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markovian mobility



SIR metapopulation model: 
markovian mobility

What can I do with that? 
- analytical understanding 

- spatial propagation & predictability  

- global invasion threshold 

- computer simulations 
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spatial propagation
Dynamics of spatial spread above the epidemic threshold 

An epidemic starts in a given city � how does it spread to �, �, etc.? 

seeding time (o arrival time), � : time of arrival of the first case in patch �

i j h

tseeding j

[Gautreau et al JTB 2008]
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probability that an infectious arrives in j at time t:
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probability that the first infectious arrives in j at time t:

spatial propagation

[Gautreau et al JTB 2008]
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[Gautreau et al JTB 2008]



spatial propagation

�  

�  

�  are correlated and not identically distributed.  

Dimensional analysis: �   

The simple approximation �  is not so bad!

⟨tseeding,i⟩ − ⟨tseeding,i−1⟩ = Δi

⟨tseeding,n⟩ =
n

∑
i=1

Δn

Δi

aΔ = F [ p
a ]

⟨Δ⟩ = ⟨tseeding,1⟩

Another possibility consists in using the results of the
previous subsection, and assume that the average of Dn

remains close to the arrival time in the first city hDni !
hD1i ¼ ht1i which yields

hDiGumbel ¼
1

l
ln

Nl
w

! "
# g

# $
. (9)

This approximation neglects the fact that In#1ðtÞ increases
between tn#1 and tn due to both the endogeneous growth in
city n# 1 and the arrival of infectious individuals from city
n# 2, while for the computation of ht1i, only the
endogeneous growth of I0 has to be considered. It can
therefore be expected that hDiGumbel will overestimate the
real hDi.

Finally, we can also consider a deterministic formula-
tion, in which travel between i and i þ 1 occurs only
if there are enough infectious individuals in i, i.e. I iðtÞ has
reached a certain threshold y, and is then treated as
continuous. In this framework, each city is considered
infected only if the number of infectious individuals
is above y, and tn is defined as the first time that In reaches
the threshold: InðtnÞ ¼ y. Between tn#1 and tn, no travel
can therefore occur out of n, and we can write
qtIn ¼ lIn þ ðw=NÞIn#1. During ½tn#1; tn(, under the reali-
stic hypothesis that In5Nn, and that In#1 is in a first
approximation given by In#1 ¼ elðt#tn#1Þ, we obtain
the equation1 ¼ ðw=NÞDnelDn . The difference between
the arrival times in two successive cities is therefore
given by

hDidet ¼
1

l
W

Nl
w

! "
, (10)

where W is known as the Lambert W function.
In order to test these various analytical approaches, we

consider numerical simulations of the stochastic model
described in Section 2, for identical cities of population
N ¼ 106 located on a one-dimensional line, with uni-
form travel fluxes w between successive cities. The
measured average arrival times are, as expected, propor-
tional to n at large n (not shown). Fig. 2 displays the
corresponding slope as lhDi versus lnðlN=wÞ. Various
values of N, l and w with the same ratio lN=w yield the
same lhDi, as predicted from the theoretical dimensional
analysis (7). As shown in Fig. 2, hDifront is in agreement
with the simulations only at small lN=w: the slowest
the travel, the less a spatial continuous approximation
is valid. On the other hand, both hDidet and hDiGumbel

display reasonable agreement, and in particular correctly
capture the increase with lnðlN=wÞ for large lN=w. As
expected, hDiGumbel slightly overestimates hDi. We also
show in the inset of Fig. 2 the correlations between the
Dn’s. These correlations vanish rapidly with the distance
along the line. Negative correlations can, however, be
observed between Dn#1 and Dn. Such phenomenon can be
understood as follows. Assume that, in a given spreading
realization, Dn#1 is small. In this case, In#2ðtn#1Þ will be
unusually small too. The ‘‘reservoir’’ of infectiousness

defined by city n# 2 will thus transmit less infectious
individuals to n# 1 at times t4tn#1, and therefore the
subsequent contamination of city n will be slower, leading
to a larger Dn.
The numerical simulations also allow one to measure the

whole distributions of arrival times and of their intervals.
In Fig. 3, we show PðDnÞ for different values of n. The
Gumbel shape is only valid for n ¼ 1, and for large n more
symmetric (Gaussian-like) distributions are obtained. On
the other hand, Fig. 4 shows that the distribution of the
arrival times themselves display asymmetric Gumbel-like
shapes even at large n.
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Fig. 2. Slope hDi of htni versus n on a line of length 500. The average htni is
taken over 500 realizations of the spreading, and the slope is measured at
large n (only the cities with nX100 are considered). The error bars
represent the variance of D. l 2 ½10#2; 1( and w 2 ½10; 105(, N ¼ 106. Full
line: hDidet. Dotted line: hDiGumbel . Dashed line: hDifront. Inset: correlations
Cij ¼ hDiDji# hDiihDji versus ji # jj on a line of length 500, the average is
done over 500 realizations.

0 20 40 60 80

∆n

0

0.01

0.02

0.03

0.04

0.05

P 
(∆

n)

n=1
n=2
n=3
n=4
n=20

Fig. 3. Distribution of Dn ¼ tn # tn#1 for various values of n. For small n,
the distribution is close to a Gumbel and for large n, it evolves to a
Gaussian. w=ðNlÞ ¼ 10#2, N ¼ 106, l ¼ 0:1.

A. Gautreau et al. / Journal of Theoretical Biology 251 (2008) 509–522 513chain of identical cities (population N traveling weight p): 

[Gautreau et al JTB 2008]



spatial propagation: spreading 
pathways

[Brockmann Lab, http://rocs.hu-berlin.de/projects/hidden/index.html]

ln(pij)

effective distance 
between � and �i j

[Brockmann, Helbing, Science 
2013]

⟨tseeding, j⟩ ≃
1
a

ln(pija)

⟨tseeding, h⟩ ≃
1
a

ln(piha)i

good news: existence of pathways ! 
risk assessment analysis, ...

[Colizza, et al PNAS (2006)]

http://rocs.hu-berlin.de/projects/hidden/index.html%5D


similarity between 2 outbreak realizations:  overlap function �Θ(t)

time t time t time t time t

spatial propagation: spreading 
pathways

[Colizza, Barrat, Barthelemy  & Vespignani, PNAS (2006)]

Θ(t) = 1 Θ(t) < 1

numerical simulation of a global outbreak

1 stochastic simulation:



no degree fluctuations
no weight fluctuations

+ degree
heterogeneity

+ weight
heterogeneity

[Colizza, Barrat, Barthelemy  & Vespignani, PNAS (2006)]

spatial propagation: spreading 
pathways

-  degree 
heterogeneity: 
decreases 
predictability 

-  weight 
heterogeneity: 
increases 
predictability 



p

i j

spatial propagation: travel 
restrictions

I reduce the traffic with the epidemic origin: is it effecting in containing or 
delaying the propagation? 

I rescale the traveling probability of a factor �  

�  

�  

                                                    �  

                                                    �

ω

⟨tseeding, T.R.⟩ ≃
1
a

ln(ωpa)

⟨tseeding, T.R.⟩ − ⟨tseeding⟩ ≃
1
a

ln(ωpa) −
1
a

ln(pa)

=
1
a

ln(ω) +
1
a

ln(pa) −
1
a

ln(pa)

=
1
a

ln(ω)

[Gautreau et al JTB 2008; Hollingsworth et al Nature Med 2006; Scalia Tomba et al Math Biosci 2008]
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- Travel bans to/from Mexico
- screening of travelers on entry in 
airports
- isolation and quarantine of 
suspected cases,
- travel advisories against non-
essential travel to Mexico 

spatial propagation: travel 
restrictions

H1N1 pandemic 2009 
- drop of 40% in the air-travel to/from 

Mexico 

- simulations with a global spreading 
model for influenza show negligible 
delay

[Bajardi et al, PLoS ONE 2011]



SIR metapopulation model: 
markovian mobility

What can I do with that? 
- analytical understanding 

- spatial propagation & predictability  

- global invasion threshold 

- computer simulations 



modelling worldwide spread of 
epidemics

52  major cities: spread of 1968 -1969  H3N2 pandemic from Hong Kong 
[Rvachev, Longini, Math. Biosci. 1985] 



GLEaM: Global epidemic and mobility 
model

Population Distribution	

§ resolution 15’x15’ arc	
§ data source: SEDAC  
(Columbia University) 
§ tessellation: geographical 
census areas

World Airport Network	

§ 3362 airports  in 220 
countries	
§ 16842 connections with 
travel flows	
§ more than 99 % of the 
global commercial traffic	
§ data source:  IATA, OAG 

Commuting Network	

§ census data for >40 
countries in 5 continents 
§ different admin levels 
§ change of resolution 
scale: from admin 
boundaries to geo census 
areas[Balcan, Colizza et al. PNAS (2009)]



H1N1 pandemic:

Ebola:

GLEaM: Global epidemic and mobility 
model



SIR metapopulation model in a 
different regime: commuting

The Markovian assumption works well as long as  
- travels are not frequent, i.e. traveling rate negligible with respect to the 

epidemic time scales �  

- we want to model the short term dynamics of an epidemic 

Situations for which this holds in first approximation:  

- air-travel and acute infections. E.g. for flu: traveling rate= 10-3 days-1 vs. recovery 
rate> 0.1 days-1)  

- early spread of a flu pandemic. It does not work well if I want to model the long 
term continuous circulation 

pij ≪ μ
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SIR metapopulation model in a 
different regime: commuting

In general treating mathematically the interplay between mobility and 
transmission is very difficult. The problem can be solved in time scale 
separation: 

either 

the epidemic unfolds faster than mobility (air-travel and flu: traveling 
rate= 10-3 days-1 vs. recovery rate> ~0.1 days-1) 

or 

mobility faster than the epidemic (air-travel and flu: traveling rate= 10-3 
days-1 vs. recovery rate= ~0.5 days-1)



�  leaving rate, fraction of commuters 

� returning rate (� ) 

�  resident in i, constant 

�  individuals resident in i and traveling to j

σij

ρ ρ−1 = τ ∼ 8h

Ni = Nii(t) + ∑
j

Nij(t)

Nij(t)

Nij(t)

Nji(t)

σij

σji

ρ

ρNjj(t)

Nii(t)

Nji(t)

individuals resident in i 

individuals resident in j

SIR metapopulation model with 
memory

city i city j

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



�  leaving rate, fraction of commuters 

� returning rate (� )

σij

ρ ρ−1 = τ ∼ 8h

Nij(t)

Nji(t)

σij

σji

ρ

ρNjj(t)

Nii(t)

Nji(t)

individuals resident in i 

individuals resident in j

Ni = Nii(t) + ∑
j

Nij(t)

∂tNii = − ∑
j

σijNii(t) + ρ∑
j

Nij(t)

∂tNij = ∑
j

σijNii(t) − ρNij(t)

SIR metapopulation model with 
memory

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



∂Nii(t) + (ρ + σi)Nii(t) = Niρ

Nii(t) = e−(σi+ρ)t (Cii + Niρ∫
t

0
e(σi+ρ)s ds)

Nii(t) =
Ni

1 + σi /ρ
+ (Nii(0) −

Ni

1 + σi /ρ ) e−ρ(1+σi/ρ)t

Nij(t) =
σijNi /ρ

1 + σi /ρ
−

σij

σi (Nii(0) −
Ni

1 + σi /ρ ) e−ρ(1+σi/ρ)t+

+ Nij(0) −
σijNi /ρ

1 + σi /ρ
−

σij

σi (Nii(0) −
Ni

1 + σi /ρ ) e−ρt

solution

σi = ∑
j

σij

∂tNii = − ∑
j

σijNii(t) + ρ∑
j

Nij(t)

∂tNij = ∑
j

σijNii(t) − ρNij(t)

Ni = Nii(t) + ∑
j

Nij(t)

differential equations

SIR metapopulation model with 
memory

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



σi = ∑
j

σij

Nii(t) =
Ni

1 + σi /ρ
+ (Nii(0) −

Ni

1 + σi /ρ ) e−ρ(1+σi/ρ)t

Nij(t) =
σijNi /ρ

1 + σi /ρ
−

σij

σi (Nii(0) −
Ni

1 + σi /ρ ) e−ρ(1+σi/ρ)t+

+ Nij(0) −
σijNi /ρ

1 + σi /ρ
−

σij

σi (Nii(0) −
Ni

1 + σi /ρ ) e−ρt

∂tNii = − ∑
j

σijNii(t) + ρ∑
j

Nij(t)

∂tNij = ∑
j

σijNii(t) − ρNij(t)

Ni = Nii(t) + ∑
j

Nij(t)

differential equations

solution

time of relaxation to the equilibrium dominated by 
�[ρ(1 + σi /ρ)]−1 ∼ ρ−1 = τ, since  ρ ≫ σi

Nii(t) =
Ni

1 + σi /ρ
Nij(t) =

σijNi /ρ
1 + σi /ρ

Equilibrium solutions:

SIR metapopulation model with 
memory

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



Nii(t) =
Ni

1 + σi /ρ
Nij(t) =

σijNi /ρ
1 + σi /ρ

Equilibrium solutions:

Ni = Nii(t) + ∑
j

Nij(t)

People resident in �i

N*i = Nii + ∑
j

Nji =
Ni

1 − σi /ρ
+ ∑

j

Njσji /ρ
1 − σj /ρ

People present in �i

Nij(t)

Nji(t)

σij

σji

ρ

ρNjj(t)

Nii(t)

Nji(t)

individuals resident in i 

individuals resident in j

city i city j

SIR metapopulation model with 
memory

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



�     people rarely leave their residence 
thus the population of non traveling approaches the population of resident 

�    people return home immediately thus 
the population of non traveling approaches the population of resident 

�     migration: people never get 

back and the population of resident in � is distributed among the neighbouring 
destinations �

σi → 0 ⇒ Nii(t) → Ni; Nij(t) → 0; N*i → Ni

ρ → ∞ ⇒ Nii(t) → Ni; Nij(t) → 0; N*i → Ni

ρ → 0 ⇒ Nii(t) → 0; Nij(t) →
σij

σi
Ni; N*i → ∑

j

σji

σj
Nj

i
j

Nii(t) =
Ni

1 + σi /ρ
Nij(t) =

σijNi /ρ
1 + σi /ρ

Equilibrium solutions:

Ni = Nii(t) + ∑
j

Nij(t) N*i =
Ni

1 − σi /ρ
+ ∑

j

Njσji /ρ
1 − σj /ρ

Simple limit cases:

SIR metapopulation model with 
memory

�  quantify the ratio of time spent outside and in the residence populationσi /ρ

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



X[m]
ii =

X[m]
i

1 + σi /ρ
X[m]

ij =
σijX[m]

i /ρ
1 + σi /ρ

X[m] = S, I, R

SIR metapopulation model with 
memory

Time scale separation

time of relaxation to the equilibrium dominated by 
�  

commuting: �  

duration of an acute infection (e.g. flu): �  

transmission dynamics slower than mobility: we can assume that compartments 
occupations numbers is at the equilibrium with respect to mobility dynamics

[ρ(1 + σi /ρ)]−1 ∼ ρ−1 = τ, since  ρ ≫ σi

τ ∼ 8h

μ−1 ≃ [1 − 3] days

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



SIR metapopulation model with 
memory

Time scale separation

∂tS = − β
I(t)

Ni(t)
S(t)

∂tI = β
I(t)

Ni(t)
S(t) − μI(t)

∂tR = μI(t)

force of infection:

∂tI = λS(t) − μI(t), λ = β
I(t)
N(t)

instead of explicitly modelling mobility, I directly compute the effect of the other 
patches on the risk of infection, i.e. I break down the force of infection in its 
contributions. How many infectious individuals a susceptible person resident in 
� is exposed to?i

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



λi =
λii

1 + σi /ρ
+ ∑

j

λijσij /ρ
1 + σi /ρ

SIR metapopulation model with 
memory

Time scale separation

instead of explicitly modelling mobility, I directly compute the effect of the other 
patches on the risk of infection, i.e. I break down the force of infection in its 
contributions. How many infectious individuals a susceptible person resident in 
� is exposed to?i

 �  distributed among patch � and all possible destinations � in proportion 

�

Si i j

{
1

1 + σi /ρ
, …

σij /ρ
1 + σi /ρ

, …}

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



SIR metapopulation model with 
commuting

λi =
λii

1 + σi /ρ
+ ∑

j

λijσij /ρ
1 + σi /ρ

λii =
βi

N*i

Ii

1 − σi /ρ
+ ∑

j

Ijσji /ρ
1 − σj /ρ

λij =
βj

N*j [Ijj + ∑
l

Ilj]

λii =
βi

N*i
Iii + ∑

j

Iji

λij =
βj

N*j [
Ij

1 − σj /ρ
+ ∑

l

Ilσli /ρ
1 − σlj /ρ ]

N*i =
Ni

1 − σi /ρ
+ ∑

j

Njσji /ρ
1 − σj /ρ

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 



SIR metapopulation model with 
commuting

λi =
λii

1 + σi /ρ
+ ∑

j

λijσij /ρ
1 + σi /ρ

λii =
βi

N*i

Ii

1 − σi /ρ
+ ∑

j

Ijσji /ρ
1 − σj /ρ

λij =
βj

N*j [Ijj + ∑
l

Ilj]

λii =
βi

N*i
Iii + ∑

j

Iji

λij =
βj

N*j [
Ij

1 − σj /ρ
+ ∑

l

Ilσli /ρ
1 − σlj /ρ ]

understanding the relative role of mobility and infection parameters on the epidemic 
dynamics   

mathematical expressions to speed up computer simulations

N*i =
Ni

1 − σi /ρ
+ ∑

j

Njσji /ρ
1 − σj /ρ

[Sattenspiel, L. & Dietz, K. Math. Biosci. 128, 71–91 (1995); 
Keeling, M. J. & Rohani, P. Ecol. Lett. 5, 20–29 (2002)] 


