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SIR model

1 Susceptible-Infected-Recovered model

kR

- For a population of size N, we consider
the amount of individuals in each state
nequal to S, |, R, respectively. S+ 1+ R =N
Otake s=S/N, x=I/N, r=R/N: s+ x+r=1




SIR model

We can write the following equations

(1) ds _ —Bsx from (1) + (3) we derived
di S=s,e 0
@) 9% _psx —ux
dt U1 now, consider (2) and put
dr X=1-r-s=1-r-s,e"
(3) — =ux into: dr/dt=px
dt

we get: dr/dt=p(1-r-s,eRr)



Solution of SIR model?

Canwe solvedr/dt=p(1-r-s,efr)?

In principle, we have rvs t; thus we should
find the trend of r over t 2 then, s and x
However, the equation is not solvable in
closed-form (no primitive for the integral)

1 ! dy
t=_f —Ryr
wJdo 1-y-s,e ' °




Solution of SIR model?

If discretized time: (Euler’s method)

dx AX
—=0fsX-ux —=(Ps-u)x| Ax=(ps—-u)xAt
dtﬁ x| (Bs—u) (Bs-uw)
Starting from x,, we compute x,=x,+AX,
X{=Xg+AX, ... X, =X, 1+AX
crude but useful method for simulations
constructively models dynamics (+noise?)

can lead to approximation errors



Epidemic curve

Or (with another brutal approximation) we
estimate the “epidemic curve,” roughly
describing the number of newly identified
cases per time unit — taken as dr/ dt

We start fromdr/dt=p (1 -r-5,e™r)
key step: assume R,ris small - Taylor:
dr/dt=pu[1-r-s, (1-Ryr+R2r?)]

a bit dirty... but this admits a primitive!



Epidemic curve

Solve dr/dt=
We get:

wil-r-sy (1-Ryr+Ry2r?)]

r=[syRy-1+atanh(apt/2-9¢)]/ (Ry2s,)

where a=| (s,
and ¢ = tanh-’

(SoRo—1)/a]

Finally, we derive to get:
dr/dt=pa? sech?(apt/2-¢)/(2s,Ry?)



Epidemic curve

The epidemic curve given by
dr/dt=pa? sech?(aut/2-¢)/(2s,R,?)
IS subject to many assumptions

As we need R,r to be small, it works only
for lowly infective diseases and at small t

We know numerical integration techniques
-> this approximation may be unnecessary



Expanding the SIR model
S

n The SIR model is essential but works only
for closed populations (short time span)

o For epidemic dynamics over a long time
horizon, we include “natural” birth/deaths
ni.e. disease-unrelated (assumed non-letal)

Dirth —

death death death



SIR model with demography

The simplest choice of assumptions is
“natural” life-span: exponentially-distributed
with average duration 1/A years
“natural” demography is at a steady-state,
so birth rate = overall death rate = A
“natural” deaths independent of the disease
thus their localized rate in classes S, |, R is
equal to As, Ax, Ar, respectively (in total, 1)



SIR model with demography

The model becomes ds

—=A-PSX-AS
dt
Also re-compute ax _ BSX —ux —AX
parameter R, as dt
R, = p ﬂ =uUX — Ar
A+ at

that keeps R, defined as E[#contagions
created by first infected in a naive population]



SIR model with demography

Immediate implications of these changes:
smaller R,: some infected die by “natural
causes” before fully spreading the disease
recovered state is no longer absorbing

We expect the final outcome can be
either the disease is fully eradicated
or there is an endemic equilibrium where
some infected individuals are present



SIR+demography: applications

The model can be used for several
epidemiologic purposes
computing disease incidence at equilibrium
assessing stability of equilibria
identify oscillatory dynamics of disease
address therapies (such as vaccination) for
complete eradication of the disease

Feel free to think of these also In
non-epidemiologic contexts!



SIR+demography: equilibrium

To compute the equilibrium, we must set

all the derivatives in the equations to 0

If we set dx/dt =0, 2 BS.X, - (AM+u)x, =0
clearly, one possible solution is x, =0
representing a disease-free equilibrium
or, S, = (A+p) / B that is equal to 1/ Ry;
this is an endemic equilibrium where
X, =(Rp-1)A/P (andr,=1-5,.X,)



SIR+demography: equilibrium

What is the right equilibrium?
since X, = (R, -1) A/ B, in the endemic case
we need R, >1; consistent with R,’s role:

R, >1 = endemic R, <1 - disease-free

Stability of equilibria
disease-free eq: trivially stable if reached
endemic eq: also stable, although not as
immediate to derive



SIR+demography: equilibrium

For a system of n ordinary differential egs:

AL A, .. A),

i=1,....n

equilibrium (A,*, A,%,... A.*) = solution of
A ) = 0; stability = dynamics

(F(A, A, ..

W

Compute eigenvalues | 94

of Jacobian matrix J =

Jf *is I (A,*,..

Ap’) y

of, *




SIR+demography: equilibrium

For the SIR+demography model, this is:

/ —-BXx, —u —-BS,, 0 \
J = BX., Bs,—(A+u) O
.0 3 -

The characteristic polynomial in A 'is
(ono -\ -A) (Bsoo _K-“-A) (-K-A)-I-stooxoo (-7"-/\)



SIR+demography: equilibrium

The characteristic polynomial in A is

(BXoo-A=A)(BSo-A-1t-A) (-A-A)+B2 S X (-A-A)
one root is surely A,=-A (always negative)
the others depend on which equilibrium we
are talking about

For disease-free equilibrium, s=1, x,.=0:
we are left with (-A-A)(B-A-u-A) =0, that has
solutions: A,=-A (same as A,) and A;=p-A-u
so, stability implies f < A+, I.e., R, <1



SIR+demography: equilibrium

For the endemic equilibrium, we just have
some more complicated math. We set:

Resulting in A2+AR, A+ (A+p) AR,y -1) = 0.

It A=1/[MR, -1)], G=1/(A+p): 4
MRy . \/O»RO)Z e

avg age at infection A2,3 - _

2 2

duration of the disease



SIR+demography: equilibrium

The endemic equilibrium 2

S 2 _——

has A,=-A and AR, \/(mo) G
’ 2 2

A, and A4 real part <0, so stable equilibrium
term inside square root is typically negative
SO Apz=a=/b, witha<0 - endemic
equilibrium is reached with oscillatory
dynamics (dampened oscillations)




SIR+demography: equilibrium
S
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SIR+demography: equilibrium

Assume A, ;= a=xjb are the last two
eigenvalues for the endemic equilibrium
then, the oscillations towards the endemic
equilibrium can be seen as superpositions
of an exponential decay with parameter a
(hence, becoming 37% at time 1/a)
and oscillations with period 2n/ b



Average age at 18t infection

The average age at 15t infection A is
important and also easy to characterize
why is it equal to 1/[AMR, -1)]7
at equilibrium, individuals are born in class
S and stay there a time A = 1/(exit rate)
said exit rate is equal to Bx,,
(also called the strength of infection)
at endemic equilibrium, x,, = (R, -1) A/ P



Mean age at infection, A (years)

Average age at 18t infection

Strong dependence on R,, weaker on A
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Another parametrization
S

o Anderson&May propose to rewrite the
model in terms of force of infection
ndenoted here as o=px (also a function of t)
rconsider just equations (1) and (2)

E=7»—(cp+7»)s d—8=7¥—((P+7¥)5
dt R dt
dx “"'7‘0 a9 _ +N)op(sRy-1

S
\_jnultlply by B=(A+1)R,



Early growth

Use A&M version to better understand the

initial evolution of the epidemics
S0, assume a very small x; is spreading a
disease over a population of s,=1

The last equation of A&M becomes
do = (A+p) ¢ (Ry -1) dt
but AL u; close to t=0, we even neglect A

(usual procedure) 2> ¢ = @, /!
where F=pn (R, -1) and ¢, = BX;



Early growth

So early growth of strength of infection ¢

and number of infected | is exponential
this explain the rapid increase of x over t
clearly, this holds true until s=1, because
after that we replace R, with s R, (lower)
we reach the point where sis so low that
s R, Is becomes < 1, we start decreasing

The initial growth of an epidemics can also
serve to give a good estimate of R,



Five values affected by R,

The importance of Ry:
it is the threshold parameter, determining
whether or not the disease spreads (>1)
1-1/R, Is also the critical vaccination share
the initial increase rate of an epidemics
(exponential growth) is related to R,-1
>e "o is the final fraction of individuals
affected at some point by the disease
R, gives s at endemic equilibrium (= 1/R,)



