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Networks as graphs

O Graph g(v E)
oVertices (set V): nodes, users, elements
nedges (set €): links, arcs, hops, connections



Degree

The degree k; of a node j in an
undirected network G(V,€) is the number
of links it has to other nodes

or, differently said, #of nodes j is linked to

the average degree is (k) = (k) / |V

The number of links IEl = L =2 (X k;)
15 because each link is counted twice

If IVI = N, average degree (k) =2L/ N



Why random networks?

It seems that many connections arising in
real networks are unpredictable

ldea: graph whose links between nodes

are randomly generated with probability p
note: “random” = iid distributed

This seems sensible as we often observe
unexpected links



Random networks

This simple model is often referred to as
the Erdos-Rényi model
actually, the original model proposed by
Erdos and Rényi involved a fixed set V and
a fixed number of links randomly placed
the present model with a given probability p
(where therefore the number of links is
variable) is nevertheless very similar



Random networks
1

n Highly diverse networks created this way




How many links?
-1

- Max number of links is ( N ): N(N-1)/2
2

o The probability P, that we have L links is:

( )
N N . .
A = ( 2 ) PL(1—P)( ° ) L (binomial)

1 Hence: (Ly=pN (N-1)/2, (ky=p (N -1)



Degree distribution

Also binomial! Probability p, that a node is
connected to exactly k neighbors:

Px =( Nk_1 )pk(1—p)N‘1‘k

as already shown, (k) = p (N -1)
also, variance of k: 6,2 = p (1-p) (N-1)

1
<k> ‘\/ p N o0 >0 (narrow for large N)



Degree distribution
N
- Degree distribution - binomial

oN=21, p=1-

n Can be used the other way around
(K)=p(N-1)= p=(k/(N-1)



Degree distribution
S

1 Since real networks are sparse, kK < N-1
hence p also small, binomial - Poisson

(1= p)N-1K  giN-1-kloa(1=(k)/(N-1) oK)

N-1) (N-1) kN




Degree distribution
N
o Distribution is Poisson if Nis large enough
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Are real networks = Poisson?
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Are real networks = Poisson?

A Poisson distribution is unlikely to have
large values: so there are few nodes with
high degree (called hubs)

this is in sharp contrast with experience:
social networks often have hubs

Random networks are generally deprived
of hubs, which are common in reality



disconnected - network

Consider a dynamic creation of a random
network, i.e. links are added in sequence
it can be implemented by slowly raising p
adding links = transition from disconnected

scenario to a significant huge component
Justification: for continuity, initially (k) = 0
implying there is no network (only small
disconnected components); but at the end
(k) = N -1 and we have a complete graph



disconnected - network
e

7 When does this transition happen?
L 7 T

0.8 |-

0.6 -

0.4 -

< k>=1 Fully c?lgn:cl;rt]eﬂ



disconnected - network

At (ky=1 a giant component (GC) appears

Why does the transition happen there?
call u the fraction of nodes ¢ GC

Take a generic node /and see if it can

reach the GC via another node j. No way if:
I and J are not connected (probability 1-p)
or they are but jitself € GC (probability pu)

Result: Prob[i ¢ GC] = (1-p + pu)N-

but also: Prob[i ¢ GC] =u



full connection

When does the GC = the whole network?
a node is isolated from the GC with
probability (1-p)Ne =(1-p)N if IGCI=N
thus, we have N (1-p)N=N e"N¢ such nodes

Switching point when Ne N =1, i.e.:
p=InN/N
(Ky=InN



Small world

A popular catchphrase of network science
also known as “six degrees of separation”
we are more connected than what we think
In a random network, distance between two
randomly chosen nodes is generally short

What does this mean?
Milgram experiment: try reaching an
unknown individual on Earth;
estimate was 100 hops; on average, it took 6



Small world

It looks surprising just because we are
used to regular lattices
the “6 degrees” may even be overestimated
now we have social online networks and
recent estimates tell that (d ) = 4.75 hops
so: level 1 of direct acquaintances,
level 2 of friends of friends, and all other
people in the world you can easily reach



Are real networks random?

degree distribution  binomial = Poisson, heavy tailed with x
with no hubs some hubs
connectedness (1)  if supercritical ((k) = 1), they have (k) = 1
we observe a GC and usually a GC
connectedness (2) we need (k) =In N (k) < In N but we x
to have full connectivity have full connectivity

average path length small, actually scales as correct at least as
In N / In (k) order of magnitude

clustering coefficient independent of k; increases with k; x
decreases with N independent of N



Beyond Poisson

Exponential distribution: can go to very big
values but with vanishing probability
connected with memoryless generation

Or, a “fat-tailed” distribution: the presence
of nodes with high degree is significant
e.g. power law: p, ~ k¥ with y > 1
called the exponent of the power law
just proportional to and within a given range



Power laws

Exact distribution requires normalization:
p,=Cy k™ forkz=k,
then C, = (y-1) k.Y

note: this is for a continuous pdf

for discrete values, just more involuted

Also, cannot hold for any k (e.g. it goes to
infinity for kK = 0) but only within [k,

max]



Power laws

o A power law distribution can have the
same average value (k) than a Poisson

0.5
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Power laws
e

o If we apply logarithms to both sides of the
power law p, ~ k™ we get: log p, ~ -y log k

——Poigson |
——power law [

01k

0_015_ same graph,
. ' log-log pl

0.001}

power law - straight line

0.0001 —
| exponent y = its slope ( - )

0.00001 k&




Hubs

Why do we need to introduce that?
mostly since we want to account for hubs
random graphs lack hubs = uniformly
connected, nodes have similar degrees

Yet, many real world networks have nodes

that are more connected than others
remember Pareto 80/20 rule, a well known
empirical rule of many social sciences



Hubs

As network size N is finite, distribution p,
IS meaningless beyond some value k..,
Actually, two different upper limits
for mathematical reasons (e.g., O< prob <1),
P, ~ k¥ only holds within range [k, , Kyay ]
or we can find the practical cutoff of the
distribution meant as the k__, S.t. we have

vanishing probability of degree k> Kk

max



Hubs

N
o Power-law: p, = Cy K™Y with Cy = (y-1) kp,*

min

.. . 1
1 Then condition f ) py dk = N translates to

(K

min

/ k

max

)¥1=N 2> Kpox=Knin N M)

1 Now the highest degree increases in N

polynomially fast (albeit sublinearly)
nit means that big hubs are present for big N



Scale-free networks

Networks whose degrees follow a power
law distribution are often called scale-free
Why this name? Compute moments:

first moment (average): (k) = f k- p, dk
kmin

second moment:<k2>=foo k® - py dk
kmin

that gives the variance as (k?) - (k )



Scale-free networks

In general, the nth moment is

<k”>=f: k”-pkdk=f: Ck™ dk

min min

and this integral converges only if y-1>n

This means that if 2 <y < 3 only the first
moment is finite: the variance is infinite
hence the name “scale-free”, implying
no inner structure in the degrees
random choices can pick very big hubs



Scale-free networks

As a matter of fact, p, only valid in [k, K .,]
correct, as network size N must be finite
and the variance cannot be > k.2

The nth moment in reality is
k kn—y+1 _ kn—y+1

max

)= ) K peak=cmt

Still the nth moment is big for large networks
as k.., iIncreases with N

max
but is not infinite (just very big)




There are hubs nearby

On a scale-free network, it is easier to find

a shortest path towards a hub
because a hub is (by definition) better
connected than other nodes
also the reason why the often quoted
“six degrees” are probably fewer

Note: in many social experiments, people
avoided hubs (for entirely perceptual
reasons, e.g., assuming they are busy)



Distances on scale-free

For y<3 we have an ultra-small world:
average distance (d)? but slower than In N
very different from a random graph, where
all nodes have similar degrees, thus most
paths will have comparable length
here, most of the paths go through the few
high degree hubs, reducing the distances

From the quantitative point of view, we

observe a stronger “small world” property



Distances on scale-free

For y>3 the network is scale-free but:
(d) increases as In N (like random graphs)
(k?) is finite
we observe the same small world behavior
that we identified for random graphs
From the quantitative point of view, this
kind of network is similar in many ways to

a random graph



Connections to epidemics

We can see a network of infections
who got infected by whom
note: this is actually a directed network,
but many considerations still hold

Then we have the following analogies:
Erd6s-Rényi = homogeneous mixing
(k) = E[#infecteds] = coefficient R,
and GC = epidemics over entire network



Connections to epidemics

We also have networks of contacts
pre-existing structure on which the
epidemics spread: topology is important
and also likely not random nor memoryless

We have further analogies:
degree = risk structure
hubs = super-spreaders
and maybe different conditions for the
disease to spread or for contrasting it



