LIFE DATA EPIDEMIOLOGY

Lecture 8: Network spreading

Leonardo Badia

leonardo.badia@unipd.it

SI model over a network

A message is spreading over a network
 e.g. a gossip spreading by word of mouth
 can we use the equations of the SI model?

$$\frac{\mathrm{d}s}{\mathrm{d}t} = -\beta sx, \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \beta sx$$

Model prediction was that the number of "infected" reaches 100% as a sigmoid (exponential at first, then flat): is it so?

Cascading as diffusion model

Consider a general trend for imitation More than for epidemics, this is used for beneficial imitation (but same model) e.g. information acquisition: you get some news and you spread it direct-benefit effects: you imitate others with similar traits because of advantages (e.g., adopting compatible technology)

We model direct-benefit relations over a network (seen as a graph) as follows: nodes in the network can take either of two behaviors, called A and Bnodes get a utility (payoff) depending on what they do and their neighbors do those playing A get a > 0 for each neighbor playing A, and 0 for those choosing B; $\square B$ gives either 0 or b > 0 per neighbor, resp.

 The situation can be displayed as a table
 in game theory this is a coordination game between any two nodes *i* and *j*

 $\begin{array}{c|c} A & j \\ B \\ \hline B & 0, 0 \\ \hline B & 0, 0 \\ \hline \end{array}$

□ in reality this is an n-person game whose payoff = Σ (local games)

Each node selects its behavior in a selfish and myopic way i.e., maximizing its own individual payoff and assuming that others do not change

pk_j nodes choose A node *j* (1-*p*)*k_j* nodes choose B

j chooses depending on the neighbors
 a fraction *p* (or 1-*p*) of them choose ▲ (or B)

■ The decision rule for node *j* is simple: ■ choose A if $k_j pa > k_j (1-p)b$, else choose B ■ this can be rearranged as p > b / (a+b)call it p^*

□ in other words, node *j* follows a simple threshold rule: if $p > p^*$ choose A, else B

In the end, a node follows what "most" of its neighbors do (but weighted on payoffs)

Equilibria of cascading

In such a scenario we can think of a dynamic process as per this example
 □assume a=5, b=3 → the nodes highlighted do not like their current choice and change

Equilibria of cascading

Iterating the process, we eventually reach
 choice A for all nodes
 choice B for all nodes
 or some intermediate cases where both
 choices coexist (is this possible?)

Especially, we may be interested in evaluating this for an innovation trend
 e.g., *a* > *b* although at *t*=0 most nodes adopt B and just a tiny fraction does A

Dynamic model

For the sake of simplicity, consider the "initial adopters" to always stick to A we actually need an external motivation for these "pioneers of innovation" to choose A when everybody else does B instead It can be proven then that nodes can only switch $\mathbf{B} \rightarrow \mathbf{A}$ and not the opposite □due to the fact that the number of neighbors choosing innovation A can only increase

Complete cascade at p*

The dynamic cascading makes some nodes to imitate the innovators → if this causes all nodes to eventually adopt A we say we have a complete cascade
 This depends on *p**, the network topology, and where are the initial innovators

Complete cascade at p*

After 3 steps (the process stops)

Complete cascade at p*

What blocks the spreading over the entire network?

The innovation process never gets past these tight-knit communities

Consequences on viral trends

To disseminate content over an entire network, several aspects may be used Iowering threshold p* clearly helps □also, selecting the initial dissemination points as key nodes (well connected hubs) □ finally: to have access to every community \rightarrow more convenient to have just few connected disseminators in every region than a powerful dissemination in only one

SI model over a network

The SI model just use average values $\Box dx / dt = \beta sx$ means x grows on average proportional to s and x over a time unit \Box also we described β as the result of #contacts times (contagion | contact) \Box in a network with average degree $\langle k \rangle$, β is also proportional to $\langle k \rangle$, so we write it as $\beta \langle k \rangle$ (no longer the same β as before) we can do it since we work on averages

SI model over a network

- This formulation can be implemented in every model seen so far (not only SI but also SIR, SIRS, SEIR, SICR...)
- Problem is, it only works under very unrealistic assumptions:
 - homogeneous mixing
 - □all nodes have comparable degree
- Also, it does not tell us how the network structure influences the spreading

Bubonic plague in Europe

 Some regions are "spared" as they have a relatively low impact of the epidemics

Network epidemics

 A key idea [Vespignani, Pastor-Satorras] is to use a degree-block approximation
 we consider all the nodes with same degree *k* as belonging to an ideal subnetwork
 good modeling economy

N_k = #{degree *k* nodes}, *p_k* = deg.distrib.
 X_k = #{infected nodes with degree k}
 Consider *x_k* = *X_k* / *N_k* → *x* = Σ_k *x_k p_k*

Network epidemics

□ Now, we rewrite the basic SI equation as:

We have k_{max} equations (one per degree)
We keep the same rationale, but replace
⟨k⟩ with the actual degree k
S_k with 1-x_k (so we only have one variable)
X_k with Θ_k = density of infected neighbors of a susceptible node with degree k

Early epidemic stages

- □ How to exploit $dx_k / dt = \beta k(1-x_k)\Theta_k$? □focus on small *t* (as in the standard SI) □this way, we can treat $x_k \approx 0$ in the r.h. side
- \rightarrow We get $dx_k / dt = \beta k \Theta_k$
- We can show that in the absence of degree correlations, the term Θ_k is
 □indepedent of k (so we call it just Θ)
 □exponentially growing in t

Density of infected neighbors

In the absence of degree correlation: probability that from an *h*-node, following a random link we reach a *k*-node

$$q_k = k p_k / \langle k \rangle$$

independent of initial node's degree h
indeed, we reach a k-node since we have followed one of its k connections
and there is no correlation between h and k

Friendship paradox [Feld, 1961]

- My friends are more popular than me
 This is actually true: nodes with high degrees are more likely to be counted as friends, and they skew the average of the no. of friends of friends
 So ⟨k⟩=E[#friends] is smaller than E[#friends of friends]
 - this is particularly visible on scale-free networks since they have hubs

Density of infected neighbors

□ What is the probability that starting from a **susceptible** *h*-node, following a random link, we reach an **infected** *k*-node? It is $q'_k = (k-1) p_k / \langle k \rangle$

still independent of initial node's degree h
not all k connections available: the k-node is infected; hence, one link points to another infected, from whom it got the disease, but we are starting from a susceptible!

Density of infected neighbors

• Hence
$$\Theta_k = \Theta = \frac{\sum_k (k-1)p_k x_k}{\langle k \rangle}$$

$$\frac{\mathrm{d}\Theta}{\mathrm{d}t} = \sum_{k} \frac{(k-1)p_{k}}{\langle k \rangle} \frac{\mathrm{d}x_{k}}{\mathrm{d}t}$$

up to some modifications, this expression is true for not only SI, but also other models

■ Now, for SI we know $dx_k / dt = \beta k (1 - x_k) \Theta_k$ ■ if small $t \rightarrow dx_k / dt = \beta k \Theta_k$ ■ thus $\frac{d\Theta}{dt} = \beta \sum_k \frac{(k^2 - k)p_k}{\langle k \rangle} \Theta = \beta \left(\frac{\langle k^2 \rangle}{\langle k \rangle} - 1\right) \Theta$

□ Solving as usual we get $\Theta = \Theta_0 e^{Ft}$ where $F = \beta(\langle k^2 \rangle - \langle k \rangle) / \langle k \rangle$, $\Theta_0 = x_0 (\langle k \rangle - 1) / \langle k \rangle$

choosing the x_0 initial infected with uniform random distribution

 \Box Inserting into the equations for x_k we get:

$$\frac{\mathrm{d}x_k}{\mathrm{d}t} = \beta k \ x_0 \left(\frac{\langle k \rangle - 1}{\langle k \rangle}\right) \mathrm{e}^{Ft}$$

that leads to $x_k = x_0 \left(1 + \frac{k(\langle k \rangle - 1)}{\langle k^2 \rangle - \langle k \rangle} (\mathrm{e}^{Ft} - 1)\right)$

thus, x_k depends on both degree distribution of the network and the specific value of k

We derived that x_k = f(t) + k g(t) with both f and g being increasing functions
 nodes with higher k are reached earlier
 or, their "infected share" x_k grows faster

$$\Box x = \Sigma_k x_k p_k \rightarrow x = x_0 \left(1 + \frac{\langle k \rangle^2 - \langle k \rangle}{\langle k^2 \rangle - \langle k \rangle} (e^{Ft} - 1) \right)$$

 $\Box especially, focus on F = \beta(\langle k^2 \rangle - \langle k \rangle) / \langle k \rangle$

- □ For an Erdős-Rényi model (random graph) we have $\langle k^2 \rangle = \langle k \rangle (1 + \langle k \rangle)$ □ we get $F = \beta \langle k \rangle$, $x = x_0 \left(1 + \frac{\langle k \rangle - 1}{\langle k \rangle} (e^{\beta \langle k \rangle t} - 1) \right)$
- □in other words, x grows exponentially with exponent β⟨k⟩ (well, only for small t → after that it becomes a sigmoid)
 □ Fallback to SI (homogeneous mixing)!

SI over scale-free networks

 \Box Scale-free with $\gamma > 3 \rightarrow \langle k^2 \rangle$, $\langle k \rangle$ are finite $\Box F = \beta(\langle k^2 \rangle - \langle k \rangle) / \langle k \rangle \text{ is finite}$ similar behavior to E-R, i.e., exponential increase (although F can be bigger) \Box Scale-free with $\gamma < 3 \rightarrow \langle k^2 \rangle$ goes to ∞ contagion is very rapid (instantaneous) this is because big hubs are both the first to be infected and also spread the disease

very effectively (super spreaders)

Other networks

- We do not need a scale-free network to enhance the spreading of the disease
 all that we require is that (k²) is large, so that there are big hubs acting as spreaders
- On the other hand, on regular networks (e.g. lattices) we see a reduced term *F* consistent with the intuition that any node can infect at most a limited number

SIR model over networks

 SI → eventually everyone is infected
 What about SIR? We need to add a term: dx_k / dt = βk(1-x_k-r_k)Θ - μx_k

where again
$$\Theta = \frac{\sum_{k} (k-1) p_{k} x_{k}}{\langle k \rangle}$$

□ and we set $(1-x_k-r_k) \approx 1$ so as to obtain dx_k / dt = βkΘ - µx_k

SIR model over networks

Analogously to what we derived for SI: $d\Theta / dt = \left[\beta \left(\langle k^2 \rangle - \langle k \rangle \right) / \langle k \rangle - \mu \right] \Theta$ \Box This leads us again to $\Theta = \Theta_{\Omega} e^{Ft}$ $\Box \text{ but now } F = [\beta \langle k^2 \rangle - (\beta + \mu) \langle k \rangle] / \langle k \rangle$ □i.e., the disease is not guaranteed to spread $\Box F$ must be positive or else Θ vanishes: threshold criterion similar to the R₀ criterion F > 0 if called $\beta/\mu > \langle k \rangle / (\langle k^2 \rangle - \langle k \rangle)$ spreading rate α

SIS model over networks

- We can write similar equations for SIS
- That is, we start from dx_k / dt = βkΘ μx_k
 but now Θ = Σ_k k x_k p_k / (k) as nodes can be susceptible even after being infective
 thus, all neighbors are potential infectives
- □ We still get $\Theta = \Theta_0 e^{Ft}$, $F = [\beta \langle k^2 \rangle \mu \langle k \rangle] / \langle k \rangle$ □threshold criterion is now:
 - F > 0 if $\alpha = \beta/\mu > \langle k \rangle / \langle k^2 \rangle$

Threshold criterion

□ Rules $\alpha^{(SIR)} > \langle k \rangle / (\langle k^2 \rangle - \langle k \rangle)$, $\alpha^{(SIS)} > \langle k \rangle / \langle k^2 \rangle$ relate "biological parameters" ($\alpha = \beta/\mu$) with the network topology and deg.distrib.

We get a threshold α_C for contagion
 threshold for SIS is slightly lower than that of SIR since we allow hubs to be infected and spreading the disease once again
 note that threshold is only necessary but not sufficient (strictly speaking)

Threshold criterion

On a random graph: $\alpha_{\rm C}^{\rm (SIR)} = 1/\langle k \rangle, \qquad \alpha_{\rm C}^{\rm (SIS)} = 1/(1+\langle k \rangle)$ \Box in both cases, the higher $\langle k \rangle$, the lower the threshold (but always finite) \rightarrow easier spread \Box But for a scale-free network, $\langle k^2 \rangle$ is bigger; for $\gamma < 3 \rightarrow \langle k^2 \rangle \rightarrow \infty$, i.e., thresholds=0 consequence: even a weak infection can still spread (by just reaching the right hub)

Threshold criterion

- Important difference with homogeneous models: on a scale-free network with γ < 3
 it is very easy to spread a virus, as even contagions with low α can spread
 the contagion is almost instantaneous as the exponential parameter is very high
 - → all these conclusions are derived under the block-degree approximation but are valid also under more precise models