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Disease-induced mortality
S

1 We found 2 equilibria: disease-free or
endemic, the latter if R;>1(also stable)

cfor frequ%ncy-dep; 5 v+u /R,
Xoo = (Ro-1) p(1-p)
p(1-p) .
also, #individuals N,, = ( of ‘P))
v (Ro-p)

cfor density-dep: R, = (AV)[(1-p)B / (v+p)
=1/s,



Late mortality

If disease-induced mortality is too high -
probability of dying = p — 1 but then
(for both models) R, drops to 0
also the share of infected at equilibrium is
always 0 and the disease is hever endemic
the reason is that new infected die almost
instantly and cannot spread the disease
We may want another model where
people only die at the end of the infection



Late mortality

With late mortality: |ds _

ar A—(PX +vV)s
(death by the disease
are included implicitly, d_X =Bsx —(V+u)Xx
they do not show up | dt
as recovered) dr

E=(1_p) ux —vr

This is also analogous to the standard SIR
model, with same R,-related properties



Population control

Another example: ds

disease always fatal dt =MS+X)-(BX+v)S
its death rate = 4X
(no recovered class) —— =BSX - (v+u)X

we need N= S+Xx | dt

From (2), equilibrium if: X=0, or BS = v+p
disease-free or endemic equilibrium

But X=0in (1) yields .S = vS : cannot be!
thus, disease-free equilibrium is unstable



Population control

X=0 is unstable as population cannot stay
constant->exponential growth with rate A-v

What if S =(v+u)/B? Then:
AMv+)/B+AX - (v+) X +v (v+u)/p=0

leading to: X = (A-v)(v+n) / [B (v+u-A) |
endemic equilibrium... only if A<v+p
otherwise the value of Xis negative!

If A>v+p endemic equilibrium is unstable,
N grows exponentially with rate A-v-p



Population control
S

o A further variant ds
r1same as before but ar AS - (BX +V)S

Cbirths are only caused by 4X
healthy individuals —— =BSX-(v+u)X

(disease is debilitating) | A1

oNow S'=(A-v-BX) S ; X'=pBS-v-u) X
nthese are the Lotka-Volterra equations for
population dynamics (predator-prey)



Population control

There must be again two equilibria
(unstable disease-free + endemic with
So=(v+u)/p and X, =(A-v)B )

but R[both endemic eigenvalues]=0
meaning cyclically oscillatory dynamics

This means the system alternates

“prevalent S” / “prevalent X” over and over
typical behavior of some epidemic plagues



Model heterogeneity

Some diseases inherently violate the
assumption of homogeneous individuals
and/or homogeneous mixing
Diseases may have variable contagious
behavior across the population
risk-structured diseases (e.g., STDs)
age-structured diseases
multiple pathogens
multiple hosts (vectored, zoonoses)



Risk structure
e

o These aspects can still be included in a
compartmental model with more states
- For example: high/low risk
ofor simplicity consider just an SIS model

M it is like two separate

populations that can

M infect each other




Risk structure

Instead of parameter f we need matrix f

[ By B | O WAIFW (who acquires
P = infection from whom)
\ Pev P ) O B,,=rateto a from b

H="high”: B, +B > B, 4+B,, ; and usually:
iIndividuals are born H or L and stay like that
forever: n,=H/N = s, + x,,, same for L
assortative mixing: ;> ; with /# J
symmetry B, =B,y



Risk structure

Usually, the disease has the same course:
SO just one p, which is convenient
otherwise we need two us (uyand p,)

One possibility is to consider two R s:
contacts are equally likely, proportional to
ny--n, split, e.9.: Ry™ = (ny By +n, Bry) /1
depending on the split, maybe 3,, > u but
Rot = (N B +n, B ) I <1



Risk structure

1Ry, Ry are meaningful at the start of
the invasion but when x,, and x; increase,
group dynamics become slaved (coupled)
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R, with risk structure
N
o The system of differential equations is

dx

d—tH ~ BNy — WXy + B NuX,
dx

d—tL =~ B Xy + B —w)x;

cfor a consistent meaning of R, redefine it
as #secondary infections caused in a naive
population once transient phases ended



R, with risk structure

The Jacobian matrix J of this system is:

\
( PNy - PNy

\ BN Pl —w /

Its dominant eigenvalue A, gives the

exponential dynamic in the slaved phase
xy, «e™ and x, «<e™

Spreading out if A, > 0 (akin to say: Ry>1)

J =




R, with risk structure

To compute R, define matrix R showing
#secondary cases caused by each

combination
R =

/ BrupNy /n PNy /' \

\ By Iw B/ /

R, is the dominant eigenvalue of R and

Ut as the nonstructured case



R, with risk structure

If no mixing (classes do not infect one another)
( )
Brrny /. 0

\ 0 Bren /u /
- R, =weighted average of R,") and R,

R =

But even a not-so-large B, = B,, causes
infection to mix = coupling = R, is higher



R, with risk structure

Since we have an initial invasion and then
a slaved trend, dynamics can be variegate
In the scenario previously ( 10 0.1 )
plotted: u=1, WAIFW is 3 = '
and n,: n, =20:80 0.1 1
here, x, decreases at first
and then catches up when slaved
this is because R, = 2.08, R, = 0.82, but
the ultimate value is R, =2.0013



R, with risk structure

But we can even have the opposite trend
if u=1, still n,: n, =20:80
but we take WAIFW as |3=( 115 )
we see that an initial 1.5 0.5
infected in high-risk causes on average an
increase of 1.4 secondary infections

But the eventual dynamics follows a basic
reproductive ratio R, = 0.9083 <1



S.. and x_ with risk structure

To solve the equilibrium and find e.g. s,.(P)
(or x,) or s,V and so on) is in general
difficult because of non-linear system

still, the system can be solved numerically
Main practical conclusion: the asymptotic
share of infecteds is usually low

In the previously shown example:
M=0.1, x,,(U=0.033, although Ry= 2



Eradication with risk structure

Immediate consequence: a risk-structured
disease is difficult to eradicate
the reason is that the asymptotic fraction of
infected is generally low, but eradication
requires to push R, (actually high) below 1
true e.g. for random vaccination, but...
not for specific vaccination/treatment
procedures specifically targeted especially
towards high-risk individuals



Applications: STDs

Risk structure is typically adopted when

modeling STDs, where our assumptions

about “risk” are usually respected
risk class easy to associate to #partners
connections tend to be assortative
persistence of the disease is usually due to
few active spreaders in the high risk class
we can also think of a further connection
with network graphs (sexual network)



Shredders vs. spreaders

Many airborne infections have a special

WAIFW in the presence of either

super-shredders or super-spreaders
a super-shredder is an individual that is
able to contaminate more secondary than
usual (but he is not necessarily at high risk)
a super-spreader is more frequently in
contact with others (he spreads more but
he is also at higher risk himself)



Shredders vs. spreaders

Transmission matrix with super-shredders:

B =

(

\

388

DRS

3SF:’

3F?F?

)

/

(B B )

\f3 3/

(symmetry is broken; factor f>1 for S)

Transmission matrix with super-spreaders:

(
B =

388

DRS

)

38/—?

3Fz’Fa’ )

P
BB




Age structure
T

1 Other diseases have a different behavior
at various ages, so consider population
with (C)hildren and (A)dults

birth




Age structure

We can still write WAIFW matrix §

'3:/ Scc Pac \

\ 3AC 3AA )
Hypotheses that are still reasonable
assortative mixing: ;> 3; with /# J

symmetry B o= Bca

But now It Is unclear what class is more at
risk, and also class sizes change in time



Age structure

We may actually be tempted to treat age
as a continuous parameter
but that makes the equations hard to solve
and at the same time, we do not have this
many parameters

Better replicate compartments and divide

the population in age classes
model is more tractable and we can exploit
standard assumptions (e.g. memoryless)



Control by vaccination

For risk structure, it was more efficient to
vaccinate or quarantine high-risk elements
as this reduces the actual value of R,

In age structure, we do not have a class
with “higher risk” (it can be both)
individuals partake in the entire dynamics
(we expect them to be C, then A in due time)
yet, s,@/ n,@=s,0/n,® ifaga< b

younger
than



Control by vaccination

This implies that to control the disease
spread, most of the individual’s lifespan
should be immune; thus, it is generally best
to vaccinate the youngest group
just a general rule, though (it depends on
the numbers and also on waning immunity)

If children are vaccinated, 1-1/R, still well
approximates the minimal vaccination rate
often used for measles and baby-diseases



