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RFID technology

[Sociopatterns.org]

schools - workplaces - hospitals - museums - conferences -
households - rural Africa

face-to-face contacts

high resolution network data



[Bajardi, PLoS ONE (2011)]

bovine displacement among farms
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internet mediated prostitution

[LEC. Rocha, et al, PNAS 2009] 

sexual contacts between 6,624 escorts and 10,106 sex buyers extracted from an 
online community

high resolution network data



TIME

temporal dimension of networks

[Holme, Saramaki Phys. Rep. (2012)]
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FIG. 2: The limits of applicability of aggregated contact sequences, in the context of spreading dynamics. Panel (a) shows a schematic
contact sequence (similarly to Fig. 1(b)) that would be fairly well modeled as an aggregated weighted graph assuming a standard random
contact process, as seen to the right. Panel (b) displays a real-world contact sequence involving two vertices in a real network of escorts and
sex-sellers [130]. The vertical lines show the times when the individuals are active in the data, while a line connecting the two individuals
indicates a contact between them. Both the behavior of the individuals and the activity of the edge between them are bursty, with periods of
intense activity followed by silent periods. (c) shows a hypothetical dynamics where one of the individuals in (b) gets a dose of, for example,
a pathogen from the other individual at every contact, and the concentration of the pathogen decays exponentially. If the individual becomes
sick when the pathogen concentration reaches a threshold (the horizontal, dashed line), then bursty dynamics would bring the level over this
threshold. On the contrary, for more regular contact dynamics such as those in panel (a), it would have time to decay below the threshold.

poral structures—they should not be too random or too regular
in order to fit the framework. On one hand, one will always
lose information when projecting a temporal network struc-
ture to a static graph (see Fig. 1 for an illustration). On the
other hand, in some cases, this loss of information is probably
too insignificant to make up for the more complicated anal-
ysis and modeling needed for the temporal graph approach.
See Fig. 2(a) for an illustration of a contact sequence that is
fairly well modeled by a weighted graph with the assump-
tion that contact times are random, with a frequency propor-
tional to the edge weight. The dynamical system of interest
on the network matters too—di↵erent systems can respond
di↵erently to a specific temporal structure. For a thought ex-
periment, consider the empirical bursty contact pattern plot-
ted in Fig. 2(b). Assume that a contact triggers an increase of
something (say, the concentration of a virus in the blood) in
one of the vertices involved, which then decreases exponen-
tially. Further, assume that the person gets sick and infectious
if the virus concentration reaches a critical level. Then, bursty
edge dynamics [7, 39, 76, 84, 163] could be of crucial impor-
tance for that something to propagate through the network. In
a situation with more uncorrelated or evenly distributed times
of contact, the virus concentration would have time to fall be-

low the dangerous level between the contacts. Thus for such a
dynamical system, bursty edge activity would play a far more
important role than for a system where the dynamics can be
modeled as a branching process [75], as is the case for many
network-based models of disease spreading.

A special case of the requirement that a system should have
temporal structure for it to suit a temporal-network frame-
work, relates to time scales [43]. If the dynamical system on
the network is too rapid compared to the dynamics of the con-
tacts, or when edges are active, then there is no need to model
the system as a temporal network. One example is the Internet
where the data packets travel much faster than the topology
changes. In summary, if the system is temporally and topo-
logically connected in a way that a↵ects the dynamics of in-
terest, then temporal networks may be an optimal theoretical
framework.

The study of temporal networks is very much an interdisci-
plinary field, where much of the development has been taking
place in parallel, seemingly without much communication be-
tween the di↵erent disciplines. This is reflected in a tremen-
dous amount of overlapping terminology—one concept can
easily have four or five di↵erent names in the literature. Our
ambition is to give an overview of this research area in di↵er-
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FIG. 2: The limits of applicability of aggregated contact sequences, in the context of spreading dynamics. Panel (a) shows a schematic
contact sequence (similarly to Fig. 1(b)) that would be fairly well modeled as an aggregated weighted graph assuming a standard random
contact process, as seen to the right. Panel (b) displays a real-world contact sequence involving two vertices in a real network of escorts and
sex-sellers [130]. The vertical lines show the times when the individuals are active in the data, while a line connecting the two individuals
indicates a contact between them. Both the behavior of the individuals and the activity of the edge between them are bursty, with periods of
intense activity followed by silent periods. (c) shows a hypothetical dynamics where one of the individuals in (b) gets a dose of, for example,
a pathogen from the other individual at every contact, and the concentration of the pathogen decays exponentially. If the individual becomes
sick when the pathogen concentration reaches a threshold (the horizontal, dashed line), then bursty dynamics would bring the level over this
threshold. On the contrary, for more regular contact dynamics such as those in panel (a), it would have time to decay below the threshold.

poral structures—they should not be too random or too regular
in order to fit the framework. On one hand, one will always
lose information when projecting a temporal network struc-
ture to a static graph (see Fig. 1 for an illustration). On the
other hand, in some cases, this loss of information is probably
too insignificant to make up for the more complicated anal-
ysis and modeling needed for the temporal graph approach.
See Fig. 2(a) for an illustration of a contact sequence that is
fairly well modeled by a weighted graph with the assump-
tion that contact times are random, with a frequency propor-
tional to the edge weight. The dynamical system of interest
on the network matters too—di↵erent systems can respond
di↵erently to a specific temporal structure. For a thought ex-
periment, consider the empirical bursty contact pattern plot-
ted in Fig. 2(b). Assume that a contact triggers an increase of
something (say, the concentration of a virus in the blood) in
one of the vertices involved, which then decreases exponen-
tially. Further, assume that the person gets sick and infectious
if the virus concentration reaches a critical level. Then, bursty
edge dynamics [7, 39, 76, 84, 163] could be of crucial impor-
tance for that something to propagate through the network. In
a situation with more uncorrelated or evenly distributed times
of contact, the virus concentration would have time to fall be-

low the dangerous level between the contacts. Thus for such a
dynamical system, bursty edge activity would play a far more
important role than for a system where the dynamics can be
modeled as a branching process [75], as is the case for many
network-based models of disease spreading.

A special case of the requirement that a system should have
temporal structure for it to suit a temporal-network frame-
work, relates to time scales [43]. If the dynamical system on
the network is too rapid compared to the dynamics of the con-
tacts, or when edges are active, then there is no need to model
the system as a temporal network. One example is the Internet
where the data packets travel much faster than the topology
changes. In summary, if the system is temporally and topo-
logically connected in a way that a↵ects the dynamics of in-
terest, then temporal networks may be an optimal theoretical
framework.

The study of temporal networks is very much an interdisci-
plinary field, where much of the development has been taking
place in parallel, seemingly without much communication be-
tween the di↵erent disciplines. This is reflected in a tremen-
dous amount of overlapping terminology—one concept can
easily have four or five di↵erent names in the literature. Our
ambition is to give an overview of this research area in di↵er-
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FIG. 2: The limits of applicability of aggregated contact sequences, in the context of spreading dynamics. Panel (a) shows a schematic
contact sequence (similarly to Fig. 1(b)) that would be fairly well modeled as an aggregated weighted graph assuming a standard random
contact process, as seen to the right. Panel (b) displays a real-world contact sequence involving two vertices in a real network of escorts and
sex-sellers [130]. The vertical lines show the times when the individuals are active in the data, while a line connecting the two individuals
indicates a contact between them. Both the behavior of the individuals and the activity of the edge between them are bursty, with periods of
intense activity followed by silent periods. (c) shows a hypothetical dynamics where one of the individuals in (b) gets a dose of, for example,
a pathogen from the other individual at every contact, and the concentration of the pathogen decays exponentially. If the individual becomes
sick when the pathogen concentration reaches a threshold (the horizontal, dashed line), then bursty dynamics would bring the level over this
threshold. On the contrary, for more regular contact dynamics such as those in panel (a), it would have time to decay below the threshold.

poral structures—they should not be too random or too regular
in order to fit the framework. On one hand, one will always
lose information when projecting a temporal network struc-
ture to a static graph (see Fig. 1 for an illustration). On the
other hand, in some cases, this loss of information is probably
too insignificant to make up for the more complicated anal-
ysis and modeling needed for the temporal graph approach.
See Fig. 2(a) for an illustration of a contact sequence that is
fairly well modeled by a weighted graph with the assump-
tion that contact times are random, with a frequency propor-
tional to the edge weight. The dynamical system of interest
on the network matters too—di↵erent systems can respond
di↵erently to a specific temporal structure. For a thought ex-
periment, consider the empirical bursty contact pattern plot-
ted in Fig. 2(b). Assume that a contact triggers an increase of
something (say, the concentration of a virus in the blood) in
one of the vertices involved, which then decreases exponen-
tially. Further, assume that the person gets sick and infectious
if the virus concentration reaches a critical level. Then, bursty
edge dynamics [7, 39, 76, 84, 163] could be of crucial impor-
tance for that something to propagate through the network. In
a situation with more uncorrelated or evenly distributed times
of contact, the virus concentration would have time to fall be-

low the dangerous level between the contacts. Thus for such a
dynamical system, bursty edge activity would play a far more
important role than for a system where the dynamics can be
modeled as a branching process [75], as is the case for many
network-based models of disease spreading.

A special case of the requirement that a system should have
temporal structure for it to suit a temporal-network frame-
work, relates to time scales [43]. If the dynamical system on
the network is too rapid compared to the dynamics of the con-
tacts, or when edges are active, then there is no need to model
the system as a temporal network. One example is the Internet
where the data packets travel much faster than the topology
changes. In summary, if the system is temporally and topo-
logically connected in a way that a↵ects the dynamics of in-
terest, then temporal networks may be an optimal theoretical
framework.

The study of temporal networks is very much an interdisci-
plinary field, where much of the development has been taking
place in parallel, seemingly without much communication be-
tween the di↵erent disciplines. This is reflected in a tremen-
dous amount of overlapping terminology—one concept can
easily have four or five di↵erent names in the literature. Our
ambition is to give an overview of this research area in di↵er-
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I. INTRODUCTION

To get an overview of a large, integrated system, one needs
to zoom out from the details. For many systems, from the
Internet to the metabolism, from the proteome to the web of
sexual contacts, an easy way of doing this is representing the
system as a graph. A graph is a mathematical object consisting
of a set of vertices, the units of the system, and a set of edges,
the pairs of vertices that are interacting with each other. Usu-
ally, such networks are the infrastructure of some dynamical
system—data-packet tra�c on the Internet, disease spreading
on social networks, etc.—and this dynamical system is what
we are really interested in. The advantage of modeling the
system as a graph is that we can say much about the behavior
of the dynamical system without studying the actual dynam-
ics at all. We can estimate how much one part of the network
influences another; how well the network is optimized with
respect to the dynamical system; which vertices play similar
roles in the system’s operation; and so on [9, 38, 65, 112].
Sometimes such a crude modeling framework can be made
more powerful if one extends it to include additional levels
of detail, for example edge weights in weighted networks [8],
or the position of vertices in spatial networks [10]. In this
review, we consider an additional dimension—time—and dis-
cuss temporal networks, where the times when edges are ac-
tive are an explicit element of the representation. Until re-
cently, in most network studies, the time dimension has been
projected out by aggregating the contacts between vertices to
(sometimes weighted) edges, even in cases when detailed in-
formation on the temporal sequences of contacts or interac-
tions would have been available. Sometimes the solution has
been to segment the data into adjacent time windows where
contacts are aggregated into edges, and then study the time
evolution of the network structure in these windows. Such
an approach does not cover all aspects of the temporal struc-
ture of contact patterns. For example, the edges between ver-
tices of temporal networks need not be transitive. In static
networks, whether directed or not, if A is directly connected
to B and B is directly connected to C, then A is indirectly con-
nected to C via a path over B. However, in temporal networks,
if the edge (A,B) is active only at a later point in time than
the edge (B,C), then A and C are disconnected, as nothing can
propagate from A via B to C (Fig. 1). Thus, the time order-
ing can matter a lot, and as we shall see below, the timings of
connections and their correlations do have e↵ects that go be-
yond what can be captured by static networks. Accordingly,
the main focus of this review is on methods that do not ignore
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FIG. 1: Illustration of the reachability issue and the intransitivity of
temporal networks (more specifically a contact sequence). In (a),
the times of the contacts between vertices A–D are indicated on the
edges. Assume that, for example, a disease starts spreading at vertex
A and spreads further as soon as a contact occurs. The dashed lines
and vertices show this spreading process for four di↵erent times. The
spreading will not continue further than what is indicated in the t = 1
picture, i.e. D cannot get infected. However, if the spreading started
at vertex D, the entire set of vertices would eventually be infected.
Aggregating the edges into one static graph cannot capture this e↵ect
that arises from the time ordering of contacts. Panel (b) visualizes the
same situation by showing the temporal dimension explicitly. The
colors of the lines in (b) matches the vertex colors in (a).

the consequences of the time ordering by e.g. projecting out
the interaction times.

When one studies a network, it is usually not the net-
work itself (the vertices and edges) that is the object of study.
Rather one wants to investigate a dynamical system on the net-
work. In traditional network modeling one separates the un-
derlying static network and the dynamical system on the net-
work. Compared to this picture, temporal network approaches
moves information about when things happen from the dy-
namical system to the network, the underlying structure on
which the dynamics happen. Systems suitable to be modeled
as temporal networks are everywhere. The flow of informa-
tion via e-mail messages, mobile telephone calls, and social
media is one such system that has recently attracted much
attention. Likewise, detailed understanding of the spreading
dynamics of some electronic and biological viruses calls for
taking the properties of the underlying contact sequences into
account. Studies of many networks in the life sciences—from
activation sequences of genetic regulation to time-domain fea-
tures of functional brain networks—may benefit from the tem-
poral graph approach. Food webs and other networks of
species evolve in time with environmental conditions that are
to some extent a result of which species are present. This type
of feedback fits the temporal-network framework. Another
example is self-assembled networks of wireless devices and
other distributed computing systems.

In general, when is temporal networks a suitable framework
for analysis and modeling? Just like for static complex net-
works, the system under study should consist of agents that in-
teract pairwise, so that the interactions have both some degree
of randomness and some regularity (i.e., there is some struc-
ture). We also need to require similar properties for the tem-
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I. INTRODUCTION

To get an overview of a large, integrated system, one needs
to zoom out from the details. For many systems, from the
Internet to the metabolism, from the proteome to the web of
sexual contacts, an easy way of doing this is representing the
system as a graph. A graph is a mathematical object consisting
of a set of vertices, the units of the system, and a set of edges,
the pairs of vertices that are interacting with each other. Usu-
ally, such networks are the infrastructure of some dynamical
system—data-packet tra�c on the Internet, disease spreading
on social networks, etc.—and this dynamical system is what
we are really interested in. The advantage of modeling the
system as a graph is that we can say much about the behavior
of the dynamical system without studying the actual dynam-
ics at all. We can estimate how much one part of the network
influences another; how well the network is optimized with
respect to the dynamical system; which vertices play similar
roles in the system’s operation; and so on [9, 38, 65, 112].
Sometimes such a crude modeling framework can be made
more powerful if one extends it to include additional levels
of detail, for example edge weights in weighted networks [8],
or the position of vertices in spatial networks [10]. In this
review, we consider an additional dimension—time—and dis-
cuss temporal networks, where the times when edges are ac-
tive are an explicit element of the representation. Until re-
cently, in most network studies, the time dimension has been
projected out by aggregating the contacts between vertices to
(sometimes weighted) edges, even in cases when detailed in-
formation on the temporal sequences of contacts or interac-
tions would have been available. Sometimes the solution has
been to segment the data into adjacent time windows where
contacts are aggregated into edges, and then study the time
evolution of the network structure in these windows. Such
an approach does not cover all aspects of the temporal struc-
ture of contact patterns. For example, the edges between ver-
tices of temporal networks need not be transitive. In static
networks, whether directed or not, if A is directly connected
to B and B is directly connected to C, then A is indirectly con-
nected to C via a path over B. However, in temporal networks,
if the edge (A,B) is active only at a later point in time than
the edge (B,C), then A and C are disconnected, as nothing can
propagate from A via B to C (Fig. 1). Thus, the time order-
ing can matter a lot, and as we shall see below, the timings of
connections and their correlations do have e↵ects that go be-
yond what can be captured by static networks. Accordingly,
the main focus of this review is on methods that do not ignore
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FIG. 1: Illustration of the reachability issue and the intransitivity of
temporal networks (more specifically a contact sequence). In (a),
the times of the contacts between vertices A–D are indicated on the
edges. Assume that, for example, a disease starts spreading at vertex
A and spreads further as soon as a contact occurs. The dashed lines
and vertices show this spreading process for four di↵erent times. The
spreading will not continue further than what is indicated in the t = 1
picture, i.e. D cannot get infected. However, if the spreading started
at vertex D, the entire set of vertices would eventually be infected.
Aggregating the edges into one static graph cannot capture this e↵ect
that arises from the time ordering of contacts. Panel (b) visualizes the
same situation by showing the temporal dimension explicitly. The
colors of the lines in (b) matches the vertex colors in (a).

the consequences of the time ordering by e.g. projecting out
the interaction times.

When one studies a network, it is usually not the net-
work itself (the vertices and edges) that is the object of study.
Rather one wants to investigate a dynamical system on the net-
work. In traditional network modeling one separates the un-
derlying static network and the dynamical system on the net-
work. Compared to this picture, temporal network approaches
moves information about when things happen from the dy-
namical system to the network, the underlying structure on
which the dynamics happen. Systems suitable to be modeled
as temporal networks are everywhere. The flow of informa-
tion via e-mail messages, mobile telephone calls, and social
media is one such system that has recently attracted much
attention. Likewise, detailed understanding of the spreading
dynamics of some electronic and biological viruses calls for
taking the properties of the underlying contact sequences into
account. Studies of many networks in the life sciences—from
activation sequences of genetic regulation to time-domain fea-
tures of functional brain networks—may benefit from the tem-
poral graph approach. Food webs and other networks of
species evolve in time with environmental conditions that are
to some extent a result of which species are present. This type
of feedback fits the temporal-network framework. Another
example is self-assembled networks of wireless devices and
other distributed computing systems.

In general, when is temporal networks a suitable framework
for analysis and modeling? Just like for static complex net-
works, the system under study should consist of agents that in-
teract pairwise, so that the interactions have both some degree
of randomness and some regularity (i.e., there is some struc-
ture). We also need to require similar properties for the tem-
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I. INTRODUCTION

To get an overview of a large, integrated system, one needs
to zoom out from the details. For many systems, from the
Internet to the metabolism, from the proteome to the web of
sexual contacts, an easy way of doing this is representing the
system as a graph. A graph is a mathematical object consisting
of a set of vertices, the units of the system, and a set of edges,
the pairs of vertices that are interacting with each other. Usu-
ally, such networks are the infrastructure of some dynamical
system—data-packet tra�c on the Internet, disease spreading
on social networks, etc.—and this dynamical system is what
we are really interested in. The advantage of modeling the
system as a graph is that we can say much about the behavior
of the dynamical system without studying the actual dynam-
ics at all. We can estimate how much one part of the network
influences another; how well the network is optimized with
respect to the dynamical system; which vertices play similar
roles in the system’s operation; and so on [9, 38, 65, 112].
Sometimes such a crude modeling framework can be made
more powerful if one extends it to include additional levels
of detail, for example edge weights in weighted networks [8],
or the position of vertices in spatial networks [10]. In this
review, we consider an additional dimension—time—and dis-
cuss temporal networks, where the times when edges are ac-
tive are an explicit element of the representation. Until re-
cently, in most network studies, the time dimension has been
projected out by aggregating the contacts between vertices to
(sometimes weighted) edges, even in cases when detailed in-
formation on the temporal sequences of contacts or interac-
tions would have been available. Sometimes the solution has
been to segment the data into adjacent time windows where
contacts are aggregated into edges, and then study the time
evolution of the network structure in these windows. Such
an approach does not cover all aspects of the temporal struc-
ture of contact patterns. For example, the edges between ver-
tices of temporal networks need not be transitive. In static
networks, whether directed or not, if A is directly connected
to B and B is directly connected to C, then A is indirectly con-
nected to C via a path over B. However, in temporal networks,
if the edge (A,B) is active only at a later point in time than
the edge (B,C), then A and C are disconnected, as nothing can
propagate from A via B to C (Fig. 1). Thus, the time order-
ing can matter a lot, and as we shall see below, the timings of
connections and their correlations do have e↵ects that go be-
yond what can be captured by static networks. Accordingly,
the main focus of this review is on methods that do not ignore
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FIG. 1: Illustration of the reachability issue and the intransitivity of
temporal networks (more specifically a contact sequence). In (a),
the times of the contacts between vertices A–D are indicated on the
edges. Assume that, for example, a disease starts spreading at vertex
A and spreads further as soon as a contact occurs. The dashed lines
and vertices show this spreading process for four di↵erent times. The
spreading will not continue further than what is indicated in the t = 1
picture, i.e. D cannot get infected. However, if the spreading started
at vertex D, the entire set of vertices would eventually be infected.
Aggregating the edges into one static graph cannot capture this e↵ect
that arises from the time ordering of contacts. Panel (b) visualizes the
same situation by showing the temporal dimension explicitly. The
colors of the lines in (b) matches the vertex colors in (a).

the consequences of the time ordering by e.g. projecting out
the interaction times.

When one studies a network, it is usually not the net-
work itself (the vertices and edges) that is the object of study.
Rather one wants to investigate a dynamical system on the net-
work. In traditional network modeling one separates the un-
derlying static network and the dynamical system on the net-
work. Compared to this picture, temporal network approaches
moves information about when things happen from the dy-
namical system to the network, the underlying structure on
which the dynamics happen. Systems suitable to be modeled
as temporal networks are everywhere. The flow of informa-
tion via e-mail messages, mobile telephone calls, and social
media is one such system that has recently attracted much
attention. Likewise, detailed understanding of the spreading
dynamics of some electronic and biological viruses calls for
taking the properties of the underlying contact sequences into
account. Studies of many networks in the life sciences—from
activation sequences of genetic regulation to time-domain fea-
tures of functional brain networks—may benefit from the tem-
poral graph approach. Food webs and other networks of
species evolve in time with environmental conditions that are
to some extent a result of which species are present. This type
of feedback fits the temporal-network framework. Another
example is self-assembled networks of wireless devices and
other distributed computing systems.

In general, when is temporal networks a suitable framework
for analysis and modeling? Just like for static complex net-
works, the system under study should consist of agents that in-
teract pairwise, so that the interactions have both some degree
of randomness and some regularity (i.e., there is some struc-
ture). We also need to require similar properties for the tem-
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I. INTRODUCTION

To get an overview of a large, integrated system, one needs
to zoom out from the details. For many systems, from the
Internet to the metabolism, from the proteome to the web of
sexual contacts, an easy way of doing this is representing the
system as a graph. A graph is a mathematical object consisting
of a set of vertices, the units of the system, and a set of edges,
the pairs of vertices that are interacting with each other. Usu-
ally, such networks are the infrastructure of some dynamical
system—data-packet tra�c on the Internet, disease spreading
on social networks, etc.—and this dynamical system is what
we are really interested in. The advantage of modeling the
system as a graph is that we can say much about the behavior
of the dynamical system without studying the actual dynam-
ics at all. We can estimate how much one part of the network
influences another; how well the network is optimized with
respect to the dynamical system; which vertices play similar
roles in the system’s operation; and so on [9, 38, 65, 112].
Sometimes such a crude modeling framework can be made
more powerful if one extends it to include additional levels
of detail, for example edge weights in weighted networks [8],
or the position of vertices in spatial networks [10]. In this
review, we consider an additional dimension—time—and dis-
cuss temporal networks, where the times when edges are ac-
tive are an explicit element of the representation. Until re-
cently, in most network studies, the time dimension has been
projected out by aggregating the contacts between vertices to
(sometimes weighted) edges, even in cases when detailed in-
formation on the temporal sequences of contacts or interac-
tions would have been available. Sometimes the solution has
been to segment the data into adjacent time windows where
contacts are aggregated into edges, and then study the time
evolution of the network structure in these windows. Such
an approach does not cover all aspects of the temporal struc-
ture of contact patterns. For example, the edges between ver-
tices of temporal networks need not be transitive. In static
networks, whether directed or not, if A is directly connected
to B and B is directly connected to C, then A is indirectly con-
nected to C via a path over B. However, in temporal networks,
if the edge (A,B) is active only at a later point in time than
the edge (B,C), then A and C are disconnected, as nothing can
propagate from A via B to C (Fig. 1). Thus, the time order-
ing can matter a lot, and as we shall see below, the timings of
connections and their correlations do have e↵ects that go be-
yond what can be captured by static networks. Accordingly,
the main focus of this review is on methods that do not ignore
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FIG. 1: Illustration of the reachability issue and the intransitivity of
temporal networks (more specifically a contact sequence). In (a),
the times of the contacts between vertices A–D are indicated on the
edges. Assume that, for example, a disease starts spreading at vertex
A and spreads further as soon as a contact occurs. The dashed lines
and vertices show this spreading process for four di↵erent times. The
spreading will not continue further than what is indicated in the t = 1
picture, i.e. D cannot get infected. However, if the spreading started
at vertex D, the entire set of vertices would eventually be infected.
Aggregating the edges into one static graph cannot capture this e↵ect
that arises from the time ordering of contacts. Panel (b) visualizes the
same situation by showing the temporal dimension explicitly. The
colors of the lines in (b) matches the vertex colors in (a).

the consequences of the time ordering by e.g. projecting out
the interaction times.

When one studies a network, it is usually not the net-
work itself (the vertices and edges) that is the object of study.
Rather one wants to investigate a dynamical system on the net-
work. In traditional network modeling one separates the un-
derlying static network and the dynamical system on the net-
work. Compared to this picture, temporal network approaches
moves information about when things happen from the dy-
namical system to the network, the underlying structure on
which the dynamics happen. Systems suitable to be modeled
as temporal networks are everywhere. The flow of informa-
tion via e-mail messages, mobile telephone calls, and social
media is one such system that has recently attracted much
attention. Likewise, detailed understanding of the spreading
dynamics of some electronic and biological viruses calls for
taking the properties of the underlying contact sequences into
account. Studies of many networks in the life sciences—from
activation sequences of genetic regulation to time-domain fea-
tures of functional brain networks—may benefit from the tem-
poral graph approach. Food webs and other networks of
species evolve in time with environmental conditions that are
to some extent a result of which species are present. This type
of feedback fits the temporal-network framework. Another
example is self-assembled networks of wireless devices and
other distributed computing systems.

In general, when is temporal networks a suitable framework
for analysis and modeling? Just like for static complex net-
works, the system under study should consist of agents that in-
teract pairwise, so that the interactions have both some degree
of randomness and some regularity (i.e., there is some struc-
ture). We also need to require similar properties for the tem-
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issue #3: contact heterogeneities

[Isella et al PLOS ONE 2011]

number of contacts

probability density function of number of contacts

study provides for the first time direct measures of the number
and duration of close contacts by different role and at the
individual level in a hospital setting. By taking advantage of the
RFID technology, our results account for important heteroge-
neities in the hospital population and in the interactions among
patients, health care workers, and visitors, that enable an
accurate parameterization of models for infectious disease spread
on the close-contact route.

Our main finding is the very limited interaction that we
observed between pairs of patients or between pairs of caregivers,
and between health care workers and caregivers. This is
empirically found both in the number of contact events, taking
into account both distinct and repeated events, and in the duration
of such contacts. This result has immediate practical implications
for the development of prevention measures for respiratory
infections within the hospital, which represent the most frequent

Figure 3. Probability density functions of the number of contacts per individual, sn (panel A), and of the cumulative time in contact
st (panel B). Each plot corresponds to a given class and considers the contacts that an individual in that class established with any other individual.
Contact duration is expressed in seconds and is normalized to a 24-hour interval.
doi:10.1371/journal.pone.0017144.g003

Figure 4. Boxplots for the distributions of cumulative contact durations wt between individuals belonging to given role pairs
(horizontal axis), given the occurrence of a contact. Here we only consider non-zero values of wt, and contact durations are expressed in
seconds and are normalized to a 24-hour interval. On normalizing, the experimental resolution of 20 seconds yields the lowest value of 2.5 seconds
visible in the figure. As usual, the bottom and top of the boxes correspond to the 25th and 75th percentiles, and the horizontal segment indicates the
median. The ends of the whiskers correspond to the 5th and 95th percentiles. The dots are outliers located outside the 90% confidence interval, i.e.,
events falling below the 5th percentile or above the 95th percentile.
doi:10.1371/journal.pone.0017144.g004

Data-Driven Contact Patterns in a Hospital Ward

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e17144

Cumulative number of contacts results from activation frequency and 
number of contacts made at each activation 



Figure 3. Bursty nature of inter-contact times

(A) Contact sequence that obeys a long-tail distribution. We generated it based on the behaviour of a sex buyer [25]. (B) Contact sequence whose
inter-contact time distribution obeys an exponential distribution (i.e., Poisson process) with the same mean. The numbers of contacts in the two
sequences are equal to each other.

Figure 4. SIR model

susceptible (S)
infected (I)

recovered (R)

infection

recovery µ

(A) (B)

(A) Schematic of infection and recovery in the SIR model. Infection occurs at rate b per contact and recovery occurs at rate m. (B) The rate at which
the susceptible individual is infected is proportional to the number of infected neighbors in the SIR model.

Page 5 of 12
(page number not for citation purposes)

F1000Prime Reports 2013, 5:6 http://f1000.com/prime/reports/b/5/6
issue #4: non homogenous activation

inter-contact time: time from two consecutive activations 

human behaviour is bursty 

burstiness: broader-than-expected distributions of inter-contact times 

[LEC. Rocha, et al, PNAS 2009] 

more realistic model: �PE(τ) = Aτ−αe−τ/τE

Poisson model: �PP(τ) =
e−τ/⟨τ⟩

⟨τ⟩



issue #5: temporal correlations

= degree of  in the network aggregated over the interval  

� = weighted degree of � in the network aggregated over the interval �  

social strategy: �  

�  : memory-driven behavior (a node tends to make contacts always with the same 
nodes)  
� : memoryless behavior (a node shows a more socially exploratory behavior)  

ki,t i [t − δ, t]

si,t i [t − δ, t]

γi,t =
ki,t

si,t

γ → 0

γ → 1

and nv,i^vit, where ai and vi are the rates of tie activation/deac-
tivation and ai^vi (see Fig. 3c and SI Section 4 ). These two facts have
a remarkable consequence: despite ties are activated/deactivated con-
tinually, the communication capacity for each individual remains
almost constant throughout the observation period ki tð Þ^!ki, signal-
ing that people tend to balance the activation/deactivation of ties in
such a way that the number of active relationships remains stable
over time. The conservation of social capacity is the root of many
observations in the literature (see for example4,24) that the distri-
bution of connectivity in social networks seems to be stable in time
but the neighbors of a given node change from one time window to
another one. Specifically, we find that the average user social persist-
ence pi, measured as the fraction of neighbors present at the begin-
ning of the observation windowV that remain active until its end, lies
around 75%. This means that users renew their social circle slowly, in
line with studies in off-line social networks2. This value is much
larger than what is expected in a model where all ties have the same
probability to be activated or deactivated, in which case we obtain
p’i~50% (see SI Section 5 ). Our results corroborates that the way in

which people activate and deactivate ties from their social network is
not random; instead, some existing ties are more probable to be
deactivated than others.

Thus, individual communication can be characterized in terms of
his communication capacity !ki and his communication activity na,i

(or rate ai) in a time window. These two quantities give information
about two related although not equivalent features of social com-
munication. While the capacity is a measure of the number of rela-
tions that a user manages instantaneously, the activity is instead
related to the number of relations a user establishes and at what rate.
However, as shown in Fig. 4, we observe for a large part of the
individuals that na,i^bk i with b 5 0.75, meaning that the number
of created connections tends to be proportional to the communica-
tion capacity. This correlation resembles the preferential attachment
process by which tie activation is more probable for more connected
individuals. Note however that we find that tie activation is here
proportional to a conserved quantity and thus grows linearly in time
for t?1; and on top of that, there is a corresponding preferential de-
attachment mechanism meaning that individuals with large !ki are

Figure 3 | Characterization of communication capacity and activity. (A) Probability distribution function (pdf) of the aggregated social connectivity
ki, number of created ties na,i and number of deleted ties nv,i at t 5 T, compared with the pdf for the average communication capacity !ki over the
observation window. (B) Relationship between the number of formed na,i and decayed nv,i ties in the observation window for the users in our database:
the results form the PCA indicate that the 93% of the variation can be explained by the first component in the (0.70, 0.71) direction, i.e. almost the black
line na,i 5 nv,i in the plot. Furthermore, the box plot shows the 25% and 75% percentiles (filled box) and 5% and 95% percentiles (whiskers) and the blue
curves correspond to the 5% and 95% percentiles of the corresponding Poisson null model for our data (see Supplementary Section 5). (C) Density plot
r(log vi, log ai) for users with more than 5 ties formed and decayed. Dashed line is the ai 5 vi relationship and the curves correspond to the contour lines
r 5 0.01 for the density of actual values of rates (red) and the ones obtained in the Poissonian null model (blue, see Supplementary Section 5 for further
information).

Figure 4 | Variability of communication capacity and activity. (A) and (B) show different snapshots of the neighborhood of two different individuals
(in red) at 4 equally spaced times in the observation time window t 5 52, 105, 158, and 211 days. Each black (grey) line corresponds to an active
(inactive) tie at that particular instant. (C) Log-density plot of the communication activity na,i as a function of the communication capacity ki for each
individual in our database. Solid line corresponds to the line na,i~0:75!ki obtained through PCA. Dashed curves are the iso-connectivity lines k i~kizna,i

for ki 5 10, 20, 50.

www.nature.com/scientificreports
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time scale separation not applicable in many cases

internet mediated prostitution
[LEC. Rocha, et al, PNAS 2009] 
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epidemic compartmental model1,2,44,45. In this model, infected
individuals can propagate the disease to healthy neighbors with
probability l, while infected individuals recover with rate m and
become susceptible again. In an homogenous population the
behavior of the epidemics is controlled by the reproductive
number R0 5 b/m, where b 5 lÆkæ is the per capita spreading rate
that takes into account the rate of contacts of each individual. The
reproductive number identifies the average number of secondary
cases generated by a primary case in an entirely susceptible
population and defines the epidemic threshold such that only if R0

. 1 can epidemics reach an endemic state and spread into a closed
population. In the past few years the inclusion of complex
connectivity networks and mobility schemes into the substrate of
spreading processes contagion, diffusion, transfer, etc. has
highlighted new and interesting results46–50. Several results states
that the epidemic threshold depends on the topological properties
of the networks. In particular, for networks characterized by a fix,
quenched topology the threshold is given by the principal eigenvalue
of the adjacency matrix48,49. Instead, for annealed network, cha-
racterized by a topology defined just on average because the
connectivity patterns has a dynamic extremely fast with respect to
the dynamical process, heterogeneous mean-field approaches2,6

predict an epidemic threshold that is inversely proportional to the
second moment of the network’s degree distribution:b/m . Ækæ2/Æk2æ.
However, these results do not apply to the case in which the time
variation of the connectivity pattern is occurring on the same time
scale of the dynamical process. Our model presents simple evidence
of this problem, as a disease with a small value of m21 (the infectious
period characteristic time) will have time to explore the fully-
integrated network, but will not spread on the dynamic

instantaneous networks whose union defines the integrated
one30,31,43,51. In Fig. 4-B we plot the results of numerical simulations
of the SIS model on a network generated according to our model and
on two time-aggregated network instances. We observe that the two
aggregated networks lead to misleading results in both the threshold
and the epidemic magnitude as a function of b/m. Even if the
epidemic threshold discounts the different average degree of the
networks in the factor b 5 lÆkæ, the two aggregated instances
consider all edges as always available to carry the contagion
process, disregarding the fact that the edges may be active or not
according to a specific time sequence defined by the agents’ activity.

The above finding can be more precisely quantified by calculating
analytically the epidemic threshold in activity driven networks with-
out relying on any time aggregated view of the network connectivity.
By working with activity rates we can derive epidemic evolution
equation in which the spreading process and the network dynamics
are coupled together. Let us assume a distribution of activity poten-
tial x of nodes given by a general distribution F(x) as before. At a
mean-field level, the epidemic process will be characterized by the
number of infected individuals in the class of activity rate a, at time t,
namely It

a. The number of infected individuals of class a at time t 1
Dt given by:

ItzDt
a ~{mDtIt

azIt
az

lm Nt
a{It

a

! "
aDt

ð
da’

It
a’

N
zlm Nt

a{It
a

! " ð
da’

It
a’a’Dt

N
, ð3Þ

where Na is the total number of individuals with activity a. In Eq. (3),
the third term on the right side takes into account the probability that
a susceptible of class a is active and acquires the infection getting a

Figure 2 | Cumulative distribution of the activity potential, FC(x), empirically measured by using four different time windows and a schematic
representation of the proposed network model. In particular, in panel (A) we show the cumulative distributions of the observables x for Twitter, in panel
(B) for IMDb, and in panel (C) for PRL. In panel (D) we show a schematic representation of the model. Considering just 13 nodes and m 5 3, we plot a
visualization of the resulting networks for 3 different time steps. The red nodes represent the firing/active nodes. The final visualization represents the
network after integration over all time steps.

www.nature.com/scientificreports
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activity driven model
Model ingredients: 

- discrete time (time step � ) 
- � : number of nodes 
- � : activity potential, � . This is e.g. number 

of activation of � during �  normalised over the 
total number of activation.  

- � : distribution of activity potential 
- � : activation rate. Average number of active 

nodes �  
- � : number of connections made at each 

activation 

At each time steps: 

- number of edges �  

- average degree �  

- The network is homogeneous! 

Δt
N
xi ϵ ≤ xi ≤ 1

i Δt

F(x)
ai = ηxi

Ñ = η⟨x⟩N
m

Et = m η⟨x⟩N

⟨k⟩t =
2Et

N
= m η⟨x⟩

[Perra et al, Sci Rep 2012]



activity driven model
Integrated network over a time window �  

- degree of a node � in the aggregated network   �  

- � : � makes �  links. How many different nodes does it connect to? (I don’t 
count repeated links with the same node). Urn problem: # of different ball 
extracted from a urn with �  balls after �  extractions  

- prob each ball is extracted �  

- prob of extracting � balls is a Binomial �  

- average # balls � , if �  and �
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[Perra et al, Sci Rep 2012]



activity driven model

[Perra et al, Sci Rep 2012]

Integrated network over a time window �  

- degree of a node � in the aggregated network   �  

- � : nodes that make connections with � among whose were not target by � 
(already counted in � ) 

- prob a node were not target by � :�  

- average number of links coming form these nodes �  

- They connect to � with probability �  
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Integrated network over a time window �  

- degree of a node � in the aggregated network   �  

�

T

i kT(i) = kout
T (i) + kin

T (i)

kT(i) = N [1 − e−Taim/N] + m⟨a⟩e−Taim/N ≃ N [1 − e−Taim/N] = N [1 − e−Tηxim/N]

activity driven model

[Perra et al, Sci Rep 2012]
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heterogenous topology in the aggregated network, over a window � , result from 
a heterogeneous activity potential

T

activity driven model

[Perra et al, Sci Rep 2012]
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activity driven model

[Perra et al, Sci Rep 2012]

Effect of network dynamics on epidemic spreading 

- activity block approximation 

- SIR dynamics  

- probability of transmission per contact � 

- for simplicity let’s assume �

λ

m = 1
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2 Epidemic threshold

Let us consider the SIS epidemic compartmental model, characterized by a transition probability

� and a recovery time µ-1
, spreading in the dynamical network generated as discussed above. Let

us assume a distribution of activity a of nodes given by a general distribution F(x) as before. At a

mean-field level, the epidemic process will be characterized by the number of infected individuals

in the class of activity a, at time t, namely Ita.

2.1 Case m = 1

The number of infected individuals of class a at time t+ �t given by:

It+�t
a = -µ�tIta + Ita + �(Nt

a - Ita)a�t

Z
da 0 I

t
a 0

N
+ �(Nt

a - Ita)

Z
da 0 I

t
a 0a 0�t

N
, (17)

where Na is the total number of individuals with activity a. In Eq. (17), the third term on the right

side takes into account the probability the a susceptible of class a is active and get the infection

getting a connection from any other infected individual (summing over all different classes), while

the last term takes into account the probability that a susceptible, independently of his activity,

gets a connection from any infected active individual. Now summing on all the classes we get

(ignoring the second order terms):

Z
daIt+�t

a = It+�t = It - µ�tIt + �haiIt�t+ �✓t�t, (18)

where ✓t =
R
da 0Ita 0a 0

. We can get another expression multiplying both sides of Eq. (17) by a and

integrating, to obtain

✓t+�t = ✓t - µ✓t�t+ �ha2
iIt�t+ �hai✓t�t. (19)

In the limit �t ! 0, we can write Eqs. (17) and (19) in a differential form:

@tI = -µI+ �haiI+ �✓, (20)

@t✓ = -µ✓+ �ha2
iI+ �hai✓. (21)

The Jacobian matrix of this set of linear differential equations takes the form

J =

✓
-µ+ �hai �

�ha2
i -µ+ �hai

◆
,

and has eigenvalues

⇤(1,2) = �hai- µ± �
q

ha2i. (22)

The epidemic threshold is obtained requiring the largest eigenvalues to be larger the 0, which leads

to the condition for the presence of an endemic state:

�

µ
>

1

hai+
p

ha2i
+O(

1

N
) (23)
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2 Epidemic threshold

Let us consider the SIS epidemic compartmental model, characterized by a transition probability

� and a recovery time µ-1
, spreading in the dynamical network generated as discussed above. Let

us assume a distribution of activity a of nodes given by a general distribution F(x) as before. At a

mean-field level, the epidemic process will be characterized by the number of infected individuals

in the class of activity a, at time t, namely Ita.

2.1 Case m = 1

The number of infected individuals of class a at time t+ �t given by:

It+�t
a = -µ�tIta + Ita + �(Nt

a - Ita)a�t

Z
da 0 I

t
a 0

N
+ �(Nt

a - Ita)

Z
da 0 I

t
a 0a 0�t

N
, (17)

where Na is the total number of individuals with activity a. In Eq. (17), the third term on the right

side takes into account the probability the a susceptible of class a is active and get the infection

getting a connection from any other infected individual (summing over all different classes), while

the last term takes into account the probability that a susceptible, independently of his activity,

gets a connection from any infected active individual. Now summing on all the classes we get
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2 Epidemic threshold

Let us consider the SIS epidemic compartmental model, characterized by a transition probability

� and a recovery time µ-1
, spreading in the dynamical network generated as discussed above. Let

us assume a distribution of activity a of nodes given by a general distribution F(x) as before. At a

mean-field level, the epidemic process will be characterized by the number of infected individuals

in the class of activity a, at time t, namely Ita.

2.1 Case m = 1

The number of infected individuals of class a at time t+ �t given by:
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where Na is the total number of individuals with activity a. In Eq. (17), the third term on the right

side takes into account the probability the a susceptible of class a is active and get the infection

getting a connection from any other infected individual (summing over all different classes), while

the last term takes into account the probability that a susceptible, independently of his activity,

gets a connection from any infected active individual. Now summing on all the classes we get

(ignoring the second order terms):

Z
daIt+�t

a = It+�t = It - µ�tIt + �haiIt�t+ �✓t�t, (18)

where ✓t =
R
da 0Ita 0a 0

. We can get another expression multiplying both sides of Eq. (17) by a and

integrating, to obtain

✓t+�t = ✓t - µ✓t�t+ �ha2
iIt�t+ �hai✓t�t. (19)

In the limit �t ! 0, we can write Eqs. (17) and (19) in a differential form:
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The Jacobian matrix of this set of linear differential equations takes the form
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◆
,

and has eigenvalues

⇤(1,2) = �hai- µ± �
q

ha2i. (22)

The epidemic threshold is obtained requiring the largest eigenvalues to be larger the 0, which leads

to the condition for the presence of an endemic state:
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getting a connection from any other infected individual (summing over all different classes), while
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activity driven model
- A model that captures a realistic property of human behaviour (face-to-

face, sexual contacts, phone call, email, tweets) 

- human have heterogeneous activity rate  

- the contact network at a certain instant of time is sparse, with 
homogeneous degree 

- the aggregated network over a certain window is well connected with 
heterogeneous degree 

- pattern of activation unfolds at the same time scale of the spreading 
process 

- calculation possible in the activity-block approximation (same scheme 
as the degree block approximation) 

- contact heterogeneities lower the epidemic threshold 



bustiness & spreading

Figure 3. Bursty nature of inter-contact times

(A) Contact sequence that obeys a long-tail distribution. We generated it based on the behaviour of a sex buyer [25]. (B) Contact sequence whose
inter-contact time distribution obeys an exponential distribution (i.e., Poisson process) with the same mean. The numbers of contacts in the two
sequences are equal to each other.

Figure 4. SIR model

susceptible (S)
infected (I)

recovered (R)

infection

recovery µ

(A) (B)

(A) Schematic of infection and recovery in the SIR model. Infection occurs at rate b per contact and recovery occurs at rate m. (B) The rate at which
the susceptible individual is infected is proportional to the number of infected neighbors in the SIR model.
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bustiness & spreading
Spread of computer viruses: I receive an email. As soon as I open it the 
email is automatically sent to my contacts 

- inter-contact time �  

- time from arrival of the email to the moment in which I open it: residual 
waiting time 

�  

- number of infected users in time:  �   
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[Vazquez et al PRL 2007]



burstiness & spreading

- number of infected users in time:  �   

- � : � order convolution of � , �  for �  

- �  average # of users � email contacts away from the first user 

- � ; Poisson distribution � ; Power low 

distribution �  

� long time decay in incidence   

burstiness slow down spreading 

n(t) =
D

∑
d=1

zdg*d(t)

g*d(t) g g(τ) g*d(t) = ∫
t

0
dτg(τ)g*d(t − τ) d > 1

zd d

n(t) = F(t)exp (−
t
τ0 ) τ0 = ⟨τ⟩

τ0 = τE

τE ≫ ⟨τ⟩ ⇒
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FIG. 2: Average number of new infections resulting from sim-
ulations using the email history of the university dataset (solid
line), using a one day interval binning. The inset shows a
zoom of the initial stages of the spreading process using a
one hour interval binning. The lines correspond to the expo-
nential decay predicted by the Poisson process approximation
(dashed) and the true inter-event distribution (dot-dashed).

the probability density function of the sum of d genera-
tion times. Substituting the Poisson approximation and
Email data interevent time distributions into (2) and the
result into (3) we obtain

n(t) = F (t) exp

(

−
t

τ0

)

, (4)

where τ0 = ⟨τ⟩ for the Poisson approximation and τ0 =
τE for the Email data, and

F (t) =

⎧

⎨

⎩

1
⟨τ⟩

∑D
d=1

zd

(d−1)!

(

t
⟨τ⟩

)d−1
, Poisson approx.

∑D
d=1 zdf⋆d(t) , Email data ,

(5)
where f(t) =

∫ ∞
τ dxx−αe(tau−x)/τE/⟨τ⟩. In the long time

limit (4) is dominated by the exponential decay while
F (t) gives just a correction. The decay time is, however,
significantly different for the Poisson approximation and
the real inter-event time distribution.

To test these predictions we perform numerical simu-
lations using the detailed email communication history.
In this case a susceptible user receiving an infected email
at time t becomes infected and sends an infected email
to all its email contacts at t′ > t, where t′ is the time
he/she sends an email for the first time after infection, as
documented in the email data. To reduce the computa-
tional cost we focus our analysis on the smaller university
dataset. The average number of new infected users re-
sulting from the simulation exhibits daily (Fig. 2, inset)
and weekly oscillations (Fig. 2, main panel), reflecting
the daily and weekly periodicity of human activity pat-
terns. More important, after ten days the oscillations
are superimposed on an exponential decay, with a decay
time about 21 days (see Fig. 1b). The Poisson process
approximation would predict a decay time of one day, in
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FIG. 3: Number new infections reported for six worm out-
breaks, according to Virus Bulletin (www.virusbtn.com). The
lines are fit to an exponential decay resulting in the decay
times (measured in months): LoveLetter (13 ± 2), Ethan
(12 ± 1), Marker (14 ± 2), Class (12 ± 1), Melissa (13 ± 1),
W32/Ska (11 ± 1).

evident disagreement with the simulations (Fig. 2). In
contrast, using the correct inter-event time distribution
for the university dataset we predict a decay time of 25±2
days, in good agreement with the numerical simulations
(Fig. 2).

The analysis of the university dataset allows us to
demonstrate the connection between the long τ behav-
ior of the inter-event time distribution P (τ) and the long
time decay of the prevalence n(t). Our main finding is
that the prevalence decay time is given by the characteris-
tic decay time of the inter-event time distribution. More
important, we show that the Poisson process approxima-
tion clearly underestimates the decay time. For Poisson
processes the two time scales, the average interevent time
and the characteristic time of the exponential decay coin-
cide, being both of the order of one to at most a few days.
Using measurements on the commercial dataset, contain-
ing a larger number of individuals and covering a wider
spectrum of email users, we can extrapolate these con-
clusions to predict the behavior of real viruses. Given
the value of τE for the commercial dataset we predict
that the email worm prevalence should decay exponen-
tially with time, with a decay time about nine months.
The prevalence tables reported by the Virus Bulletin web
site (http://www.virusbtn.com) indicate that worm out-
breaks persist for several months, following an exponen-
tial decay with a decay time around twelve months (Fig.
3). Our nine month prediction is thus much closer to the
observed value than the ⟨τ⟩ ≈ 1÷4 day prediction based
on the Poisson approximation. The fact that our predic-
tion underestimates the actual decay time by about three
months is probably rooted in the fact that the commercial
dataset, despite its coverage of an impressive 1.7 million
users, still captures only a small segment (approximately



approaches to temporal network 
epidemiology

Botom-up: generative models 
activity driven model, and its extensions 

Top-down approaches: Randomised Reference 
Models 
compare the epidemics on real data with the outcome in suitable null 
models
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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Randomised reference models (RRM)

description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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description and Table S1. All of the datasets we consider describe the
face-to-face proximity relations of the monitored subjects, with a
temporal resolution of approximately 20 seconds7,22. For every pair
of individuals, the full sequence of individual interactions is resolved,
with starting and final timestamps for every close-range proximity
relation. These data can be represented as time-varying networks of
proximity: nodes represent individuals and a link connecting two
nodes indicates that the corresponding individuals are in contact,
i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
may propagate it to others. In this simple epidemic model, infected
nodes never recover. A node is randomly selected as the seed from
which the infection starts spreading deterministically, through
contacts between a susceptible node and an infected one (S 1 I R
2I). Transmission events are assumed to occur instantaneously on
contact.

We fingerprint the temporal network structure of the data by
computing the times at which the epidemic process reaches the dif-
ferent nodes. Specifically, we focus on the probability distribution of
arrival times for the SI process unfolding over the temporal network.
In terms of wall-clock time, the arrival time at a given node is defined
as the time elapsed between the start (seeding) of the SI process and
the time at which the process reaches the chosen node. It has been
shown26 that the distribution of these arrival times is extremely sens-
itive to several heterogeneities of the empirical data, to the seeding
time. In general, it displays strong heterogeneities due to the non-
stationary and bursty behavior of empirical temporal networks that
cannot be captured by simple statistical models. Thus, we shift to a
node-specific definition of ‘‘time’’: each node is assigned its own
‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
node is defined as the increase of its activity clock reading from the
moment the SI process is seeded to when it reaches the node. Arrival
times* discard by definition many temporal heterogeneities of the
empirical data and usually exhibit a well-defined distribution26 that is
robust with respect to changes in the starting time of the process and

across temporal networks of human contact measured in different
contexts. In the following we use activity clocks based on the number
of contact events a node has been involved in. The arrival time* at a
node, consequently, will be integer-valued and will measure the
number of interactions each node was part of from the seeding of
the epidemic until the node was infected.

For each empirical time-varying network, we generate a hierarchy
of synthetic temporal networks using both a top-down and a bottom-
up approach. The synthetic networks are designed to support our
analysis by selectively retaining or discarding specific properties of
the empirical data.

Top-down approach: null models. We generate null models by
applying to the empirical data randomization procedures that
erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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i.e., in face-to-face proximity of one another.

Results
Epidemic processes and activity clocks. We probe the temporal
structure of the empirical networks with a simple Susceptible-
Infected (SI) process. The population of nodes (individuals) is split
into two compartments: susceptible nodes (S), who have not caught
the ‘‘infection’’, and infected nodes (I), who carry the ‘‘infection’’ and
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which the infection starts spreading deterministically, through
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shown26 that the distribution of these arrival times is extremely sens-
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‘‘activity clock’’ that measures the time that node has spent in inter-
action or, similarly, the number of contact interactions that node has
been involved in. The ‘‘time’’ measured by this clock does not
increase when the node is isolated from the rest of the network. In
the following, for clarity, we will indicate with ‘‘time*’’ the activity-
clock readings. The ‘‘arrival time*’’ of the epidemic process at a given
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erase specific correlations24. We keep the topology of the contact
network unchanged. In the ‘‘interval shuffling’’ (IS) procedure, the
sequences of contact and inter-contact durations are reshuffled for
each link separately, while in the ‘‘link shuffling’’ (LS) procedure24 the
unaltered sequences of events are swapped between link pairs. Both
procedures destroy the causal structure of the temporal network, but
they both preserve the global distributions of contact durations,
inter-contact durations, and number of contacts. The IS procedure
also preserves, for every link, the total number of contact events and
the cumulated interaction time, while the LS procedure does not
conserve these quantities at the link level.

We also consider a global time shuffling procedure (TS): we build a
global list of the empirical contact durations and, for each link, we
generate a synthetic activity timeline by sampling with replacement
the global list of contact durations according to the original number
of contacts for that link. While the global distribution of contact
durations and of the number of contacts per link are conserved by
construction, all temporal correlations are destroyed and the distri-
butions of inter-contact times differs from the empirical one.

Figure 1 illustrates the three randomization procedures defined
above. All the procedures conserve the topology, the distribution of
contact durations and the distribution of the number of contacts per
link of the empirical networks. Table 1 summarizes the impact of the
randomization procedures on different properties of the temporal
networks.

Bottom-up approach: generative models. We also define generative
models for random temporal networks designed so that the resulting
time-varying networks exhibit specific properties of the empirical
data, in the spirit of the configuration model for static networks29.
We start by creating a static random Erdös-Rényi network with
the same number of nodes and the same average degree of the

Figure 1 | Example of the shuffling procedures for the simple case of a network with four nodes (A, B, C, D) and two links (A–B and C–D) with their
respective contact sequences. Red (light) segments indicate A–B contacts, while blue (dark) segments indicate C–D contacts. For each link, individual
contact intervals are marked with latin letters and inter-contact intervals with greek letters. IS, LS, and TS stand, respectively, for Interval Shuffling,
Link Shuffling and Time Shuffling. In the TS case the inter-contact intervals are determined by the sampled contact intervals and do not correspond to
inter-contact intervals of the original data.
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Compared to the datasets considered in the previous sections, the
school dataset presents a few distinctive features. In the conference
cases individuals mix in a rather homogeneous way, but most inter-
actions occur at specific moments typically corresponding to social
activities such as coffee breaks7,22. In the hospital case, the interac-
tions display characteristic role-dependent patterns, but contacts are
distributed rather homogeneously during the day28. The primary
school dataset, on the other hand, exhibits both a strong community
structure dictated by class membership, and correlated contact pat-
terns across classes determined by the schedule of social activities27.
Contacts between children of different classes are possible during
specific time intervals only, and strongly correlated during such per-
iods, because the school schedule controls class-based activities
rather than individual activities.

To tease apart the respective roles of community structure and
correlated activity of link groups we study the arrival time* distribu-
tions in the case of synthetic datasets exhibiting one or both of these

Figure 2 | Log-binned probability distributions (pdf) of arrival times* (top row) and Kullback-Leibler divergences (middle row for KL and bottom row
for KL101) for the conference dataset (HT09, left column) and the hospital data (HOSP, right column). In each panel, IS, LS, TS, ICT, ICT 1 CPL stand
respectively for Interval Shuffling, Link Shuffling, Time Shuffling, Inter-Contact Time model, and Inter-Contact Time plus Contacts-per-Link model. In
the top row, ‘‘data’’ indicates the distribution of arrival times* obtained by simulating an SI process over the empirical temporal network (200
realizations with random starting times for each node of the network taken as seed of the epidemics). For each model, we consider 20 different realizations
of the temporal network. For each of these realizations we run 20 different SI epidemics, each with a different random starting time. The arrival times*
(top row) for all those runs are aggregated to yield the reported distributions. In the boxplots (middle and bottom row) the box extends from the lower to
upper quartiles, and the line indicates the median value. The whiskers of the box correspond to the 95% confidence interval.

Table 3 | Symmetrized Kullback-Leibler divergence of the arrival

times* distributions computed on the original temporal network

and on the corresponding synthetic networks, for the conference

datasets (HT09 and SFHH) and for the hospital dataset. KL indicates

the divergence computed using the entire probability distribution,

while KL101 corresponds to the divergence computed on the dis-

tribution tails only, obtained by selecting arrival times* larger than

10

HT09 conference SFHH congress hospital

Models KL KL101 KL KL101 KL KL101
IS 0.012 0.032 0.011 0.031 0.067 0.079
LS 0.022 0.052 0.023 0.085 0.053 0.090
TS 0.235 0.397 0.152 0.159 0.074 0.149
ICT 0.193 0.310 0.254 0.603 0.410 0.277
ICT 1 CPL 0.061 0.023 0.042 0.070 0.138 0.071
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