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SI model over a network

¨ A message is spreading over a network
¨ e.g. a gossip spreading by word of mouth
¨ can we use the equations of the SI model?

¨ Model prediction was that the number of 
“infected” reaches 100% as a sigmoid 
(exponential at first, then flat): is it so?

S I ds
dt

= −βsx, dx
dt

= βsx



Cascading as diffusion model 

¨ Consider a general trend for imitation
¨ More than for epidemics, this is used for 

beneficial imitation (but same model) e.g.
¨ information acquisition: you get some 

news and you spread it
¨ direct-benefit effects: you imitate others 

with similar traits because of advantages 
(e.g., adopting compatible technology)



Cascading over networks

¨ We model direct-benefit relations over a 
network (seen as a graph) as follows:
¨ nodes in the network can take either of two 

behaviors, called A and B
¨ nodes get a utility (payoff) depending on 

what they do and their neighbors do
¨ those playing A get a > 0 for each neighbor 

playing A, and 0 for those choosing B;
¨ B gives either 0 or b > 0 per neighbor, resp.



Cascading over networks

¨ The situation can be displayed as a table
¨ in game theory this is a coordination game 

between any two nodes i and j

¨ in reality this is an n-person game whose 
payoff = 𝚺(local games)

A B
A a, a 0, 0
B 0, 0 b, b

j

i



Cascading over networks

¨ Each node selects its behavior in a  
selfish and myopic way
¨ i.e., maximizing its own individual payoff 

and assuming that others do not change
¨ j chooses depending 

on the neighbors
¨ a fraction p (or 1-p) of 

them choose A (or B) node j

pkj nodes 
choose A

(1-p)kj nodes 
choose B



Cascading over networks

¨ The decision rule for node j  is simple:
¨ choose A if kj pa > kj (1-p)b , else choose B
¨ this can be rearranged as  p >  b / (a+b)

¨ in other words, node j  follows a simple 
threshold rule: if p > p* choose A, else B

¨  In the end, a node follows what “most” of 
its neighbors do (but weighted on payoffs) 

call it p*



Equilibria of cascading

¨  In such a scenario we can think of a 
dynamic process as per this example
¨ assume a=5, b=3 à the nodes highlighted 

do not like their current choice and change



Equilibria of cascading

¨  Iterating the process, we eventually reach
¨ choice A for all nodes
¨ choice B for all nodes
¨ or some intermediate cases where both 

choices coexist (is this possible?)
¨ Especially, we may be interested in 

evaluating this for an innovation trend
¨ e.g., a > b although at t =0 most nodes 

adopt B and just a tiny fraction does A



Dynamic model

¨ For the sake of simplicity, consider the 
“initial adopters” to always stick to A
¨ we actually need an external motivation for 

these “pioneers of innovation” to choose A 
when everybody else does B instead

¨  It can be proven then that nodes can only 
switch BàA and not the opposite
¨ due to the fact that the number of neighbors 

choosing innovation A can only increase



Complete cascade at p*

¨ The dynamic cascading makes some 
nodes to imitate the innovators à if this 
causes all nodes to eventually adopt A we 
say we have a complete cascade
¨ this depends on p*, the network topology, 

and where are the initial innovators 



Complete cascade at p*

¨ The initial innovators

¨ After 3 steps 
(the process stops)



Complete cascade at p*

¨ What blocks the spreading over the entire 
network?

¨ The innovation process never gets past 
these tight-knit communities



Consequences on viral trends

¨ To disseminate content over an entire 
network, several aspects may be used
¨ lowering threshold p* clearly helps
¨ also, selecting the initial dissemination 

points as key nodes (well connected hubs)
¨ finally: to have access to every community 
à more convenient to have just few 
connected disseminators in every region 
than a powerful dissemination in only one



SI model over a network

¨ The SI model just use average values
¨ dx / dt = βsx  means x grows on average 

proportional to s and x over a time unit
¨ also we described β as the result of 

#contacts times (contagion | contact)
¨ in a network with average degree 〈k〉, β is 

also proportional to 〈k〉, so we write it as 
β〈k〉  (no longer the same β as before)

¨ we can do it since we work on averages



SI model over a network

¨ This formulation can be implemented in 
every model seen so far (not only SI but 
also SIR, SIRS, SEIR, SICR...)

¨ Problem is, it only works under very 
unrealistic assumptions:
¨ homogeneous mixing
¨ all nodes have comparable degree

¨ Also, it does not tell us how the network 
structure influences the spreading



Bubonic plague in Europe

¨  Some regions 
are “spared” as 
they have a 
relatively low 
impact of the  
epidemics



Network epidemics

¨ A key idea [Vespignani, Pastor-Satorras] is 
to use a degree-block approximation
¨ we consider all the nodes with same degree 

k as belonging to an ideal subnetwork
¨ good modeling economy

¨ Nk = #{degree k nodes}, pk = deg.distrib.  
Xk = #{infected nodes with degree k}

¨ Consider xk = Xk / Nk  à  x = Σk xk pk 



Network epidemics

¨ Now, we rewrite the basic SI equation as:

¨ We have kmax equations (one per degree)
¨ We keep the same rationale, but replace

¨ 〈k〉 with the actual degree k
¨ sk with 1-xk (so we only have one variable)
¨ xk with Θk = density of infected neighbors 

of a susceptible node with degree k

dx
dt

= β k sx dxk
dt

= βk (1− xk )Θk



Early epidemic stages

¨ How to exploit dxk / dt = βk(1-xk )Θk ?
¨ focus on small t (as in the standard SI)
¨ this way, we can treat xk ≈ 0 in the r.h. side

à We get      dxk / dt = βk Θk   
¨ We can show that in the absence of 

degree correlations, the term Θk  is 
¨ indepedent of k  (so we call it just Θ)
¨ exponentially growing in t



Density of infected neighbors

¨  In the absence of degree correlation: 
probability that from an h-node, following a 
random link we reach a k-node

qk = k pk / 〈k〉
   independent of initial node’s degree h

¨ indeed, we reach a k-node since we have 
followed one of its k connections

¨ and there is no correlation between h and k



Friendship paradox [Feld, 1961]

¨ My friends are more popular than me
¨ This is actually true: nodes with high 

degrees are more likely to be counted as 
friends, and they skew the average of the 
no. of friends of friends

¨ So 〈k 〉=𝔼[#friends] is smaller than  
𝔼[#friends of friends] 

¨ this is particularly visible on scale-free 
networks since they have hubs



Density of infected neighbors

¨ What is the probability that starting from a 
susceptible h-node, following a random 
link, we reach an infected k-node? It is

q’k = (k-1) pk / 〈k〉
   still independent of initial node’s degree h

¨ not all k connections available: the k-node 
is infected; hence, one link points to another 
infected, from whom it got the disease, but 
we are starting from a susceptible!



Density of infected neighbors

¨ Hence

¨ We can also relate the derivatives, which 
allows us to understand how Θ  grows

¨ up to some modifications, this expression is 
true for not only SI, but also other models

Θk =Θ =
∑k (k −1)pkxk

k

dΘ
dt

=
(k −1)pk

k
dxk
dtk∑



back to SI equations

¨ Now, for SI we know dxk / dt = βk(1-xk )Θk
¨ if small t à  dxk / dt = βk Θk
¨ thus

¨ Solving as usual we get  Θ = Θ0 eF t

where  F = β(〈k2〉 - 〈k〉) / 〈k〉,  Θ0 = x0 (〈k〉 -1) / 〈k〉

dΘ
dt

= β
(k 2 −k )pk

kk
∑  Θ = β

k 2

k
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infected with uniform 
random distribution



back to SI equations

¨  Inserting into the equations for xk we get:

   that leads to

¨ thus, xk depends on both degree distribution 
of the network and the specific value of k

dxk
dt

= βk  x0
k −1
k
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back to SI equations

¨ We derived that xk = f (t ) + k g (t ) with both 
f and g being increasing functions
¨ nodes with higher k are reached earlier
¨ or, their “infected share” xk grows faster

¨ x = Σk xk pk à

¨ especially, focus on F = β(〈k2〉 - 〈k〉) / 〈k〉

x = x0  1+
k 2
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back to SI equations

¨ For an Erdős-Rényi model (random graph) 
we have 〈k2〉 = 〈k〉(1+ 〈k〉)

¨ we get F = β〈k〉 ,

¨ in other words, x grows exponentially with 
exponent β〈k〉 (well, only for small t à after 
that it becomes a sigmoid)

¨ Fallback to SI (homogeneous mixing)!

x = x0  1+
k −1
k

(eβ k t −1)
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SI over scale-free networks

¨ Scale-free with γ > 3 à 〈k 
2〉, 〈k〉 are finite

¨ F = β(〈k  
2〉 - 〈k〉) / 〈k〉 is finite

¨ similar behavior to E-R, i.e., exponential 
increase (although F can be bigger)

¨ Scale-free with γ < 3 à 〈k 
2〉 goes to ∞

¨ contagion is very rapid (instantaneous)
¨ this is because big hubs are both the first to 

be infected and also spread the disease 
very effectively (super spreaders)



Other networks

¨ We do not need a scale-free network to 
enhance the spreading of the disease
¨ all that we require is that 〈k 

2〉 is large, so 
that there are big hubs acting as spreaders

¨ On the other hand, on regular networks 
(e.g. lattices) we see a reduced term F
¨ consistent with the intuition that any node 

can infect at most a limited number



SIR model over networks

¨ SI à eventually everyone is infected
¨ What about SIR? We need to add a term:

dxk / dt = βk(1-xk -rk )Θ  - µxk

¨ where again

¨ and we set (1-xk -rk ) ≈ 1   so as to obtain
dxk / dt = βkΘ - µxk

Θ =
∑k (k −1)pkxk

k



SIR model over networks

¨ Analogously to what we derived for SI:
dΘ / dt = [ β (〈k 

2〉-〈k〉)/〈k〉 - µ] Θ
¨ This leads us again to  Θ = Θ0 eF t

¨ but now F = [β〈k2〉 -(β+µ) 〈k〉] / 〈k〉
¨ i.e., the disease is not guaranteed to spread 
¨ F must be positive or else Θ vanishes: 

threshold criterion similar to the R0 criterion
      F > 0   if             β/µ   >  〈k〉 / ( 〈k 

2〉-〈k〉)called  
spreading rate α 



SIS model over networks

¨ We can write similar equations for SIS
¨ That is, we start from dxk / dt = βk Θ – µxk

¨ but now  Θ = Σk k xk pk / 〈k〉   as nodes can 
be susceptible even after being infective 

¨ thus, all neighbors are potential infectives
¨ We still get Θ = Θ0 eF t  , F = [β〈k2〉 -µ 〈k〉] / 〈k〉

¨ threshold criterion is now:
      F > 0   if             α = β/µ   >  〈k〉 / 〈k 

2〉



Threshold criterion

¨ Rules α(SIR) > 〈k〉 / ( 〈k 
2〉-〈k〉),  α(SIS) > 〈k〉 / 〈k 

2〉
relate “biological parameters” (α = β/µ ) 
with the network topology and deg.distrib.

¨ We get a threshold αC for contagion 
¨ threshold for SIS is slightly lower than that 

of SIR since we allow hubs to be infected 
and spreading the disease once again

¨ note that threshold is only necessary but 
not sufficient (strictly speaking)



Threshold criterion

¨ On a random graph:
 αC

(SIR) = 1 / 〈k〉,         αC
(SIS) = 1 / (1+〈k〉)

¨ in both cases, the higher 〈k〉, the lower the 
threshold (but always finite) àeasier spread

¨ But for a scale-free network, 〈k 
2〉 is bigger; 

for γ < 3 à 〈k 
2〉⟶∞ , i.e., thresholds=0

¨ consequence: even a weak infection can 
still spread (by just reaching the right hub)



Threshold criterion

¨  Important difference with homogeneous 
models: on a scale-free network with γ < 3
¨ it is very easy to spread a virus, as even 

contagions with low α can spread
¨ the contagion is almost instantaneous as 

the exponential parameter is very high
à all these conclusions are derived under 

the block-degree approximation but are 
valid also under more precise models


