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SIR model

1 Susceptible-Infected-Recovered model
I

o Actually, this can be generalized to any

other similar compartmental model
mfor example, including incubation of a
disease or vanishing immunity




SIRS model (waning immunity)
_

o In the SIRS model, immunity acquired by
recovered individuals is not permanent

N
\ /

- Rate of exit transitions from R: w
mi.e., one spends an exponentially distributed
time with average 1/win class R




SIRS model

SIR equations ds

(with demography) 'qf ~ A+Wr—pSX —As

can be modified as: d x

—— =PBSX —uX - AX
7 pSX —u

(analogous solution) ar _ WX — Wr — Ar

dt

If w=0, the model is just a plain SIR;
if w>pu then this becomes an SIS model



SIRS model

o Still, basic reproductive ratio R, = B/ (A+p)
and stable endemic solution if Ry>1

o The average age at 15t infection can be
found to be W+uU+A

A=
W+A)(B-u-»A)




SIRS model

Once again the endemic equilibrium is
reached through damped oscillations of

period
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where G, =1/(A+p) and Gy =1/(w+pn) are the
avg time spent in | and R classes, resp.



Latent period: SEIR

1 Many diseases have an “incubation” for

individuals before becoming infective
m1the individual already has contracted the
disease and will eventually become infected

o Thus, we can add an “exposed” (E) state



SEIR model

SEIR equations ds
(with demography) dt
can be written as:

=A—(PxX+A)S

o d—y=[35x-(k+o)y
where E = #{class E} | 9!

and y=E/N (Z_;(=oy—(k+u)x

and o = transition rate | dr _ X = A

class S - class E dit



Endemic equilibrium of SEIR

We can derive R, = o /[ (A+n) (A+0) ]
this can be found by directly interpreting the
physical meaning of R, with “merged”
states E and I; but we account for that only
during the | phase the individual is infective
yet, typically 6>\ >as before Ry =/ (A+p)
and stable endemic solution if R, >1
actually, to prove stability is slightly more
complicated but doable (3" deg equations)



Endemic equilibrium of SEIR

Endemic equilibrium also analogous to
SIR as still (albeit R, is slightly different: it
is Ry = Bo /[ (+p) (A+o) 1)

we have s, =1/R; Xx,=(Ry-1)A/p

We also derive y,, = (R -1) A (A+p) / (o B)
and naturally r, =1 - Sy, - X - Voo

For c—c0 we re-obtain the results of SIR
(duration of incubation is infinitesimal)



SEIR at invasion

SEIR may seem a useless complication
indeed, for small A< p,0 R, is same as SIR,
only longer disease recovery (1/u)+(1/0)
however, models are very different at the
initial phase of the disease (invasion)
where state E slows down the spreading

(\/4(R0—1)0M+(0+M)2 —(0+u))t/2 (Ro-Tut

Xspip(t) = Xo€

whereas Xxg(f) = X,€

(RO —1)ptt



Permanent carriers: SICR
1

1 Some infecteds may enter a “chronic” state
from which they slowly (or never) recover

n1Good model for some permanent infections
such as herpes simplex or hepatitis B



SICR model

C = #carriers, ds

c=C/N E=7\.—([3X+8[30+7\.)S
C—2>R hasrate I d x

I>Cor 2R with | ——=[B(x+cc)]s-(A+u)y
split probabillities, at

g or 1-g, resp. dc

C and | cause di ugx - (L'+1)c
undistinguishable |4,
infection, but C's |-+ = u(1-qg)x+I'c—-Ar

IS weaker by e<1



SICR model

o To compute R, and apply threshold
criterion R,>1 we observe that

contagions by | + contagions by C
R, = p N qu ep
A+ U Au | A+T

fraction of | that become C force of infection
(neither dying while I, nor of class C divided
becoming immediately R) by time spent in C



SICR model

After some tedious math, one can find the
endemic equilibrium where s, = 1/R,
and similar results for the other classes

Generally, in these models the number of
acute infected individual is much smaller
than the number of carriers
because the time spent as acute infected ()
iIs much smaller than that spent as carrier C
— think of AIDS or similar diseases



(Generalizations with more states

maternal immunity

nif exponential sojourn time = exponential,
their sum is Erlang-distributed



Parameter estimation

Even though a more detailed model may
seem a good idea, also the number of
parameters greatly increases
it is usually difficult to estimate all
parameters with good accuracy
more experimental data are required
and good insight on the process is needed
(modeling assumptions)



Change of population size

Given the origin of the SIR model (closed

system) we often impose the condition

that birth rate = (natural) death rate = A
sensible for short-time periods

But sometimes the population size matters
longer time windows
or demography is influenced by disease



Mass action

What if the population size changes?
In our formulation, we just consider
fractions of a population of size N

for SIR: s=S/N, x=X/N, r=R/N

If we want to change N over time:
we rescale the variables (no big deal)
but also we need to check whether the
parameters are constant for different N



Mass action

The SIR model with “force of infection” ¢
assumes itislinearin X:o=px=pX/N

ds

— =-S5 Underlying assumption:
dt contact rate independent

ax _ oS —uX Of Ntrue if contagions
dt spread just around you)

aR _
dt

ul —->p is constantin N



Mass action
1

olfwe put B=p/ N, itis just arescaling
ds _ dS

95 _ _Bsx
dt dt
dX _B 9X _BSX —uX
dt dt
dR dR
9" _x 9" _
ar ar

ralso called frequency-dependent model



Pseudo-mass (density-based)

The assumption that #contacts is constant
In N reflects intuition for many diseases
However, other diseases have the
parameter 3 being itself linear in N
the rationale is that #contacts depends on
#individuals crammed in the ecosystem

called density-dependent compartmental
model or pseudo-mass action



Discussion

Frequency dependent is the common
assumption for human-carried diseases
idea: humans are social beings, interacting
despite distance, looking for each other
(even more true in tech or social contexts)
Density dependent is better for animals
(or plants) crammed in a given space
when individuals die, fewer interactions

Actually, also intermediate situations



Disease-induced mortality

What happens if the disease is deadly and

removes individuals from the population?

To answer, we need some parameters:
now birth rate = A # natural death rate = v
the individual probability of succumbing to
the disease (between 0 and 1) =p

We have a dynamically variable N
In the absence of the disease, N— A /v



Disease-induced mortality

Exit from state | can happen because:

i
i
i

ne infecteo
ne infecteo

ne infecteo

recovers, rate =
dies of natural death, rate = v
dies because of the disease

The impact of the latter is that the
infectious period is cut short by a factor of

(1-p) as on average only those survive
the exit rate is thus (v+p)/(1-p)



Disease-induced mortality

Infected equations is now:
dX B By _Y+uy (analogous for S and R)

dt N 1-p

density-dependent: B =3 / N = constant
but for frequency-dependent model, N is not
a constant anymore and must be included

+ population equation: | 4
—=A-vN -puX
gy pu




Disease-induced mortality

Both choices can be the right one
frequency-dependent (mass action):
describes situations where #contact per
infected is same (even with decimated N)
density-dependent: if N shrinks—> we have
less frequent contacts among individuals

It really depends on the phenomenon
besides, there are also intermediate choices



Disease-induced mortality
S

o In both models, 2 equilibria: disease-free or
endemic, the latter if R;>1(also stable)

re.g., for f\r/equency-dep: g _ vtu _1/R,

X, = (Ro-1)  B(1-p)
B(1-p)
K(Ro("—P))

and we also need N, =
v\ (Ro-p)

cfor density-dep: R, = (AV)[(1-p)B / (v+p)
=1/s,




Vertical transmission

Certain diseases exhibit transmission from

an infected parent to the offspring
we can incorporate this in the model by
assuming that newborns are susceptible,
except for a fraction proportional to x

ds
—— = A—-hAX"~ [38X — VS just rescales parameters
dt (and does not affect the

C(lj_)t( MK +BSX —ux — vx analysis, as we will see)



General model
N
o Even if all parameters are different, we get

d—S=k—hkx—[33x—vs+Wf
dt

dx

—— = hAX +BSX —ux —vx
dt

ar _ X —Wr—vr

T

owhich can be solved in xand r(s=1-x-r)



General model

]
?j—;(=(hk+|3(1—x—r)—(u+v))x
%=ux—(w+v)r ‘

sseto=w+v and | 9X _ (44 px—pr)x

y=hh+p—u—-Hr 9t
dr

endemic equilibrium | g7 =YX~ @7

Sw:[%—_mp=u+k(1—h),x _ oy

5 3 i

- uy
Blu+w) ~ Plu+w)




