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flu pandemic, 2009

Spatial spread of epidemics

Drivers of spatial transmission: 

- directly transmitted human diseases: spatial spread of epidemics is determined by 
human mobility. The pathogen spreads carried by traveling individuals 

- Vector borne diseases: the spatial propagation requires human mobility but also the 
local presence of the competent vector 

- food borne, environmental diseases, zoonotic pathogens, etc.: different drivers

Aedes-transmitted infections

[Kraemer et al eLife, 2015] [Bajardi et al PLOS ONE, 2011]



black death,14th century

- human mobility behaviour determines the spatio-temporal pattern of spread.  

- Different kinds of mobility become relevant according to the epidemic of interest 
and the epidemiological question

flu pandemic, 2009

[Bajardi et al PLOS ONE, 2011]

human mobility and epidemics 



data & models 
[Human mobility: Models and applications, Barbosa et al. Physics Reports 734 (2018)] 

 

human mobility



mobility network data: 
air travelling

[Hufnagel et al. PNAS 2004; Colizza et al. 
PLoS Med 2007; Balcan et al. PNAS 2009] 

data collected by the International 
Air Transport Association. 

The data can be purchased. The 
information publicly available is 
limited 

Two type of data: 

segment : number of seats for each 
company between two airports 

origin-destination: number of 
passengers between each (origin, 
destination), obtained from the 
ticket purchased



peripheral 	
airports

Frankfurt,	
318 connections

low traffic	
airports

Tokyo-Sapporo	
17000 p/day

number of connections number of passengers

air travelling: network properties

whole segment network worldwide, 2002

- heterogeneous topology  

- heterogeneous traffic distribution 



[Barrat, et al PNAS 2004]

scaling relations between fluxes, 
number of connections and population

wij ∼ (kikj)θ, θ = 0.5
Ni ∼ kϕ

i , 0.5 ≤ ϕ ≤ 1.5

air travelling: network properties
whole segment network worldwide, 2002



[Balcan, Colizza et al. PNAS (2009)]

recovered from census of 
different countries 

location of residence and 
of work 

spatial resolution 
(administrative level of 
the data) highly variable 
by country

mobility network data: 
commuting



mobility network data: 
commuting
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Figure 1 | Statistical properties of commuting networks in the United States and France. a, Commuting network in the United States at the county level
(http://www.census.gov/). b, Commuting network in France at the municipality level (http://www.insee.fr/). Cumulative distributions of the number of
connections (left) and the number of daily commuters (centre) per administrative unit, as well as the number of daily commuters on each connection
(right) are displayed. The networks are highly heterogeneous in the number of connections as well as in the commuting fluxes.

form 1/k (refs 32,33). Moreover, the empirical data from various
sources indicate similar population scaling arises as a function of
their connectivity to other populations19,22,23.

To approach the spreading process in the subpopulation
network analytically, we define mixing subpopulations6,8 that
identify the number of individuals Nkk 0(t ) of the subpopulation
k present in subpopulation k

0 at time t (see Fig. 2). We consider
that the diffusion rate �kk 0 is a function of the degrees k and k

0

of the origin and destination subpopulations, respectively, with
�k =P

k 02�(k)�kk 0 and ⌧k depending only on the degree of the origin
subpopulation. In particular, if �k ⌧ ⌧k

�1 and we study the system
on a timescale larger than the timescale of the commuting process
⌧k , one can consider a quasi-stationary approximation in which the
mixed subpopulations assume their stationary values:

Nkk = Nk

hki(1+�k⌧k)
(1)

Nkk 0 = Nk�kk 0⌧k

hki(1+�k⌧k)
(2)

These expressions (see Methods) allow us to consider the
subpopulation k as if it had an effective number of individuals
Nkk 0 ⌧ Nkk in contact with the individuals of the neighbouring
subpopulation k

0 in a quasi-stationary state reached whenever the
timescale of the dynamical process we are studying is larger than
⌧k . To simplify the analytical treatment in the following we will
consider in the commuting rates only the dependence on the degree
classes. More complicated functional forms including explicitly the
spatial distance may be considered, and we will analyse this case by
performing data-driven simulations.

Contagion processes and the invasion threshold
In analysing contagion processes in this system we consider
the usual susceptible–infected–recovered (SIR) contagion model41.
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Figure 2 | Illustration of the subpopulation invasion dynamics. a, Mixing of
two subpopulations and contagion dynamics due to commuting at the
microscopic level. At any time, subpopulation i is occupied by a fraction of
its own population Nii and a fraction of individuals Nji whose origin is in the
neighbouring subpopulation j. The figure depicts the flux of individuals back
and forth between the two subpopulations due to the commuting process.
This exchange of individuals is the origin of the transmission of the
contagion process from subpopulation i to subpopulation j. The contagion
process is mediated by contacts between infectious (red particles) and
susceptible (yellow particles) individuals. b, Macroscopic representation of
invasion dynamics. Nodes are organized from left to right according to their
generation index n. Arrows indicate the transmission of the contagion
process from a diseased subpopulation at the n� 1th generation to a
subpopulation at the nth generation.

Within each subpopulation the total number of individuals is
partitioned into the compartments S(t ), I (t ) andR(t ), denoting the
number of susceptible, infected, and recovered individuals at time t ,
respectively. The basic SIR rules thus define a reaction scheme of the
type S+I !2I with reaction rate � and I !Rwith reaction rateµ,
which represent the contagion and recovery processes, respectively.
The SIR epidemic model conserves the number of individuals and
is characterized by the reproductive number R0 = �/µ, which
determines the average number of infectious individuals generated
by one infected individual in a fully susceptible population. The
epidemic is able to generate a number of infected individuals larger

2 NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics
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Figure 1 | Statistical properties of commuting networks in the United States and France. a, Commuting network in the United States at the county level
(http://www.census.gov/). b, Commuting network in France at the municipality level (http://www.insee.fr/). Cumulative distributions of the number of
connections (left) and the number of daily commuters (centre) per administrative unit, as well as the number of daily commuters on each connection
(right) are displayed. The networks are highly heterogeneous in the number of connections as well as in the commuting fluxes.

form 1/k (refs 32,33). Moreover, the empirical data from various
sources indicate similar population scaling arises as a function of
their connectivity to other populations19,22,23.

To approach the spreading process in the subpopulation
network analytically, we define mixing subpopulations6,8 that
identify the number of individuals Nkk 0(t ) of the subpopulation
k present in subpopulation k

0 at time t (see Fig. 2). We consider
that the diffusion rate �kk 0 is a function of the degrees k and k

0

of the origin and destination subpopulations, respectively, with
�k =P

k 02�(k)�kk 0 and ⌧k depending only on the degree of the origin
subpopulation. In particular, if �k ⌧ ⌧k

�1 and we study the system
on a timescale larger than the timescale of the commuting process
⌧k , one can consider a quasi-stationary approximation in which the
mixed subpopulations assume their stationary values:

Nkk = Nk

hki(1+�k⌧k)
(1)

Nkk 0 = Nk�kk 0⌧k

hki(1+�k⌧k)
(2)

These expressions (see Methods) allow us to consider the
subpopulation k as if it had an effective number of individuals
Nkk 0 ⌧ Nkk in contact with the individuals of the neighbouring
subpopulation k

0 in a quasi-stationary state reached whenever the
timescale of the dynamical process we are studying is larger than
⌧k . To simplify the analytical treatment in the following we will
consider in the commuting rates only the dependence on the degree
classes. More complicated functional forms including explicitly the
spatial distance may be considered, and we will analyse this case by
performing data-driven simulations.

Contagion processes and the invasion threshold
In analysing contagion processes in this system we consider
the usual susceptible–infected–recovered (SIR) contagion model41.
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Figure 2 | Illustration of the subpopulation invasion dynamics. a, Mixing of
two subpopulations and contagion dynamics due to commuting at the
microscopic level. At any time, subpopulation i is occupied by a fraction of
its own population Nii and a fraction of individuals Nji whose origin is in the
neighbouring subpopulation j. The figure depicts the flux of individuals back
and forth between the two subpopulations due to the commuting process.
This exchange of individuals is the origin of the transmission of the
contagion process from subpopulation i to subpopulation j. The contagion
process is mediated by contacts between infectious (red particles) and
susceptible (yellow particles) individuals. b, Macroscopic representation of
invasion dynamics. Nodes are organized from left to right according to their
generation index n. Arrows indicate the transmission of the contagion
process from a diseased subpopulation at the n� 1th generation to a
subpopulation at the nth generation.

Within each subpopulation the total number of individuals is
partitioned into the compartments S(t ), I (t ) andR(t ), denoting the
number of susceptible, infected, and recovered individuals at time t ,
respectively. The basic SIR rules thus define a reaction scheme of the
type S+I !2I with reaction rate � and I !Rwith reaction rateµ,
which represent the contagion and recovery processes, respectively.
The SIR epidemic model conserves the number of individuals and
is characterized by the reproductive number R0 = �/µ, which
determines the average number of infectious individuals generated
by one infected individual in a fully susceptible population. The
epidemic is able to generate a number of infected individuals larger
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[Balcan, Vespignani Nature Physics (2011)]

- heterogeneous topology  

- heterogeneous traffic distribution 



air travelling vs. commuting
To be compared the two networks must be defined at the same spatial resolution: 
Balcan et al. defined macro urban areas centred around airports 

- daily number of travellers  
- ~1,000 air travel 
- ~20,000 commuting 

- traveling rate  
- ~10-3 days-1  air travel 
- ~10-2 days-1  commuting 

- time scales 
- days /weeks 
- hours 

Commuting faster dynamics and higher level of mixing 

D Balcan, V Colizza, B Gonçalves, H Hu, JJ Ramasco, A Vespignani 2
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Figure 1: Population database and Voronoi tessellation around main tranportation hubs. The
world surface is represented in a grid-like partition where each cell - correspomnding to a popu-
lation values - is assigned to the closest airport. Geographical census areas emerge that constitute
the sub-populations of the meta-population model.

upper cutoff for the ground traveling distance expected to be covered to reach an airport before
traveling by plane.

Before proceeding with the tessellation, we need to take into account that some urban areas
include more than one airport. For instance, London has up to six airport, Paris has two, and
New York City has three. Our aim is to build a metapopulation model whose subpopulations
correspond to the geographical census areas obtained from tessellation. Inside these geographical
census areas a homogeneous mixing is assumed. The groups of airports that serve the same urban
area need therefore to be aggregated since the mixing within the given urban area is expected to
be high and cannot be represented in terms of separated subpopulations for each of the airports
serving the same city. We have searched for groups of airports located close to each other and we
manually processed the identified groups of airports to select those belonging to the same urban
area. The airports of the same group are then aggregated in a single "super-hub". An example
with the final result of the Voronoi tessellation procedure with cells and airports can be seen in
Figure 1. The geographical census areas become thus the basic subpopulations of our metapop-
ulation model. Their connections will determine the geographical spreading of an hypothetical
epidemic. The air transportation is already integrated in the model, but a further step must be
taken in order to also include ground transportation in a realistic way.

1.3 Commuting Networks

Our commuting databases have been collected from the Offices of Statistics of 29 countries in
5 continents (out of the 6 continents – Europe, North America, Latin America, Asia, Oceania,

Multiscale mobility networks and the large scale spreading of infectious diseases

[Balcan, et al PNAS 2009]



González, Hidalgo, Barabasi, Nature 2008 
[Gonzalez et al, Nature (2008)]

mobility network data: 
mobile phone

data shared privately by the telephone 
providers 

information recorded for each call & 
SMS:  
time, caller ID, recipient ID, call duration, 
cellular tower 

individual level trajectories (users are 
anonymised

Challenges in the data analysis: 

- for statistical reliability the analysis is restricted to users that call with high 
frequency (still many locations may be missed) 

- Area covered by the cell tower highly variable: Towers more dense in densely 
populated area —> spatial resolution in rural areas very poor



González, Hidalgo, Barabasi, Nature 2008 
[Gonzalez et al, Nature (2008)]

mobility network data: 
mobile phone

PROS: 

Individual trajectories combining all 
transportation media and purposes 

high temporal and spatial resolution 

available at large geographical extent 
(main source of information regarding 
mobility for many low income countries) 

CONS: 

data cannot be shared across groups 
(problems with validation) 

data-analysis poses statistical challenges 
(also numerical)



mobility network data: 
others

GPS (available from apps or from research projects) 

PROS: greatest level of accuracy on movement trajectories: spatial resolution few 
meters, temporal resolution seconds 

CONS: a smaller number of individual users: ~103 GPS vs. ~106 mobile phones 

Online social network services (e.g. Twitter, Facebook, …) 

PROS: 

high spatial resolution (based on GPS) 

CONS:  

the population may not be representative



mobility network data: 
others

bills: 

www.wheresgeorge.com 
- analysis of bank note dispersal in the United States (excluding Hawaii and 

Alaska)  
- trajectories of 464,670 dollar bills 
- around 11% of the bills are reported multiple times (often 3–5 entries per bill)  
- the trajectories of bank notes are likely a convolution of the mobility of several 

individuals 
[Brockmann, et al, Nature 2006] 

migration: 

E.g. annual information of residence from individual tax return files. Available from 
the Statistics of Income Division (SOI) of the Internal Revenue Service (IRS) in the 
United States 

http://www.wheresgeorge.com


Data of heterogenous nature: heterogenous spatial resolution, individuals-level/
origin-destination fluxes/seats, broken down per transportation media or per 
purpose of the trip 

All datasets provide partial information, can we combine them? 
- air-travel & commuting: spatial range are very different  
[Balcan et al PNAS 2009] 
- cell-phone data & commuting: we can extract commuting proxies from cell-
phone data 
[Tizzoni et al PLoS Comp Biol 2014] 

Differences by age are not well characterised (proportion of children or elderly 
among air-travellers?)

mobility network data



[Bajardi, PLoS ONE (2011)]

bovine displacement among farms

if we were caws …



modelling human mobility

Individuals-level models  

modelling trajectories of individuals:  random walk, brownian motion, Levy flight, 
preferential return, … 

Population level model 

modelling fluxes, i.e. the Origin-Destination matrices.  

- Two main families: gravity models, intervening opportunities models 



gravity model
Introduces by G. K. Zipf (1946) . Equation to calculate mobility flows inspired by 
Newton’s law of gravitation  

�  

More general form: 

�  

�  

� either power low �  or exponential form �  or combination of both  

PROS: Is able to fit well the data 

CONS: fitted parameters vary according to the spatial granularity

Tij ∝
NiNj

dij
, Ni population of i, dij distance between i and j

Tij = C MiMj F(dij)

Mi = Nα
i , Mj = Nγ

j

F(dij) = dβ
ij e−β dij



gravity model

�  fitted to 29 countries spread across all continents  

result: same parameters model well the mobility fluxes in all countries 

key ingredient: data were aggregated at the same level of spatial resolution 

Tij = C
Nα

i Mγ
j

eβ dij

D Balcan, V Colizza, B Gonçalves, H Hu, JJ Ramasco, A Vespignani 7
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Figure 3: In panels A), B) and C) we display the mean (square), median (circle) and 95% CI (shaded
area) for the ratio of actual commuting fluxes to the model values as a function of three variables
(population of origin, population of destination, distance between airports) in the Continental
US, Europe and Oceania together with Japan, respectively. We demonstrate that the functional
form as well as the fitted exponents of gravity law enable us to successfully reproduce the actual
commuting fluxes at a global scale.

law in the different regions and countries. We find that the synthetic commuting networks are
statistical good representations of the actual data all over the world (see Figure 3 and 4), further
supporting the use of the gravity law at a global scale.

It is important to stress that the obtained gravity law is working at the level of our geographical
census areas, but in general cannot be extrapolated to different granularity. As we discuss in the
main paper, the tessellation defines geographical areas centered around major transportation hubs.
This construction is the same in all countries of the world, thus providing tassels which have
a unique granularity. This granularity has statistical properties much more homogeneous with
respect to the many different administrative boundaries and partitions used in different countries,
and defines a framework compatible with a gravity law that is general enough to be applied in
different parts of the world. Finally we must mention that we have analyzed the gravity law
also by using a progressive decomposition allowing univariate regression and a bootstrapping
procedure. These methodologies produce very similar results to those reported here.

Multiscale mobility networks and the large scale spreading of infectious diseases

[Balcan et al PNAS 2009]



radiation model

Introduces by Stouffer (1940). A key 
driver of migration is the number of 
intervening opportunities or the 
cumulative number of 
opportunities between the origin 
and the destination. Definition of 
“Opportunities” intentionally vague.

[Simini et al Nature 2012]

38 H. Barbosa et al. / Physics Reports 734 (2018) 1–74

Fig. 27. Schematic of the radiation model. (a) Commuting flows in two pairs of counties, one in Utah (UT) and the other in Alabama (AL), with similar
origin (m, blue) and destination (n, green) populations and comparable distance r between them (see bottom left table). Number of travelers in the data,
as predicted by the gravity model and finally for the radiation model shown as upper right inset. The definition of the radiation model: (b) An individual
(e.g. living in Saratoga County, NY) applies for jobs in all counties and collects potential employment offers. The number of job opportunities in each county
is chosen to be proportional to the resident population. Each offers attractiveness (benefit) is represented by a random variable with distribution p(z), the
numbers placed in each county representing the best offer among the jobs in that area. Each county is marked in green (red) if its best offer is better (lower)
than the best offer in the home county. (c) An individual accepts the closest job that offers better benefits than his home county.
Source: Figure from [42].

of opportunities [168]. In the original version of the radiation model, the number of opportunities is approximated by the
population, but the total inflows Dj to each destination can also be used [158,159,168]. The great advantage of the radiation
model compared with other spatial interaction models is the absence of a parameter to calibrate with observed data. In
particular, the flows defined in Eq. (55) are independent of the fitness distribution p(z). However, this advantage represents
also a limitation since the model does not seem to be very robust to changes in the spatial scale [158,168,43,159]. To
overcome this drawback, a radiation model with opportunities’ selection [187] and an extended radiation model [188] have
been proposed. In this extended version, the conditional probability to perform a trip between two locations according to the
spatial distribution of opportunities is derived under the survival analysis framework introducing a parameter ↵ to control
the effect of the number of opportunities between the source and the destination on the location choice. The addition of this
scaling parameter seems to greatly improve the performance of the model, and similar to the gravity model, its value can be
inferred from the scale of the study region according to the homogeneity of the opportunities’ spatial distribution [188,159].

An interpretation of the radiation model in the context of job search and, consequently, for the formation of commuting
flownetworks has been given in [189]. The basic components are individuals residingwithin a demarcated geographical area,
who are seeking employment. Job locations are uniformly distributed in space and characterized by a fitness parameter z,
which itself is drawn from a distribution that includes aspects such as wage and worker-convenience. Individuals have
a certain tolerance level, z⇤, and will search in a progressively increasing radius from their residence, with the search
terminating at the first instance of the condition z > z⇤. Using extremevalue statistics, it is possible to determine the distance
distribution, P(r), between residence and job places, which is independent of the distribution of z (for non-pathological
cases), and was calculated to be of the form

P(r) = 2 ⇢ ⇡ r
(1 + ⇢ ⇡ r2)2

, (56)



radiation model

PROS: parameters free. Useful in epidemiology were we have only information of 
population distribution (low developed countries) 

CONS: goodness of fit depends on the spatial resolution

Resulting fluxes are independent of p(z) and parameter free 

�  

� population in the radius �   ;   �  

Tij = Oi
1

1 − Ni

M

NiNj

(Ni + Sij)(Ni + Nj + Sij)

Sij = dij M = ∑
i

Ni



hospital
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home

COMPLEXITY

homogeneous 
mixing agent basednetwork metapopulationpopulation 

structure

integrating human mobility in 
epidemic models



metapopulation models: a 
compromise

Introduced in ecology to study the interplay between stochasticity and spatial 
heterogeneities  
[Levins Bull. Entomol. Soc. Am., 15 (3) (1969)] 

- population divided in discrete entities, patches 

- two level of mixing: local (within a patch), global (among patches) 

- coarse grained description: patches can be seen as elementary units



metapopulation models: a 
compromise

- dynamics driven by stochastic effects: extinction, recolonisation 

- discrete nature of individuals essential ingredients to describe the dynamics - If I let 
half an individual travel I obtain an unrealistic mixing 

- early works: mixing among patches homogeneous  

- more recently: mixing among patches mediated by the human mobility network: 
coupling the metapopulation perspective with network theory



[Hanski, I. & Gaggiotti, Elsevier, Academic Press, 2004]

SIR metapopulation model
modelling of mobility AND transmission dynamics

movement of  
individuals

pop j 

pop i 

wij

wji

pop l

wjl

wlj

infection 
dynamics



movement of  
individuals

pop j 

pop i 

wij

wji

pop l

wjl

wlj

infection 
dynamics

[Hanski, I. & Gaggiotti, Elsevier, Academic Press, 2004]

SIR metapopulation model
modelling of mobility AND transmission dynamics

This is not an individual-based 
model. We don’t keep track of 
every individuals, but we just 
monitor the occupation number 
of patches and compartments



SIR metapopulation model

pop j 

pop i 

wij

wji

S(t) 
I(t) 
R(t) 
N(t)

V:  # populations 
Si(t) 
Ii(t) 
Ri(t) 
Ni(t) = Si(t) + Ii(t) + Ri(t)

SIR

SIR

global 
variables



Measure	of	in-flow	and	
out-flow	of	people	in		
compartment	X

SIR metapopulation model



pop j 

pop i 

wij
wil

pop l

pop m

wim

probability for an individual in i to 
travel from i to j ?

we know that: 
- Ni  live in i 
- wij travel from i to j

To �  compute we need to model human mobilityΩX
I

SIR metapopulation model: 
markovian mobility



probability for an individual in i to 
travel from i to j at each time?

SIR metapopulation model: 
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Simplest possible model: 

�  is the same for all individuals:  

- regardless their infectious status (S,I,R) 
- regardless their travel history (time 

since last travel, previous patch of 
origin) 

as soon as an individuals enter in a new 
population, it mixes completely with the 
other individuals of that population

pij



probability for an individual in i to 
travel from i to j ?
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Travelling is a binomial process. Average number of individuals in 
compartment X in i traveling from i to j at each t:
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Assumption so far: 
we have modelled mobility as a Markovian process : travellers mix with the 
population at destination and forget about travel origin.  

- The travel trajectory is random: patch � —> patch �  —> patch � —> …   

- We do not account for the location of residence 

- we do not account for the traveling length of stay.  

- We are in fact modelling a migration process
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The assumption works well as long as  
- travels are not frequent, i.e. traveling rate negligible with respect to the 

epidemic time scales �  

- we want to model the short term dynamics of an epidemic 

Situations for which this holds in first approximation:  

- air-travel and acute infections. E.g. for flu: traveling rate= 10-3 days-1 vs. recovery 
rate> 0.1 days-1)  

- early spread of a flu pandemic. It does not work well if I want to model the long 
term continuous circulation 

pij ≪ μ
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