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Spatial spread of epidemics

Aedes-transmitted infections flu pandemic, 2009
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Drivers of spatial transmission:

- directly transmitted human diseases: spatial spread of epidemics is determined by
human mobility. The pathogen spreads carried by traveling individuals

- Vector borne diseases: the spatial propagation requires human mobility but also the
local presence of the competent vector

- food borne, environmental diseases, zoonotic pathogens, etc.: different drivers



human mobility and epidemics

black death,14th century flu pandemic, 2009

Black Death 14th century
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- human mobility behaviour determines the spatio-temporal pattern of spread.

- Different kinds of mobility become relevant according to the epidemic of interest
and the epidemiological question



human mobility

data & models

[Human mobility: Models and applications, Barbosa et al. Physics Reports 734 (2018)]



mobility network data:
air travelling

data collected by the International
Air Transport Association.

The data can be purchased. The
information publicly available is
limited

Two type of data:

segment : number of seats for each
company between two airports

origin-destination: number of
passengers between each (origin,
destination), obtained from the
ticket purchased

[Hufnagel et al. PNAS 2004; Colizza et al.
PLoS Med 2007; Balcan et al. PNAS 2009]




air travelling: network properties

- heterogeneous topology

- heterogeneous traffic distribution

whole segment network worldwide, 2002
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air travelling: network properties

whole segment network worldwide, 2002

scaling relations between fluxes,
number of connections and population
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[Barrat, et al PNAS 2004]



mobility network data:
commuting

recovered from census of
different countries

location of residence and
of work

spatial resolution
(administrative level of
the data) highly variable
by country

[Balcan, Colizza et al. PNAS (2009)]



mobility network data:
commuting

- heterogeneous topology

- heterogeneous traffic distribution
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air travelling vs. commuting

To be compared the two networks must be defined at the same spatial resolution:
Balcan et al. defined macro urban areas centred around airports

- daily number of travellers
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Commuting faster dynamics and higher level of mixing

[Balcan, et al PNAS 2009]



mobility network data:

mobile phone

data shared privately by the telephone
providers

information recorded for each call &
SMS:

time, caller ID, recipient ID, call duration,
cellular tower

individual level trajectories (users are
anonymised

Challenges in the data analysis:
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[Gonzalez et al, Nature (2008)]

- for statistical reliability the analysis is restricted to users that call with high
frequency (still many locations may be missed)

- Area covered by the cell tower highly variable: Towers more dense in densely
populated area —> spatial resolution in rural areas very poor



mobility network data:

mobile phone

PROS:

Individual trajectories combining all
transportation media and purposes

high temporal and spatial resolution

available at large geographical extent
(main source of information regarding
mobility for many low income countries)

CONS:

data cannot be shared across groups
(problems with validation)

data-analysis poses statistical challenges
(also numerical)
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[Gonzalez et al, Nature (2008)]



mobility network data:
others

GPS (available from apps or from research projects)

PROS: greatest level of accuracy on movement trajectories: spatial resolution few
meters, temporal resolution seconds

CONS: a smaller number of individual users: ~103 GPS vs. ~10¢ mobile phones

Online social network services (e.g. Twitter, Facebook, ...)

PROS:

high spatial resolution (based on GPS)
CONS:

the population may not be representative



mobility network data:
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bills:

www.wheresgeorge.com

- analysis of bank note dispersal in the United States (excluding Hawaii and
Alaska)

- trajectories of 464,670 dollar bills

- around 11% of the bills are reported multiple times (often 3-5 entries per bill)

- the trajectories of bank notes are likely a convolution of the mobility of several

individuals
[Brockmann, et al, Nature 2006]

migration:

E.g. annual information of residence from individual tax return files. Available from
the Statistics of Income Division (SOI) of the Internal Revenue Service (IRS) in the
United States


http://www.wheresgeorge.com

mobility network data

Data of heterogenous nature: heterogenous spatial resolution, individuals-level/
origin-destination fluxes/seats, broken down per transportation media or per

purpose of the trip

All datasets provide partial information, can we combine them?

- air-travel & commuting: spatial range are very different
[Balcan et al PNAS 2009]
- cell-phone data & commuting: we can extract commuting proxies from cell-

phone data

[Tizzoni et al PLoS Comp Biol 2014]
Differences by age are not well characterised (proportion of children or elderly
among air-travellers?)



T we were caws ...

bovine displacement among farms

[Bajardi, PLoS ONE (2011)]



modelling human mobility

Individuals-level models

modelling trajectories of individuals: random walk, brownian motion, Levy flight,
preferential return, ...

Population level model
modelling fluxes, i.e. the Origin-Destination matrices.

- Two main families: gravity models, intervening opportunities models



gravity model

Introduces by G. K. Zipf (1946) . Equation to calculate mobility flows inspired by
Newton's law of gravitation

N.N.

T — N; population of i, d;; distance between i andj
ij
More general form:
M;= N, M;= N/
J

F(d;) = either power low dg or exponential form e ?% or combination of both

PROS: Is able to fit well the data

CONS: fitted parameters vary according to the spatial granularity



gravity model

1

=C

N*M?!

fitted to 29 countries spread across all continents

result: same parameters model well the mobility fluxes in all countries

key ingredient: data were aggregated at the same level of spatial resolution
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[Balcan et al PNAS 2009]



radiation model
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Introduces by Stouffer (1940). A key
driver of migration is the number of
intervening opportunities or the

cumulative number of
opportunities between the origin
and the destination. Definition of
"Opportunities” intentionally vague.
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[Simini et al Nature 2012]



radiation model

Resulting fluxes are independent of p(z) and parameter free

1 N.N.

Tij = 0 —
1 =N (N;+S,)(N;+ N; + S;)
M

§;; = population in the radius d;; ; M = ZNZ

PROS: parameters free. Useful in epidemiology were we have only information of
population distribution (low developed countries)

CONS: goodness of fit depends on the spatial resolution



integrating human mobility in
epidemic models
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metapopulation models: a
compromise
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Introduced in ecology to study the interplay between stochasticity and spatial
heterogeneities

[Levins Bull. Entomol. Soc. Am., 15 (3) (1969)]

- population divided in discrete entities, patches
- two level of mixing: local (within a patch), global (among patches)

- coarse grained description: patches can be seen as elementary units



metapopulation models: a
compromise
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dynamics driven by stochastic effects: extinction, recolonisation

discrete nature of individuals essential ingredients to describe the dynamics - If | let
halt an individual travel | obtain an unrealistic mixing

early works: mixing among patches homogeneous

more recently: mixing among patches mediated by the human mobility network:
coupling the metapopulation perspective with network theory




SIR metapopulation model

modelling of mobility AND transmission dynamics
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[Hanski, |. & Gaggiotti, Elsevier, Academic Press, 2004]



SIR metapopulation model

modelling of mobility AND transmission dynamics
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[Hanski, |. & Gaggiotti, Elsevier, Academic Press, 2004]



SIR metapopulation model
V: # populations
S(t) S(t)

I(t) Q / ,'(t)
Q rRt) S/ Re)
. N(t) N{(t) = S{t) + I{t) + R{t)

global S(t)=8,@)+S5,@)+5()+..+5, () = ESi(t)
variables e L0+ L)+t I (1) = WAG
R=R()+R,()+R,(t)+...+ R, (¢) = ERl.(t)

N(t)=N,(t)+ N,(t)+ N,() +...+ N, (t) = 2 N.(¢)

SIQ




SIR metapopulation model
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SIR metapopulation model:
markovian mobility

To Q7 compute we need to model human mobility
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SIR metapopulation model:
markovian mobility

pop [ probability for an individual in i to

pOp j travel fromii to j at each time?

Simplest possible model:

o is the same for all individuals:

- regardless their infectious status (S,I,R)

- regardless their travel history (time
since last travel, previous patch of
origin)

as soon as an individuals enter in a new
population, it mixes completely with the
other individuals of that population



SIR metapopulation model:
markovian mobility

pop [ probability for an individual in i to
pop j travel fromitoj?
. f W..
Wij

N
l
pop 1
pop m

@ Travelling is a binomial process. Average number of individuals in
compartment X in i traveling from j to j at each t:

<TyX> = pini(t) = WU Xi(t)
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SIR metapopulation model:
markovian mobility
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SIR metapopulation model:
markovian mobility

Assumption so far:

we have modelled mobility as a Markovian process : travellers mix with the
population at destination and forget about travel origin.

- The travel trajectory is random: patch i —> patchj —> patch [ —> ...
- We do not account for the location of residence
- we do not account for the traveling length of stay.

- We are in fact modelling a migration process



SIR metapopulation model:
markovian mobility

The assumption works well as long as

- travels are not frequent, i.e. traveling rate negligible with respect to the
epidemic time scales p; <

- we want to model the short term dynamics of an epidemic
Situations for which this holds in first approximation:

- air-travel and acute infections. E.g. for flu: traveling rate= 10-3 days-'vs. recovery
rate> 0.1 days)

- early spread of a flu pandemic. It does not work well if | want to model the long
term continuous circulation



