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SIR model

¨ Susceptible-Infected-Recovered model

¨ Actually, this can be generalized to any 
other similar compartmental model
¨ for example, including incubation of a 

disease or vanishing immunity
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SIRS model (waning immunity)

¨  In the SIRS model, immunity acquired by 
recovered individuals is not permanent 

¨ Rate of exit transitions from R: w
¨ i.e., one spends an exponentially distributed 

time with average 1/w in class R 
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SIRS model

¨ SIR equations  
(with demography)  
can be modified as: 
 
 
(analogous solution)

¨  If w = 0, the model is just a plain SIR;  
if w≫µ then this becomes an SIS model

ds
dt

= λ +wr −βsx − λs

dx
dt

= βsx −µx − λx

dr
dt

= µx −wr − λr



SIRS model

¨ Still, basic reproductive ratio R0 = β / (λ+µ)
¨ and stable endemic solution if R0 >1 

¨ The average age at 1st infection can be 
found to be A = w +µ + λ

(w + λ)(β−µ − λ)



SIRS model

¨ Once again the endemic equilibrium is 
reached through damped oscillations of 
period

¨ where GI =1/(λ+µ) and GR =1/(w +µ) are the 
avg time spent in I and R classes, resp.
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Latent period: SEIR

¨ Many diseases have an “incubation” for 
individuals before becoming infective
¨ the individual already has contracted the 

disease and will eventually become infected

¨ Thus, we can add an “exposed” (E) state
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SEIR model

¨ SEIR equations  
(with demography)  
can be written as: 
 
where E = #{class E} 
and y = E / N 
 
and σ = transition rate  
class S à class E

ds
dt

= λ − (βx + λ)s

dy
dt

= βsx − (λ +σ)y

dx
dt

= σy − (λ +µ)x

dr
dt

= µx − λr

σ



Endemic equilibrium of SEIR

¨ We can derive R0 = βσ / [ (λ+µ) (λ+σ) ]
¨ this can be found by directly interpreting the 

physical meaning of R0 with “merged” 
states E and I; but we account for that only 
during the I phase the individual is infective

¨ yet, typically σ≫λ àas before R0 = β / (λ+µ) 
and stable endemic solution if R0 >1 

¨ actually, to prove stability is slightly more 
complicated but doable (3rd deg equations)



Endemic equilibrium of SEIR

¨ Endemic equilibrium also analogous to 
SIR as still (albeit R0 is slightly different: it 
is R0 = βσ / [ (λ+µ) (λ+σ) ] ) 
we have s∞ = 1/ R0    x∞ = (R0 -1) λ / β 

¨ We also derive y∞ = (R0 -1) λ (λ+µ) / (σ β) 
and naturally r∞ = 1 - s∞ - x∞ - y∞

¨ For σ⟶∞ we re-obtain the results of SIR 
(duration of incubation is infinitesimal)



SEIR at invasion

¨ SEIR may seem a useless complication
¨ indeed, for small λ≪µ,σ R0 is same as SIR, 

only longer disease recovery (1/µ)+(1/σ) 
¨ however, models are very different at the 

initial phase of the disease (invasion) 
where state E slows down the spreading

¨ whereas

xSEIR(t ) ≈ x0e
4(R0−1)σµ+(σ+µ)

2−(σ+µ)( )t /2
≈ x0e

R0−1( )µt

xSIR(t ) ≈ x0e
R0−1( )µt



Permanent carriers: SICR

¨ Some infecteds may enter a “chronic” state 
from which they slowly (or never) recover

¨ Good model for some permanent infections 
such as herpes simplex or hepatitis B
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SICR model

¨ C = #carriers,  
c = C / N

¨ CàR has rate Γ 
¨ IàC or IàR with  

split probabilities, 
q or 1-q, resp.

¨ C and I cause  
undistinguishable  
infection, but C’s 
is weaker by ε<1

ds
dt

= λ − (βx + εβc + λ)s

dx
dt

= [β(x + εc)]s − (λ +µ)y

dc
dt

= µqx − (Γ + λ)c

dr
dt

= µ(1−q)x +Γc − λr



SICR model

¨ To compute R0  and apply threshold 
criterion R0 >1 we observe that

R0 =  β
λ +µ

  +   q  µ
λ +µ

  εβ
λ +Γ

contagions by I   +       contagions by C

fraction of I that become C 
(neither dying while I, nor 
becoming immediately R)

force of infection  
of class C divided  
by time spent in C



SICR model

¨ After some tedious math, one can find the 
endemic equilibrium where s∞ = 1/ R0
¨ and similar results for the other classes

¨ Generally, in these models the number of 
acute infected individual is much smaller 
than the number of carriers
¨ because the time spent as acute infected (I) 

is much smaller than that spent as carrier C 
– think of AIDS or similar diseases



Generalizations with more states

¨ if exponential sojourn time = exponential, 
their sum is Erlang-distributed

S I RE1 E2

S I3 RI1 I2

M I RS
maternal immunity



Parameter estimation

¨ Even though a more detailed model may 
seem a good idea, also the number of 
parameters greatly increases
¨ it is usually difficult to estimate all 

parameters with good accuracy
¨ more experimental data are required
¨ and good insight on the process is needed 

(modeling assumptions)



Change of population size

¨ Given the origin of the SIR model (closed 
system) we often impose the condition 
that birth rate = (natural) death rate = λ
¨ sensible for short-time periods

¨ But sometimes the population size matters
¨ longer time windows
¨ or demography is influenced by disease



Mass action

¨ What if the population size changes?
¨  In our formulation, we just consider 

fractions of a population of size N 

¨ for SIR: s = S / N, x = X / N, r = R /N
¨  If we want to change N over time:

¨ we rescale the variables (no big deal)
¨ but also we need to check whether the 

parameters are constant for different N



Mass action

¨ The SIR model with “force of infection” φ  
assumes it is linear in X : φ = βx = βX / N

¨ Underlying assumption: 
contact rate independent 
of N (true if contagions 
spread just around you)

¨ àβ is constant in N

dS
dt

= −ϕS 

dX
dt

= ϕS −µX

dR
dt

= µI



Mass action

¨  If we put B = β / N, it is just a rescaling

¨ also called frequency-dependent model

dS
dt

= −BSX

dX
dt

=BSX −µX

dR
dt

= µX

dS
dt

= −
β
N
XS 

dX
dt

=
β
N
XS −µX

dR
dt

= µX



Pseudo-mass (density-based)

¨ The assumption that #contacts is constant 
in N reflects intuition for many diseases

¨ However, other diseases have the 
parameter β being itself linear in N
¨ the rationale is that #contacts depends on 

#individuals crammed in the ecosystem
¨ called density-dependent compartmental 

model or pseudo-mass action 



Discussion

¨ Frequency dependent is the common 
assumption for human-carried diseases
¨ idea: humans are social beings, interacting 

despite distance, looking for each other 
(even more true in tech or social contexts)

¨ Density dependent is better for animals  
(or plants) crammed in a given space
¨ when individuals die, fewer interactions

¨ Actually, also intermediate situations



Disease-induced mortality

¨ What happens if the disease is deadly and 
removes individuals from the population?

¨ To answer, we need some parameters:
¨ now birth rate = λ ≠ natural death rate = ν 
¨ the individual probability of succumbing to 

the disease (between 0 and 1) = ρ 
¨ We have a dynamically variable N  

In the absence of the disease, N ⟶ λ / ν



Disease-induced mortality

¨ Exit from state I can happen because:
¨ the infected recovers, rate = µ
¨ the infected dies of natural death, rate = ν 
¨ the infected dies because of the disease

¨ The impact of the latter is that the 
infectious period is cut short by a factor of 
(1-ρ) as on average only those survive
¨ the exit rate is thus (ν+µ)/(1-ρ)



Disease-induced mortality

¨  Infected equations is now:
                                   (analogous for S and R )

¨ density-dependent: B = β / N = constant
¨ but for frequency-dependent model, N is not 

a constant anymore and must be included
¨ + population equation: 

dX
dt

=
β
N
SX −

ν+µ
1−ρ

X

dN
dt

= λ − νN −ρµX



Disease-induced mortality

¨ Both choices can be the right one
¨ frequency-dependent (mass action): 

describes situations where #contact per 
infected is same (even with decimated N )

¨ density-dependent: if N shrinksà we have 
less frequent contacts among individuals

¨  It really depends on the phenomenon
¨ besides, there are also intermediate choices



Disease-induced mortality

¨  In both models, 2 equilibria: disease-free or 
endemic, the latter if R0>1(also stable)
¨ e.g., for frequency-dep: 
 
 
 

and we also need

¨ for density-dep: R0 = (λ/ν) (1-ρ)β / (ν+µ)

s∞ =
ν+µ
β(1−ρ)

=1/ R0x∞ =
ν

β(1−ρ)
(R0−1)

N∞ =
λ
ν
R0(1−ρ)
(R0−ρ)
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Vertical transmission

¨ Certain diseases exhibit transmission from 
an infected parent to the offspring
¨ we can incorporate this in the model by 

assuming that newborns are susceptible, 
except for a fraction proportional to x

ds
dt

= λ −hλx −βsx − νs

dx
dt

= hλx +βsx −µx − νx

just rescales parameters 
(and does not affect the 
analysis, as we will see)



General model

¨ Even if all parameters are different, we get

¨ which can be solved in x and r (s = 1-x -r )

ds
dt

= λ −hλx −βsx − νs +wr

dx
dt

= hλx +βsx −µx − νx

dr
dt

= µx −wr − νr



General model

¨ set ω = w + ν  and 
ψ = h λ + β – µ – λ  

dx
dt

= (hλ +β(1− x − r )− (µ + ν))x
dr
dt

= µx − (w + ν)r

dx
dt

= (ψ+βx −βr)x
dr
dt

= µx −ωr

s∞ =
β− ψ
β

=
µ + λ(1−h)

β
, x∞ =

ωψ
β(µ +ω)

, r∞ =
µψ

β(µ +ω)

endemic equilibrium


