LIFE DATA EPIDEMIOLOGY

Lecture 5: Rísk structure

Leonardo Badia

leonardo.badia@unipd.it

Disease-induced mortality

We found 2 equilibria: disease-free or endemic, the latter if $R_0 > 1$ (also stable) □ for frequency-dep: $S_{\infty} = \frac{v + \mu}{\beta(1 - \rho)} = 1/R_0$ $X_{\infty} = \frac{v}{\beta(1-\alpha)} (\mathsf{R}_0 - 1)$ also, #individuals $N_{\infty} = \frac{\lambda}{\nu} \left(\frac{R_0(1-\rho)}{(R_0-\rho)} \right)$ □for density-dep: $R_0 = (\lambda/\nu) (1-\rho)\beta / (\nu+\mu)$ $=1/S_{m}$

Late mortality

 \Box If disease-induced mortality is too high \rightarrow probability of dying = $\rho \rightarrow 1$ but then (for both models) R_0 drops to 0 also the share of infected at equilibrium is always 0 and the disease is never endemic the reason is that new infected die almost instantly and cannot spread the disease We may want another model where people only die at the **end** of the infection

Late mortality

With late mortality:

(death by the disease are included implicitly, they do not show up as recovered)

$$\frac{ds}{dt} = \lambda - (\beta x + \nu)s$$
$$\frac{dx}{dt} = \beta sx - (\nu + \mu)x$$
$$\frac{dr}{dt} = (1 - \rho) \mu x - \nu r$$

This is also analogous to the standard SIR model, with same R₀-related properties

Another example:
disease always fatal
its death rate = μ (no recovered class)
we need N = S + X

$$\frac{dS}{dt} = \lambda(S + X) - (\beta X + \nu)S$$
$$\frac{dX}{dt} = \beta SX - (\nu + \mu)X$$

From (2), equilibrium if: X=0, or βS = v+μ
 disease-free or endemic equilibrium
 But X=0 in (1) yields λS = vS : cannot be!
 thus, disease-free equilibrium is unstable

 $\square X = 0$ is unstable as population cannot stay constant \rightarrow exponential growth with rate λ -v \Box What if $S = (v + \mu)/\beta$? Then: $\lambda(\nu+\mu)/\beta + \lambda X - (\nu+\mu)X + \nu (\nu+\mu)/\beta = 0$ leading to: $X = (\lambda - \nu)(\nu + \mu) / [\beta (\nu + \mu - \lambda)]$ \Box endemic equilibrium... only if $\lambda < \nu + \mu$ otherwise the value of X is negative! \Box if $\lambda > v + \mu$ endemic equilibrium is unstable, N grows exponentially with rate λ -v- μ

 A further variant
 same as before but
 births are only caused by healthy individuals (disease is debilitating)

$$\frac{dS}{dt} = \lambda S - (\beta X + \nu)S$$
$$\frac{dX}{dt} = \beta SX - (\nu + \mu)X$$

Now S'=(λ-ν-βX) S ; X'=(βS-ν-μ) X
 these are the Lotka-Volterra equations for population dynamics (predator-prey)

□ There must be again two equilibria (unstable disease-free + endemic with $S_{\infty} = (\nu + \mu)/\beta$ and $X_{\infty} = (\lambda - \nu)/\beta$)

□but ℜ[both endemic eigenvalues]=0 meaning cyclically oscillatory dynamics

This means the system alternates
 "prevalent S" / "prevalent X" over and over
 typical behavior of some epidemic plagues

Model heterogeneity

Some diseases inherently violate the assumption of homogeneous individuals and/or homogeneous mixing Diseases may have variable contagious behavior across the population □risk-structured diseases (e.g., STDs) age-structured diseases multiple pathogens multiple hosts (vectored, zoonoses)

These aspects can still be included in a compartmental model with more states
 For example: high/low risk
 for simplicity consider just an SIS model

it is like two separate populations that can infect each other

□ Instead of parameter β we need matrix β $\beta = \begin{pmatrix} \beta_{HH} & \beta_{HL} \\ \beta_{LH} & \beta_{LL} \end{pmatrix} □ WAIFW (who acquires infection from whom) \\ □ \beta_{ab} = rate to a from b$

H="high": β_{HH}+β_{HL} > β_{LH}+β_{LL}; and usually:
 individuals are born H or L and stay like that forever: n_H = H/N = s_H + x_H, same for L
 assortative mixing: β_{ii} > β_{ij} with i ≠ j
 symmetry β_{HL} = β_{LH}

 Usually, the disease has the same course: so just one μ, which is convenient
 otherwise we need two μs (μ_H and μ_L)

 One possibility is to consider two R₀s:
 contacts are equally likely, proportional to n_H--n_L split, e.g.: R₀^(H) = (n_H β_{HH}+n_L β_{LH}) / μ
 depending on the split, maybe β_{LL} > μ but R₀^(L) = (n_H β_{HL}+n_L β_{LL}) / μ < 1

□ $R_0^{(H)}$, $R_0^{(L)}$ are meaningful at the start of the invasion but when x_H and x_L increase, group dynamics become slaved (coupled)

The system of differential equations is

$$\frac{\mathrm{d} x_{H}}{\mathrm{d} t} \approx (\beta_{HH} n_{H} - \mu) x_{H} + \beta_{HL} n_{H} x_{L}$$
$$\frac{\mathrm{d} x_{L}}{\mathrm{d} t} \approx \beta_{LH} n_{L} x_{H} + (\beta_{LL} n_{L} - \mu) x_{L}$$

for a consistent meaning of R₀, redefine it as #secondary infections caused in a naive population once transient phases ended

The Jacobian matrix J of this system is:

$$\boldsymbol{J} = \begin{pmatrix} \beta_{HH} \boldsymbol{n}_{H} - \boldsymbol{\mu} & \beta_{HL} \boldsymbol{n}_{H} \\ \beta_{LH} \boldsymbol{n}_{L} & \beta_{LL} \boldsymbol{n}_{L} - \boldsymbol{\mu} \end{pmatrix}$$

Its dominant eigenvalue Λ₁ gives the exponential dynamic in the slaved phase X_H ∝ e^{Λ₁t} and X_L ∝ e^{Λ₁t}
 Spreading out if Λ₁ > 0 (akin to say: R₀ >1)

■ To compute R₀, define matrix **R** showing #secondary cases caused by each combination $\mathbf{R} = \begin{pmatrix} \beta_{HH} n_H / \mu & \beta_{HL} n_H / \mu \\ \beta_{LH} n_L / \mu & \beta_{LL} n_L / \mu \end{pmatrix}$

□ R_0 is the dominant eigenvalue of *R* and $X_L \propto e^{(R_0 - 1)\mu t}$ as the nonstructured case

■ If no mixing (classes do not infect one another) $\boldsymbol{R} = \begin{pmatrix} \beta_{HH} n_{H} / \mu & 0 \\ 0 & \beta_{LL} n_{L} / \mu \end{pmatrix}$ $\square \rightarrow R_{0} = \text{weighted average of } R_{0}^{(H)} \text{ and } R_{0}^{(L)}$

□ But even a not-so-large $\beta_{HL} = \beta_{LH}$ causes infection to mix \rightarrow coupling \rightarrow R₀ is higher

Since we have an initial invasion and then a slaved trend, dynamics can be variegate in the scenario previously plotted: $\mu=1$, WAIFW is $\beta = \begin{pmatrix} 10 & 0.1 \\ 0.1 & 1 \end{pmatrix}$ and n_H : $n_L = 20.80$ \Box here, x_i decreases at first and then catches up when slaved This is because $R_0^{(H)} = 2.08$, $R_0^{(L)} = 0.82$, but the ultimate value is $R_0 = 2.0013$

■ But we can even have the opposite trend ■ if μ =1, still n_H : n_L = 20:80 but we take WAIFW as $\beta = \begin{pmatrix} 1 & 1.5 \\ 1.5 & 0.5 \end{pmatrix}$ ■ we see that an initial infected in high-risk causes on average an increase of 1.4 secondary infections

□ But the eventual dynamics follows a basic reproductive ratio $R_0 = 0.9083 < 1$

s_{∞} and x_{∞} with risk structure

 \Box To solve the equilibrium and find e.g. $s_{\infty}^{(H)}$ (or $x_{\infty}^{(H)}$ or $s_{\infty}^{(L)}$ and so on) is in general difficult because of non-linear system □still, the system can be solved numerically Main practical conclusion: the asymptotic share of infecteds is usually low \Box in the previously shown example: $x_{\infty}^{(H)} \approx 0.1$, $x_{\infty}^{(L)} \approx 0.033$, although $R_0 \approx 2$

Eradication with risk structure

Immediate consequence: a risk-structured disease is difficult to eradicate the reason is that the asymptotic fraction of infected is generally low, but eradication requires to push R_0 (actually high) below 1 □true e.g. for **random** vaccination, but... not for specific vaccination/treatment procedures specifically targeted especially towards high-risk individuals

Applications: STDs

Risk structure is typically adopted when modeling STDs, where our assumptions about "risk" are usually respected □risk class easy to associate to #partners connections tend to be assortative persistence of the disease is usually due to few active spreaders in the high risk class we can also think of a further connection with network graphs (sexual network)

Shredders vs. spreaders

Many airborne infections have a special WAIFW in the presence of either super-shredders or super-spreaders □a super-shredder is an individual that is able to contaminate more secondary than usual (but he is not necessarily at high risk) a super-spreader is more frequently in contact with others (he spreads more but he is also at higher risk himself)

Shredders vs. spreaders

Transmission matrix with super-shredders:

$$\beta = \begin{pmatrix} \beta_{SS} & \beta_{SR} \\ \beta_{RS} & \beta_{RR} \end{pmatrix} = \begin{pmatrix} f\beta & \beta \\ f\beta & \beta \end{pmatrix}$$

$$\Box (symmetry is broken; factor f > 1 for S)$$

□ Transmission matrix with super-spreaders: $\beta = \begin{pmatrix} \beta_{SS} & \beta_{SR} \\ \beta_{RS} & \beta_{RR} \end{pmatrix} = \begin{pmatrix} f^2\beta & f\beta \\ f\beta & \beta \end{pmatrix}$

Age structure

Other diseases have a different behavior at various ages, so consider population with (C)hildren and (A)dults

Age structure

□ We can still write WAIFW matrix β $\beta = \begin{pmatrix} \beta_{CC} & \beta_{AC} \\ \beta_{AC} & \beta_{AA} \end{pmatrix}$

- □ Hypotheses that are still reasonable □assortative mixing: $β_{ii} > β_{ij}$ with $i \neq j$ □symmetry $β_{AC} = β_{CA}$
- But now it is unclear what class is more at risk, and also class sizes change in time

Age structure

- We may actually be tempted to treat age as a continuous parameter
 but that makes the equations hard to solve
 and at the same time, we do not have this many parameters
- Better replicate compartments and divide the population in age classes
 model is more tractable and we can exploit standard assumptions (e.g. memoryless)

Control by vaccination

- For risk structure, it was more efficient to vaccinate or quarantine high-risk elements as this reduces the actual value of R₀
- In age structure, we do not have a class with "higher risk" (it can be both)
 individuals partake in the entire dynamics (we expect them to be C, then A in due time)
 yet, s_∞^(a) / n_∞^(a) ≥ s_∞^(b) / n_∞^(b) if a < b younger than

Control by vaccination

- This implies that to control the disease spread, most of the individual's lifespan should be immune; thus, it is generally best to vaccinate the **youngest** group □just a general rule, though (it depends on the numbers and also on waning immunity) \square If children are vaccinated, 1-1/R_o still well approximates the minimal vaccination rate
 - □often used for measles and baby-diseases