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epidemiology: making sense of 
data

- forecasting (projections on the future number of cases, 
period of epidemic peak, end of the epidemic) 

- nowcasting (assessment regarding the very near future, 
present and recent past)  

- medical and biological understanding (e.g. role of 
different transmission routes) 

- analysis of future scenarios (e.g. impact of vaccination, 
pharmacological intervention, quarantine, travel 
restrictions)

https://www.sentiweb.fr/



Model implementation
Model design

Epidemic modeling

Model calibration

Model validation

estimate model parameters from 
available data

decide the model ingredients that synthesise 
available medical, biological, etc., information. 
We can consider different models, ingredients

confirming that model output is 
sufficiently accurate in 
reproducing the data



Model calibration

modelled trajectory = �F(M, θ, I0)

M = epidemic model

� = vector of parametersθ

�  = initial conditionsI0

e.g. SIR

e.g.               = (transmission rate, recovery rate) (�, µ)

e.g. initial number of infectious

https://www.sentiweb.fr/



Maximum likelihood approach

probabilistic formulation: 

- relation between model and data is probabilistic 

- we want that identify the trajectory and thus the parameters, �, that 
are more probable given the data

θ

Bayesian framework: probability as a measure of uncertainty



Basic definitions  

univariate probability 

- A :  random variable  

- p(A = a) = p(a) : probability that A takes value a 

- normalisation : �  

multivariate probability 

- A and B : random variables 

- p(A = a, B = b) = p(a, b) : joint probability that A takes value a 

and B takes value b  

- marginal probability: �

∑a
p(a) = 1

p(a) = ∑b
p(a, b)

The very basics of probability theory



Basic properties 

- conditional probability of a from random variable A, 
given that the outcome of random variable B was b : 
�  

- Bayes Theorem :   �   

- Chain rule:  �

p(A = a |B = b) = p(a |b)

p(a |b) =
p(a, b)
p(b)

p(a, b, c) = p(a |b, c)p(b |c)p(c)

The very basics of probability theory



Continuous variables 

- Normalization : �   

- Marginal probability : �

∫ p(a) da = 1

p(a) = ∫ p(a, b) db

The very basics of probability theory



basic probability distributions 

Poisson distribution 
The events occur with a known constant rate � and independently each other. 
The probability of having � occurrence in an interval of time �  follows a Poisson 

�  

average number of occurrence: �  

The Poisson is parametrised as a function of �:  

�

r
y Δ

p(y |Δ, r) =
(r Δ)ye−r Δ

y!

λ = r Δ

λ

p(y |λ) = Poisson(y |λ) =
λye−λ

y!



Bernoulli trials and Binomial distribution 
Ingredients: 
- � exchangeable trials 
- two possible outcomes: failure or success 
- � success 
- � probability of success 

�

n

y
θ

p(y |θ) = Bin(y |n, θ) = (n
y) θy(1 − θ)n−y

basic probability distributions 



drawing conclusion from numerical data about quantities 
that are not observed

Unobserved quantities for which statistical inferences are made:  

- �: potentially observable quantities such as future observation of a process  

- �: quantities that are not directly observable such as parameters that govern the 
hypothetical process 

Bayesian statistical conclusions about a parameter � or unobserved data � are 
made in terms of probability statements. These are conditional on the observed 
values of �: �

ỹ

θ

θ ỹ

y p(θ |y)

Bayesian inference



Bayesian inference
We want to obtain a distribution for � conditioned to �: �   

1) we need a model (� ) that provides us the joint probability distribution of � and � : 
�  

2) Given the � , we write � , with �  prior distribution and �  
sampling distribution 

3) we use the Bayes rule to condition on the known value of the data � 

�  

�  (unnormalized posterior density) 

The data affect the posterior only through � . Regarded as a function of � and 
fixing � this is the Likelihood function �  

θ y p(θ |y)

M θ y
p(θ, y)

M p(θ, y) = p(y |θ)p(θ) p(θ) p(y |θ)

y

p(θ, y) = p(θ |y)p(y) = p(y |θ)p(θ)

p(θ |y) ∝ p(θ)p(y |θ)

p(y |θ) θ
y ℒ(θ) = p(y |θ)



man X-chromosome, Y-chromosome  
woman X-chromosome, X-chromosome 

Hemophilia: hereditary disease associated to a gene of the chromosome X 

  

This is recessive inheritance: a man who inherits the gene is affected, a 
woman who inherits the gene on only one X is not affected

example 1



A woman has an affected brother and a father not affected �  she can be a 
carrier of the gene on one X. Is she a carrier? 

Parameter we want to estimate 
�  carrier 
�  not a carrier 

Prior:    �    (a priori we say fifty-fifty) 

Data: she has two sons, neither of the two affected, �  

Likelihood:  
�  
�  

Posterior: 
�  

⇒

θ = 1
θ = 0

p(θ = 1) = p(θ = 0) = 0.5

y1 = 0, y2 = 0

p(y1 = 0, y2 = 0 |θ = 1) = 0.52

p(y1 = 0, y2 = 0 |θ = 0) = 1

p(θ = 1 |y1, y2) =
p(y1, y2 |θ = 1)p(θ = 1)

p(y1, y2 |θ = 1)p(θ = 1) + p(y1, y2 |θ = 0)p(θ = 0)
=

0.25 0.5
0.25 0.5 + 0.5

= 0.2

example 1



More data: she has a third son, not affected, �  

Prior:    �    (the posterior of before) 

Likelihood:  
�  

Posterior: 

�  

y3 = 0

p(θ = 1) = 0.2 p(θ = 0) = 0.8

p(y3 = 0 |θ = 1) = 0.5

p(θ = 1 |y3) =
p(y3 |θ = 1)p(θ = 1)

p(y3 |θ = 1)p(θ = 1) + p(y3 |θ = 0)p(θ = 0)
=

0.5 0.2
0.5 0.2 + 0.8

= 0.111

example 1

adding more data



Ingredients: 
- � exchangeable trials 
- two possible outcomes: failure or success 
- � success 
- � probability of success 

n

y
θ

example 2

Bernoulli trials



Prior:  uniform in [0,1] 

Likelihood:  

�   

(we don’t write the dependence on � on the left side because is part of the experimental design and 
considered fixed. All probabilities will be conditional on �) 

Posterior: 
�  
� treated does not depend on � so it can be disregarded

p(y |θ) = Bin(y |n, θ) = (n
y) θy(1 − θ)n−y

n
n

p(θ |y) ∝ θy(1 − θ)n−y

(n
y) θ

example 2

Beta distribution:  �θ |y ∼ Beta(y + 1,n − y + 1)

Bernoulli trial



prior distribution summarises my a priori knowledge about the parameters. E.g. it 
may be defined based on the literature (e.g. if we are analysing an outbreak of flu 
and we want the estimate �  we may look at previous �  estimates). 

If no priory knowledge is available, the best is to use a vague, or flat, or 
noninformative prior

R0 R0

Bayesian analysis: some thoughts
Figure S5: Trace plot of the eight chains of the baseline model.
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Figure S6: Posterior distributions of the parameters from the baseline model and corresponding prior distri-
butions over the same range (dashed lines).

The weather P model included the influence of local precipitation up to eight weeks in the past, so that
the transmission parameters varied with time:

ln�ij = bi + Vj ln�D +
8X

n=0

Pt�l ln�P,l. (11)

The model thus accounted for the nine additional parameters �P,l (with l = 0, . . . , 8) compared to the baseline.
No issue was identified during the sampling phase, and the chains were well-mixed and converged quickly
(Fig. S7 and S8). The maximum Gelman-Rubin ratio bR was estimated to 1.002. Fig. S9 shows model fit in
the nine territories to allow for comparison with the baseline model’s fit reported in the main paper.

6

parameter

prior

posterior



posterior distribution is a compromise between data and prior information. The 
compromise is increasingly controlled by the data as the sample size increases 

posterior variance on average smaller than prior variance (it can be larger, but often 
this indicates a conflict or inconsistency between the sampling model and the prior 
distribution)

Bayesian analysis: some thoughts
Figure S5: Trace plot of the eight chains of the baseline model.
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Bayesian analysis: some thoughts

posterior contain the whole information.  

key information we are interest in: 

- the most likely parameter value given the data: the mode of the posterior 

- the uncertainty associated to our estimate: quantiles of the posterior, i.e. 
� interval, that goes from  �  to �95 % 2.5 % 97.5 %

Figure S5: Trace plot of the eight chains of the baseline model.
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fitting an incidence curve
data: cases are detected independently each day with probability � . 
Independent observations �  

d = 50 %
yt



fitting an incidence curve
data: cases are detected independently each day with probability � . 
Independent observations �  
model: SIR, we know the average infections duration �  
parameter: �   
prior: uniform in [0,1] 
Likelihood: �

d = 50 %
yt

μ−1 = 5.5 days
θ = β

ℒ(θ) = p(y1, …, yt, …, ytM |θ) = ∏
t

p(yt |θ)



In practice: 
for each value of � we simulate the trajectory of the SIR, fixing �  and �  based on 
available knowledge 

Observation model: observed data are distributed as a Poisson 
�

β μ I0

yt |θ ∼ Poisson(λ); λ = I(t) d

fitting an incidence curve



�yt=4 = 55
yt=4 |θ ∼ Poisson(λ); λ = I(t) λ = 86 0.5
sampling distribution 

fitting an incidence curve
In practice: 
for each value of � we simulate the trajectory of the SIR, fixing �  and �  based on 
available knowledge 

Observation model : observed data are distributed as a Poisson 
�

β μ I0

yt |θ ∼ Poisson(λ); λ = I(t) d

θ = 0.36



ℒ(θ = 0.36) = Poisson(55 |λ); λ = 86 0.5

fitting an incidence curve
In practice: 
for each value of � we simulate the trajectory of the SIR, fixing �  and �  based on 
available knowledge 

Observation model : observed data are distributed as a Poisson 
�

β μ I0

yt |θ ∼ Poisson(λ); λ = I(t) d

θ = 0.36



ℒ(θ) = p(y1, …, yt, …, ytM |θ) = ∏
t

p(yt |θ)

fitting an incidence curve
In practice: 
for each value of � we simulate the trajectory of the SIR, fixing �  and �  based on 
available knowledge 

Observation model : observed data are distributed as a Poisson 
�

β μ I0

yt |θ ∼ Poisson(λ); λ = I(t) d



log ℒ(θ) = ∑
t

log p(yt |θ)

fitting an incidence curve
In practice: 
for each value of � we simulate the trajectory of the SIR, fixing �  and �  based on 
available knowledge 

Observation model : observed data are distributed as a Poisson 
�

β μ I0

yt |θ ∼ Poisson(λ); λ = I(t) d



- Basic idea behind likelihood computation: evaluate the probability of 
the data given the model and the parameters 

- To estimate � we keep  M and �  fixed  and vary � to compute the 
probability of �  

- Likelihood function: �  

- likelihoods can span a wide range of orders of magnitude, which can 
lead to numerical problems. In practice better to work with the log-
likelihood �

θ x0 θ
p(y |θ)

ℒ(θ) = p(y |θ)

log ℒ(θ) = log p(y1, …, yn |θ) = ∑
i

log p(yi |θ)

recap



likelihood computation in practice

- in general, the posterior distribution is difficult to obtain 

- it requires numerical integration

https://www.sentiweb.fr/



- Grid of points: compute �  for �  equally spaced. We 
approximate the continuous density function �  with the discrete 
density function �  

Limitations: this become rapidly unfeasible as the dimensionality of the 
parameter space increases 

- Trapezoidal approximation: after computing �  for a discrete set 
of points � , we can approximate �  with a piecewise-linear 
function, connecting the �  points with liner segments.

p(θ |y) θ1, …, θn
p(θ |y)

p(θi |y)/∑
i

p(θi |y)

p(θ |y)
θ1, …, θn p(θ |y)

p(θi |y)

likelihood computation in practice

basic numerical methods



θ

p(θ |y)

g(θ)

we want to numerically sample � . We use a positive function �  
defined for all � for which � , such that: 
- we are able to draw sample from �  
- the importance ratio � , for some constant M 
- �  must have a finite integral

p(θ |y) g(θ)
θ p(θ |y) > 0

g(θ)
p(θ |y)/g(θ) ≤ M

g(θ)

rejection sampling



θ

p(θ |y)

g(θ)

I iterate the two following steps: 
- sampling � at random from the probability density proportional to �  

- with probability �  accept � as draw from �

θ g(θ)
p(θ |y)
Mg(θ)

θ p(θ |y)

rejection sampling



θ

p(θ |y)

g(θ)

rejection sampling



θ

rejection sampling: limitations

θ
A simple choice with no a priory 
knowledge of �  yields high 
rejection rate (a lot of 
computation)

p(θ |y)

choice of �  difficultg(θ)

use trapezoidal approximation to 
define �g(θ)



sampling from a distribution

with a computer we can easily draw random numbers uniformly distributed 
in [0,1]. How to sample with a distribution � ? 

- �  probability density function  
- �  cumulative density function : �  
- draw U from a uniform distribution and compute �  
- � will be draw with probability �  

Example: 
�  
�

p(υ)

p(υ)
F(υ*) F(υ*) = Pr(υ ≤ υ*)

υ = F−1(U)
υ p(υ)

p(υ) = βe−λυ ⇒ F(υ) = 1 − e−λυ

υ = F−1(U) = − log(1 − U)/λ



General idea: 

I star from �  and create a random walk: a sequence �  where each  �  is 
drawn from a given transition distribution, built such that the random walk converges 
to �  

run the simulation long enough that the distribution of the current draws is close 
enough to the stationary distribution

θ0 θ0, θ1, …, θt θt

p(θ |y)

Markov chain Monte Carlo



1) draw a starting point �  from a starting 
distribution 

2) for � : 

A. sample a candidate point �  from 
a jumping distribution � . 
The distribution must be symmetric  
�  for all �

θ0

t = 1, 2, …

θ*
Jt(θ* |θt−1)

Jt(θa |θb) = Jt(θb |θa) a, b, t

Metropolis algorithm 

θ

p(θ* |y)

p(θt−1 |y)

θt−1θ*
Jt(θ* |θt−1)



1) draw a starting point �  from a starting 
distribution 

2) for � : 

A. sample a candidate point �  from 
a jumping distribution � . 
The distribution must be symmetric  
�  for all �  

B. Calculate the ratio of the densities 

�  

C. set:  
�

θ0

t = 1, 2, …

θ*
Jt(θ* |θt−1)

Jt(θa |θb) = Jt(θb |θa) a, b, t

r =
p(θ* |y)

p(θt−1 |y)

θt = θ* with probability min(r,1); θt−1 otherwise

Metropolis algorithm 

θ

p(θ* |y)

p(θt−1 |y)

θt−1θ*
Jt(θ* |θt−1)

p(θ* |y) > p(θt−1 |y)
always accept



1) draw a starting point �  from a starting 
distribution 

2) for � : 

A. sample a candidate point �  from 
a jumping distribution � . 
The distribution must be symmetric  
�  for all �  

B. Calculate the ratio of the densities 

�  

C. set:  
�

θ0

t = 1, 2, …

θ*
Jt(θ* |θt−1)

Jt(θa |θb) = Jt(θb |θa) a, b, t

r =
p(θ* |y)

p(θt−1 |y)

θt = θ* with probability min(r,1); θt−1 otherwise

Metropolis algorithm 

θ

p(θ* |y)

p(θt−1 |y)

θt−1 θ*
Jt(θ* |θt−1)

p(θ* |y) < p(θt−1 |y)
sometimes accept



Metropolis: 

It is possible to show that  

1) the Markov chain converges to a stationary distribution  

2) the stationary distribution is �p(θ |y)

Metropolis algorithm 

θ



The Markov chain has a unique stationary distribution: 

The Markov chain is aperiodic, not transient irreducible. The random walk has a 
positive probability to eventually reach any state from any other state. 

p(θt−1 = θa, θt = θb) = p(θa |y) Jt(θb |θa)

p(θt = θa, θt−1 = θb) = p(θb |y) Jt(θa |θb)
p(θa |y)
p(θb |y)

= p(θa |y) Jt(θa |θb)

Since their joint distribution is symmetric �  and �  have the same marginal 
distributions, thus �  is stationary

θt θt−1

p(θ |y)

The stationary distribution is � : 

consider �  and �  such that �

p(θ |y)

θa θb p(θb |y) ≥ p(θa |y)

Metropolis algorithm 



We simulate multiple chain simultaneously with starting point dispersed in 
the parameter space 

We monitor quantity of interest and measure variation between and within 
the different sequences, until “within” variation roughly equal “between” 
variation 

We want the distribution of each sequence = distribution all sequence 
mixed together  

Metropolis algorithm 



consider the case of posterior density bivariate unit normal 
�  with � is the 2x2 identity matrix: 

�  

Convenient in this case to take the jumping distribution also bivariate normal 
� : 

�

p(θ1, θ2 |y) = N(θ1, θ2 |0,1) 1

p(θ1, θ2 |y) =
1

2π
exp [−

θ2
1 + θ2

2

2 ]
Jt(θ* |θt−1) = N(θ* |θt−1, σ2 1)

J(θ*1 , θ*2 |θt−1
1 , θt−1

2 ) =
1

2πσ2
exp [−

(θ*1 − θt−1
1 )2 + (θ*2 − θt−1

2 )2

2σ2 ]

Metropolis algorithm 

(this is symmetric!)



�  

how do I choose �? 
- too big: I will go too far and I will reject almost all proposals and get stuck 
- too small: the chain will be too slow and the algorithm will be inefficient 
- rule of thumbs: acceptance rate from 0.23 to 0.44 

J(θ*1 , θ*2 |θt−1
1 , θt−1

2 ) =
1

2πσ2
exp [−

(θ*1 − θt−1
1 )2 + (θ*2 − θt−1

2 )2

2σ2 ]
σ

Metropolis algorithm 


