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Robustness

¨ Network science is often interested in 
understanding robustness to failures

¨ Reason: real-world networks work under 
imperfect conditions / malfunctioning
¨ technological networks are subject to link 

breakage or node failure
¨ metabolic networks have mutations and 

chemical transcription mistakes
¨ for epidemics, this is to contrast them!



Robustness

¨ What if our models  
are missing nodes?

¨ Would the network  
still “work”?
¨ Failures can lead to  

either just isolating  
nodes/groups or 
breaking the whole  
network apart



Percolation

¨ A mathematical attempt can be made 
through percolation theory
¨ Consider a lattice (e.g., a square grid)
¨ each position in the lattice is occupied by a 

peeble with probability p
¨ lattice links are also created automatically 

between positions occupied by peebles
¨ What is the resulting network structure?



Percolation

¨  It can be found that the behavior is not 
smooth, but rather has a phase transition 
around a critical value pc

¨ As p grows, a giant component appears 
with size that suddenly becomes infinite  
à it involves the entire lattice when p ≈ pc

¨ Other network metrics experiences a 
similar transition as well around value pc



Percolation

¨ Critical transition for pc ≈ 0.6



Percolation

¨ At pc a phase  
transition appears 

¨ A giant component 
appears and many 
network metrics 
change behavior
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Node vs link creation or break

¨ Actually, percolation theory can be applied 
to two similar processes
¨ node addition/removal
¨ link addition/removal

¨  In the following, we will derive the analysis 
for node-based percolation, but everything 
is directly extendable to a link-based case
¨ so that networks that are robust node-wise 

are also so if links are considered



Percolation à scale-free

¨ What if we apply node removal to scale-
free networks (instead of regular lattices)?

¨ We observe an increased robustness
¨ reason: the presence of the hubs, which 

were missing in a regular lattice
¨ of course this is because removals are still 

entirely random, so removing a big hug is 
very bad, but hubs are few special nodes, 
so they are hard to pick going randomly



Scale-free network robustness

¨ Robustness of the Internet 
due to its scale-free nature
¨ often working even during 

earthquakes/hurricanes
¨ routers linked to the GC 

after random removal with 
rate f à still large if f < 1

¨ experiments aligned with a 
scale-free model



Critical transition in scale-free

¨ Apparently, scale-free networks are critical 
only if fraction f =1-p of node removal is a 
very high value fc  (à breakup threshold)

¨ Let us verify this analytically based on:
¨ to have nodes belonging to a GC, this GC 

must exist in the first place
¨ in a scale-free network, nodes are randomly 

wired (differently from a lattice): how many 
of them do we need to keep a GC together? 



Molloy-Reed criterion

¨ To hold a GC together in a randomly wired 
network, at least 2 links needed per node

¨ Molloy-Reed criterion. Any randomly 
wired network has a GC if and only if:

𝜅 = 〈k 
2〉 / 〈k 〉 > 2

¨ That is, networks with 〈k 
2〉 < 2 〈k 〉 do not 

have a giant component and are fragmented
¨ A criterion valid for any degree distribution!



Molloy-Reed criterion

¨ Let verify the criterion for a random graph
¨ Degree distribution is Poisson, so:

〈k 〉 = σ2 = 1/λ     but  σ2 = 〈k 
2〉 - 〈k 〉2

¨ Thus, 〈k 
2〉 = 〈k 〉(1+〈k 〉)

¨ Molloy-Reed criterion implies 〈k 〉 > 1 which 
we already verified to be the condition for the 
existence of a GC in a random graph



Molloy-Reed criterion

¨ Formal proof. Consider node i  in the GC 
¨ Actually, that i belongs to the GC can only 

be derived recursively as i being linked to j 
where j ∈GC. Write this condition as i àjGC

¨ What is the average degree of the GC? It 
must be 〈ki | i àjGC〉 > 2 or the GC is not 
held together. Thus, we need to prove

〈ki | i àjGC〉 = 〈k 
2

 〉 / 〈k 〉 



Molloy-Reed criterion

¨ Formal proof (cont’d). We can also write
〈ki | i àjGC〉 = 𝚺i  ki P(ki | i àj GC) i  ki P(ki | i àj GC) 

¨  If pk = degree distribution, by Bayes’ rule: 
P(ki | i àj GC) = P( i àj GC|ki ) pki

 / P( i àj GC)
¨ Probability of i à arbitrary node j  does not 

involve that j ∈GC, therefore:
P( i àj GC)= 2L / N / (N -1) = 〈k 〉 / (N -1)

P( i àj GC | ki )= ki  / (N -1) 
¨ Thus: 〈ki | i àjGC〉 = 𝚺i  ki

2 pki
 / 〈k 〉 = 〈k 

2
 〉 / 〈k 〉i  ki

2 pki
 / 〈k 〉 = 〈k 

2
 〉 / 〈k 〉



Breakup threshold in scale-free

¨ What critical fraction fc of a network can be 
removed without destroying the GC?

¨ Removing “f  ” of nodes changes degree  
k à k ʹ (and their distribution) in two ways:
¨ it erases some nodes, so there are fewer 

nodes with some old degree k à however 
this is irrelevant if removals are iid random

¨ it also removes the links associated to 
them, thus changing their neighbors’ degree



Breakup threshold in scale-free

¨ What is the probability that a removal of a 
fraction  f of nodes changes k ⟶k ʹ ?

¨ Thus:
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Breakup threshold in scale-free

¨ We use this to derive the new values of 
first and second moments, denoted as 〈kʹ  〉f 
and 〈kʹ 2 〉f  (to indicate removal rate f )
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Breakup threshold in scale-free

¨ Observe that the two summations over:  
k ʹ ≥ 0, k  ≥ k ʹ à rewrite as k  ≥ 0, 0 ≤ k ʹ ≤ k 

!k f = k  pk (1− f )   (k −1)!   f k− !k (1− f ) !k −1

( !k −1)!  (k − !k )!
!k =0
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k=0

∞
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Breakup threshold in scale-free

¨ We obtained 〈kʹ  〉f = (1-f ) 〈k  〉 à the new 
value of the average degree after node 
removal depends only on f  and the old 〈k  〉

¨ To derive 〈kʹ 2 〉f , write it as 〈kʹ (kʹ -1) +kʹ 〉f
¨ 〈kʹ (kʹ -1) 〉f   is obtained similar to before;  

the trick is to rewrite the summations in the 
same way, and to take out both kʹ and (kʹ -1)

¨ this results in 〈kʹ (kʹ -1) 〉f  = (1-f )2 〈k (k -1) 〉
¨ thus, 〈kʹ 2 〉f = (1-f )2 〈k 

2
 〉 + (1-f )f 〈k  〉



Breakup threshold in scale-free

¨ Use Molloy-Reed to see if, after removing 
a fraction f  of nodes, there still is a GC à  
breakup threshold fc @critical point 𝜅=2:
〈kʹ 2 〉fc = (1-fc )2 〈k 

2
 〉 + (1-fc )fc 〈k  〉 = 2 (1-fc ) 〈k  〉

¨ Resulting in:   fc  (〈k  〉 – 〈k 
2

 〉)  = (2 〈k  〉 – 〈k 
2

 〉)
¨ that can be rearranged into

fc   = 1 – ( 〈k 
2

 〉 / 〈k  〉 – 1)-1 



Breakup threshold in scale-free

¨ Remarkably, fc only depends on the ratio 
between 〈k 

2
 〉 and 〈k  〉, so in turn only on pk 

¨ E.g., for a random graph (Erdős-Rényi) we 
have 〈k 

2
 〉 = 〈k 〉2+〈k 〉, hence the breakup 

happens for fc = 1 – 1 / 〈k  〉; i.e. still a GC as 
long as 1 / 〈k  〉 of the nodes are left alive

¨ in general, fc   = 1 – ( 〈k 
2

 〉 / 〈k  〉 – 1)-1 means 
that networks with big hubs (giving a big 
deviation from 〈k  〉) are hard to die



Example of applications

¨ Robustness aligned with theory:
¨ The Internet survives without 92% nodes
¨ The citation network has fc = 96%
¨ The actor network fc = 98% 

¨ This can serve us to characterize: 
¨ air transportation under random strikes
¨ social contacts even when someone is off
¨ destroying of criminal/terror networks
¨ eradication of an epidemics



Enhanced robustness

¨ For a random graph fcER = 1 – 1 / 〈k  〉
¨ A network has enhanced robustness if 

its breakup threshold fc > fcER

¨ does not need to be scale-free for it  
(it only needs 〈k 

2
 〉 > 〈k 〉(1+〈k 〉)

¨ however, scale-free networks surely have it 



Robustness against attacks

¨ What if removals are not by chance, but 
caused by an adversary with sufficient 
insight on our network structure?
¨ such an adversary may be interested in 

causing the worst possible damage
¨ and it is immediate to see that their worst 

action would be removing the nodes with 
highest degrees (the hubs), thereby causing 
the biggest disruption of service



Robustness against attacks

¨ An attack meant to  
cripple a scale-free  
network should go  
for the hubs first to  
create most havoc

¨ Result: a breakup  
threshold similar to random failures,  
but now it is finite and actually has  
a much smaller value

Achilles’ heel!



Robustness against attacks

¨ Scale-free networks are not very robust  
to targeted attacks exactly because they  
have vulnerable hubs

¨ Recall that: fc   = 1 – ( 〈k 
2

 〉 / 〈k  〉 – 1)-1 
¨ meaning that robustness depends on  
𝜅 = 〈k 

2〉 / 〈k 〉 (the larger the better) 
¨ removing hubs decreases 〈k 

2〉, thus making 
the network more vulnerable (it decreases 
〈k 〉 too, but 〈k 

2〉 decreases faster)



Robustness against attacks

¨ Take a scale-free network with pk = c k –γ
¨ actually, limited to k min ≤ k ≤ k max
¨ and where c = (γ -1) / ( k max

1-γ
 k min

1-γ
 )

¨ A targeted attack removing f  % nodes 
again changes k à k ʹ  in two ways:
¨ it erases some nodes, and now they are all 

the biggest hubs: kmax à k ʹmax ≪ kmax
¨ and it also removes the links associated to 

them, thus changing their neighbors’ degree



Robustness against attacks

¨ Focus on the first effect, search the new 
cutoff k ʹmax through 

¨ We have:

¨ if k ʹmax ≪ kmax (true if network large enough) 
we can also neglect the terms with kmax

¨ So,  f = (k ʹmax / k min )1-γ
  à   k ʹmax = k min f 1/(1-γ)  

f = pk dk
!kmax

kmax∫
f = γ −1

kmin
−γ+1−kmax

−γ+1  #kmax
  −γ+1−kmax

−γ+1

γ −1



Robustness against attacks

¨ For the second effect, evaluate g that is 
fraction(links) deleted by removing nodes

g = k  
!kmax

kmax∫ pk dk k  
0

kmax∫ pk dk = c
k

k1−γ
!kmax

kmax∫ dk
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neglecting the kmax 
because 〈k 〉 = kmin (γ -1) / (γ -2)  



Robustness against attacks

¨ We found g = ( k ʹmax / k min ) 2-γ and we can 
combine it with k ʹmax = k min f 1/(1-γ) to obtain

g = f  (2-γ)/(1-γ)

¨ for γ⟶⟶2 all links destroyed even for small f
¨ remember the graph à hub-and-spoke

¨ Now, link removal rate g is random, so:
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k
!k
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#
$

%

&
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∑   for kmin ≤ !k ≤ !kmax



Robustness against attacks

¨ Once corrected for new k ʹmax and new pk ʹ , 
finding fc is the same robustness problem

¨ Similar to previous analysis, we can derive

¨ àmanipulationsà a parametric equality:

κ =
2− γ
3− γ

kmin for γ > 3
$kmax
3−γ  kmin

γ−2 for 3 > γ > 2 
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Improving robustness

¨ How to make the network more robust to 
both random failures and attacks?
¨ both aspects depend on 𝜅 = 〈k 

2
 〉 / 〈k  〉 

¨ if the number of nodes is fixed but we are 
allowed to add redundant links, we should 
do so to increase the variance of the degree

¨ Similar to information theory: we cannot 
avoid errors but we create alternate ways 
to hold the network together



Improving robustness

¨  It can be shown that the best distribution 
to achieve robustness is bimodal
¨ meaning a fraction r of nodes with  

degree k max and a fraction (1-r ) with k min

pk = r δ(k-k max) + (1-r ) δ(k-k min)
¨ Adding links in intermediate degree nodes 

is not helpful, better to concentrate them in 
few nodes to create hubs (deg k max)



Improving robustness

¨ Obviously a bimodal distribution is robust
¨ against random removals because of hubs
¨ against attacks to < r of the hubs
¨ even if all hubs are removed, the network 

can still survive if k min is large enough, as 
now 〈k  〉 = kmin >1, so we still have a GC

¨ Thus, if the goal is max fc , it can be shown 
that r does not need to be very large



Immunization

¨ Efforts to stop epidemics ↔︎ directed 
towards increasing the infection threshold
¨ randomly immunizing a fraction f  of the 

nodes is same as decreasing 〈k〉 to (1-f )〈k〉
¨ so, lower spreading rate α=β/μ à (1-f ) α 

¨ Yet, check vs threshold α 
(SIR) > 〈k〉 / ( 〈k 

2〉-〈k〉)
¨ e.g., for random networks α 

(SIR) = 1/〈k〉
¨ but for scale-free (vanishing threshold) = 0



Immunization

¨ For example: virus sent as attachment 
(thus spreading on email network)
¨ thus 〈k〉=3.26; if α =1 and we assume the 

network is random à we need f = 0.76
¨ but network is scale free and 〈k 

2〉=1271; 
hence, in reality we need f = 0.997

¨ To be fully protected, we would need to 
install anti-virus on every computer!



Targeted immunization

¨ For a scale-free network with γ < 3, 
vanishing threshold due to big 𝜅 = 〈k 

2〉 / 〈k 〉
¨ implying network robustness vs attacks
¨ yet now network=infection, attacks=vaccine!

¨ Solution to decrease 〈k 
2〉: target the hubs

¨ better immunize the super-spreaders!
¨ Possible strategy: just vaccine all nodes 

with degree k higher than k0



Targeted immunization

¨ As for network robustness, this implies:
¨ the maximum degree goes from kmax to k0
¨ we remove f % nodes and g% links:

f = (k 0 / k min )1-γ
             g = (k 0 / k min )2-γ

  
¨ and degree distribution becomes

¨ resulting in 〈kʹ 〉 = (1-g) 〈k 〉,  
                 〈kʹ  

2〉 = (1-g)2 〈k 
2〉 + g(1-g)〈k 〉

p !k = pk( k
!k ) gk− !k (1− g) !k

k=kmin

k0∑



Targeted immunization

¨ So

where we recall

¨ This implies  1/α C
(SIS) (resp. 1/α C

(SIR) ) is
                                                              – 1

¨ computations for SIR are analogous
¨  If k0 ≫ kmin (sensible) then αC

(SIS) ≈ αC
(SIR) ≈ 1/𝜅

κ =
γ −2
3− γ

k0
3−γ  kmin

γ−2

αC
(SIS) =

(1− g) k
(1− g)2 k 2 + g(1− g) k

=
1

(1− g)κ+ g

γ −2
3− γ

k0
3−γ

 kmin
γ−2 −

γ −2
3− γ

k0
5−2γ

 kmin
2γ−4 +k0

2−γ
 kmin
γ−2



Problem with finding the hubs

¨ Generally, hubs are not easy to identify
¨ for a sexual network, we need #partners
¨ for online social networks, #friends is easy 

but most contacts are fake (to show off)
¨ for influenza, hard to detect in advance  

who are the super-spreaders
¨ We avoid the hassle of finding the hubs  

by relying on the friendship paradox



Problem with finding the hubs

¨ A possible “smart” strategy:
¨ start from Group 0 (ng random nodes)
¨ then choose a neighbor for each node in 

Group 0 à we obtain a ng–sized Group 1
¨ immunize Group 1

¨ This strategy works because on average 
Group 1 nodes have degree > Group 0
¨ in practice: ask some individuals to name a 

recent contact/acquaintance/partner



Immunization performance

¨ Scale-free networks 
with variable γ 
¨ gc = req. %vaccination

¨ Random vaccination  
has poor results: 
we need very high gc

¨ Selective immunization instead has gc 
always below 30% and ≈ insensitive to γ



Travel restrictions

¨ Another possible control technique for 
epidemics is to put travel restrictions
¨ serious economic implications!

¨ Generally, this is hard to incorporate in the 
analysis as the epidemic itself is already 
causing self-imposed travel limitations!
¨ an epidemic at its peak can cause up to 

40% of travel reduction


