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markovian mobility



SIR metapopulation model: 
markovian mobility

What can I do with that? 
- analytical understanding 

- spatial propagation & predictability  

- global invasion threshold 

- computer simulations 



global invasion threshold 

which are the conditions for a 
local outbreak to spread at 
global proportion?



subpopulation 
level

R*

R*1
containment spatial invasion

[Colizza & Vespignani, PRL 2007, JTB 2008; 
Cross, et al. JRSoc Interface 2007]

coarse graining 
following the spread from one 
subpopulation to another 

mapping the spreading dynamics among 
subpopulation into the spreading on a 
network

individual 
level

R0

R01

virus extinction epidemic

global invasion threshold 



0"

1"

2"

3"

Dn: diseased subpopulations at generation n 

- Invasion dynamics at the 
subpopulation level 

- branching process approximation

[Colizza & Vespignani, PRL 2007, JTB 2008]

global invasion threshold 



invasion threshold: homogeneous 
systems 

[Colizza & Vespignani, PRL 2007, JTB 2008]
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[Colizza & Vespignani, PRL 2007, JTB 2008]
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invasion threshold: homogeneous 
systems 



[Colizza & Vespignani, PRL 2007, JTB 2008]

R⇤ = (hki � 1) (1� Pext)

Dn = (hki � 1) (1� Pext)

 
1�

n�1X

m=0

Dn

V

!
Dn�1

1 − Pext = 1 − ( 1
R0 )

λij

≃ λij(R0 − 1) =
αw0

μ
(R0 − 1)

R* = (⟨k⟩ − 1)
αw0

μ
(R0 − 1)

invasion threshold: homogeneous 
systems 



R* = (⟨k⟩ − 1)
αw0

μ
(R0 − 1)

invasion potential growing function of : 

- �  

- over all traffic rescaling  

- average number of connections 

- infectious duration

R0

invasion threshold: homogeneous 
systems 



invasion threshold: heterogeneous 
systems 

[Colizza & Vespignani, PRL 2007, JTB 2008]

- number of connections and travellers along the 
connections is heterogeneous 

- average quantities are not good representative 
of the properties of patches  

- homogenous approximation is bad

Real systems are highly heterogeneous. E.g.: air transportation network

- scaling relations: 
approximate laws that 
make possible calculations 
and justify the degree-
block description

Bad news :( Good news :)
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[Colizza & Vespignani, PRL 2007, JTB 2008]

� : diseased subpopulations at generation n, with k mobility connectionsDn
k

Degree-block description: 
we group patches according to their 
degree and consider patches within the 
same degree-class homogeneous

Nk = N0kϕ

wk k′� = w0(k k′�)θ

pk k′� =
w0

N0

(k k′�)θ

kϕ

invasion threshold: heterogeneous 
systems 



S

heterogeneous mean field approach

P (k)
Degree distribution

[Pastor-Satorras & Vespignani PRL 2001, review :Pastor Satorras et al. Rev Mod Phys 2015]
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what is the probability that an infected 
patch with degree k is connected to a 
disease-free patch of degree k’  ?

heterogeneous mean field approach

k = 2 k = 3 k = ....k = 1

k=2
k’=?



number of mobility 
connections 
through which the 
seeding may 
potentially  occur: 

probability that 
contact has 
degree k’:

P (k0|k)

number of disease-free 
patches within the k’-
class:

X X

heterogeneous mean field approach

k=2 k’=?

(1 −
n−1

∑
m=0

Dm
k

Vk )k − 1



P (k0|k) = k0
P (k0)

hki

heterogeneous mean field approach
If I make a connection at random I will 
do it more likely with a node that is 
well connected (more stubs)

?

Friendship paradox: 
my friends have more 
friends than me!
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[Colizza & Vespignani, PRL 2007, JTB 2008]
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invasion threshold: heterogeneous 
systems 
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[Colizza & Vespignani, PRL 2007, JTB 2008]
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invasion threshold: heterogeneous 
systems 
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invasion threshold: heterogeneous 
systems 



R* = (R0 − 1)
αw0

μ
⟨k2+2θ⟩ − ⟨k1+2θ⟩

⟨k⟩
> 1

invasion threshold: heterogeneous 
system 

invasion potential growing function of : 

- �  

- over all traffic rescaling  

- average number of connections 

- infectious duration 

- moments of the degree distribution and its fluctuations 

R0

⟨k2+2θ⟩ − ⟨k1+2θ⟩ ≃ 7 104

⟨k⟩ ≃ 10



invasion threshold: heterogeneous 
system 

[Colizza & Vespignani, PRL 2007, JTB 2008]

p in reducing the final size of the epidemic at a given fixed
value of R0. The smaller the value of R0, the higher the
coupling needs to be in order for the virus to successfully
invade a finite fraction of the subpopulations, in agreement
with the analytic result of Eq. (30). This provides a clear
illustration of the varying global invasion threshold as
a function of the reproductive rate R0. On the contrary,

p-crosscuts show that whatever the value of p, R0o1 does
not allow the epidemic to spread.
Finally, it is possible to study the effect of the

heterogeneity of the metapopulation structure. Fig. 6
shows the results obtained comparing a heterogeneous
network characterized by a scale-free degree distribution

PðkÞ# k$ 2:1 with a homogeneous network having the same

size V ¼ 105 and same average degree. The presence
of topological fluctuations leads to a smaller ratio

hk1þ yi2=ðhk2þ 2yi $ hk1þ 2yiÞ, thus lowering the value of the
mobility threshold with respect to the homogeneous
network.

6.2. Epidemics above the invasion threshold

Above the global invasion threshold R'41, the epidemic
process is guaranteed to invade a macroscopic fraction of

ARTICLE IN PRESS

0 50 100 150 200 250 300

t

10-4

10-2

100

102

I 
(t

),
 D

 (
t)

 / 
V

I (t)

D (t) / V

(β− µ)

p = 0.5

0 50 100 150 200 250 300

t

10-4

10-2

I 
(t

),
 D

(t
) 
/ V

I (t)

D (t) / V

p = 10-5

Fig. 4. Metapopulation system’s behavior above and below the global
threshold. Results refer to R0 ¼ 3, N̄ ¼ 103 and y ¼ 0:5. The epidemic is in
both cases above the local threshold, leading to an exponential increase of
ĪðtÞ. Differences in the diffusion rate values (top: p ¼ 0:5/unit time,
bottom: p ¼ 10$ 5/unit time) show the effect of the global threshold on the
number DðtÞ of diseased subpopulations. DðtÞ is normalized to the system
size V ¼ 104 for sake of visualization.
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Fig. 5. Global threshold in a heterogeneous metapopulation system with traffic dependent diffusion rates. The left panel shows a 3D surface representing
the value of the final epidemic size in the metapopulation system as a function of the local threshold R0 and of the diffusion rate p. If R0 approaches the
threshold, larger values of the diffusion rate p need to be considered in order to observe a global outbreak in the metapopulation system. On the right, two
plots showing the cross-sections of the 3D plot at fixed values of R0 (top) and at fixed values of the traveling rate p (bottom).
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Fig. 6. Effect of metapopulation structure heterogeneity on the global
epidemic threshold. The final fraction of diseased subpopulations Dð1Þ=V
at the end of the global epidemic is shown as a function of the traveling
diffusion rate p. A heterogeneous network with heavy-tailed degree
distribution, PðkÞ# k$ 2:1 is compared to a homogeneous network with
poissonian PðkÞ having the same size V ¼ 105 and same average degree.
Here y ¼ 0.

V. Colizza, A. Vespignani / Journal of Theoretical Biology 251 (2008) 450–467464

p =
w0

N0



invasion threshold: heterogeneous 
system 

[Colizza & Vespignani, PRL 2007, JTB 2008]



subpop i

subpop j

subpop k

competition between two strains at 
the spatial level



the model: 2strain transmission
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[Poletto, PLOS Comp Biol PRL 2007, JTB 2008]



the model: 2strain transmission
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stochastic numerical 
simulations

subpop i

subpop j

subpop k

the 2 strains originate from different locations  

markovian dynamics 

probability of traveling: p



results: simulations

1e-05 0.0001 0.001
p

0

0.2

0.4

0.6

0.8

1

fr
ac

tio
n 

of
 in

fe
ct

ed
 p

at
ch

es

fast strain
slow strain

pc the 2 strains coexist



results: analytical understanding 
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results: analytical understanding 

R⇤ =
�
k̄ � 1

�
"
1�

✓
1

R0

◆ pS1
µk̄

#

increasing function of µ�1 Rs
⇤ > Rf

⇤R⇤

subpop i

subpop j

subpop k

large p:

small p:

Rs
⇤ and Rf

⇤ >> 1

fast strain reaches more rapidly new patches

Rs
⇤ > Rf

⇤ more able to percolate



pc ?

results: analytical understanding 
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results: analytical understanding 

pc ?
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