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Networks as graphs

¨ Graph: 𝒢(𝒱,𝓔)
¨ Vertices (set 𝒱): nodes, users, elements
¨ Edges (set 𝓔): links, arcs, hops, connections
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Degree

¨ The degree kj  of a node j  in an 
undirected network 𝒢(𝒱,𝓔) is the number 
of links it has to other nodes
¨ or, differently said, #of nodes j is linked to
¨ the average degree is 〈k〉 = (Σj kj ) / |𝒱|

¨ The number of links |𝓔| = L = ½ (Σj kj )
¨ ½ because each link is counted twice

¨ If |𝒱| = N, average degree 〈k〉 = 2L / N 



Why random networks?

¨  It seems that many connections arising in 
real networks are unpredictable

¨  Idea: graph whose links between nodes 
are randomly generated with probability p
¨ note: “random” = iid distributed

¨ This seems sensible as we often observe 
unexpected links



Random networks

¨ This simple model is often referred to as 
the Erdős-Rényi model
¨ actually, the original model proposed by 

Erdős and Rényi involved a fixed set 𝒱 and 
a fixed number of links randomly placed

¨ the present model with a given probability p 
(where therefore the number of links is 
variable) is nevertheless very similar



Random networks

¨ Highly diverse networks created this way

L = 12 L = 7



How many links?

¨ Max number of links is          = N (N -1) / 2

¨ The probability PL that we have L links is:

                                                  (binomial)

¨ Hence: 〈L〉 = pN (N -1) / 2,  〈k〉 = p (N -1)
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Degree distribution

¨ Also binomial! Probability pk that a node is 
connected to exactly k neighbors:

¨ as already shown, 〈k〉 = p (N -1)
¨ also, variance of k: σk

2 = p (1-p) (N -1)
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Degree distribution

¨ Degree distribution - binomial

¨ Can be used the other way around
〈k〉 = p (N -1) ⇒   p = 〈k〉 / (N -1)

¨ N = 21,  p = ½  
 



Degree distribution

¨ Since real networks are sparse, k ≪ N -1
¨ hence p also small, binomial à Poisson
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Degree distribution

¨ Distribution is Poisson if N is large enough
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Are real networks = Poisson?



Are real networks = Poisson?

¨ A Poisson distribution is unlikely to have 
large values: so there are few nodes with 
high degree (called hubs)
¨ this is in sharp contrast with experience: 

social networks often have hubs

¨ Random networks are generally deprived 
of hubs, which are common in reality



disconnected à network

¨ Consider a dynamic creation of a random 
network, i.e. links are added in sequence
¨ it can be implemented by slowly raising p
¨ adding links = transition from disconnected 

scenario to a significant huge component
¨ Justification: for continuity, initially 〈k〉 = 0 

implying there is no network (only small 
disconnected components); but at the end 
〈k〉 = N -1 and we have a complete graph



disconnected à network

¨ When does this transition happen?

〈k〉=1 Fully connected 
〈k〉 > ln N



disconnected à network

¨ At 〈k〉 =1 a giant component (GC) appears
¨ Why does the transition happen there?

¨ call u the fraction of nodes ∉ GC 
¨ Take a generic node i and see if it can 

reach the GC via another node j. No way if:
¨ i and j are not connected (probability 1-p)
¨ or they are but j itself ∉ GC (probability pu)

¨ Result: Prob[i ∉ GC] = (1-p + pu)N-1  

but also: Prob[i ∉ GC] = u 



full connection

¨ When does the GC = the whole network?
¨ a node is isolated from the GC with 

probability (1-p)NG ≃(1-p)N     if |GC|≃N 
¨ thus, we have N (1-p)N ≃N e-Np   such nodes

¨ Switching point when N e-Np  = 1, i.e.:
   p = ln N / N
 〈k〉 = ln N



Small world

¨ A popular catchphrase of network science 
also known as “six degrees of separation”
¨ we are more connected than what we think

¨  In a random network, distance between two 
randomly chosen nodes is generally short

¨ What does this mean?
¨ Milgram experiment: try reaching an 

unknown individual on Earth;
¨ estimate was 100 hops; on average, it took 6



Small world

¨  It looks surprising just because we are 
used to regular lattices
¨ the “6 degrees” may even be overestimated
¨ now we have social online networks and 

recent estimates tell that 〈d 〉 = 4.75 hops
¨ so: level 1 of direct acquaintances,  

level 2 of friends of friends, and all other 
people in the world you can easily reach



Are real networks random?

feature random networks real networks
degree distribution binomial à Poisson, 

with no hubs
heavy tailed with 
some hubs

connectedness (1) if supercritical (〈k〉 ≥ 1), 
we observe a GC

they have 〈k〉 ≥ 1 
and usually a GC

connectedness (2) we need 〈k〉 ≥ ln N  
to have full connectivity

〈k〉 ≪ ln N but we 
have full connectivity

average path length small, actually scales as 
ln N / ln 〈k〉

correct at least as 
order of magnitude

clustering coefficient independent of kj  
decreases with N

increases with kj  
independent of N

✔︎

✔︎



Beyond Poisson

¨ Exponential distribution: can go to very big 
values but with vanishing probability
¨ connected with memoryless generation

¨ Or, a “fat-tailed” distribution: the presence 
of nodes with high degree is significant
¨ e.g. power law: pk ~ k -ɣ   with ɣ > 1  

called the exponent of the power law  
¨ just proportional to and within a given range



Power laws

¨ Exact distribution requires normalization:
pk = C0 k -ɣ   for k ≥ kmin

then C0 = (ɣ -1) kmin
ɣ-1

¨ note: this is for a continuous pdf 
¨ for discrete values, just more involuted

¨ Also, cannot hold for any k (e.g. it goes to 
infinity for k à 0) but only within [kmin, kmax]



Power laws

¨ A power law distribution can have the 
same average value 〈k 〉 than a Poisson

〈k 〉 = 15.89
  ɣ = 2.5



Power laws

¨  If we apply logarithms to both sides of the 
power law pk ~ k -ɣ we get:  log pk ~ -ɣ log k

power law à straight line
exponent ɣ à its slope ( - )

same graph,
log-log plot



Hubs

¨ Why do we need to introduce that?
¨ mostly since we want to account for hubs
¨ random graphs lack hubs à uniformly 

connected, nodes have similar degrees

¨ Yet, many real world networks have nodes 
that are more connected than others
¨ remember Pareto 80/20 rule, a well known 

empirical rule of many social sciences



Hubs

¨ As network size N is finite, distribution pk 
is meaningless beyond some value kmax

¨ Actually, two different upper limits
¨ for mathematical reasons (e.g., 0≤ prob ≤1),  

pk ~ k -ɣ  only holds within range [kmin , kmax ]
¨ or we can find the practical cutoff of the 

distribution meant as the kmax  s.t. we have 
vanishing probability of degree k > kmax



Hubs

¨ Power-law: pk = C0 k -ɣ      with C0 = (ɣ -1) kmin
ɣ-1 

¨ Then condition                        translates to

 ( kmin / kmax ) ɣ-1 = N  à  kmax = kmin  N 1/(ɣ-1)

¨ Now the highest degree increases in N 
polynomially fast (albeit sublinearly)
¨ it means that big hubs are present for big N

pk dk
kmax

∞

∫ =
1
N



Scale-free networks

¨ Networks whose degrees follow a power 
law distribution are often called scale-free 

¨ Why this name? Compute moments:

¨ first moment (average):

¨ second moment:

   that gives the variance as 〈k 
2

 〉 - 〈k 〉2

k = k ⋅pk dk
kmin

∞

∫
k 2 = k 2 ⋅pk dk

kmin

∞

∫



Scale-free networks

¨  In general, the n th moment is

   and this integral converges only if ɣ-1>n

¨ This means that if 2 < ɣ < 3 only the first 
moment is finite: the variance is infinite
¨ hence the name “scale-free”, implying  

no inner structure in the degrees
¨ random choices can pick very big hubs

kn = kn ⋅pk dk
kmin

∞

∫ = Ckn−� dk
kmin

∞

∫



Scale-free networks

¨ As a matter of fact, pk only valid in [kmin, kmax]
¨ correct, as network size N must be finite
¨ and the variance cannot be > kmax

2

¨ The n th moment in reality is

¨ Still the nth moment is big for large networks 
as kmax increases with N 
¨ but is not infinite (just very big)

kn = kn ⋅pk dk
kmin

kmax∫ =C kmax
n−�+1−kmin

n−�+1

n − � +1



There are hubs nearby

¨ On a scale-free network, it is easier to find 
a shortest path towards a hub
¨ because a hub is (by definition) better 

connected than other nodes
¨ also the reason why the often quoted  

“six degrees” are probably fewer

¨ Note: in many social experiments, people 
avoided hubs (for entirely perceptual 
reasons, e.g., assuming they are busy)



Distances on scale-free

¨ For ɣ<3 we have an ultra-small world:
¨ average distance 〈d 〉↑ but slower than ln N
¨ very different from a random graph, where 

all nodes have similar degrees, thus most 
paths will have comparable length

¨ here, most of the paths go through the few 
high degree hubs, reducing the distances

¨ From the quantitative point of view, we 
observe a stronger “small world” property



Distances on scale-free

¨ For ɣ>3 the network is scale-free but:
¨ 〈d 〉 increases as ln N (like random graphs)
¨ 〈k 

2〉 is finite
¨ we observe the same small world behavior 

that we identified for random graphs
¨ From the quantitative point of view, this 

kind of network is similar in many ways to 
a random graph



Connections to epidemics

¨ We can see a network of infections
¨ who got infected by whom
¨ note: this is actually a directed network,  

but many considerations still hold

¨ Then we have the following analogies:
¨ Erdős-Rényi = 
¨  〈k 〉 = 
¨ and GC =

homogeneous mixing
𝔼[#infecteds] = coefficient R0 

epidemics over entire network



Connections to epidemics

¨ We also have networks of contacts
¨ pre-existing structure on which the 

epidemics spread: topology is important
¨ and also likely not random nor memoryless

¨ We have further analogies:
¨ degree = 
¨ hubs = 
¨ and maybe different conditions for the 

disease to spread or for contrasting it

risk structure
super-spreaders


