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Age structure

¨ Other diseases have a different behavior 
at various ages, so consider population 
with (C)hildren and (A)dults

SA IA RA

death death death
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Age structure

¨ We can still write WAIFW matrix β 

 

¨ Hypotheses that are still reasonable
¨ assortative mixing: βii  > βij  with i ≠ j 
¨ symmetry βAC = βCA

¨ But now it is unclear what class is more at 
risk, and also class sizes change in time

β =
βCC βAC
βAC βAA
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Age structure

¨ We may actually be tempted to treat age 
as a continuous parameter
¨ but that makes the equations hard to solve
¨ and at the same time, we do not have this 

many parameters
¨ Better replicate compartments and divide 

the population in age classes
¨ model is more tractable and we can exploit 

standard assumptions (e.g. memoryless)



Control by vaccination

¨ For risk structure, it was more efficient to 
vaccinate or quarantine high-risk elements 
as this reduces the actual value of R0

¨  In age structure, we do not have a class 
with “higher risk” (it can be both)
¨ individuals partake in the entire dynamics 

(we expect them to be C, then A in due time)
¨ yet, s∞(a) / n∞(a) ≥ s∞(b) / n∞(b)    if a  <  b

younger 
than



Control by vaccination

¨ This implies that to control the disease 
spread, most of the individual’s lifespan 
should be immune; thus, it is generally best 
to vaccinate the youngest group
¨ just a general rule, though (it depends on 

the numbers and also on waning immunity) 
¨  If children are vaccinated, 1-1/R0 still well 

approximates the minimal vaccination rate
¨ often used for measles and baby-diseases



Multi-pathogen

¨ Consider an SIR with 2 (or more) strains 
of disease within the same population

¨ Cross-immunity relates to individuals 
becoming infected with only one strain.

¨ Simplest case is complete cross-immunity

I2

S I1 R



Multi-pathogen

¨ Class Ij only helps creating Ij members
¨ we can write per-class R0

(j) as per definition
¨ without loss of generality, say R0

(1) > R0
(2) 

¨ Now write + solve equations as usual or...
¨ use a principle: 2 infections cannot coexist!
¨ we can show that the equilibrium in case of 

complete cross-immunity, is the same as 
SIR with just one strain (because in the end 
only one strain is there)



Multi-pathogen

¨ Proof: we expect x(t ) to grow and reach a 
peak (when s R0 = 1) and then go down
¨ as we have 2 different R0s, if we believe to 

be at the endemic point for R0
(2), we still 

have a higher R0
(1) causing x to still grow

¨ à thus, we cannot be at equilibrium
¨ The only possibility is that at equilibrium, 

one strain survived, the other is eliminated



Implications

¨ Relationship R0
(1) > R0

(2) 

does not mean that  
strain 2 cannot have  
faster dynamics (being  
stronger than strain 1  
in the short term)
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Evolutionary implications

¨ Why do not we have a single dominant 
disease with extremely high R0?
¨ that would be the limit of a spotted equilibrium 

where mutants keep appearing with higher R0
¨ also this would be a harmless disease  

(why it has to be harmful to the host?)
¨ Biologists would answer that there is a 

natural tradeoff of transmission (how 
contagious) vs virulence (how deadly)



Evolutionary implications

¨  If a disease produces many pathogens, it 
spreads rapidly but is also harmful to the 
host; thus, we cannot have very high β  
without µ being very high too
¨ e.g., STDs have long infected time 1/µ but 

also are not very contagious, compared to 
measles (high β, but 1/µ is short)
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A power law?

¨ The tradeoff between β and µ is generally 
taken as a power law µ = k βα 

¨  If this holds, R0 cannot grow arbitrarily
¨ it can only reach these peaks

¨ Why power law?
¨ easy (but hard to  

validate choice of α)
¨ other functions 

may fit better



Without cross-immunity

¨ This situation has two extreme cases
¨ simultaneous infections are frequent, and in 

the end it is just two separate strains 
evolving orthogonally on same population

¨ or multiply infected individuals are rare 
(e.g., because when you are sick you 
control yourself and avoid further infections) 
à this is just like a single infection



Multi-host

¨ We can connect this to risk-structure

¨ main difference: now we have two distinct 
populations (of different species! so, we will 
not require symmetry of WAIFW)

¨ some special cases are notable

S1 I1

S2 I2 R2

R1



Vectored transmissions

¨ This is the case for many diseases carried 
by mosquitoes (or similar insects)
¨ SMàIM: susceptible mosquito bites infected
¨ SHàIH: infected mosquito bites susceptible

SM IM

SH IH RH

mosquitoes

humans



Vectored transmissions

¨ No intra-species infection, thus WAIFW is
¨ can be related to  

“bite rate” of mosquitoes 
r = bites per sec/ NH

¨ Usually, transmission mechanism is:
¨ frequency-dependent for human population
¨ density-dependent for mosquitoes
¨ i.e. mosquitoes bite at same rate, humans 

get bitten more often if mosquito-density↑

β =
0 βMH

βHM 0
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Zoonoses

¨ Here, the disease is mostly active in 
animals, but can affect humans
¨ yet, negligible contagion rate from humans

¨ e.g. brucellosis, Ebola, rabies, toxoplasmosis

SA IA

SH IH RH

RAanimals

humans



Zoonoses

¨ Now the WAIFW matrix is
¨ simpler model to study
¨ yet, epidemics hard to eradicate as we 

estimate R0 and enact countermeasures in 
humans but spreading happens in animals

¨ Also, combined cases: vectored zoonosis
¨ spreading in animals (birds/mammals) can 

extend to humans via insects bites: Lyme, 
Chagas, leishmaniasis, bubonic plague

β =
βAA βAH
0 0
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Temporal forcing

¨  It has been observed that some diseases 
have a cyclic behavior (seasonal flu, 
outbreak of measles/smallpox in schools)
¨ the oscillatory pattern of the endemic 

equilibrium of classic SIR model is 
insufficient to explain these trend

¨ Some models introduce a temporal forcing 
to explain these phenomena



Temporal forcing

¨ A simple example
¨ we have birth rate λ 

and recovery rate µ 
but we neglect deaths 
in classes S and I

¨ β(t ) represents seasonal variability in the 
contact rate (e.g., school time of children)

¨ E.g., β(t )=constant term + sinusoid
β(t ) = β0 [1+β1 cos(2πf1 t ) ]

ds
dt

= λ −β(t ) sx

dx
dt

= β(t ) sx −µx



Temporal forcing

¨  If X = X∞(1+χ), χ=small perturbation, we get

¨ Oscillatory with frequency f1 and amplitude

¨ Generally, M≫β1  so natural oscillations 
are highly amplified (resonance)

d2 χ

dt 2 + λR0
dχ
dt

+ λβ0(t )χ = −ω1 β1 µsin(ω1 t )

M = ω1 β1 µ (λβ0 −ω1 
2)2 + (λR0ω1)
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Complex contagion

¨ What if infection occurs after exposure to 
multiple sources? à complex contagion

¨ Diseases (a single contact is enough) vs:
¨ adoption of innovation
¨ consensus over a policy
¨ spreading of a news (or urban legend)
these usually requires multiple sources!

¨ No consolidated analytical models L 
¨ how can we quantify this anyways?



Exposure

¨ Driving process=exposure (passive influence) 
à expect a monotonic increasing trend 

diminishing law  
(prob⟶1 but saturates)

activation threshold  
(min #infected neighbors)
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Adoption

¨ Or we require an active agreement to 
accepts the contagion (adoption)

#infected friends #infected friends #infected friends
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Peak in the trend 
(ideal number)



Exposure - Adoption

¨ We can also combine two behaviors
¨ the higher #infected neighbors, the higher 

the number of contagious interactions
¨ this is taken as the input for adoption

¨ Applications
¨ some friends of yours are joining a social 

network: do you join it too?
¨ how many ads needed to trigger a buy?
¨ how many views to check a viral video?



Example of application

¨ DVD Recommendations



Example of application

¨ LiveJournal membership



Example of application

¨ Retweeting probability

language

politics



Spreading on Twitter

¨ Persistence: ratio   ∫0kmax curve / ∫0kmax peak

¨ Stickiness: just the peak (assumes we 
exploit contagion at its top strength)


