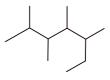
Esame di Chimica, Corso di Laurea in Fisica. Appello del 09/09/2020

PARTE 1: DOMANDE A RISPOSTA MULTIPLA SENZA CALCOLI

1. I	_a	configurazione	elettronica dello	ione P ³⁻ è:		
	B C	[Ne]3s ² 3p ³ [Ne]3s ² 3p ¹ [Ne]3s ² [Ne]3p ² [Ne]3s ² 3p ⁶				
2. Q	ua	ale delle seguent	i affermazioni ri	ferite allo ione S ²⁺ è	VERA?	
	A B C D	_	ione elettronica [N i di valenza o con Si			
3. Q	ua	ale delle seguent	i specie obbedisc	e strettamente alla r	egola dell'ottetto?	
$\Box A$	4	KrF ₂	$\square \ B XeF_4$	■ C CF ₄	\Box D ICl ₄ $^-$	\Box E SF ₄
5a. (A B C D E Qu A B C D	CO CH ₄ HF PH ₃ F ₂ nale delle seguen N As P Bi		ene due legami π? he ha il raggio minor	e?	
	A B C D E	Presenta formule Gli angoli di leg Ha geometria m Lo zolfo ha ibrio È lo ione solfito	e di risonanza game sono di circa colecolare trigonale dazione di tipo sp ³	piramidale		uppi di elettroni in totale
		_	game e due di no	-	1 8	
	A B C D E	Ad altalena A forma di T Angolare	ramidale			

8. Qual è la geometria dello ione BrO₃-? ΠА **■** B piramide a base triangolare \Box C tetraedrica □ D piegata Trigonale planare \Box E 9. Quale delle seguenti specie molecolari ha una forma trigonale planare per la teoria VSEPR? \sqcap A NH_3 \sqcap B H₂O CO₂ \Box C $\mathrm{NH_4}^+$ \Box D CH_3^+ Ε 10. Per quale dei seguenti solidi ionici vi aspettate un'energia reticolare più BASSA? MgO \Box B CaO \Box C SrO \sqcap D BaO Е RaO 11. Quale delle seguenti azioni farà aumentare la costante di equilibrio della reazione: $2 \text{ NO}_2(\mathbf{g}) \ll >$ $2 \operatorname{NO}(g) + \operatorname{O}_2(g) \quad \Delta H > 0$ Aumentare la temperatura ■ A Diminuire la temperatura В \Box C Aumentare il volume del recipiente di reazione Diminuire il volume del recipiente di reazione \Box D ΠЕ Nessuna delle azioni elencate 12. Scegliere la frase che meglio descrive un acido di Lewis: A Aumenta la concentrazione di ioni H⁺ in soluzione B È un donatore di protoni C È un accettore di coppie di elettroni D Aumenta il pH di una soluzione П E È un donatore di coppie di elettroni. 13. Quale punto in questo diagramma di fase di una sostanza pura rappresenta le condizioni in cui la fase liquida e quella aeriforme sono all'equilibrio in condizioni normali? П Α В П Pressure (mm Hg) \sqcap C \Box D Е Temperature (°C) 14. Quale dei seguenti processi comporta un $\Delta S < 0$? \Box A $H_2O(s) \rightarrow H_2O(l)$ \Box B $Br_2(l) \rightarrow Br_2(g)$ Cristallizzazione di I2(s) da una sua soluzione. C Espansione termica di un pallone riempito di $CO_2(g)$ \Box D \Box E Mescolamento di due volumi uguali di $H_2O(l)$ e $CH_3OH(l)$


15. Quale dei seguenti sistemi all'equilibrio si sposterà <u>verso i reagenti</u> se il volume viene ridotto?						
$\Box A 2 \operatorname{Mg}(s) + \operatorname{O}_2(g) <=> 2 \operatorname{MgO}(s)$ $\Box B \operatorname{SF}_4(g) + \operatorname{F}_2(g) <=> \operatorname{SF}_6(g)$						
$\Box C \ H_2(g) + Br_2(g) <=> 2 \ HBr(g)$						
□ D $N_2(g) + 3 H_2(g) \le 2 NH_3(g)$ ■ E $SO_2Cl_2(g) \le SO_2(g) + Cl_2(g)$						
16. Considerare il processo seguente a $t = 327$ °C e $P = 1$ atm:						
$Pb(s) \neq Pb(l)$						
Dire quale affermazione è corretta, tenendo conto che il punto di fusione normale di Pb è 327 $^{\circ}\mathrm{C}$						
$\Box A \Delta H = 0$						
$\Box B T\Delta S = 0$ $\Box C \Delta S < 0$						
\Box D $\Delta H = T\Delta G$						
$\blacksquare E \Delta H = T\Delta S$						
17. Quale tra le seguenti soluzioni, tutte di concentrazione 1 M, presenta un pH basico?						
□ A NH_4C1 ($K_b(NH_3) = 1.8 \times 10^{-5}$) ■ B NH_3 ($K_b(NH_3) = 1.8 \times 10^{-5}$)						
□ C NaCl						
□ D HF (Ka(HF) = 6.8x10-4) $□ E Nessuna delle precedenti$						
18. Considerare la reazione (A è una specie molecolare non specificata):						
$HA(aq) + CN^{-}(aq) \ge HCN(aq) + A^{-}(aq)$ $(Keq = 3.7 \times 10^4)$						
$\mathrm{HA}(aq) + \mathrm{CN}^{\text{-}}(aq) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
Quale delle seguenti affermazioni è corretta?						
Quale delle seguenti affermazioni è corretta? ■ A CN ⁻ (aq) è una base più forte di A ⁻ (aq)						
Quale delle seguenti affermazioni è corretta? ■ A CN ⁻ (aq) è una base più forte di A ⁻ (aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN ⁻ (aq) è A ⁻ (aq)						
Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura.						
 Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN⁻(aq) e A⁻(aq) pH = 7. 						
Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura.						
Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN⁻(aq) e A⁻(aq) pH = 7. 19. La decomposizione termica del carbonato di calcio: CaCO₃(s) ≒ CaO(s) + CO₂(g)						
 Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN⁻(aq) e A⁻(aq) pH = 7. 19. La decomposizione termica del carbonato di calcio: 						
Quale delle seguenti affermazioni è corretta? ■ A CN ⁻ (aq) è una base più forte di A ⁻ (aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN ⁻ (aq) è A ⁻ (aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN ⁻ (aq) e A ⁻ (aq) pH = 7. 19. La decomposizione termica del carbonato di calcio: CaCO ₃ (s) ≒ CaO(s) + CO ₂ (g) è un processo endotermico. Quale delle seguenti affermazioni è FALSA? ■ A L'espressione della costante di equilibrio è K _p = P _{CO2} P _{CaO} / P _{CaCO3} □ B Un aumento della pressione di CO ₂ (g) provoca lo spostamento dell'equilibrio verso i reagenti						
Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN⁻(aq) e A⁻(aq) pH = 7. 19. La decomposizione termica del carbonato di calcio: CaCO₃(s) ≒ CaO(s) + CO₂(g) è un processo endotermico. Quale delle seguenti affermazioni è FALSA? ■ A L'espressione della costante di equilibrio è K _p = P _{CO2} P _{CaO} / P _{CaCO3}						
Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN⁻(aq) e A⁻(aq) pH = 7. 19. La decomposizione termica del carbonato di calcio: CaCO₃(s) ≒ CaO(s) + CO₂(g) è un processo endotermico. Quale delle seguenti affermazioni è FALSA? ■ A L'espressione della costante di equilibrio è K _p = P _{CO₂} P _{CaO} /P _{CaCO₃} □ B Un aumento della pressione di CO₂(g) provoca lo spostamento dell'equilibrio verso i reagenti □ C Un aumento della massa di CaCO₃(s) non provoca variazioni dell'equilibrio						
Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN⁻(aq) e A⁻(aq) pH = 7. 19. La decomposizione termica del carbonato di calcio: CaCO₃(s) ≒ CaO(s) + CO₂(g) è un processo endotermico. Quale delle seguenti affermazioni è FALSA? ■ A L'espressione della costante di equilibrio è K _p = P _{CO2} P _{CaCO3} □ B Un aumento della pressione di CO₂(g) provoca lo spostamento dell'equilibrio verso i reagenti □ C Un aumento della massa di CaCO₃(s) non provoca variazioni dell'equilibrio □ D La costante di equilibrio K _p aumenta all'aumentare della temperatura						
Quale delle seguenti affermazioni è corretta? ■ A CN'(aq) è una base più forte di A'(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN'(aq) è A'(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN'(aq) e A'(aq) pH = 7. 19. La decomposizione termica del carbonato di calcio: CaCO ₃ (s) ≒ CaO(s) + CO ₂ (g) è un processo endotermico. Quale delle seguenti affermazioni è FALSA? ■ A L'espressione della costante di equilibrio è K _p = P _{CO2} P _{CaCO} /P _{CaCO3} □ B Un aumento della pressione di CO ₂ (g) provoca lo spostamento dell'equilibrio C Un aumento della massa di CaCO ₃ (s) non provoca variazioni dell'equilibrio □ D La costante di equilibrio K _p aumenta all'aumentare della temperatura □ E La costante di equilibrio K _p diminuisce al diminuire della temperatura 20. Qual è il nome corretto per il composto di formula Ca ₃ P ₂ ? □ A Tricalcio difosforo						
Quale delle seguenti affermazioni è corretta? ■ A CN⁻(aq) è una base più forte di A⁻(aq) □ B HCN(aq) è un acido più forte di HA(aq) □ C La base coniugata di CN⁻(aq) è A⁻(aq) □ D La costante di equilibrio aumenta all'aumentare della temperatura. □ E Per una soluzione contente le stesse moli di CN⁻(aq) e A⁻(aq) pH = 7. 19. La decomposizione termica del carbonato di calcio:						

21. Quale dei seguenti nomi è ERRATO?

\Box A	NaClO	ipoclorito di sodio
\Box B	SO_3	triossido di zolfo
\Box C	Cu_2O	ossido di rame(I)
■ D	LiI	idruro di litio
\Box E	Ag_2S	solfuro di argento

22. Individuare il nome del composto che corrisponde alla formula di struttura.

- \Box A 1,1,2,3,4-pentametil esano
- □ B 3,4,5,6- tetrametil eptano
- C 2,3,4,5-tetrametil eptano
- $\ \square$ D 1-etil-1,2,3,4-tetrametil pentano
- □ E Nessuno dei nomi proposti è corretto

23. Quale delle seguenti molecole organiche è un etere?

- C H H H H
 H-C-C-C-C-O-H
- D H H О H C C C H H H H H H

PARTE 2: DOMANDE A RISPOSTA MULTIPLA CON CALCOLI

24. Dopo aver bilanciato l'equazione:

 $3 \text{ MnO}_2 + 4 \text{ Al} \rightarrow 3 \text{ Mn} + 2 \text{ Al}_2\text{O}_3$

Calcolare quanti grammi di Al sono necessari per reagire completamente con 25 g di MnO2.

- A 7.76 g Al
- □ B 33.3 g Al
- □ C 5.82 g Al
- D 10.34 g Al
- □ E 12.0 g Al

$$n(\text{MnO}_2) = 25g/(86.94g/\text{mol}) = 0.288 \text{ mol}$$

 $n(\text{Al}) = 4/3(0.288 \text{ mol}) = 0.384 \text{ mol}$
 $m(\text{Al}) = 10.34 \text{ g}$

25. Una soluzione di glicole etilenico (C ₂ H ₄ (OH) ₂) in acqua congela a -10°C. Si calcoli la molalità del glicole etilenico in tale soluzione, sapendo che la costante crioscopica dell'acqua è 1,86 °C/m
□ A 0.81 m
□ B 10.75 m ■ C 5.38 m
□ D 2.0 m
□ E 12.0 m
$\Delta T = K_{cr} \cdot m$
$m = \Delta T / K_{cr} = 5.38 \text{ m}$
26. Si consideri la seguente reazione di ossidazione del biossido di zolfo a triossido di zolfo
$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{SO}_3(g)$
e si calcoli l'entalpia di reazione, sapendo che S(s) + O ₂ (g) → SO ₂ (g) (ΔH° = -296.8 kJ)
$2 S(s) + 3 O_2(g) \rightarrow 2 SO_3(g)$ ($\Delta H^{\circ} = -791.4 \text{ kJ}$)
□ A 494,6 kJ
■ B -197,8 kJ
□ C -494,6 kJ
□ D $-1088,2 \text{ kJ}$ □ E $1088,2 \text{ kJ}$
2(296.8 kJ) - 791.4 kJ = -197.8 kJ
27. In una cella elettrolitica contenente cloruro di rame(II) fuso, CuCl ₂ , viene fatta passare una corrente di 1000 A per 24 minuti. Quale è la massa di rame metallico che si ottiene al catodo? Dati utili: F = 96500 C/mol.
□ A 474 g
■ B 948 g
□ C 237 g □ D 1897 g
□ E 10.5 g

 $Cu^+(aq) + e^-(aq) \rightarrow Cu(s)$

 $(24 \text{ min}) \times 60 \text{ s/1 min} = 1440 \text{ s}$

m (Cu) = (14.92 mol)(63.54 g/mol) = 948 g

n (e⁻) = [corrente(C/s) x tempo(s)]/F(C/mol) = 14.92 mol e⁻

1 mol e⁻: 1 mol Cu

n (Cu) = 14.92 mol

28. Qual è il pH di una soluzione preparata diluendo 20 mL di NaOH 0.01 M in acqua ad un volume finale di $600~\mathrm{mL}$.
□ A 12.0 ■ B 10.5 □ C 2.22 □ D 3.48 □ E 5.2
$C(NaOH) = (0.01 \text{ mol/L}) (0.020 \text{ L})/(0.6\text{L}) = 3.33 \text{ x } 10^{-4} \text{ mol/L}$
$\begin{split} [OH^{\text{-}}] &= 3.33 \text{ x } 10^{\text{-}4} \text{ mol/L} \\ [H_3O^{\text{+}}] &= \text{Kw/}[OH^{\text{-}}] = 3\text{x}10^{\text{-}11} \text{ mol/L} \\ pH &= -\text{log}[H_3O^{\text{+}}] = -\text{log}(3\text{x}10^{\text{-}11}) = 10.5 \end{split}$
29. Si calcoli la costante K_c a 25 $^{\circ}$ C per la reazione
2 NOBr(g)
sapendo che in un esperimento 1.00 moli di NOBr sono poste in un recipiente da 1 litro. Raggiunto l'equilibrio la concentrazione di NO è 0.16 mol/L.
□ A 0.66 mol □ B 0.080 mol □ C 0.11 mol ■ D 0.036 mol □ E 1.0 mol
concentrazioni nella fase gassosa: [NOBr] = c = 1.00 M, (iniziale) $[NO] = x = 0.16 M (equilibrio)$
$2 \text{ NOBr} = 2\text{NO} + \text{Br}_2$ Ini. c 0 // Eq. c-x x //
$Kc = [NO]^2/[NOBr]^2 = [(0.16/1-0.16)]^2 = 0.036$
30. La costante di equilibrio per una reazione di ossido-riduzione con n = 2 vale K = 25 (a 25 $^{\circ}$ C). Calcolare E°_{pila} .
 ■ A 0.04 V □ B 4.2 V □ C 1.5 × 10² V □ D 7.3 V □ D Nessuna delle risposte

 $E^{\circ}_{pila} = 0.0592/2 \; (log_{10}K) = 0.04$