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Disease-induced mortality

¨ We found 2 equilibria: disease-free or 
endemic, the latter if R0>1(also stable)
¨ for frequency-dep: 
 
 
 

also, #individuals

¨ for density-dep: R0 = (λ/ν) (1-ρ)β / (ν+µ)
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Late mortality

¨  If disease-induced mortality is too high à 
probability of dying = ρ ⟶ 1 but then  
(for both models) R0 drops to 0
¨ also the share of infected at equilibrium is 

always 0 and the disease is never endemic
¨ the reason is that new infected die almost 

instantly and cannot spread the disease
¨ We may want another model where 

people only die at the end of the infection



Late mortality

¨ With late mortality:

(death by the disease  
are included implicitly,  
they do not show up  
as recovered) 

¨ This is also analogous to the standard SIR 
model, with same R0-related properties

ds
dt

= λ − (βx + ν)s

dx
dt

= βsx − (ν+µ)x

dr
dt

= (1−ρ) µx − νr



Population control

¨ Another example:
¨ disease always fatal
¨ its death rate = µ
¨ (no recovered class)
¨ we need N = S+X

¨ From (2), equilibrium if: X = 0, or βS = ν+µ 
¨ disease-free or endemic equilibrium

¨ But X = 0 in (1) yields λS = νS : cannot be!
¨ thus, disease-free equilibrium is unstable

dS
dt

= λ(S +X )− (βX + ν)S

dX
dt

= βSX − (ν+µ)X



Population control

¨ X = 0 is unstable as population cannot stay 
constantàexponential growth with rate λ-ν

¨ What if S =(ν+µ)/β? Then:
λ(ν+µ)/β + λ X  - (ν+µ) X  + ν (ν+µ)/β = 0

   leading to: X = (λ-ν)(ν+µ) / [β (ν+µ-λ) ]
¨ endemic equilibrium... only if λ < ν+µ 

otherwise the value of X is negative!
¨ if λ > ν+µ endemic equilibrium is unstable,  

N grows exponentially with rate λ-ν-µ



Population control

¨ A further variant
¨ same as before but
¨ births are only caused by 
healthy individuals 
(disease is debilitating)

¨ Now S’ =(λ-ν-βX ) S   ;    X’ =(βS -ν-µ ) X
¨ these are the Lotka-Volterra equations for 

population dynamics (predator-prey)

dS
dt

= λS − (βX + ν)S

dX
dt

= βSX − (ν+µ)X



Population control

¨ There must be again two equilibria 
(unstable disease-free + endemic with 
        S∞ =(ν+µ )/β     and      X∞ =(λ-ν )/β     )
¨ but ℜ[both endemic eigenvalues]=0 

meaning cyclically oscillatory dynamics
¨ This means the system alternates  

“prevalent S” / “prevalent X” over and over
¨ typical behavior of some epidemic plagues



Model heterogeneity

¨ Some diseases inherently violate the 
assumption of homogeneous individuals 
and/or homogeneous mixing

¨ Diseases may have variable contagious 
behavior across the population 
¨ risk-structured diseases (e.g., STDs)
¨ age-structured diseases
¨ multiple pathogens
¨ multiple hosts (vectored, zoonoses)



Risk structure

¨ These aspects can still be included in a 
compartmental model with more states

¨ For example: high/low risk
¨ for simplicity consider just an SIS model

¨ it is like two separate 
populations that can 
infect each other

SH IH

SL IL



Risk structure

¨  Instead of parameter β we need matrix β 
¨  WAIFW (who acquires 

infection from whom)
¨  βab = rate to a  from b 

¨ H=“high”: βHH +βHL > βLH +βLL ; and usually:
¨ individuals are born H or L and stay like that 

forever: nH = H/N = sH + xH , same for L
¨ assortative mixing: βii  > βij  with i ≠ j 
¨ symmetry βHL = βLH 

β =
βHH βHL
βLH βLL
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Risk structure

¨ Usually, the disease has the same course: 
so just one µ, which is convenient
¨ otherwise we need two µs  (µH and µL)

¨ One possibility is to consider two R0s:
¨ contacts are equally likely, proportional to 

nH --nL split, e.g.: R0
(H) = (nH βHH +nL βLH ) / µ  

¨ depending on the split, maybe βLL  > µ but  
R0

(L) = (nH βHL +nL βLL ) / µ  < 1



Risk structure

¨ R0
(H), R0

(L) are meaningful at the start of 
the invasion but when xH and xL increase, 
group dynamics become slaved (coupled)
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R0 with risk structure

¨ The system of differential equations is

¨ for a consistent meaning of R0, redefine it 
as #secondary infections caused in a naive 
population once transient phases ended 

dxH
dt

≈ (βHHnH −µ)xH  + βHLnHxL

dxL
dt

≈ βLHnLxH  + (βLLnL −µ)xL



R0 with risk structure

¨ The Jacobian matrix J of this system is:

¨  Its dominant eigenvalue Λ1 gives the 
exponential dynamic in the slaved phase

¨ Spreading out if Λ1 > 0 (akin to say: R0 >1)

J =
βHHnH −µ βHLnH
βLHnL βLLnL −µ
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R0 with risk structure

¨ To compute R0, define matrix R  showing 
#secondary cases caused by each 
combination

¨ R0 is the dominant eigenvalue of R and  
                        as the nonstructured case

R =
βHHnH / µ βHLnH / µ
βLHnL / µ βLLnL / µ
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R0 with risk structure

¨  If no mixing (classes do not infect one another)

¨ à R0 =weighted average of R0
(H) and R0

(L)

¨ But even a not-so-large βHL = βLH    causes 
infection to mix à coupling à R0 is higher

R =
βHHnH / µ 0

0 βLLnL / µ
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R0 with risk structure

¨ Since we have an initial invasion and then 
a slaved trend, dynamics can be variegate
¨ in the scenario previously 

plotted: µ=1,  WAIFW is 
and nH : nL = 20:80 

¨ here, xL decreases at first 
and then catches up when slaved

¨ this is because R0
(H) = 2.08, R0

(L) = 0.82, but 
the ultimate value is R0 = 2.0013
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R0 with risk structure

¨ But we can even have the opposite trend
¨ if µ=1, still nH : nL = 20:80  

but we take WAIFW as
¨ we see that an initial  

infected in high-risk causes on average an 
increase of 1.4 secondary infections

¨ But the eventual dynamics follows a basic 
reproductive ratio R0 = 0.9083 <1

β = 1 1.5
1.5 0.5
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s∞ and x∞ with risk structure

¨ To solve the equilibrium and find e.g. s∞(H) 
(or x∞(H) or s∞(L)  and so on) is in general 
difficult because of non-linear system
¨ still, the system can be solved numerically

¨ Main practical conclusion: the asymptotic 
share of infecteds is usually low
¨ in the previously shown example:  

x∞(H)≈ 0.1, x∞(L)≈ 0.033, although R0≈ 2



Eradication with risk structure

¨  Immediate consequence: a risk-structured 
disease is difficult to eradicate
¨ the reason is that the asymptotic fraction of 

infected is generally low, but eradication 
requires to push R0 (actually high) below 1

¨ true e.g. for random vaccination, but...  
not for specific vaccination/treatment 
procedures specifically targeted especially 
towards high-risk individuals



Applications: STDs

¨ Risk structure is typically adopted when 
modeling STDs, where our assumptions 
about “risk” are usually respected
¨ risk class easy to associate to #partners
¨ connections tend to be assortative
¨ persistence of the disease is usually due to 

few active spreaders in the high risk class
¨ we can also think of a further connection 

with network graphs (sexual network)



Shredders vs. spreaders

¨ Many airborne infections have a special 
WAIFW in the presence of either  
super-shredders or super-spreaders
¨ a super-shredder is an individual that is 

able to contaminate more secondary than 
usual (but he is not necessarily at high risk)

¨ a super-spreader is more frequently in 
contact with others (he spreads more but  
he is also at higher risk himself)



Shredders vs. spreaders

¨ Transmission matrix with super-shredders:

¨ (symmetry is broken; factor f >1 for S)
¨ Transmission matrix with super-spreaders:

β =
βSS βSR
βRS βRR
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Age structure

¨ Other diseases have a different behavior 
at various ages, so consider population 
with (C)hildren and (A)dults

SA IA RA

death death death

SC IC RCbirth



Age structure

¨ We can still write WAIFW matrix β 

 

¨ Hypotheses that are still reasonable
¨ assortative mixing: βii  > βij  with i ≠ j 
¨ symmetry βAC = βCA

¨ But now it is unclear what class is more at 
risk, and also class sizes change in time

β =
βCC βAC
βAC βAA
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Age structure

¨ We may actually be tempted to treat age 
as a continuous parameter
¨ but that makes the equations hard to solve
¨ and at the same time, we do not have this 

many parameters
¨ Better replicate compartments and divide 

the population in age classes
¨ model is more tractable and we can exploit 

standard assumptions (e.g. memoryless)



Control by vaccination

¨ For risk structure, it was more efficient to 
vaccinate or quarantine high-risk elements 
as this reduces the actual value of R0

¨  In age structure, we do not have a class 
with “higher risk” (it can be both)
¨ individuals partake in the entire dynamics 

(we expect them to be C, then A in due time)
¨ yet, s∞(a) / n∞(a) ≥ s∞(b) / n∞(b)    if a  <  b

younger 
than



Control by vaccination

¨ This implies that to control the disease 
spread, most of the individual’s lifespan 
should be immune; thus, it is generally best 
to vaccinate the youngest group
¨ just a general rule, though (it depends on 

the numbers and also on waning immunity) 
¨  If children are vaccinated, 1-1/R0 still well 

approximates the minimal vaccination rate
¨ often used for measles and baby-diseases


