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SIR metapopulation model:
markovian mobility
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SIR metapopulation model:
markovian mobility

What can | do with that?

- analytical understanding
- spatial propagation & predictability
- global invasion threshold

- computer simulations



global invasion threshola

which are the conditions for a
local outbreak to spread at
global proportion?




global invasion threshola

individual o
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[Colizza & Vespignani, PRL 2007, JTB 2008;
Cross, et al. JRSoc Interface 2007]



global invasion threshold

- Invasion dynamics at the
subpopulation level

- branching process approximation

Dr: diseased subpopulations at generation n

[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: homogeneous
systems

W travellers along each link
<k> # connection of each subpopulation

/N population of each subpopulation

Q. epidemic attack rate

W |
total # infectious individuals sent from i to j during the local outbreak 3 = — 0 ay

ij /(//t

1\
probability of early extinction Pext — (R_>
0

[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: homogeneous
systems

W travellers along each link

<k> # connection of each subpopulation

/N population of each subpopulation

Q. epidemic attack rate

1\
probability of early extinction Pyt = ( n )
0
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[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: homogeneous
systems

aw,
R. = (k) — 1)7(Ro — 1)

[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: homogeneous
systems

CIWO
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invasion potential growing function of :
- RO
- over all traffic rescaling

- average number of connections

- infectious duration




invasion threshold: heterogeneous

systems

Real systems are highly heterogeneous. E.g.: air transportation network
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- number of connections and travellers along the
connections is heterogeneous

- average gquantities are not good representative
of the properties of patches

- homogenous approximation is bad

10°

- scaling relations:

approximate laws that
make possible calculations
and justify the degree-
block description

[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: heterogeneous
systems

Degree-block description:

we group patches according to their
degree and consider patches within the
same degree-class homogeneous

N, = Nyk?

Wi = Wo(k k/)9
~wy (kK

pkk’ T NO k¢

D} diseased subpopulations at generation n, with k mobility connections

[Colizza & Vespignani, PRL 2007, JTB 2008]



heterogeneous mean field approach

P(k)

Degree distribution

N, = Nyk?

Wkk/ = Wo(k k/)e
~ wy (kK

Pk = N() k¢

| (9] |8

k=1 k=2 k=3 k=...

[Pastor-Satorras & Vespignani PRL 2001, review :Pastor Satorras et al. Rev Mod Phys 2015]



heterogeneous mean field approach

| (9] |8

k = k=2 k=3 k=...

what is the probability that an infected
patch with degree k is connected to a
disease-free patch of degree k’ ?

k=2



heterogeneous mean field approach

k’=?

k=2

number of mobility probability that number of disease-free
. X X - ,
connections contact has patches within the k'

through which the degree k" class:
seeding may
potentially occur:

n—1 D
k—1 P(k'|k) - —



heterogeneous mean field approach

P( k/ ) If | make a connection at random | will
P(k, ‘ k) — k’ do it more likely with a node that is
<]~C> well connected (more stubs)

>0\‘V

Friendship paradox:
my friends have more
P4 friends than me!
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invasion threshold: heterogeneous
systems
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[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: heterogeneous
systems
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[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: heterogeneous
systems
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invasion threshold: heterogeneous
system

aw, <k2+29> _ <k1+29> g

R. = (R, —1
o= D= ®

1

invasion potential growing function of :
- RO

- over all traffic rescaling

- average number of connections

- infectious duration

- moments of the degree distribution and its fluctuations

<k2+29> _ <k1+29> ~ 7 104
(k) ~ 10



invasion threshold: heterogeneous
system
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[Colizza & Vespignani, PRL 2007, JTB 2008]



invasion threshold: heterogeneous
system
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competition between two strains at
the spatial level




the model: 2strain transmission

»same Ro
»different infectious period - Tg > Tf

zfull cross-immunity

ROT_l slow
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[Poletto, PLOS Comp Biol PRL 2007, JTB 2008]



the model: 2strain transmission

zsame Ry

»different infectious period » Tg > Tf

ztull cross-immunity

RaT ™ slow —1
0/57 strain \TSA
susceptible recovered
\— 4
el Sh
\.,V\% slow strain , fast strair? ré 5@1 f
\oWD g " Per,

Incidence
Incidence




stochastic humerical
simulations

P
e

subpop |

subpop i

»the 2 strains originate from different locations
2 markovian dynamics

> probability of traveling: p



fraction of infected patches

results: simulations
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results: analytical understanding

scale of individuals

; P,u_l — infection duration
»Ro

~___scale of patches -

2 ) T — outbreak duration
R+

é R.=(k—1)|1- <—) * D = # diseased patches
D(t) N 6%(R*—1)t




results: analytical understanding

R, = (k- 1) :1 (;O)

R, increasing function of 11~ |:> RS > R/

large p:
RS and RS >>1 /\\

fast strain reaches more rapidly new patches

subpop j

subpop i

small p:
R, > RI ::> more able to percolate




results: analytical understanding
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results: analytical understanding

@@ Numerical
O3 Theoretical
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