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Robustnhess

Network science is often interested Iin
understanding robustness to failures
Reason: real-world networks work under
imperfect conditions / malfunctioning
technological networks are subject to link
breakage or node failure
metabolic networks have mutations and
chemical transcription mistakes
for epidemics, this is to contrast them!



Robustness

o What if our models @ ®) .<'/\.
are missing nodes?

7 Would the network
still “work™?

r1Failures can lead to (d) ./, ‘\.
either just isolating
nodes/groups or

breaking the whole F.f
network apart F'j‘




Percolation

A mathematical attempt can be made
through percolation theory
Consider a lattice (e.g., a square grid)
each position in the lattice is occupied by a
peeble with probability p
lattice links are also created automatically
between positions occupied by peebles

What is the resulting network structure?



Percolation

It can be found that the behavior is not
smooth, but rather has a phase transition
around a critical value p,

As p grows, a giant component appears
with size that suddenly becomes infinite
- it involves the entire lattice when p = p,
Other network metrics experiences a
similar transition as well around value p,



Percolation
1

o Critical transition for p, = 0.6
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Percolation

- At p, a phase
transition appears ..

= A giant component
appears and many
network metrics
change behavior
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Node vs link creation or break

Actually, percolation theory can be applied
to two similar processes

node addition/removal

link addition/removal
In the following, we will derive the analysis
for node-based percolation, but everything
IS directly extendable to a link-based case

so that networks that are robust node-wise
are also so if links are considered



Percolation - scale-free

What if we apply node removal to scale-

free networks (instead of regular lattices)?

We observe an increased robustness
reason: the presence of the hubs, which
were missing in a regular lattice
of course this is because removals are still
entirely random, so removing a big hug is
very bad, but hubs are few special nodes,
so they are hard to pick going randomly



Scale-free network robustness

Robustness of the Internet ©

due to its scale-free nature
often working even during
earthquakes/hurricanes
routers linked to the GC
after random removal with .
rate f - still large if f< 1
experiments aligned with a
scale-free model
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Critical transition in scale-free

Apparently, scale-free networks are critical
only if fraction f=1-p of node removal is a
very high value f, (= breakup threshold)

Let us verify this analytically based on:
to have nodes belonging to a GC, this GC
must exist in the first place
In a scale-free network, nodes are randomly
wired (differently from a lattice): how many
of them do we need to keep a GC together?



Molloy-Reed criterion

To hold a GC together in a randomly wired
network, at least 2 links needed per node

Molloy-Reed criterion. Any randomly
wired network has a GC if and only if:
k = (k2) / (k) > 2
That is, networks with (k?) < 2 (k) do not
have a giant component and are fragmented
A criterion valid for any degree distribution!



Molloy-Reed criterion

Let verify the criterion for a random graph
Degree distribution is Poisson, so:
(k) =02=1/L but o= (k?) - (k)?
Thus, (k?) = (k)(1+(k))
Molloy-Reed criterion implies (k) > 1 which
we already verified to be the condition for the
existence of a GC in a random graph



Molloy-Reed criterion

Formal proof. Consider node i in the GC
Actually, that / belongs to the GC can only
be derived recursively as i being linked to j
where j€ GC. Write this condition as i2jz¢

What is the average degree of the GC? It

must be (k; | i2>j;c) > 2 or the GC is not

held together. Thus, we need to prove
(ki li2jac) = (k?) 1 (k)



Molloy-Reed criterion

Formal proof (cont’d). We can also write
(k; | ie/@@) = 2:i ki P(kili2Jjac)
If p, = degree distribution, by Bayes’ rule:
P(kili2jsc) = P(12Jaclki) P/ P(I2)gc)
Probability of / - arbitrary node j does not
involve that j€ GC, therefore:
P(i=2jsc)=2L/ N/ (N-1) =(k)/ (N-1)
P(i2jgc| k) K /(N 1)
Thus: (k; i jgc) = &; k? py | (k) = (k?) / (k)



Breakup threshold in scale-free

What critical fraction f, of a network can be

removed without destroying the GC?

Removing “f” of nodes changes degree

k = k’(and their distribution) in two ways:
it erases some nodes, so there are fewer
nodes with some old degree k = however
this is irrelevant if removals are iid random
it also removes the links associated to
them, thus changing their neighbors’ degree



Breakup threshold in scale-free

What is the probability that a removal of a
fraction fof nodes changes k —k’'?

P(k — K') = ( : )f"‘k'(1 _fYF (for k > k')



Breakup threshold in scale-free

We use this to derive the new values of
first and second moments, denoted as (k'),
and (k’z)f to indicate removal rate f)

k|
(K'), Ekz K-
Pkk, (k—K')! ( )

k'=0 k=K

k! i .
=E P (1= )"
Y N
k'=0 k=K’ (K= (k-K')!




Breakup threshold in scale-free
_

71 Observe that the two summations over:
k'=z0,k=k’"2rewriteas k=0,0<k’'<sk

% 1)% )K=

~

(k') = zkpk“‘f) E (k'=)! (k-K")!

k'=0

_/

- N Kk pe(1=1) (= f+A" = (1-F)(k)
k=0



Breakup threshold in scale-free

We obtained (k’);= (1-f) (k) = the new
value of the average degree after node
removal depends only on f and the old (k)
To derive (k'?);, write it as (k' (k'-1) +k’),
(k' (k’-1) ); is obtained similar to before;
the trick is to rewrite the summations in the
same way, and to take out both k’and (k'-1)
this results in (k' (k'-1) ), = (1-f)2 (k (k-1) )
thus, (k'2),= (1-f)2 (k?) + (1-f)f (k)



Breakup threshold in scale-free

Use Molloy-Reed to see if, after removing
a fraction f of nodes, there still is a GC -
breakup threshold f, @critical point k=2:

<k/2>fc=(1'fc)2 <k2>+(‘i ‘f':)fc<k> = 2(‘i fc)<k>

Resulting in: £, ((k) — (k?)) = (2(k) — (k?))
that can be rearranged into
fo =1 - ((k%)/(k) = 1)



Breakup threshold in scale-free

Remarkably, f, only depends on the ratio
between (k?) and (k), so in turn only on p,
E.g., for a random graph (Erdos-Rényi) we

have (k?) = (k)>+(k), hence the breakup
nappens for £, =1—1/(k); i.e. still a GC as
ong as 1/ (k) of the nodes are left alive

in general, £, =1 — ((k?)/(k)— 1) means
that networks with big hubs (giving a big
deviation from (k)) are hard to die




Example of applications

Robustness aligned with theory:

"he Internet survives without 92% nodes
ne citation network has f, = 96%

ne actor network f, = 98%

This can serve us to characterize:
air transportation under random strikes
social contacts even when someone is oft
destroying of criminal/terror networks
eradication of an epidemics



Enhanced robustness
e

o For a random graph £FR=1 -1/ (k)
o A network has enhanced robustness if
its breakup threshold f,> f.5R
ridoes not need to be scale-free for it
(it only needs (k?) > (k)(1+(k))
however, scale-free networks surely have it



Robustness against attacks

What if removals are not by chance, but
caused by an adversary with sufficient
insight on our network structure?
such an adversary may be interested in
causing the worst possible damage
and it is immediate to see that their worst
action would be removing the nodes with
highest degrees (the hubs), thereby causing
the biggest disruption of service



Robustness against attacks

. Attacks e

An attack meant to Random Failures
cripple a scale-free '
network should go
for the hubs first to
create most havoc

Achilles’ heel!

Po (f)/P o (0)

0.25 -

Result: a breakup B
threshold similar to random failures,
but now it is finite and actually has
a much smaller value



Robustness against attacks

Scale-free networks are not very robust

to targeted attacks exactly because they

have vulnerable hubs

Recall that: f, =1 — ((k?)/(k)— 1)
meaning that robustness depends on
k = (k®) / (k) (the larger the better)
removing hubs decreases (k?), thus making
the network more vulnerable (it decreases
(k) too, but (k?) decreases faster)



Robustness against attacks

Take a scale-free network with p, =c k
actually, limited to k., < K<k

max
and where ¢ = (y-1)/ ( Koy Y Kimin'™")

A targeted attack removing f% nodes
again changes k 2 k' in two ways:

It erases some nodes, and now they are all
the biggest hubs: k.., 2 k' < K

max max

and it also removes the links associated to
them, thus changing their neighbors’ degree

max



Robustness against attacks

Focus on the first effect, S?arch the new
cutoff k', through f=f " b, dk
"

max

v -1 k' —-y+1 k—y+1

We have: f = mrore R— max max
kmin - kmax 7]
if k. < K., (true if network large enough)

we can also neglect the terms with K

max
SO’ f= (k/max/ k )1-y 2 k/max= kmin f1/0)

min



Robustness against attacks
_

o For the second effect, evaluate g that is
fraction(links) deleted by removmg nodes

max

g= fmaxkpkdk/f ”“”% K dk

P =Y+ Y+ P =Y+ ' —1+2
1 1-y K2 k-2 -y k Yz_(kmax)

max max__ _ max

(k)2-y kn;z,“-kr;g?/ (k)2-v kry min
K

neglecting the k.,
because (k) = k... (y-1) / (y-2)




Robustness against attacks

We found g = ( k'../ Kin ) 2 @nd we can
combine it with k7. = k.. f/0")to obtain
g = f @
for y —2 all links destroyed even for small f

remember the graph = hub-and-spoke

NS{),W, link removal rate g is random, so:

max k L , ’ ’
Dy = E pk( o )gk “(1-9)* fork, <k'=k...
K=k

min



Robustness against attacks

Once corrected for new k... and new p,.,
finding £, is the same robustness problem
Similar to previous analysis, we can derive

D v Kin fory>3
3-v kr',?g)z krﬁ]ﬁ for 3>vy>2

->manipulations—-> a parametric equality:

2—y [ 3-y )

AR Wtk (S AR

S-v /

K =




Improving robustness

How to make the network more robust to
both random failures and attacks?
both aspects depend on k = (k?)/{k)
If the number of nodes is fixed but we are
allowed to add redundant links, we should
do so to increase the variance of the degree
Similar to information theory: we cannot
avoid errors but we create alternate ways
to hold the network together



Improving robustness

It can be shown that the best distribution

to achieve robustness is bimodal
meaning a fraction r of nodes with
degree k.., and a fraction (1-r) with k.,

Pk = rs(k'kmax) + (1-f) 8(k'kmin)

Adding links in intermediate degree nodes
IS not helpful, better to concentrate them in
few nodes to create hubs (deg k.,.,)



Improving robustness

Obviously a bimodal distribution is robust
against random removals because of hubs
against attacks to < r of the hubs
even if all hubs are removed, the network
can still survive if k... IS large enough, as
now (k) = k.., >1, so we still have a GC

Thus, if the goal is max f_, it can be shown

that r does not need to be very large



Immunization

Efforts to stop epidemics < directed
towards increasing the infection threshold
randomly immunizing a fraction f of the
nodes is same as decreasing (k) to (1-f){k)
so, lower spreading rate a=B/u =2 (1-f)
Yet, check vs threshold a SR> (k)/ ((k?)-(k))
e.g., for random networks a.®R = 1/(k)
but for scale-free (vanishing threshold) =0



Immunization

For example: virus sent as attachment

(thus spreading on email network)
thus (k)=3.26; if a=1 and we assume the
network is random - we need f=0.76
but network is scale free and (k?)=1271;
hence, In reality we need f= 0.997

To be fully protected, we would need to

install anti-virus on every computer!



Targeted immunization

For a scale-free network with y < 3,

vanishing threshold due to big k = (k?)/(k)
Implying network robustness vs attacks
yet now network=infection, attacks=vaccine!

Solution to decrease (k?): target the hubs
better iImmunize the super-spreaders!

Possible strategy: just vaccine all nodes
with degree k higher than k,



Targeted immunization

As for network robustness, this implies:

the maximum degree goes from k., t0 k;
we remove f % nodes and g% links:

f (k /kmln) g (k /kmln)

and degree distribution becomes

Pk'=2::0=k Pk( /l((’ ) g (-9~

resulting in(nl]:’) = (1-9) (k),
(k'2) = (1-9)* (k%) + g(1-g)(k)



Targeted immunization

R N
150 oSS _ 1
T -gP (KR gi-g)k) (1-g)k+g

2 )
where we recall k=1—Sk3 k-2

3-vy
0 This implies 1/a8S (resp. 1/a.87))

V=2 ooy 12 -—2 KS2 K24 k2 K2 —

3 Y min 3 _ min min
rcomputations for SIR are analogous
0 1f k> k.. (sensible) then o™ = oM = 1/k




Problem with finding the hubs

Generally, hubs are not easy to identify
for a sexual network, we need #partners
for online social networks, #friends is easy
but most contacts are fake (to show off)
for influenza, hard to detect in advance
who are the super-spreaders

We avoid the hassle of finding the hubs
by relying on the friendship paradox



Problem with finding the hubs

A possible “smart” strategy:
start from Group 0 (n, random nodes)
then choose a neighbor for each node in
Group 0 - we obtain a n;-sized Group 1
immunize Group 1
This strategy works because on average
Group 1 nodes have degree > Group O
In practice: ask some individuals to name a
recent contact/acquaintance/partner



Immunization performance

Scale-free networks

with variable y
g.=req. %vaccination

Random vaccination
has poor results:
we need very high g,

1
0.8

9c
0.4
0.2

0

0.6

RANDOM VACCINATION

SELECTIVE IMMUNIZATION

1
3.9

N

2.5 Y 3

Selective immunization instead has g,
always below 30% and = insensitive to y



Travel restrictions

Another possible control technique for

epidemics is to put travel restrictions
serious economic implications!

Generally, this is hard to incorporate in the
analysis as the epidemic itself is already
causing self-imposed travel limitations!

an epidemic at its peak can cause up to
40% of travel reduction



