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Thermodynamics and structure of macromolecules
from flat-histogram Monte Carlo simulations†

Wolfhard Janke*a and Wolfgang Paul*b

Over the last decade flat-histogram Monte Carlo simulations, especially multi-canonical and Wang–Landau

simulations, have emerged as a strong tool to study the statistical mechanics of polymer chains. These

investigations have focused on coarse-grained models of polymers on the lattice and in the continuum.

Phase diagrams of chains in bulk as well as chains attached to surfaces were studied, for homopolymers

as well as for protein-like models. Also, aggregation behavior in solution of these models has been

investigated. We will present here the theoretical background for these simulations, explain the algorithms

used and discuss their performance and give an overview over the systems studied with these methods in

the literature, where we will limit ourselves to studies of coarse-grained model systems. Implementations

of these algorithms on parallel computers will be also briefly described. In parallel to the development of

these simulation methods, the power of a micro-canonical analysis of such simulations has been

recognized, and we present the current state of the art in applying the micro-canonical analysis to phase

transitions in nanoscopic polymer systems.

1 Introduction

In the past few decades computer simulation studies have become
an increasingly important numerical tool for the study and under-
standing of polymeric systems. Two main approaches can be
distinguished. Molecular dynamics (MD) simulations1–3 are based
on numerical integration of Newton’s equation of motion of the
system and deliver information on its thermodynamics, structure
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and dynamics. Monte Carlo (MC) methods2,4–7 rely on the
stochastic ensemble formulation of the statistical physics of
the polymer model. They are mainly geared towards providing
thermodynamic and structural information but can be formu-
lated to study relaxation behavior as well. Depending on the
application at hand and the degree of chemically realistic
modeling both approaches may directly be compared with
experiments or support analytical theory by yielding accurate
data for assessment of the usually necessarily employed approxi-
mations. In this sense, computer simulations have become the
third cornerstone of modern polymer science beyond experi-
ments and analytical theory. The great success of computer
simulations depends in part on the constant improvements of
the computer hardware, but in particular MC simulations have
even more profited from considerable methodological develop-
ments. Among them are the very successful flat-histogram MC
techniques which are in the focus of the present mini review.

To understand the importance of flat-histogram simulation
techniques, let us contrast them with the more standard
importance sampling MC methods and their most prominent
representative, canonical MC simulations. In the canonical
ensemble of statistical mechanics, defined by fixing the macro-
scopic variables particle number, N, volume, V, and tempera-
ture, T, every micro-state, x, occurs with the probability

peqðxÞ ¼
1

ZðN;V;TÞ e
�bUðxÞ; (1)

where b = 1/kBT is the inverse temperature and U(x) the
potential energy of the system, assumed to depend only on
the configuration variable x. The normalization factor is given
by the canonical partition function

ZðN;V ;TÞ ¼
ð
G
dxe�bUðxÞ; (2)

with G denoting the configuration space of the system. Already
for mesoscopic systems occurring in a simulation, the Boltzmann
factor e�bU(x) is sharply peaked at the minima of the potential
energy. The efficient determination of the thermodynamic average
of an observable A(x) given by

hAi ¼
ð
G
dxAðxÞpeqðxÞ (3)

therefore requires any discretization of this high-dimensional
integral to include the points where the Boltzmann factor
contributes the most. This is achieved, when one generates
the sampling points of the integral discretization through a
Markov chain MC method

pðx; nþ 1Þ ¼ pðx; nÞ þ
ð
G
dx0Wðxjx0Þpðx0; nÞ

�
ð
G
dx0Wðx0jxÞpðx; nÞ

(4)

with transition densities W(x|x0) for going from state x0 at
discrete time n to x at time n + 1. The general mathematical
theory of such Markov chains yields criteria for their conver-
gence to a unique equilibrium distribution; in the physics

literature the most common practice is to use the detailed
balance condition

Wðxjx0Þ
Wðx0jxÞ ¼

peqðxÞ
peqðx0Þ

¼ e�b½UðxÞ�Uðx
0Þ�: (5)

The fact that the unknown partition function drops out of this
equation is the basis for the success of the canonical MC
method, but at the same time it delineates its limitations.
The method as such is not able to determine entropies or free
energies from the simulation, as these would need knowledge
of the density of states, g (N,V,E), of the model, which is the
micro-canonical partition function from which the canonical
one is obtained by Laplace transform,

ZðN;V;TÞ ¼
ð
dEgðN;V;EÞe�bE : (6)

Within the scope of MC this shortcoming is most successfully
addressed by two flat-histogram MC schemes, the multi-canonical
MC (MuMC) and the Wang–Landau MC (WLMC) scheme and its
mathematical pendant, stochastic approximation MC (SAMC). Both
schemes aim at sampling the macroscopic variable energy with a
uniform probability distribution and achieve this by related, but
somewhat different means. They are developments out of the
classic idea of umbrella sampling MC8 and can be formulated
for the uniform sampling of other macroscopic variables as well.
In the literature, there exist reviews on the MuMC method6,9–11

and the Wang–Landau method,12–15 so we will focus here especially
on their application to the thermodynamics and structure of
polymer systems. Also, for the WLMC method some mathematical
background relating it to the SAMC approach needs to be reviewed.

In the following sections we will first present the mathe-
matical background on MuMC, WLMC and SAMC, and then
turn to selected results obtained with these methods for the
thermodynamics and structure of polymer systems. A final
section will present our conclusions and an outlook.

2 Background on the simulation
methods

This section will present the idea and the background on the
MuMC and the WLMC and SAMC algorithms and discuss some
particulars of their application to polymer systems.

2.1 Multi-canonical Monte Carlo

The idea of multi-canonical MC (MuMC or ‘‘muca’’) methods
dates back to 1991/92 when Berg and Neuhaus16,17 proposed a
novel simulation approach for overcoming the exponential
(sometimes called ‘‘super-critical’’) slowing down of MC simula-
tions at first-order phase transitions in the canonical ensemble.
For finite systems, the phase coexistence at (temperature driven)
first-order phase transitions is reflected by a double peak of the
energy distribution Pcan,b(E), with the minimum in between
governed by the (reduced) interface tension sod between the
coexisting ordered and disordered phases: Pmin/Pmax p

exp(�2sodLd�1), where L is the linear size of a d-dimensional
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cubic system and periodic boundary conditions are assumed.
Due to this exponential suppression with increasing system
size, it is very unlikely to transit in a canonical simulation from
one phase to the other and hence it is very time consuming to
generate accurate equilibrium results.

By ‘‘filling’’ this rare-event region with an artificial weight
factor W(E) (to be determined below), their method may be
viewed as a specific realization of non-Boltzmann sampling
which has been known since long as a legitimate alternative to
the more standard MC approaches.18 In this interpretation, the
multi-canonical method appears as a non-standard reweighting
approach,19 a view which in most cases simplifies the actual
implementation and paves the way to multidimensional gen-
eralizations. Alternatively, their method may be interpreted as a
suitable combination of canonical statistics over an extended
temperature or energy range in a single simulation run, instead
of patching many independent canonical simulations at different
temperatures as in (static) reweighting procedures such as the
weighted histogram analysis method (WHAM).20,21 The latter view
is stressed in the original papers by Berg and Neuhaus16,17 and
explains the name ‘‘multi-canonical’’.

It should be noted that the practical significance of non-
Boltzmann sampling has, in fact, already been demonstrated
much earlier by Torrie and Valleau8 with the ‘‘umbrella sampling’’
method. Most of these early applications aimed at reliable com-
putations of free-energy differences which can be obtained by
canonical Boltzmann sampling only indirectly via so-called
thermodynamic integration. Later the attention slowly shifted
to problems with rare-event sampling and quasi-ergodicity,22 but
it took many years before the development of the multi-
canonical scheme turned non-Boltzmann sampling into a widely
appreciated practical tool in computer simulation studies. Once
the feasibility of such generalized ensemble approach was
realized, it was for instance readily introduced into protein
folding studies11,23 and many related methods were developed.

The multi-canonical method may be viewed as a two-step
process, where one first iteratively improves guesses of an
a priori unknown weight function W(E) for (e.g., polymer) configura-
tions x with system energy E(x) which replaces the usual Boltzmann
weight e�bE in the canonical partition function (2) and (6):

ZðTÞ ¼
X
x

e�bEðxÞ ¼
X
E

gðEÞe�bE

! ZMuMC ¼
X
x

WðEðxÞÞ ¼
X
E

gðEÞWðEÞ:
(7)

Here and in the following we omit the arguments N, V of the
canonical partition function and the density of states. Correspond-
ingly, the acceptance criterion of traditional Metropolis MC simula-
tions is modified to

paccðx! x0Þ ¼ min 1; e�bðE
0�EÞ

� �

! min 1;
WðE0Þ
WðEÞ

� �
;

(8)

where E � Eold is the current or ‘‘old’’ energy of the configuration
(or micro-state) x and E0 � Enew the ‘‘new’’ energy of a proposed

updated configuration x0. As in Metropolis simulations, the
update proposals for going from a configuration x to a configu-
ration x0 may be local (such as end rotation, bend, or crankshaft
moves for polymers) or non-local (such as spherical rotation or
pivot moves).

After having determined an accurate multi-canonical weight
W(E), this is kept fixed and following some thermalization
sweeps a long production run is performed, where any statistical
quantity O can be ‘‘measured’’ multi-canonically,

hOiMuMC ¼
X
x

OðxÞWðEðxÞÞ=ZMuMC: (9)

The usually desired canonical statistics can be obtained by
reweighting the multi-canonical to the canonical distribution,
e.g., canonical expectation values (3) are computed as

hOi(b) = hO e�bEW (E)�1iMuMC/he�bEW (E)�1iMuMC. (10)

Note that this representation is exact for any choice of W(E). As
usual, in a simulation run with N measurements, the expecta-
tion values are replaced by mean values (their ‘‘estimators’’),
e.g., hOiðbÞ ¼ Oe�bEWðEÞ�1

� �
MuMC

.
e�bEWðEÞ�1
� �

MuMC
�PN

i¼1
Oi e

�bEiW Eið Þ�1
�PN

i¼1
e�bEiW Eið Þ�1: Of course, the ratio of

expectation values on the right-hand side of (10) is in principle
prone to bias effects, but here strong cross-correlations act
positively and keep this potential problem small.

The key of the multi-canonical method lies in the first step
where the weight W(E) is usually adjusted in such a way that the
transition probabilities between configurations with different
energies become roughly constant, giving an approximately flat
energy histogram

H(E) p PMuMC(E) = g(E)W(E) E const. (11)

If this can be achieved, the simulation thus performs approxi-
mately a random walk through energy space. The second step is
the actual production run, which works with fixed weights as
produced iteratively in step one. By this one assures that
detailed balance is implemented in the same way as in the
standard Metropolis Markov chain procedure.

The formal solution of (11) is W(E) = g�1(E). However, since
the density of states g(E) is usually not known beforehand one
has to proceed by a weight iteration which is initialized by
setting W (E) = W (0)(E) � 1. One thus performs a standard
canonical simulation at b = 0 which yields H (0)(E) p Pcan,b=0(E).
This current multi-canonical histogram is used to determine
the next guess for the weights, the simplest update is to
calculate W (1)(E) = W (0)(E)/H (0)(E). The following run is per-
formed with W (1)(E) inserted in (7) and (8), which gives the
energy histogram H (1)(E) and an improved estimate of the
weight function, W (2)(E) = W (1)(E)/H (1)(E). This iterative proce-
dure can be continued,

W (n+1)(E) = W (n)(E)/H (n)(E), (12)

until the multi-canonical histogram H (n)(E) is judged to be ‘‘flat’’
enough. From (12) it is obvious that once H (n)(E) E const,
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W (n+1)(E) p W (n)(E) p g�1(E) is at a fixed point of the iteration
and will not change anymore.

An example for an AB heteropolymer chain24 is shown in
Fig. 1. Here the density of states g(E) varies over about 50 orders
of magnitude. This sounds already like a lot, but once the multi-
canonical iteration is set up, it can be driven even much further:
Fig. 3 of ref. 25 and Fig. 2 of ref. 26 show density of states that are
covering more than 3000 orders of magnitude (for a 309-mer)!

An important parameter of this procedure is the simulation
length N(n) in the nth iteration step. If this is too small, the
resulting multi-canonical histogram is very noisy, which enters
directly in the generalized Boltzmann probabilities of the next
iteration step. On the other hand, in order to optimize the total
time needed to construct the final multi-canonical weight, N(n)

should also not chosen to be too large. Since here also auto-
correlation times (in the intermediate multi-canonical ensembles
during the iteration) play an important role, it is not straight-
forward to give an a priori estimate of the optimal values of N(n)

(which, in fact, may vary with the iteration level n).
Another option to tune the performance of the weight

iteration is choosing a suitable energy range, in which the
‘‘flattening’’ of the multi-canonical distribution is started, for
the problem at hand. For instance, for a temperature driven
first-order phase transition it may be useful to place this range
in the regime between the two peaks of Pcan,b(E) associated with
the disordered and ordered phases. This can be simply
achieved by setting initially W(0)(E) � e�b0E (instead of �1) for
a suitably chosen b0. This corresponds to a canonical simula-
tion at b = b0 in the 0th iteration step, resulting in H(0)(E) p

Pcan,b0
(E) which covers the desired energy range around hEi(b0).

The remaining iteration then proceeds as before.
An efficient construction of the weight W (E) is the most

important technical part of multi-canonical simulations. As
outlined above, the caveat of the simple direct iteration scheme
is its sensitivity to the run times N (n). A more sophisticated
recursion, in which the new weight factor is computed from all
available data accumulated so far, reduces this dependency
significantly and as a consequence is more robust. Noting that
in the Metropolis acceptance criterion (8) only weight ratios

enter, it is useful to define R(E) = W(E + DE)/W(E) with some DE.
The accumulative weight iteration then works as follows:

(1) Perform a simulation with R(n)(E) to obtain the histogram
H(n)(E), taking N(n) energy measurements.

(2) Compute the statistical weight of the nth run:

p(E) = H(n)(E)H(n)(E + DE)/[H(n)(E) + H(n)(E + DE)]. (13)

(3) Accumulate statistics:

p(n+1)(E) = p(n)(E) + p(E), (14)

k(E) = p(E)/p(n+1)(E). (15)

(4) Update weight ratios:

R(n+1)(E) = R(n)(E)[H(n)(E)/H(n)(E + DE)]k(E). (16)

Goto step 1.
The recursion is initialized with p(0)(E) = 0. Due to the

accumulated statistics, this procedure is rather insensitive to the
length N(n) of the nth run in step 1. The idea behind (13) is that the
a priori error estimate for a histogram H(E) (normalized to total

counts) is given by
ffiffiffiffiffiffiffiffiffiffiffiffi
HðEÞ

p
. The rest is basically just error

propagation. Of course, to arrive at handy and easy-to-use formulas
some approximations are necessary, such as neglecting autocorre-
lation times, cross-correlations in histograms etc., but apart from
that the accumulative recursion has a firm theoretical basis.

Finally it should be stressed that also when employing flat-
histogram ideas the choice of update proposals can play a
crucial role for the success of polymer simulations.26 Moreover,
it turned out to be very useful to allow the range of the proposed
update moves to become energy dependent (at high energies
corresponding to high temperatures, large moves will be accepted,
whereas at low energies corresponding to low temperatures, only
small moves have a reasonable acceptance probability). Of course,
a priori this energy dependence causes violations of detailed
balance. This can be regained, however, by introducing suitable
bias correction factors in a Metropolis–Hastings scheme.26

At times where the computer performance increases mainly
in terms of parallel processing on multi-core architectures,
it is crucial to parallelize the applied algorithm. With this
in mind, Zierenberg et al.27 recently developed a parallel
implementation of the multi-canonical method. The parallel-
ization relies on independent equilibrium simulations that
only communicate when the multi-canonical weight function
is updated. That way, the Markov chains efficiently sample
the temporary distributions allowing for good estimations of
consecutive weight functions. For similar approaches see
ref. 28 and 29.

Overall, the parallelization was shown to scale quite well
in applications to generic spin models and coarse-grained
polymers.27,30,31 In all cases, a close to linear scaling was
observed with slope one for up to 128 cores used. This means
that doubling the number of involved processors would reduce
the wall-clock time necessary by a factor of two. It is a straight-
forward and simple implementation especially if wrapped around
an existing multi-canonical simulation code. Therefore the

Fig. 1 The almost horizontal line fluctuating between 90–120 counts per
energy bin shows the flat multi-canonical energy histogram hmuca(E) and
the smooth curve spanning about 50 orders of magnitude depicts the
resulting density of states g(E). The data are obtained from a MuMC
simulation of an AB heteropolymer with 20 monomers forming the
sequence BA6BA4BA2BA2B2 (taken from ref. 24).
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parallelization can be easily applied also to other flat-histogram
simulations, e.g., multimagnetic simulations where the magne-
tization32,33 or any order-parameter34,35 distribution is flat-
tened. It should be emphasized that no greater adjustment to
the usual implementation is necessary and that additional
modifications may be carried along. This allows a straight-
forward application of this parallelization to a broad class of
complex systems such as (bio)polymers and (spin) glasses.

2.2 Wang–Landau Monte Carlo and SAMC

In 2001 F. Wang and D. P. Landau published two ground
breaking papers36,37 presenting a new simulation method
aimed at determining the density of states of a model system
and applied it to the 2d Ising model and other spin models, and
in 2002 the first application to the phase behavior of a liquid38

was published. The basic idea is the following. If one assumes
that a given MC procedure moves through the configuration
space of a system in an unbiased fashion, then the probability
for the next state, x0, in a Markov chain to have an energy, E0, is
proportional to the number of states g(E0)DE in the interval
[E0,E0 + DE]. Equally, the probability to start this move from a
specific micro-state, x, belonging to the energy, E, is given by
1/(g(E)DE). When one now accepts this move with an accep-
tance probability proportional to the ratio of the densities of
states g(E)/g(E0), the MC procedure should lead to a random
walk over the allowed energy values of the model and thus to a
uniform sampling of all energy states.

The problem here is, as in the MuMC approach, that g(E) is
just the unknown quantity the method aims to determine. This
is realized through the following basic schematic iteration
procedure:

(1) Start with the unbiased guess g(E) = 1 8E, a visitation
histogram H(E) = 0 8E and a modification factor f = f0.

(2) Perform a MC move going from x to x0 (i.e., from E to E0)
and accept it with the Metropolis-like acceptance criterion
min(1,g(E)/g(E0)). If the move is accepted, update g(E0) = fg(E0)
and H(E0) = H(E0) + 1, else update g(E) = fg(E) and H(E) = H(E) + 1.

(3) Check whether the visitation histogram is flat, i.e.,

ð1� cÞHðEÞoHðEÞo ð1þ cÞHðEÞ, where HðEÞ is the average

visitation. If this is fulfilled set H(E) = 0 8E and f ¼
ffiffiffi
f

p
and go

to 2. If it is not fulfilled go to 2 directly.
(4) Stop when f o 1 + e.
Typical choices are f0 = e, c = 0.2 and e = 10�9. Wang and

Landau showed that this scheme is empirically able to repro-
duce, e.g., the analytically known density of states of the 2d
Ising model to a very high accuracy, but why? Clearly, the
schematic description of the algorithm already shows that the
method is not in the class of Markov chain MC methods, as
the acceptance criterion at any time depends on the history of
the simulation. Zhou and Bhatt39 argued that the WL algorithm
converges, if one can assume the sub-ordinate process generated
on the macroscopic variable (i.e., the energy in the above
discussion) to be a Markov process, but just assumed that this
would be the case if the updates of the density of states are
spaced in time with an interval larger than the autocorrelation

time of the underlying MC process. They also proved that the

final error of the above scheme scales as
ffiffiffiffiffiffiffiffi
ln f

p �1 with a final
modification factor f, which was verified in simulations.40,41 To
overcome this limitation, a modification of the original method
has been suggested,42,43 where the modification factor is changed
asymptotically proportional to 1/t (t being the simulation time). In
this method the final error is not bounded from below, how-
ever, it has been pointed out,44 that the practical performance
of this version of WLMC for polymer simulations depends on
the physical model it is applied to.

In parallel to much of this development, within the mathe-
matical literature on stochastic optimization problems Stochastic
Approximation Monte Carlo (SAMC) has been formulated.45–47

Using the mathematical background of stochastic approximation
methods, Liang et al.46 proved the convergence of SAMC and
showed that WLMC could be seen as a version of SAMC. The
starting point of SAMC is the same as for WLMC. Assume a
configuration space, G, and a microscopic probability density,
c(x), on this space. Assume an energy interval [Emin,Emax] which
can be larger than the admissible energy range of the model
system, specifically one can choose Emin o Egs, where Egs is the
ground-state energy of the model. We further assume that we
have a set of M discrete energy states, either because they are
intrinsic to the model or because we have performed a numerically
necessary binning of adjacent energies when the model has a
continuous variation of admissible energies. This set of energies
leads to a unique partitioning of the microscopic configuration
space G,

g Eið Þ ¼
ð
Ei �UðxÞoEiþDE

dxcðxÞ: (17)

Let g̃(Ei,t) denote the approximation of g(Ei) at time t in the
simulation and define Si(t) = ln g̃(Ei,t). Perform a Markov chain
MC simulation with the stationary distribution

pðxÞ /
XM
i¼1

cðxÞ
~g Ei; tð ÞwiðxÞ; (18)

where wi(x) = 1 if Ei r U(x) o Ei + DE and zero elsewhere. If a new
state x0 with energy Ej is generated from a state x with energy Ei

with a conditional probability q(x0|x) then the Metropolis acceptance
criterion of this Markov chain is given as

min 1;
~g Ei; tð Þ
~g Ej ; t

 �cðx0Þ

cðxÞ
qðx0jxÞ
qðxjx0Þ

 !
: (19)

Finally, the update of the guess for the density of states is performed
on its logarithm:

S(t + 1) = S(t) + gt(e(t) � p*). (20)

The modification factor is typically chosen as gt = g0t0/max(t0,t), i.e.,
it has an asymptotic 1/t dependence. S, e, p* are M-dimensional
vectors. S is the vector of the {Si(t)}i=1,. . .,M, the vector e = (0, 0,. . .,1,
0,. . .,0) has a one in the position of the energy value after the move,
and the vector p* is a biasing probability which will be the
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sampling frequency of the energy states when the process is
converged, i.e., one has

XEmax

E¼Emin

p�ðEÞ ¼ 1: (21)

The following two necessary conditions exist for this method to
converge:45,46

X1
t¼1

gt ¼ 1; (22)

X1
t¼1

gnt o1 for some n 2 ð1; 2Þ: (23)

The first of these conditions is violated by the original update
version36,37 of WLMC which explains its lack of convergence,
but it is fulfilled in the modified 1/t update of ref. 42 and 43.
The SAMC update scheme converges in the following form:

ln[ g̃(E)] - ln[g(E)] + C � ln[ p*(E) + F] if E A {E}adm,
(24)

ln[ g̃(E)] - 0 if E e {E}adm, (25)

where {E}adm is the set of admissible energy values of the model
and C is an undetermined constant. If we let M0 be the number
of energy states in the chosen energy interval which are not
admissible energy states of the model, then

F ¼ 1

M �M0

X
E=2fEgadm

p�ðEÞ: (26)

The sampling frequency we introduced, p*(E), defines the visita-
tion probability of the different energy states when the procedure
converges, i.e., for a converged simulation and one has

HðEÞP
E

HðEÞ ! p�ðEÞ E 2 fEgadm: (27)

The choice of p*(E) is arbitrary, however, different choices may
prove more or less efficient in sampling rare states in configu-
ration space.

To make contact with the WLMC method we have to con-
sider a flat sampling of configuration space, i.e., c(x) = const,
without biasing the moves, i.e., q(x0|x) = q(x|x0) and a flat target
sampling of the energy interval, p*(E) = 1/M. Then (19) gives the
acceptance rate of the WLMC scheme, and we have from (24)

ln[ g̃(Ei,t)] - ln[g(Ei)] + C0 (28)

where we have subsumed all constants on the right side into
one constant C0. Since ln[g(Ei)] can only be determined up to an
unknown constant anyway, this is the approximation idea of
the WLMC method. A discussion of the convergence of WLMC
therefore should not be performed within the context of
Markov chain Monte Carlo methods and detailed balance
conditions, but as a special case of SAMC.

There are, however, several algorithmic advantages in using
the SAMC scheme:
� The flatness criterion in the WLMC scheme only works if

the energy range or energy values of a model system are

determined beforehand, whereas in SAMC one can work with
an arbitrary range encompassing the physical one.
� Even then, the WLMC iteration sometimes does not stop,

due to the stochastic nature of the time when the flatness
criterion is reached. SAMC in contrast is stopped after a pre-
determined time, when gt drops below some chosen threshold.
� SAMC allows for a selective bias towards a chosen energy

range by selecting the sampling probabilities p*.
The quality of convergence of SAMC, however, is determined

by the same requirement as in WLMC, the final visitation
histogram to the energy states has to be flat (after normal-
ization by the bias p* if necessary). The applicability of SAMC
for polymer simulations has recently been analyzed in detail by
Werlich et al.48

The WLMC method has been parallelized along similar
ideas used in the parallelization of the MuMC method49 and
tested on applications to, e.g., spin systems and adsorption of
polymers onto walls. The scheme consisted of parallel threads
calculating the density of states in overlapping energy intervals
partitioning the complete energy range, which could be exchanged
when they reached the same energy value. The performance of this
parallel approach, as usual, sensitively depended on the choice of
simulation parameters.

3 Selected results

In this section we will present selected results achieved by the
application of MuMC and WLMC approaches to polymer physics
problems. The presentation will be along the physical problems
and not the methods as in the previous section. We will focus on
results we find of general relevance and will strive for a covering
of what we find to be the essential literature in the area. We
will furthermore limit our discussion to coarse-grained model
systems.

3.1 Single chain behavior in the bulk

In the limit of infinite chain length, single polymer molecules
constitute a well-defined thermodynamic system able to exhibit
phase transitions, the most prominent of these is the coil–
globule transition of homopolymers. But also for finite chain
length important phase-transition-like structural transforma-
tions exist, most importantly the folding transition of proteins,
i.e., of specific sequences of heteropolymers of amino acids.

3.1.1 Homopolymer chains. One of the early applications
of the MuMC approach to polymer problems is given by the
work of Noguchi and Yoshikawa where they studied the
collapse transition of stiff homopolymer chains.50 Stiffness
effects on the morphology of collapsed polymer chains and
polymer aggregates have been a recurring topic in the applica-
tion of flat-histogram simulations to polymer problems over the
last 20 years. Noguchi and Yoshikawa were interested in the
ability of simple models for stiff homopolymers to reproduce
and predict the non-trivial structure formation, most notably a
collapse into a toroidal structure, occurring for some DNA
variants. Using MuMC simulations, their model of tangent
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hard-sphere chains with a persistent mechanism of flexibility
and square-well attractions between the monomers showed
a continuous collapse transition for flexible homopolymer
chains, which became a first-order transition beyond a certain
stiffness value. For very high stiffness, the model exhibited a
collapse into a toroidal structure as found in the DNA case,
at intermediate stiffnesses toroidal structures and rod-like
ordered globules (akin to the lamella folded states of crystal-
lized homopolymers51) coexisted. The change from a contin-
uous transition for flexible polymers to a first-order collapse for
sufficiently stiff chains was expected on theoretical grounds52

and was studied for very long chains by Bastolla and Grass-
berger using the advanced chain-growth Monte Carlo method
PERM (pruned enriched Rosenbluth method)53 for lattice
homopolymer models at that time. The qualitative phase diagram
for stiff chains, which Noguchi and Yoshikawa found for a
continuum polymer model, could be confirmed in a canonical
MC simulation of the bond-fluctuation model54 for similar
chain lengths, whereas a study of longer chains needed an
extended ensemble MC scheme55 which also produced other
collapsed morphologies (e.g., tennis rackets) as found in, e.g.,
AFM experiments on polysaccharides.56 The extremely challen-
ging parts of the phase diagram from the computational point
of view are the dense collapsed and potentially ordered states
and transitions between them. The elucidation of the equili-
brium properties of these states requires the application of the
most advanced flat-histogram MC methods as well as carefully
designed update moves like end-bridging,57 double-bridging58

and pull-moves59 or MuMC chain-growth methods.60 Progress
in these fields has led to recurring simulation studies and
an improved understanding of these structures over the last
20 years.

The first WLMC simulations of single homopolymers61 were
targeted at the determination of the excess entropy of self-
avoiding walks compared to random walks and also exhibit a
first application of WLMC methods to ring polymers.62 Rampf
et al., in a series of papers63–65 using WLMC simulation of
the bond-fluctuation model, returned to the problem of the
collapse transition of a homopolymer chain. In ref. 63 and 64
they showed that the coil–globule transition can be of first
order, and not continuous as believed until then, when the
range of the attractive interaction becomes short enough.
Parsons et al.66 found no such first-order collapse for a con-
tinuum model with Lennard-Jones interactions, but also did
not determine the density of states to low enough energies
to identify the first-order freezing transition in the collapsed
globule, which was identified in ref. 65 for the bond-fluctuation
model and a longer range of attractive interactions compared to
ref. 63 and 64. A detailed study of the effect of the interaction
range was then presented for a continuum model by Taylor
et al.67,68 using flexible tangent hard-sphere chains with square-
well attractions. These works established that for every fixed
chain length, N, there is a range of the attractive interaction,
lc(N), where the collapse transition changes from first order
(for l o lc(N)) to second order (for l 4 lc(N)), a finding
supported by simulations using a variant of the MuMC method

applied to a continuum chain model.69 This behavior carries
over to the thermodynamic limit and lc(N) - lc(N) at which
value the liquid phase gets destabilized for l o lc(N) due to
the shortness of the attraction and only the gas phase (coil) and
solid phase (ordered globule) survive.

Let us discuss the analysis of flat-histogram simulations
from which the above results were obtained. The main result of
flat-histogram simulations is the micro-canonical entropy, i.e.,
the logarithm of the density of states. This function is plotted
for several models on the top of Fig. 2 to give an idea about its
typical shape. For the tangent square-well spheres chain the
range of the attractive interaction is set to l = 1.1 (the hard-
sphere diameter of the monomers is set to s = 1, the bond
length also).67,68 For the fused square-well spheres chain the
bond length is set to l = 0.6. The third density of states is from a
lattice model, the bond-fluctuation model63,64 and for chain
length N = 256. All models exhibit a maximum degeneracy for
energies below the maximum energy value, a finite size artefact
leading to negative micro-canonical temperatures for energies
larger than the location of the maximum. The S(E) curves are

Fig. 2 Top: Micro-canonical entropies (i.e., the logarithm of the density of
states) as a function of energy per monomer for a tangent square-well
spheres chain of length N = 128 (blue curve), a fused square-well spheres
chain (bond length l = 0.6) of length N = 40 (red curve) and a bond-
fluctuation model lattice chain of length N = 256 (green curve). Bottom:
Micro-canonical temperature (blue curve) as a function of energy per
monomer for the tangent square-well spheres chain from the top figure.
Also shown is the canonical specific heat for this chain (values on top,
magenta curve) vs. the inverse temperature. The Maxwell-like construction
for the inverse temperature curve determines a first-order crystallization
transition, the isolated inflection point (filled blue circle) a second-order
collapse transition.
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rather non-descriptive, but contain all thermodynamic infor-
mation on the model system. For all of them, there exist convex
regions (so-called convex intruders) for certain values of the
energy which indicate a first-order phase transition region, in
which energy values connected by a common tangent construc-
tion to the S(E) curves denote coexisting phases. The phase
transitions are most easily analyzed for finite chain length N in
the micro-canonical ensemble,70–73 e.g., by the behavior of the
inverse micro-canonical temperature, T�1 = dS(E)/dE, shown on
the bottom of Fig. 2 for the tangent square-well spheres chain.
The common tangent construction here leads to a Maxwell-like
loop (dashed blue line), whereas a second-order phase transition
is indicated by an isolated inflection point (filled blue circle) of
the curve. With decreasing interaction range this inflection point
moves into the coexistence loop of the first-order transition,
meaning that the transition from the random coil to the liquid
globule becomes metastable and a direct transition from a
random coil to an ordered (in this case fcc ordered) globule
occurs.67

From the micro-canonical density of states, the canonical
partition function is determined by a Laplace transform
ZðTÞ ¼

P
E

gðEÞ expð�bEÞ and from this partition function all

thermodynamic functions in the canonical ensemble can be
calculated, e.g., F (T) = �kBT ln[Z(T)]. In the canonical ensemble
the phase transformations of the chains can be most easily
identified as peaks in the specific heat, C(T) = qE/qT = �Tq2F/qT 2

(magenta curve in the bottom part of Fig. 2). The transition
temperatures obtained from the micro-canonical and the canonical
analysis do not agree for finite chain length (system size) but do
so in the thermodynamic limit N - N. From such a combined
canonical and micro-canonical analysis of the collapse transition
of flexible chains the phase diagram as a function of attraction
range arises shown in Fig. 3. In the infinite chain length limit,
the tricritical point in this figure moves to lc(N) = 1.15.

Incidentally, this value is identical to the value where the liquid
phase becomes unstable for colloidal systems with a square-well
attraction.74 Due to the correspondence between the single chain
phase diagram and the polymer solution phase diagram, the
latter will also exhibit a vanishing dense solution phase at this
crossover.

An alternative way of analyzing the phase behavior within
the canonical ensemble consists in determining the Fisher
zeros of the partition function in the complex temperature
plane.75 This approach delivers consistent results to the micro-
canonical or standard canonical ones.

The fcc crystal in the ordered state of the collapsed globule
occurring for the tangent hard-sphere chains is reminiscent of
the crystal structures occurring in Lennard-Jones clusters, and
this analogy has been analyzed in detail by Schnabel et al.25,76

using MuMC simulations and by Seaton et al.77 using WLMC
simulations. For finite chain lengths, the surface to volume
ratio of the globular state is not small, and thus reordering
transitions occurring at the surface of the globule lead to
prominent low-temperature peaks in the specific heat of the
system, similar to finite-size rounded first-order peaks.78

Schnabel et al. found magic chain lengths corresponding to
magic numbers in Lennard-Jones clusters, where stable icosa-
hedral ground-state structures are populated. With growing
chain length a next shell around the icosahedral structure is
started in an anti-Mackay fashion (hcp-like ordering) giving way
to a closure of this shell before the next magic chain length in a
Mackay fashion (fcc-like ordering), where we used nomenclature
of the classification of Lennard-Jones clusters. In the thermo-
dynamic limit these transitions no longer contribute (as pure
surface effects) and one is left with bulk crystallization into an
fcc ground state as also found in ref. 67.

When the macromolecule is enclosed in a cavity of linear
extent comparable to its (free) radius of gyration the character-
istics of the coil–globule transition may be modified by con-
finement effects. The transition to the ordered state of the
collapsed globule, on the other hand, is usually hardly affected
by the confinement because in both the ordered and disordered
globular state the polymer is compact and hence usually
smaller than the confinement scale. A prominent example is
the folding behavior of proteins in a cellular environment, for
which an increase of the folding temperature due to the
confinement has been reported.79 A similar effect was observed
in a MuMC simulation for the coil–globule transition of a
simple flexible polymer in a spherical cavity,80 albeit just in
the opposite temperature direction. One plausible reason for
this difference is that proteins are much stiffer than the
polymer simulated in ref. 80. This explanation has recently
been supported by further MuMC simulations including an
explicit bending stiffness term.81

Let us hence return now to the question of stiffness effects
on the structure of collapsed polymers with which we started
this section. One point to note is that not all stiffnesses are
created equal. Using a rotational isomeric state like stiffness
with anisotropic interactions based on torsional degrees of free-
dom, Kemp et al.82 with MuMC simulations and Varshney et al.83

Fig. 3 Phase diagram of a tangent hard-spheres chain with square-well
attraction in the temperature-interaction range plane. The diagram is for
chain length N = 128, but the topology survives in the thermodynamic limit
(taken from ref. 67).
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with WLMC simulations studied the helix–coil transition of stiff
polymers. Later Magee et al.84 showed that this transition can
even be introduced by isotropic interactions, when one intro-
duces stiffness by studying fused-sphere models, i.e., models
where the size of the monomer is larger than the bond length, a
finding later also reported from WLMC simulations.15 However,
here the helical state is only stable for very short chains,
changing into stems wrapped by helices for longer chains.
Employing instead angle potentials with 180 degrees as the
minimal energy structure (persistent mechanism of flexibility),
Siretskiy et al.85 and Seaton et al.86 using a WLMC simulations to
generate a two-dimensional density of states depending on
stiffness energy and attraction energy, reproduced the collapsed
morphologies found in ref. 54 for the same class of stiffness
potentials. In recent MuMC simulations combined with parallel
tempering (in an ‘‘orthogonal’’ parameter direction) thermo-
dynamically stable phases exhibiting knotted conformations of
various knot types have been identified.87 However, the results
obtained so far are diagrams of states for fixed finite chain
length only, and the chain length dependence of these diagrams
and the extrapolation to the thermodynamic limit have not been
studied yet. Clearly, the asymptotically stable structures will be
determined by the competition between bending energy and
non-bonded energy with respect to the thermal energy, but
which ordered structures are favored in which region of this
two-dimensional phase space in the thermodynamic limit is
still an open question.

Besides these studies of linear homopolymers, flat-histogram
simulations have also been used to study the phase behavior of
rings,62 star polymers88 and dendrimers.89 For the rings, only
relatively short chains (N r 50) have been studied so far and the
main qualitative finding is that the strength of the coil–globule
transition relative to low-temperature ordering transitions is
reduced compared to linear chains of the same length. The
study of star polymers was performed using the bond fluctuation
model with an interaction range equal to the one used in ref. 63
and 64. Wang et al.88 confirmed the results for linear chains and
showed that the scaling curve Tcryst(N) � Tcryst(N) C N�1/3 for
the finite-size shift of the liquid-to-crystal transition is indepen-
dent on the functionality of the stars between 2 (linear chains)
and 12 arms. They also found that the choice of interaction

range d ¼
ffiffiffi
6
p

for this model yields the tricritical point where
the coil–globule and liquid–crystal transitions occur at the
same temperature. This finding is also compatible with the
results by Wang et al.89 for dendrimers, although the limited
size range and stronger fluctuations did not allow a quantita-
tive analysis of the thermodynamic limit there.

Another very active research field are studies of polymers in
disordered environments where one investigates the polymer
statistics in the presence of obstacles or impurities. It is often a
reasonable approximation to consider the dynamics of the
obstacles to be static (or at least much slower than the polymer
fluctuations), which allows one to apply the so-called quenched
approximation. The randomly placed obstacles then act as a
kind of ‘‘excluded volume’’ constraint for the polymer statistics
which leads to a very rugged free-energy landscape with many

rare-event states (e.g., squeezing the polymer through very small
channels between two obstacles is very unlikely). By artificially
softening these hard ‘‘excluded volume’’ potentials in a special
variant of MuMC, this landscape can be successfully flattened.
This was first demonstrated for flexible90 and semi-flexible91

polymers moving in uncorrelated disorder by comparison with
an especially designed chain-growth algorithm.92 More recently
this method has been applied to study semi-flexible polymers of
worm-like chain type in the (correlated) disordered background of
a quenched hard-disk fluid.93 As the main result of this study it
was found that the semi-flexible polymer still exhibits effective
worm-like chain statistics, but with a renormalized (smaller)
persistence length. A simple empirical relation between this
renormalized persistence length and the original ‘‘thermal’’ per-
sistence length defines a novel quantitative measure of molecular
crowding which suggests that it may be possible to use semi-
flexible polymers as a local probe of material microstructure.93

3.1.2 Heteropolymers and simplified protein models.
There are two main classes of heteropolymers studied in the
literature. In HP models, where H = hydrophobic and P = polar
repeat units make up the chain, the H units have an attractive
interaction among themselves, whereas the P units only have
excluded volume interactions with all other groups. In AB
models there are attractive AA and BB interactions (usually
taken as equal) and only repulsive interactions between A and B
units. The HP model is generally studied on the lattice and the
AB model more in the continuum, but both can be defined
in discrete and continuous versions. The HP model is built
to capture the hydrophobic demixing from a polar solvent,
while the AB model captures demixing between A and B in
neutral solvent.

When one distributes few attractive H monomers (regularly)
along a P chain, one has a chain with sticker monomers. This
was studied with MuMC simulations in two dimensions for a
lattice model in ref. 94 and in three dimensions for continuum
models in ref. 95 and 96. In ref. 96 a regular chain of type
(HPPP)n was studied and shown to exhibit micelle formation of
the H units. For a long enough chain the collapse proceeds
through two (for the longest chains simulated in this work)
stages: a formation of two micellar cores in the first stage of the
collapse which then aggregate at lower temperatures in a
second stage. The difference between the HP and AB hetero-
polymers concerning their collapsed morphologies was empha-
sized in a work studying regular (XmYm)n heteropolymers.97 For
the AB model the structures have to be symmetric under the
exchange of A and B, whereas for the HP model they are not.
Both models also show different trends in the nature of the
transitions as a function of the block length m. For m = 1, an
alternating copolymer, the collapse transition is continuous in
the HP model and strongly first order in the AB model. It then
gets first order in the HP model beyond block length m = 4, with
a decreasing width of the transition as function of the energy
per monomer. In the AB model, on the contrary, the first-order
character weakens with increasing m until a two-stage collapse
occurs around m = 8, and both transitions seem to merge for
still larger m.97
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The HP model is best known as a strongly simplified protein
model, obtained when the sequence of amino acids making up
a protein or short peptide is translated into a binary alphabet
only depending on whether an amino acid is classified as
hydrophilic or hydrophobic. In this case one has random-
looking (but not binomial98) sequences of H and P units with
a fixed length determined by the given protein one tries to
model. For these simulations the question of a possible thermo-
dynamic limit can not be posed and one has to study the
properties of each finite, individual sequence. One of the most
important properties of these sequences is their ground-state
energy, and it could be shown that both, MuMC simula-
tions99,100 using a MuMC PERM implementation60 and WLMC
simulations101,102 using an advanced move set57–59 were able to
reproduce or even improve the ground-state estimates for
designed HP sequences in the literature up to chain lengths
of N = 136. These general simulation approaches were therefore
in this aspect competitive with the best specialized ground-
state searches applied to these chains. The same behavior was
found for HP models on 2d and 3d fcc lattices.103 However, the
main result of the flat-histogram simulations, as always, was
the density of states and with that the complete thermal
diagram of states of these model chains. For these lattice
simulations, the diagram of states always showed two transi-
tions, the hydrophobic collapse (coil–globule transition in the
homopolymer case) followed by a transition to the native state
(liquid-to-crystal transition in the homopolymer case) at a lower
temperature. In a recent large-scale WLMC simulation also the
probability of knotting under native (ground-state-like) condi-
tions for random HP sequences with 500 residues has been
investigated.104 On average the lattice peptides are found
almost as knotted as globular homopolymers of comparable
density, but the introduction of sequence leads to a large
variability in the self-entanglements of heteropolymers.

These lattice based HP models do not show the two-state
folding often found for short proteins and peptides, whose
thermodynamics could be reproduced in a simple homo-
polymer chain model for short enough interaction range.68 From
this observation one can draw a speculative explanation for this
failing of the HP models: the interaction range in these (typically
simple cubic) lattice models is equal to the exclusion size of the
monomers, i.e., much larger than the range needed for a first-
order coil–crystal (native state) transition, which is about 10% of
the hard-core extension of the monomers. To introduce two-state
folding behavior for such chains, Gō-like model features with
energy penalties for deviations from the native structure have to
be introduced,105 or one can introduce a first-order transition by
inclusion of chain stiffness, as was done in ref. 24 for an AB model
in the continuum. This is illustrated in Fig. 4, which shows the
results for three simple AB sequences with 20 monomers exhibit-
ing (a) two-state folding, (b) folding through intermediates, as well
as (c) glass-like metastability. Finally, mimicking the experimental
approach to explore the properties (especially the aggregation
tendency) of proteins by point mutations of selected amino acids
in the sequence, the stability of the phase behavior of HP chains
under such mutations has also been studied.106

3.2 Single chains at surfaces

For many applications like surface coatings or colloidal stabili-
zation, the behavior of polymers at interfaces is of high rele-
vance, as is also true for the interaction of proteins with surfaces.
From the basic science point of view, single chains at surfaces
introduce an interesting competition between three-dimensional
phase transitions, two-dimensional phase transitions and the
adsorption transition of the chains onto the surface. For this
reason, in the last ten years many flat-histogram MC simulations
have been devoted to this problem. Two lines of approach have
been followed in these investigations: in the first one a chain
next to an attractive wall and confined by a second repulsive wall
at sufficiently large distance to the first wall has been studied,
i.e., a slit geometry; in the second line, tethered chains (one end
grafted to an attractive wall) in an infinite half-space have been
analyzed, the classical model for studying the adsorption transi-
tion in polymer physics. Both approaches differ in the contribu-
tion of the translational entropy of the chain, which depends on
the distance between the walls in the slit geometry.

Fig. 4 Free energy (up to an unimportant constant) as a function of the
overlap parameter Q for three AB sequences exhibiting (a) two-state
folding, (b) folding through intermediates, and (c) glass-like metastability
(taken from ref. 24).

Review Soft Matter

Pu
bl

is
he

d 
on

 0
4 

N
ov

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 d

i P
ad

ov
a 

on
 1

/1
4/

20
20

 6
:1

6:
20

 P
M

. 
View Article Online

https://doi.org/10.1039/c5sm01919b


652 | Soft Matter, 2016, 12, 642--657 This journal is©The Royal Society of Chemistry 2016

For homopolymer chains, the slit geometry has been studied
for a two-dimensional system in ref. 107 and for a three-
dimensional system in ref. 108–111 whereas the tethered
geometry has been studied in ref. 112–115. In both geometries
the three phases in 3d, coil, liquid globule and ordered globule
(for large enough interaction range) exist also in this case, but
in addition for very strong attraction to the surface, the quasi
two-dimensional chains show the corresponding 2d phases
(however, the nature of the 2d crystallization transition of
single polymer chains has not been analyzed yet). The two
regimes are separated as a function of attraction strength to the
surface by the adsorption transition. Close to this critical value
of the surface attraction, the chains are adsorbed but not
completely two-dimensional leading to further layering transi-
tions, especially of adsorbed ordered structures. A typical
diagram of states for a polymer chain at an attractive wall is
shown in Fig. 5. Adsorbed phases are indicated by the letter
‘‘A’’, desorbed by ‘‘D’’, extended states by ‘‘E’’, globular states
by ‘‘G’’ and compact ordered states by ‘‘C’’. For a related study
comparing canonical and micro-canonical analysis of non-
grafted homopolymer adsorption, see ref. 116 and 117.

The main difference between the two confining geometries
occurs for the adsorption transition. Möddel et al.109 in a study
of a semi-flexible continuum chain found that the adsorption
transition in the slit geometry can be of first order for short
chains, turning second order in the thermodynamic limit. This
is in contrast to the tethered case, where this transition is
always continuous. The difference is caused by the importance
of the translational entropy in the slit case. Furthermore
Möddel et al. argued that the adsorption temperature in the
slit geometry should be inversely proportional to N�1 ln Lz,
where N is the chain length and Lz the distance between the
walls. For every fixed N the transition temperature in the slit
geometry in the dilute limit Lz - N therefore goes to zero. The
nature of this phase diagram also did not depend on whether a
short-ranged108,112 or long-ranged van der Waals like109,114

attraction to the surface was used. A simulation at finite,
adjustable concentration (i.e., distance Lz between the slits) of

a simplified model for a polyelectrolyte in solution with its
counter ions was performed by Volkov et al.111 where they
determined a two-dimensional density of states g(E,V) depend-
ing on energy and volume. The main adsorption properties are
also preserved when one considers a polymer confined inside a
spherical cavity attracted by the inner wall of the sphere.118

Here the usually employed 9-3 Lennard-Jones surface potential
for a flat substrate (resulting from integrating a 12-6 Lennard-
Jones potential over the lower half space) has to be replaced by
a 10-4 Lennard-Jones surface potential (due to integrating over
the spherical surface). By an appropriate matching of the
coupling constants it can be theoretically argued that this
difference does not matter much119 and MuMC simulations
do confirm this expectation.118

Of high practical importance is the adsorption of polymers
on patterned surfaces, for instance for sensor applications.
Möddel et al.120 studied this for the adsorption of a homo-
polymer of length N = 40 onto a surface with a stripe pattern.
The adsorption phase diagram of a homopolymer next to a
homogeneously attractive surface is modified, because now the
adsorption to the surface out of the different three-dimensional
equilibrium structures (coil, globule, frozen) takes place with a
concomitant recognition of the surface pattern by the polymer.
For dominating attraction to the stripe, the polymer is extended
into a rod-like structure in the adsorption process. Such struc-
tures were also found in a variation to a hard-wall confinement,
where the phase behavior of a polymer chain next to a (flat)
membrane was studied.121 For very stiff membranes, the find-
ings reproduced the behavior at a hard wall, as expected. For
flexible membranes, a new adsorbed state occurred, where the
membrane tries to wrap around the adsorbed polymer. When
the intramolecular interaction of the polymer wins, the membrane
wraps around a compact, collapsed chain. For strong attraction
to the membrane (which was a square-lattice net), the chain
adsorbed in an extended configuration maximizing the mono-
mer–membrane contacts. Such behavior may depend on the
local commensurability of the membrane and the polymer,
however.

3.3 Chain aggregates

Folding of proteins or the collapse of polymers are among the
most prominent phase transformations of single macromole-
cules. In general, for an ensemble of a few interacting proteins
or polymers also the interplay with aggregation plays an impor-
tant role. In fact, for biopolymers, aggregation is one of the
most relevant molecular structure formation processes. An
important and extensively studied example is the extracellular
aggregation of the Ab peptide, which is associated with Alzheimer’s
disease. Aiming at an understanding of the basic mechanism of this
process, Junghans et al.72,122 considered a coarse-grained bead-stick
HP model in the continuum (also often referred to as ‘‘AB model’’),
where each residue is represented by only a single interaction site,
the ‘‘Ca atom’’. In particular they considered a short 13-mer with
sequence AB2AB2ABAB2AB (representing a Fibonacci sequence)
whose single-chain properties were already well studied.100 The
intermolecular interactions among the various peptides were

Fig. 5 Qualitative phase diagram of homopolymer chains next to an
attractive surface moving either freely in a three-dimensional slit geometry
(‘‘free’’) or in a tethered geometry where one end of the polymer is fixed on
the surface (‘‘grafted’’) (taken from ref. 115).
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assumed to be of the same 12-6 Lennard-Jones type as the
intramolecular interactions among the monomers or residues
of a single peptide. By confining M peptide chains in a cubic box
of edge length L (= 40) with periodic boundary conditions, the
relevant phase space could be completely covered by MuMC
simulations. As outlined above this allows one to analyze the
system from both the canonical and micro-canonical perspec-
tive. In order to distinguish between the fragmented and aggre-

gated regime, an order parameter G2 ¼
P
i;j

~r icm �~r jcm

 �2.

2M2

(with implicit minimal-distance convention for periodic bound-
ary conditions) was introduced that adopts the definition of the
squared radius of gyration for a single polymer and basically
measures the average spread of the center-of-mass distances
|-r i

cm �
-
r j

cm| of the M chains. In the aggregated phase, one thus
expects G2 E 0, whereas in the fragmented phase G2 approaches
a non-zero value.

Measuring the energy and specific heat as well as G2 and its
temperature derivative for systems with 2, 3, and 4 peptides,
clear evidence for a first-order-like aggregation transition was
obtained. For all three systems considered, the general beha-
vior turned out to be similar. There is only this single transition
which indicates that conformational changes of the individual
peptides accompany the aggregation process and are not sepa-
rate transitions, i.e., the hydrophobic core formation and the
aggregation transition happen at the same temperature. A
closer look for the 4-peptides system revealed, however, that
the micro-canonical entropy and temperature derived from the
multi-canonical data are so sensitive that a hierarchy of sub-
phases in the nucleation transition region can be resolved.123

Physically these sub-phases can be interpreted as signal that
the next peptide starts to join the aggregate. Using similar
techniques also the intra-association of hydrophobic segments
in a 62 segment heteropolymer chain has been investigated.124

In ref. 125 the micro-canonical thermostatistics of two isoforms
of the amyloid b-protein (the Src SH3 domain and the human
prion protein hPrP) was studied by using a coarse-grained
model. Emphasis was laid in this work on free-energy barriers
and the latent heat in these models, characterizing the amy-
loidogenic propensity, that is how aggregation-prone the
heteropolymers are.

In another MuMC simulation for 4 homopolymer chains of
length N = 13 (using the same model as above and formally the
sequence A13) it was observed that also in this case the collapse
of flexible polymers into the globular state and the aggregation
transition happen at the same temperature.126 In fact, to a good
approximation, the aggregated state of M polymers of length
N may be viewed as the collapsed globular state of a single
polymer of length MN, which explains this coincidence. Along
similar lines the aggregation properties of two coarse-grained
bead-stick polymers of length N = 22 have been studied in
ref. 127. More recently this finding has been confirmed in a
more elaborate parallel MuMC study of up to 24 flexible bead-
spring polymers of length N = 13, 20, and 27 confined in a
spherical cavity.128 Here the elasticity of the covalent bonds is
governed by the finitely extensible nonlinear elastic (FENE)

potential VFENEðrÞ ¼ �
K

2
R2 ln 1� r� r0ð Þ=R½ �2

� �
with r0 = 0.7,

R = 0.3, and K = 40. In this study particular emphasis was laid
on the analogy of the aggregation process to particle condensa-
tion31,129,130 and the finite-size scaling properties of the aggre-
gation transition.

Building on this earlier work mainly for flexible poly-
mers,72,122,126,128 recently a systematic investigation of the
influence of bending stiffness on the polymer aggregation
process has been conducted in ref. 131. In this study the same
coarse-grained bead-spring model with FENE bonds was
employed as in ref. 128, and again it was assumed that the
intra- and intermolecular interactions are identical and of 12-6
Lennard-Jones type. As for flexible polymers, the aggregated
and separated phases of M semi-flexible polymers can be
monitored by the ‘‘phase’’ separation order parameter G2. To
distinguish in the semi-flexible case amorphous from bundle-
like structures in the aggregated phase an end-to-end correla-

tion order parameter CR ¼
2

MðM � 1Þ
P
io j

~̂Ri 	 ~̂Rj

� �2
was intro-

duced, where ~̂Ri denotes the end-to-end vector (normalized to
unity) of the ith polymer. By performing extensive MuMC
simulations in a parallel implementation27 it could be shown
that the bending stiffness plays a crucial role in whether the
system forms an amorphous aggregate or a bundle structure.

Fig. 6 shows the resulting temperature–stiffness phase diagram
for eight 13-mers exhibiting a regime of rather flexible polymers
forming amorphous aggregates, an intermediate regime, and a
regime of rather stiff polymers forming bundle-like structures. In

Fig. 6 Aggregation phase diagram for eight 13-mers. Shown are a surface
plot of the end-to-end correlation parameter CR (see text), the maxima of
the heat capacity (black dots) and the temperature derivative of the phase
separation parameter G2 (blue squares). Several structural phases can be
distinguished: S (separated), A (aggregated), and F (frozen). In the lower
panel of the figure representative conformations in the low-temperature
phases are depicted (taken from ref. 131).
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the intermediate stiffness regime a micro-canonical analysis
showed that lowering the temperature first drives the system into
an uncorrelated aggregate, shortly followed by a second-order-like
transition into the correlated aggregate. The ‘‘frozen’’ (low-
temperature) states in Fig. 6 show a twisted bundle structure
if the stiffness is large enough. This sort of structure has been
reported before in the context of material design for specific
interactions usually related to proteins. Since the study of
ref. 131 did not include any specific interactions, but instead
a simple coarse-grained homopolymer model with short-range
attraction, hard-core repulsion and additional bending stiff-
ness, it is tempting to conclude that specific interactions are
not necessary for bundle formation. Specific interactions such
as, e.g., hydrogen bonding may, however, stabilize (or destabilize)
the occurring bundle structures.

A class of chain aggregates of increasing importance today
are microgels, formed either by chemical or by physical cross
linking. In this application so far only more classical simula-
tions have been applied which obtain the density of states of a
system by means of histogram reweighting techniques20,21 over
a parameter range usually more limited than possible in MuMC
and WLMC simulations. Kumar and Panagiotopoulos132 used
grand-canonical MC simulations of solutions of reversibly
associating polymers at different values of temperature and
chemical potential to obtain an estimate of the microcanonical
partition function of this system through histogram reweighting
of these simulations. They found that the gelation transition
is a continuous structural transition without thermodynamic
signatures. Clearly, further studies of the gelation transition by
means of MuMC and WLMC simulations would be possible
now and a timely endeavour.

4 Conclusions

Applications of flat-histogram Monte Carlo methods to polymer
simulations, be it in the form of the multi-canonical (MuMC),
the Wang–Landau (WLMC), or the more recent Stochastic
Approximation Monte Carlo (SAMC) scheme, have proven to
be an extremely powerful tool for obtaining accurate informa-
tion on the thermodynamics and structure of single polymer
chains and polymer aggregates over broad parameter ranges.
Typically these methods are able to give estimates of the
density of states which, in turn, may be used as a starting
point for micro-canonical considerations that can yield useful
complementary information to the more standard canonical
data analyses.

From experience with the examples of polymer physics
reviewed here and also from the numerous applications to
more traditional spin systems in statistical mechanics one
obtains the impression that the performance of the two methods,
MuMC and WLMC, is qualitatively comparable. A more quantita-
tive comparison is rather difficult since both methods depend on
quite a few parameters that govern their performance in a subtle
way and render a detailed and fair comparison quite cumber-
some. The pros and cons of the two methods are also very

sensitive to the specific model under study and the considered
ranges of the physics parameters.

The great success of flat-histogram methods was only pos-
sible, however, through a judicious choice of update proposal
moves, which for polymers can be quite a tricky issue. In fact, in
many applications this ingredient of flat-histogram Monte
Carlo simulations can be most important to achieve conver-
gence of the method. Even with the most advanced algorithmic
and move choices, however, the methods fight against one
problem which is underlying the foundations of statistical
physics: the entropy is an extensive thermodynamic variable
and thus the density of states grows exponentially in the
number of particles one is considering. For long single chains
in a continuum model this already led to variations of the
density of states over 3000 orders of magnitude,25,26 whereas a
recent study of a melt of short semi-flexible chains133 with 7200
monomers needed to determine a density of states over 5000
orders of magnitude. And the models used in these works were
simplified, coarse-grained polymer models. Obviously, this
poses great challenges when attempting to extend such
approaches to chemically realistic polymer models and more
complicated situations which will require further algorithmic
advances to become feasible. Among others, these include a
judicious choice of energy ranges, energy dependent update
moves (with bias corrections), optimized convergence proce-
dures, and also more refined parallelization schemes to fit flat-
histogram Monte Carlo methods perfectly into the architecture
of modern high-capability computers.
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91 S. Schöbl, J. Zierenberg and W. Janke, J. Phys. A: Math.

Theor., 2012, 45, 475002.
92 T. Garel and H. Orland, J. Phys. A: Math. Gen., 1990, 23,

L621–L626.
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102 T. Wüst and D. P. Landau, J. Chem. Phys., 2012,
137, 064903.

103 J. F. Liu, B. B. Song, Y. L. Yao, Y. Xue, W. J. Liu and
Z. X. Liu, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2014, 90, 042715.
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120 M. Möddel, W. Janke and M. Bachmann, Phys. Rev. Lett.,
2014, 112, 148303.

121 S. Karalus, W. Janke and M. Bachmann, Phys. Rev. Lett.,
2011, 84, 031803.

122 C. Junghans, M. Bachmann and W. Janke, J. Chem. Phys.,
2008, 128, 085103.

123 C. Junghans, W. Janke and M. Bachmann, Comput. Phys.
Commun., 2011, 182, 1937–1940.

124 T. Chen, X. Lin, Y. Liu and H. Liang, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2007, 76, 045110.

125 R. B. Frigori, L. G. Rizzi and N. A. Alves, J. Chem. Phys.,
2013, 138, 015102.

126 C. Junghans, M. Bachmann and W. Janke, Europhys. Lett.,
2009, 87, 40002.

127 T. Chen, X. Lin, Y. Liu, T. Lu and H. Liang, Phys. Rev. E:
Stat., Nonlinear, Soft Matter Phys., 2008, 78, 056101.

128 J. Zierenberg, M. Mueller, P. Schierz, M. Marenz and
W. Janke, J. Chem. Phys., 2014, 141, 114908.

129 A. Nußbaumer, E. Bittner and W. Janke, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2008, 77, 041109.

130 J. Zierenberg and W. Janke, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2015, 92, 012134.

131 J. Zierenberg and W. Janke, Europhys. Lett., 2015,
109, 28002.

132 S. Kumar and A. Z. Panagiotopoulos, Phys. Rev. Lett., 1999,
82, 5060–5063.

133 T. Shakirov and W. Paul, What drives crystallization in melts
of semi-flexible polymers? A Wang-Landau type Monte Carlo
study, preprint.

Review Soft Matter

Pu
bl

is
he

d 
on

 0
4 

N
ov

em
be

r 
20

15
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 d

i P
ad

ov
a 

on
 1

/1
4/

20
20

 6
:1

6:
20

 P
M

. 
View Article Online

https://doi.org/10.1039/c5sm01919b



