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S| model over a network

A message is spreading over a network
e.g. a gossip spreading by word of mouth
can we use the equations of the SI model?

ds dx

— =—fsx, — =pBsx
dt b dt b
Model prediction was that the number of
“infected” reaches 100% as a sigmoid

(exponential at first, then flat): is it so?




Cascading as diffusion model

Consider a general trend for imitation
More than for epidemics, this is used for
beneficial imitation (but same model) e.q.
information acquisition: you get some
news and you spread it
direct-benefit effects: you imitate others
with similar traits because of advantages
(e.g., adopting compatible technology)



Cascading over networks

We model direct-benefit relations over a

network (seen as a graph) as follows:
nodes in the network can take either of two
behaviors, called A and
nodes get a utility (payoff) depending on
what they do and their neighbors do
those playing A get a > 0 for each neighbor
playing A, and O for those choosing ';

gives either 0 or b > 0 per neighbor, resp.



Cascading over networks

The situation can be displayed as a table
iIn game theory this is a coordination game
between any two nodes jand j

/

a, a 0,0
0,0 b, b

In reality this is an n-person game whose
payoff=X(local games)



Cascading over networks
_

- Each node selects its behavior in a
selfish and myopic way
fi.e., maximizing its own individual payoft
and assuming that others do not change
® -1 chooses depending
O

k. .
’jhgr;Z‘;ej on the neighbors
O o Da fraction p (or 1-p) of
node j ° them choose A (or 1)
(1-p)k; nodes

choose B



Cascading over networks

The decision rule for node j is simple:
choose A if k;pa > k;(1-p)b, else choose

this can be rearranged as p> ‘b/ (a+b)
call it p*

In other words, node j follows a simple

threshold rule: if p > p* choose A, else

In the end, a node follows what “most” of
its neighbors do (but weighted on payofts)



Equilibria of cascading
-1

7 In such a scenario we can think of a

dynamic process as per this example
rassume a=5, b=3 -2 the nodes highlighted
do not like their current choice and change

“d &5



Equilibria of cascading

lterating the process, we eventually reach
choice A for all nodes
choice = for all nodes
or some intermediate cases where both
choices coexist (is this possible?)

Especially, we may be interested in

evaluating this for an innovation trend
e.g., a> b although at =0 most nodes
adopt = and just a tiny fraction does



Dynamic model

For the sake of simplicity, consider the
“Initial adopters” to always stick to
we actually need an external motivation for
these “pioneers of innovation” to choose
when everybody else does ' instead
It can be proven then that nodes can only
switch == A and not the opposite
due to the fact that the number of neighbors
choosing innovation A can only increase



Complete cascade at p*

The dynamic cascading makes some
nodes to imitate the innovators - if this
causes all nodes to eventually adopt A we
say we have a complete cascade

this depends on p*, the network topology,
and where are the initial innovators



Complete cascade at p*
N
o The initial innovators

o After 3 steps
(the process stops)




Complete cascade at p*
1

- What blocks the spreading over the entire

=

o The innovation process never gets past
these tight-knit communities



Consequences on viral trends

To disseminate content over an entire

network, several aspects may be used
lowering threshold p* clearly helps
also, selecting the initial dissemination
points as key nodes (well connected hubs)
finally: to have access to every community
-> more convenient to have just few
connected disseminators in every region
than a powerful dissemination in only one



S| model over a network

The S| model just use average values
dx/ dt=[psx means x grows on average
proportional to s and x over a time unit
also we described [3 as the result of
#contacts times (contagion | contact)
in a network with average degree (k), B is
also proportional to (k), so we write it as
B(k) (no longer the same P as before)
we can do it since we work on averages



S| model over a network

This formulation can be implemented in
every model seen so far (not only Sl but
also SIR, SIRS, SEIR, SICR...)
Problem is, it only works under very
unrealistic assumptions:

homogeneous mixing

all nodes have comparable degree
Also, it does not tell us how the network
structure influences the spreading



Bubonic plague in Europe
-1

Spread of Bubonic Plague

M 1 Some regions
= are “spared” as
e s they have a
relatively low
impact of the
epidemics




Network epidemics

A key idea [Vespignani, Pastor-Satorras] is
to use a degree-block approximation
we consider all the nodes with same degree
k as belonging to an ideal subnetwork
good modeling economy

N, = #{degree k nodes}, p, = deg.distrib.
X, = #{infected nodes with degree k}



Network epidemics
_

- Now, we rewrite the basic Sl equation as:

dx dXx,
~ B(k)sx - Bk(1-x,)0,
o We have k., equations (one per degree)
7 We keep the same rationale, but replace
(k) with the actual degree k
1S, with 1-x, (so we only have one variable)
0x, with ©, = density of infected neighbors
of a susceptible node with degree k



Early epidemic stages

How to exploit dx, / dt = Bk(1-x,)®, ?
focus on small t (as in the standard Sl)
this way, we can treat x, = 0 in the r.h. side

> Weget dx /di=pk0O,

We can show that in the absence of

degree correlations, the term 0, is
indepedent of k (so we call it just ©)
exponentially growing in t



Density of infected neighbors

In the absence of degree correlation:
probability that from an h-node, following a
random link we reach a k-node

Q= k py/ (K
independent of initial node’s degree h
Indeed, we reach a k-node since we have

followed one of its k connections
and there i1s no correlation between h and k



Friendship paradox [Feld, 1961]

My friends are more popular than me
This is actually true: nodes with high
degrees are more likely to be counted as
friends, and they skew the average of the
no. of friends of friends
So (k)=E[#friends] is smaller than
[E[#friends of friends]

this is particularly visible on scale-free
networks since they have hubs



Density of infected neighbors

What is the probability that starting from a
susceptible h-node, following a random
link, we reach an infected k-node? It is

g = (k-1) p/ (k)
still independent of initial node’s degree h
not all k connections available: the k-node
IS infected; hence, one link points to another

infected, from whom it got the disease, but
we are starting from a susceptible!



Density of infected neighbors

Hence 0, =0 - 2k (K=)p X
(k)
We can also relate the derivatives, which
allows us to understand how ® grows
de E (K =1)p, dX,
dt kK (ky dt
up to some modifications, this expression is
true for not only Sl, but also other models




back to Sl equations
1

- Now, for S| we know dx, / dt = Bk(1-x,)®,
oif small t 2> dx, /dt=BkO,

(/2 \
Dthusd_@_'gz k2 k>pk@ B <k>_1@

N

- Solving as usual we get ® =0, eF’
where F = B((k°)-(K)/(k), ©q= X, ((K)-1)/(K)

choosing the xj initial
infected with uniform
random distribution




back to Sl equations

Inserting into the equations for x, we get:
dXk _pk X, (k)= eFt

dt (k)

that leads to x, = x, <k> e-1)

\<><k> |

thus, x, depends on,Ooth degree distribution
of the network and‘the specific value of k

)




back to Sl equations

We derived that x, = f(f) + k g(t) with both

fand g being increasing functions
nodes with higher k are reached earlier
or, their “infected share X, grows faster

X=X X, P> <k> <k> A 1)\

X=XO\ < > <k> |

especially, focus on F = B({(k?)-(k))/{k)




back to Sl equations

For an Erd6s-Rényi model (random graph)
we have (k?)=(k)(1+(k))

K)-1
we get F=B(K), X =Xg |1+ < <l>(> Chus 1))
In other words, x grows exponentially with
exponent (k) (well, only for small t > after
that it becomes a sigmoid)
Fallback to SI (homogeneous mixing)!




Sl over scale-free networks

Scale-free with y >3 > (k?), (k) are finite
F = B((k?) - (k) / {k) is finite
similar behavior to E-R, i.e., exponential
increase (although F can be bigger)

Scale-free with y <3 - (k?) goes to
contagion is very rapid (instantaneous)
this is because big hubs are both the first to
be infected and also spread the disease
very effectively (super spreaders)



Other networks

We do not need a scale-free network to
enhance the spreading of the disease
all that we require is that (k?) is large, so
that there are big hubs acting as spreaders

On the other hand, on regular networks

(e.g. lattices) we see a reduced term F
consistent with the intuition that any node
can infect at most a limited number



SIR model over networks

S| - eventually everyone is infected

What about SIR? We need to add a term:
dx, /dt=Bk(1-x.-r.)® - ux,

2i(K=1)pex,

k)

and we set (1-x,.-r,) =1 so0 as to obtain

where again O =




SIR model over networks

Analogously to what we derived for Sl:
do /dt=[ B ((k?)-(k)/(K) - n] ©

This leads us againto ® = 0, e!
but now F = [B(k%)-(B+1)(K)l/ ()
l.e., the disease is not guaranteed to spread
F must be positive or else ® vanishes:
threshold criterion similar to the R, criterion
F>0 if _eq > (K) 1 ((k2)~(k))

spreading rate o



SIS model over networks

We can write similar equations for SIS

That is, we start from dx, / dt = BkO® — ux,
butnow ®=X%, k x.p,/ (k) as nodes can
be susceptible even after being infective
thus, all neighbors are potential infectives

We still get © = 0, ef! = [B(k%-p(k}]/(k}
threshold criterion is now:
F>0 if o = pB/u >(k)/(k2)



Threshold criterion

Rules aS'R) >(k)/({(k?)-(k)), al5!S) >(k)/{k?)
relate “biological parameters” (o= p/u )
with the network topology and deg.distrib.

We get a threshold o for contagion
threshold for SIS is slightly lower than that
of SIR since we allow hubs to be infected
and spreading the disease once again
note that threshold is only necessary but
not sufficient (strictly speaking)



Threshold criterion

On a random graph:
acCIR) =1/(k), 0SS =1/(1+(k))
in both cases, the higher (k), the lower the
threshold (but always finite) > easier spread

But for a scale-free network, (k?) is bigger;

fory< 3 2 (k?)— | i.e., thresholds=0
conseguence: even a weak infection can
still spread (by just reaching the right hub)



Threshold criterion

Important difference with homogeneous
models: on a scale-free network with y < 3
it is very easy to spread a virus, as even

contagions with low o can spread
the contagion is almost instantaneous as
the exponential parameter is very high

—> all these conclusions are derived under
the block-degree approximation but are
valid also under more precise models



