by the epidemics +the

others (now recovered): x,, must be O
S+ fo =8y € ol r, =1

This last equation is relevant since r,

gives the share of the population that

contracted the disease at any time
we assumed r,=0 and we have x,=0



SIR model: asymptotic regime

The asymptotic values can be used to
characterize SIR parameters
Asymptotic equation s, eFo’>+ r,, =1
relates R, with the fraction of individuals
that ever got infected at one point
Other relationships are possible including
non-asymptotic case where x(t) # 0
Especially, characterizing R, gives a

rough idea of the “infection strength”



Importance of R, so far

Threshold behavior: spreading if R, > 1
Vaccination rate is 1-1/R,
under homogeneous mixing
Initial trend: exponential with coefficient R,
this can be useful for estimates

%spared depends on it ( must be > eFo)
this is actually easier to estimate ex-post

More when we introduce demography!



