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A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive
dynamics with a linear growth of the mean-squared displacement, yet with a non-Gaussian distribution of
increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity, we here establish and analyze a
minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate
the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution
of diffusivities, at times shorter than the diffusivity correlation time. At longer times, a crossover to a
Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination
picture of Brownian but non-Gaussian diffusion processes, which can be used for a wide class of diffusivity
fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical
evaluations.
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I. INTRODUCTION

Thermally driven diffusive motion belongs to the
fundamental physical processes. To a large extent
inspired by the groundbreaking experiments of Robert
Brown in the 1820s [1], the theoretical foundations of
the theory of diffusion were then laid by Einstein,
Sutherland, Smoluchowski, and Langevin between
1905 and 1908 [2–5]. On their basis, novel experiments,
such as the seminal works by Perrin and Nordlund [6,7],
in turn delivered ever better quantitative information on
molecular diffusion, as well as the atomistic nature of
matter. Typically, we now identify two fundamental
properties with Brownian diffusive processes. First is
the linear growth in time of the mean-squared displace-
ment (MSD),

hr2ðtÞi ¼
Z

∞

−∞
r2Pðr; tÞdr ¼ 2dDt; ð1Þ

typically termed normal (Fickian) diffusion. Here,
d denotes the spatial dimension and D is called the
diffusion coefficient. The second property is the Gaussian
shape

Pðr; tÞ ¼ 1

ð4πDtÞd=2 exp
�
−

r2

4Dt

�
ð2Þ

of the probability density function to find the diffusing
particle at position r at some time t [8]. From a more
mathematical viewpoint, the Gaussian emerges as a
limit distribution of independent, identically distributed,
random variables (the steps of the random walk) with
finite variance, and in that sense, it assumes a universal
character [9].
Deviations from the linear time dependence (1) are

routinely observed. Thus, modern microscopic techniques
reveal anomalous diffusion with the power-law dependence
hr2ðtÞi≃ tα of the MSD, where according to the value of
the anomalous diffusion exponent, we distinguish subdif-
fusion for 0 < α < 1 and superdiffusion with 1 < α < 2
[10–14]. Examples for subdiffusion of passive molecular
and submicron tracers abound in the cytoplasm of living
biological cells [15–17] and in artificially crowded fluids
[18], as well as in quasi-two-dimensional systems such
as lipid bilayer membranes [19–22]. Superdiffusion is
typically associated with active processes and also
observed in living cells [23]. Anomalous diffusion proc-
esses arise because of the loss of independence of the
random variables, divergence of the variance of the step
length, or the mean of the step time distribution, as well
as because of the tortuosity of the embedding space. The
associated probability density function of anomalous dif-
fusion processes may have both Gaussian and non-
Gaussian shapes [10–12].
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A new class of diffusive dynamics has recently been
reported in a number of soft matter, biological, and other
complex systems: In these processes, the MSD is normal of
the form (1); however, the probability density function
Pðr; tÞ is non-Gaussian, typically characterized by a dis-
tinct exponential shape

Pðr; tÞ≃ exp

�
−

jrj
λðtÞ

�
; ð3Þ

with the decay length λðtÞ ¼ ffiffiffiffiffiffi
Dt

p
[24]. This form of the

probability density function is also sometimes called a
Laplace distribution. The Brownian yet non-Gaussian
feature appears quite robustly in a large range of systems,
including beads diffusing on lipid tubes [25] or in networks
[25,26], tracer motion in colloidal, polymeric, or active
suspensions [27], and in biological cells [28], as well as the
motion of individuals in heterogeneous populations such as
nematodes [29]. For additional examples, see Refs. [30–33]
and the references in Refs. [24,34,35].
How can this combination of normal, Brownian scaling

of the mean-squared displacement be reconciled with the
existence of a non-Gaussian probability density function?
One argument not brought forth in the discussion of
anomalous diffusion above is the possibility that the
random variables making up the observed dynamics are
indeed not identically distributed. This fact can be intro-
duced in different ways. First, Granick and co-workers
[25], as well as Hapca et al. [29], employed distributions
of the diffusivity of individual tracer particles to
explain this remarkable behavior: Indeed, averaging the
Gaussian probability density function (2) for a single
diffusivity D over the exponential distribution pDðDÞ ¼
hDi−1 expð−D=hDiÞ with the mean diffusivity hDi, the
exponential form (3) of the probability density function
emerges [29,34]. In fact, this idea of creating an ensemble
behavior in terms of distributions of diffusivities of
individual tracer particles is analogous to the concept of
superstatistical Brownian motion: Based on two statistical
levels describing, respectively, the fast jiggly dynamics of
the Brownian particle and the slow environmental fluctua-
tions with spatially local patches of given diffusivity, this
concept demonstrates how non-Gaussian probability den-
sities arise physically [36]. In what follows, we refer to
averaging over a diffusivity distribution pDðDÞ as a super-
statistical approach. An important additional observation
from experiments is that “the distribution function will
converge to a Gaussian at times greater than the correlation
time of the fluctuations” [24]. This is impressively dem-
onstrated, for instance, in Fig. 1C in Ref. [25]. This
crossover cannot be explained by the superstatistical
approach. At the same time, the normal-diffusive behavior
is not affected by the crossover between the shapes of the
distribution.

Second, Chubinsky and Slater came up with the diffus-
ing diffusivity model, in which the diffusion coefficient of
the tracer particle evolves in time like the coordinate of a
Brownian particle in a gravitational field [34]. For short
times, they indeed find an exponential form (3). At long
times, they demonstrate, from simulations, that the prob-
ability density function crosses over to a Gaussian shape.
Jan and Sebastian formalize the diffusing diffusivity model
in an elegant path integral approach, which they explicitly
solve in two spatial dimensions [35]. Their results are
consistent with those of Ref. [34].
Here, we introduce a simple yet powerful minimal model

for diffusing diffusivities, based on the concept of subordi-
nation. Starting from a double Langevin equation approach,
our model is fully analytical, providing an explicit solution
for the probability density function in Fourier space. The
inversion is easily feasible numerically, and we demonstrate
excellent agreement with simulations of the underlying
stochastic equations. Moreover, we provide the analytical
expressions for the asymptotic behavior at short and long
times, including the crossover to Gaussian statistics, and we
derive explicit results for the kurtosis of the probability
density function. The bivariate Fokker-Planck equation for
this process and its connection to the subordination concept
are established. Finally, we show that at times shorter than
the diffusivity correlation time, our analytical results are fully
consistent with the superstatistical approach. Our approach
has the distinct advantage that it is amenable to a large
variety of different fluctuating diffusion scenarios.
In what follows, we first formulate the coupled Langevin

equations for the diffusing diffusivity model. Section III
then introduces the subordination concept, allowing us to
derive the exact form of the subordinator as well as the
Fourier image of the probability density function. The
Brownian form of the MSD is demonstrated and the short
and long time limits derived. Moreover, the connection to
the superstatistical approach is made. The kurtosis quanti-
fying the non-Gaussian shape of the probability density
function is derived. In Sec. IV, the bivariate Fokker-Planck
equation for the joint probability density functionPðx;D; tÞ
is analyzed, before drawing our conclusions in Sec. V.
Several appendixes provide additional details.

II. SUPERSTATISTICAL APPROACH TO
BROWNIAN YET NON-GAUSSIAN DIFFUSION

As mentioned above, it was suggested by Granick and
co-workers [24], as well as by Hapca et al. [29], that the
Laplace distribution

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4hDitp exp

�
−

jxj
ðhDitÞ1=2

�
; ð4Þ

with effective diffusivity hDi emerges from a standard
Gaussian distribution
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Gðx; tjDÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp

�
−

x2

4Dt

�
ð5Þ

with diffusivity D, through the averaging procedure

Pðx; tÞ ¼
Z

∞

0

pDðDÞGðx; tjDÞdD ð6Þ

over D. This approach corresponds to the idea of super-
statistics [36]: Accordingly, the overall distribution func-
tion Pðx; tÞ of a system of tracer particles, individually
moving in sufficiently large, disjunct patches with local
diffusivityD, becomes the weighted average, where pDðDÞ
is the stationary-state probability density for the particle
diffusivities D. While in this section we restrict the
discussion to the one-dimensional case, we also provide
results for higher dimensions below.
Fourier transforming Eq. (6), we obtain

Pðk; tÞ ¼
Z

∞

0

pDðDÞe−Dk2tdD ¼ ~pDðs ¼ k2tÞ; ð7Þ

where we used the fact that Gðk; tÞ ¼ expð−Dk2tÞ. On the
right-hand side, we identified the integral of pDðDÞ over
expð−Dk2tÞ as the Laplace transform ~pDðs ¼ k2tÞ to be
taken at s ¼ k2t. Concurrently, the Fourier transform of
expression (4) is

Pðk; tÞ ¼ 1

1þ hDik2t : ð8Þ

Combining these results and recalling the Laplace trans-
form Lfτ−1⋆ expð−t=τ⋆Þg ¼ ð1þ sτ⋆Þ−1, we uniquely find
that indeed

pDðDÞ ¼ 1

hDi exp
�
−

D
hDi

�
: ð9Þ

To obtain the Laplace distribution (4) as the superstatistical
average of elementary Gaussians (5), the necessary dis-
tribution of the diffusivities is the exponential (9). This is
exactly the result of Granick and co-workers [24] and
Hapca et al. [29]. [We note that Hapca and co-workers also
report results for the case of a gamma distribution pDðDÞ.]
Now, let us take the Fourier inversion of Eq. (7) and

invoke the substitution κ ¼ kt1=2,

Pðx; tÞ ¼ 1

2π

Z
∞

−∞
e−ikx ~pDðk2tÞdk

¼ 1

2πt1=2

Z
∞

−∞
e−iκx=t

1=2
~pDðκ2Þdκ: ð10Þ

The right-hand side defines a scaling function F of the form

Pðx; tÞ ¼ 1

t1=2
FðζÞ; ð11Þ

where ζ ¼ x=t1=2. Thus, the form F as a function of the
similarity variable ζ is an invariant. In particular, no
transition of Pðx; tÞ from a Laplace distribution to a different
shape is possible in this superstatistical framework. To
account for the experimental observation, however, we are
seeking a model to explain the crossover from an initial
Laplace distribution to a Gaussian shape at long(er) times.

A. Anomalous diffusion with exponential,
stretched Gaussian, and power-law shapes

of the probability density function

We briefly digress to mention that for the case of
anomalous diffusion with a mean-squared displacement
of the form hx2ðtÞi≃ tα, a similar phenomenon was
observed. Namely, for the motion of particles in a visco-
elastic environment with a fixed generalized diffusivity Dα

of dimension cm2= secα, the motion is characterized by the
Gaussian [12,37]

Gαðx; tjDαÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDαtα
p exp

�
−

x2

4Dαtα

�
ð12Þ

with the scaling variable x=tα=2. Instead, in a recent
experimental study that observed the motion of labeled
messenger RNA molecules in living E. coli and S.
cerevisiae cells, an exponential distribution of the diffu-
sivity was found [38],

pDðDαÞ ¼
1

D⋆
α
exp

�
−
Dα

D⋆
α

�
; ð13Þ

on the single trajectory level, pointing at a higher inho-
mogeneity of the motion than previously assumed. The
distribution (13) combined with the Gaussian (12) gives
rise to the Laplace distribution [38]

Pαðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

4D⋆
αtα

p exp

�
−

jxjffiffiffiffiffiffiffiffiffiffi
D⋆

αtα
p

�
: ð14Þ

Similarly, one can show that the stretched Gaussian
observed for the lipid motion in protein-crowded lipid
bilayer membranes [21] emerges from the Gaussian (12) in
terms of a modified diffusivity distribution of the form

pDðDαÞ ¼
1

Γð1þ 1=κÞD⋆
α
exp

�
−
�
Dα

D⋆
α

�
κ
�
: ð15Þ

In that case, the resulting distribution assumes the form

Pαðx; tÞ≃ exp

�
−c

� jxj
ð4D⋆

αtαÞ1=2
�
2κ=ð1þκÞ�

ð16Þ
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with an additional power-law term in x; see Appendix A.
Depending on the value of κ, one can then obtain stretched
Gaussian shapes for Pαðx; tÞ or even broader than expo-
nential forms (superstretched Gaussians).
We finally note that for a power-law distribution,

pDðDÞ≃D−1−α; ð17Þ

with 0 < α < 2, the resulting superstatistical distribution
acquires long tails of the form

Pαðx; tÞ≃ 1

jxj2αþ1
; ð18Þ

as demonstrated in Appendix A. This brief discussion
shows the need for a more general model for the diffusing
diffusivity, the basis of which is established here.

III. LANGEVIN MODEL FOR
DIFFUSING DIFFUSIVITIES

To describe Brownian but non-Gaussian diffusion, we
start with the combined set of stochastic equations

d
dt

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðtÞ

p
ξðtÞ; ð19aÞ

DðtÞ ¼ Y2ðtÞ; ð19bÞ

d
dt

YðtÞ ¼ −
1

τ
Y þ σηðtÞ: ð19cÞ

The independent noise terms ξðtÞ and ηðtÞ are white and
Gaussian, and both are specified by their first two
moments,

hξðtÞi ¼ 0; hξiðt1Þξjðt2Þi ¼ δijδðt1 − t2Þ; ð19dÞ

hηðtÞi ¼ 0; hηlðt1Þηmðt2Þi ¼ δlmδðt1 − t2Þ; ð19eÞ

for i; j ¼ x, y, z and l; m ¼ 1;…; n. As explained below,
the dimension n of the process YðtÞ may differ from the
value of d of the process rðtÞ in real space.
In the above set of coupled stochastic equations (19),

expression (19a) designates the well-known overdamped
Langevin equation driven by the white Gaussian noise ξðtÞ
[39]. However, we consider the diffusion coefficient DðtÞ
to be a random function of time, and we express it in terms
of the square of the Ornstein-Uhlenbeck process YðtÞ (see
below for the reasoning). The physical dimension of the
latter is ½Y� ¼ cm= sec1=2. In Eq. (19c), the correlation
time of the Ornstein-Uhlenbeck process is τ, and σ of units
½σ� ¼ cm= sec characterizes the amplitude of the fluctua-
tions of Y. We complete the set of stochastic equations with
the initial conditions, chosen as

rð0Þ ¼ 0; Yð0Þ ¼ Y0: ð19fÞ

Physically, the choice of the above set of dynamic
equations corresponds to the following reasoning. In the
diffusing diffusivity picture, we model the particle motion,
on the single trajectory level, by the random diffusivity
DðtÞ. Taking DðtÞ as the square of the auxiliary variable
YðtÞ guarantees the non-negativity of DðtÞ. This way we
avoid the need to impose a reflecting boundary condition
on DðtÞ at D ¼ 0, which is more difficult to handle
analytically [34]. The reason to choose the Ornstein-
Uhlenbeck process (19c) for YðtÞ is twofold. First, it
ensures that the diffusivity dynamics is stationary, with a
given correlation time. Second, the ensuing distribution
pDðDÞ has exponential tails, thus guaranteeing the emer-
gence of the Laplace-like distribution for Pðr; tÞ at short
times, as we will show. At long times, the above choice
corresponds to a particle moving with an effective diffu-
sivity hDist and thus leads to the crossover to the long-time
Gaussian behavior of Pðr; tÞ. The above set of Langevin
equations not only fulfills these requirements but also
allows for an analytical solution, as shown below.
For simplicity, we introduce dimensionless units via the

transformations t → t=τ and x → x=ðστÞ (and similarly for
y and z). The process YðtÞ is renormalized according to
Y → στ1=2Y. As detailed in Appendix B, we then obtain
the set of stochastic equations

d
dt

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2DðtÞ

p
ξðtÞ; ð20aÞ

DðtÞ ¼ Y2ðtÞ; ð20bÞ

d
dt

YðtÞ ¼ −Y þ ηðtÞ; ð20cÞ

for our minimal diffusing diffusivity model.We note that
the above minimal model for the diffusing diffusivity
allows different choices for the number of components
of YðtÞ. The number n is thus essentially a free parameter
of the model. It defines the number of “modes” necessary to
describe the random process DðtÞ. This is actually another
advantage of the present approach since it provides addi-
tional flexibility.
In the Discussion section, we will show that the above

compound process is analogous to the Heston model [40]
and thus a special case of the Cox-Ingersoll-Ross (CIR)
model [41], which is widely used for return dynamics in
financial mathematics. Our approach therefore has a wider
appeal beyond stochastic particle dynamics.

A. Properties of the Ornstein-Uhlenbeck process

The stochastic equation (20c) contains a linear restoring
term, corresponding to the motion of the process Y in a
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centered harmonic potential. The formal solution of this
Ornstein-Uhlenbeck process reads

YðtÞ ¼ Y0e−t þ
Z

t

0

ηðt0Þe−ðt−t0Þdt0: ð21Þ

The associated autocorrelation function is

hYðt1ÞYðt2Þi ¼ Y2
0e

−ðt1þt2Þ þ e−ðt1þt2Þ

×
Z

t1

0

dt10
Z

t2

0

dt20hηðt10Þηðt20Þiet1 0þt2 0

¼ Y2
0e

−ðt1þt2Þ þ n
2
ðe−jt2−t1j − e−ðt1þt2ÞÞ:

ð22Þ

Thus, for long times (t1 þ t2 → ∞), we find the exponen-
tial decay

hYðt1ÞYðt2Þi ∼
n
2
e−jt2−t1j ð23Þ

of the autocorrelation, and thus the stationary variance

hY2ðtÞi ¼ hDist ¼
n
2
: ð24Þ

We note that the Fokker-Planck equation for this
Ornstein-Uhlenbeck process reads

∂
∂t fðY; tÞ ¼

∂
∂Y ðYfðY; tÞÞ þ 1

2

∂2

∂Y2
fðY; tÞ: ð25Þ

The distribution fðY; tÞ converges to the normalized
equilibrium Boltzmann form

fstðYÞ ¼
1

πn=2
e−Y

2

: ð26Þ

In what follows and in our simulations, we assume that
the initial condition Y0 is taken randomly from the
equilibrium distribution (26). Then, the process YðtÞ
becomes stationary starting from t ¼ 0, and Eq. (23) is
exact at all times.
The stationary diffusivity distribution pDðDÞ encoded in

Eq. (26) in terms of the variable YðtÞ can then be obtained
as follows.

(i) In dimension n ¼ 1, the variance of Y in the
stationary state is hY2ist ¼ 1=2, and the mapping
to pDðDÞ reads

pst
DðDÞ ¼

Z
∞

−∞
fstðYÞδðD − Y2ÞdY ¼ 1ffiffiffiffiffiffiffi

πD
p e−D:

ð27Þ

In dimensional form, we have

pst
DðDÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

πD⋆D
p e−D=D⋆ ; ð28Þ

with

D⋆ ¼ x20
t0

¼ σ2τ: ð29Þ

From comparison with the direct superstatistical
approach in Sec. II, we see that the pure exponential
form (9) in our diffusing diffusivity model is being
modified by the additional prefactor 1=D1=2. From
numerical comparison, however, the exponential
dependence dominates, and thus the result (28) is
practically indistinguishable from Eq. (9) for suffi-
ciently large D values.

(ii) For n ¼ 2, the stationary-state variance of Y is
hY2ist ¼ 1, and the mapping from fstðYÞ to pst

DðDÞ
reads

pst
DðDÞ ¼ 2π

Z
∞

0

YfstðYÞδðD − Y2ÞdY ¼ e−D;

ð30Þ

where Y ¼ jYj and 2πYfstðYÞ ¼ 2Y expð−Y2Þ.
Moreover, we made use of the property

δðY2 −DÞ ¼ 1

2
ffiffiffiffi
D

p
h
δ
�
Y þ

ffiffiffiffi
D

p �
þ δ

�
Y −

ffiffiffiffi
D

p �i
ð31Þ

of the δ function. In dimensional units, we have

pst
DðDÞ ¼ 1

D⋆
e−D=D⋆ ; ð32Þ

in conjunction with relation (29).
(iii) Finally, for n ¼ 3, we have hY2ist ¼ 3=2 and

pst
DðDÞ ¼ 4π

Z
∞

0

Y2fstðYÞδðD − Y2Þ ¼ 2
ffiffiffiffi
D

pffiffiffi
π

p e−D;

ð33Þ

where 4πY2fstðYÞ ¼ 4π−1=2Y2 expð−Y2Þ. In dimen-
sional form,
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pst
DðDÞ ¼ 2

ffiffiffiffi
D

pffiffiffiffiffiffiffiffiffi
πD3⋆

p e−D=D⋆ : ð34Þ

IV. SUBORDINATION CONCEPT FOR
DIFFUSING DIFFUSIVITIES

Subordination, introduced by Bochner [42], is an impor-
tant concept in probability theory [43]. Simply put, a
subordinator associates a random time increment with
the number of steps of the subordinated stochastic process.
For instance, continuous time random walks with power-
law distributions of waiting times can be described as a
Brownian motion in terms of the number of steps of the
process, while the random waiting times are introduced in
terms of a Lévy stable subordinator, as originally formu-
lated by Fogedby [44] and developed as a stochastic
representation of the fractional Fokker-Planck equation
[11] and generalized master equations for continuous-time
random-walk models [45–48].
Here, we apply and extend the subordination concept to a

new class of random diffusivity-based stochastic processes.
Our results for our minimal model of diffusive diffusivities
demonstrates that the subordination approach leads to a
superstatistical solution at times shorter than typical dif-
fusivity correlation times.
To start with, we note that the stochastic probability

density function P̄ðr; tÞ ¼ P̄ðr; tjDðtÞÞ fulfills the diffusion
equation

∂
∂t P̄ðr; tÞ ¼ DðtÞ∇2P̄ðr; tÞ: ð35Þ

With this in mind, we can rewrite the Langevin
equation (20a) in the subordinated form

d
dτ

rðτÞ ¼
ffiffiffi
2

p
ξðτÞ; ð36aÞ

d
dt

τðtÞ ¼ DðtÞ: ð36bÞ

After this change of variables, the Green function of the
diffusion equation has the form

Gðr; τÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4πτÞd

p exp

�
−
r2

4τ

�
; ð37Þ

with r ¼ jrj. The path variable τ, for any given instant of
time t, according to Eq. (36b), is a random quantity. In
order to calculate the probability density Pðr; tÞ of the
variable r at time t, we need to eliminate the path variable τ.
This is achieved by averaging the Green function (37) over
the distribution of τ in the form

Pðr; tÞ ¼
Z

∞

0

Tnðτ; tÞGðr; τÞdτ: ð38Þ

Here, Tnðτ; tÞ is the probability density function of the
process

τðtÞ ¼
Z

t

0

Dðt0Þdt0 ¼
Z

t

0

Y2ðt0Þdt0: ð39Þ

Equation (38) is the well-known subordination formula,
implying the following: The probability for the walker to
arrive at position r at time t equals the probability of being
at τ on the path at time t, multiplied by the probability of
being at position r for this path length τ, summed over all
path lengths [44].
With the help of relation (38), we write the Fourier

transform

P̂ðk; tÞ ¼
Z

∞

−∞
eik·rPðr; tÞdr ð40Þ

in the subordinated form

P̂ðk; tÞ ¼
Z

∞

0

Tnðτ; tÞĜðk; τÞdτ

¼
Z

∞

0

Tnðτ; tÞe−k2τdτ ¼ ~Tnðk2; tÞ; ð41Þ

with k ¼ jkj. Thus, the Fourier transform of Pðr; tÞ is
expressed in terms of the Laplace transform ~Tn of the
density function Tnðτ; tÞ with respect to τ,

~Tnðs; tÞ ¼
Z

∞

0

e−sτTnðτ; tÞdτ; ð42Þ

with argument s ¼ k2.
The subordination approach established here introduces

a superior flexibility into the diffusing diffusivity model.
By a specific choice of the subordinator density Tnðτ; tÞ, we
may study a broad class of normal and anomalous diffusion
processes caused by diffusivities, which are randomly
varying in time and/or space. In turn, the advantage of
our minimal model for diffusing diffusivities introduced
here is that the process τðtÞ is the integrated square of
the Ornstein-Uhlenbeck process, for which, in the one-
dimensional case n ¼ 1, the Laplace transform of the
probability density function is known [49],

~T1ðs;tÞ¼ expðt=2Þ
	�

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2s

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2s

p
�

×sinhðt ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2s

p Þþcoshðt ffiffiffiffiffiffiffiffiffiffiffiffi
1þ2s

p Þ
�
1=2

: ð43Þ

We thus directly obtain the exact analytical result for the
Fourier transform,
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P̂ðk; tÞ ¼ expðt=2Þ
	�

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2k2
p

�

× sinh ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
Þ þ cosh ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
Þ
�
1=2

;

ð44Þ

of the probability density function Pðx; tÞ. The inverse
Fourier transform can be performed numerically. Figure 1
demonstrates excellent agreement between this result and
simulations of the stochastic starting equations (20a)
to Eq. (20c). Below we provide analytical estimates of
Pðx; tÞ for short and long times and establish a connection
between the subordination approach and the superstatistical
framework.
Our approach can be easily generalized to the case of the

n-dimensional Ornstein-Uhlenbeck process considered by
Jain and Sebastian [35]. Namely, let us consider

DðtÞ ¼ Y2ðtÞ; ð45Þ

where YðtÞ ¼ fY1ðtÞ;…; YnðtÞg is an n-dimensional
Ornstein-Uhlenbeck process. Since the components of
YðtÞ are independent and

τðtÞ ¼
Z

t

0

Y2ðtÞdt0

¼
Z

t

0

(Y2
1ðt0Þ þ Y2

2ðt0Þ þ � � � þ Y2
nðt0Þ)dt0; ð46Þ

the Laplace transform ~Tnðs; tÞ and the characteristic
function P̂ðk; tÞ are simply n-fold products of identical,
one-dimensional functions (43) and (44), respectively:

~Tnðs; tÞ ¼ expðnt=2Þ
	�

1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p
�

× sinh ðt ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p Þ þ cosh ðt ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p Þ
�
n=2

:

ð47Þ

We thus directly obtain the exact analytical result for the
Fourier transform,

P̂ðk; tÞ ¼ expðnt=2Þ=
�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2k2
p

�

× sinh ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
Þ þ cosh ðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
Þ
�
n=2

:

ð48Þ

This result is consistent with that of Eq. (25) in Ref. [35], up
to numerical factors, which appear because of the differ-
ence in numerical coefficients entering the Ornstein-
Uhlenbeck process.

A. Brownian mean-squared displacement
and leptokurtic behavior

The mean-squared displacement and the fourth moment
encoded in our minimal model can be directly obtained
from the Fourier transform (44) through differentiation,

hr2ðtÞi ¼ −∇2
kP̂ðk; tÞjk¼0;

hr4ðtÞi ¼ ∇4
kP̂ðk; tÞjk¼0: ð49Þ

For the isotropic case considered here, the Laplace operator
is defined as

∇2
k ¼ 1

kd−1
∂
∂k

�
kd−1

∂
∂k

�
: ð50Þ

Expanding relation (41) for small k, we obtain, up to the
fourth order,

P̂ðk; tÞ ¼
Z

∞

0

e−k
2τTnðτ; tÞdτ

¼ 1 − k2
Z

∞

0

τTnðτ; tÞdτ

þ k4

2

Z
∞

0

τ2Tnðτ; tÞdτ þ… ð51Þ

From this result, we directly obtain the mean-squared
displacement
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FIG. 1. Probability density function Pðx; tÞ in d ¼ n ¼ 1 at
longer times in dimensionless form (σ ¼ τ ¼ D⋆ ¼ 1). We
compare results from simulations (Sim) of the set of Langevin
equations (20a)–(20c), represented by the symbols, with the
direct inverse Fourier transform (IFT) of result (44). Excellent
agreement is observed.
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hr2ðtÞi ¼ 2d
Z

∞

0

τTnðτ; tÞdτ ¼ 2dhτi

¼ −2d
∂ ~Tnðs; tÞ

∂s





s¼0

ð52Þ

and the fourth-order moment

hr4ðtÞi ¼ 4dð2þ dÞ
Z

∞

0

τ2Tnðτ; tÞdτ

¼ 4dð2þ dÞhτ2i

¼ 4dðdþ 2Þ∂
2 ~Tnðs; tÞ
∂s2






s¼0

: ð53Þ

With the results of Appendix D, we find

hr2ðtÞi ¼ dnt ¼ 2dhDistt; ð54Þ

where hDist is given by Eq. (24), and

hr4ðtÞi¼4dð2þdÞhDist
�
−
1−e−2t

2
þ tþhDistt2

�
: ð55Þ

Equation (54) is the famed result of the normal Brownian
linear dispersion of the mean-squared displacement with
time. In dimensional units, the result (54) reads

hr2ðtÞi ¼ dnσ2τt ¼ 2dhDistD⋆t: ð56Þ

Figure 2 demonstrates excellent agreement of the analytical
result (1) with direct simulations of the set of Langevin
equations (20a)–(20c) with respect to both slope and
amplitude.
The deviation of the shape of a distribution function from

a Gaussian can be conveniently quantified in terms of the
kurtosis

K ¼ hr4ðtÞi
hr2ðtÞi2 : ð57Þ

We note that the kurtosis is closely related to the (first)
non-Gaussian parameter, introduced in the classical text by
Rahman [50]. Inserting results (54) and (55), we obtain, in
the short time limit,

K ∼
�
1þ 2

d

��
1þ 1

hDist

�
¼

8>><
>>:

9 d ¼ 1

4 d ¼ 2

25=9 d ¼ 3

ð58Þ

for the choice d ¼ n. At long times,

K ∼
�
1þ 2

d

�
¼

8>><
>>:

3 d ¼ 1

2 d ¼ 2

5=3 d ¼ 3.

ð59Þ

The first relation characterizes exponential distributions
according to Eqs. (66), (70), and (72) derived below, whereas
the second result coincides exactly with the kurtosis of the
multidimensional Gaussian distribution (note that this
kurtosis does not depend on n). Taking along the next
higher term in the long time expansion, we observe that the
leptokurtosis vanishes as ≃1=t in the long time limit,

K ∼ 1þ 2

d
þ 2þ d
dhDistt

: ð60Þ

In Fig. 3, we compare the analytical result (57) for the
kurtosis for d ¼ 1 based on Eqs. (54) and (55) with
simulations, showing excellent agreement from the short-
time behavior all the way to the saturation plateau at the
Gaussian value K ¼ 3. We note that the crossover time
from strongly leptokurtic to Gaussian behavior occurs at
t ≈ 1, which in dimensional units corresponds to the
correlation time of the diffusing diffusivity process.
Thus, in experiments, the behavior of the kurtosis as a
function of time provides a direct means to extract the
correlation time of DðtÞ, which also corresponds to the
crossover time from the exponential to the Gaussian
behavior of the probability density Pðx; tÞ, as will be
shown below. We also note that when the process YðtÞ
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FIG. 2. Mean-squared displacement hx2ðtÞi obtained from
simulation of the set of Langevin equations (20a)–(20c) at
d ¼ n ¼ 1, corresponding to the red symbols (because of the
density of points, these appear as the thick red line), showing
excellent agreement with the Brownian law (1) shown by the
(thin) full black line. In the bottom panel, we show hx2ðtÞi=t,
demonstrating that the deviations from the expected behavior are
fairly small. The grey lines (lower panel) show an interval [0.975,
1.024] around unity, based on 106 trajectories.
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is very highly dimensional and thus hDist large, the
exponential tails of Pðr; tÞ do not exist; see Appendix C.
We now derive explicit analytical results for the prob-

ability density function Pðr; tÞ in the short and long time
limits, starting with the short time limit and its relation to
the superstatistical formulation of the diffusing diffusivity.
In our further exemplary calculations, we take n ¼ d.
However, in Appendix C, we discuss the situations when
n ¼ 1 and d ¼ 2, as well as when n goes to infinity while d
stays finite.

B. Short time limit

First, we concentrate on the shape of the density Pðr; tÞ
in the short time limit t ≪ τ. In dimensionless units, this
means that we consider the asymptotic behavior of the
characteristic function (48) under the condition t ≪ 1, for
which

sinh
�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2k2

p �
∼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2k2

p
; cosh

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2k2

p �
∼1:

ð61Þ

Together with expression (48), we thus find

P̂ðk; tÞ ∼ ð1þ tÞn=2
ð1þ ½1þ k2�tÞn=2 ∼ t−n=2

�
k2 þ 1

t

�
−n=2

: ð62Þ

This expression is indeed normalized, P̂ðk ¼ 0; tÞ ¼ 1. We
can thus perform the inverse Fourier transform to obtain
Pðr; tÞ in the short time limit.

(i) For one dimension d ¼ n ¼ 1, we find

Pðx; tÞ ∼ 1

πt1=2

Z
∞

0

cosðkxÞ
ðk2 þ 1=tÞ1=2 dk

¼ 1

πt1=2
K0

�
x

t1=2

�
; ð63Þ

in terms of the Bessel function [51]

K0ðaβÞ ¼
Z

∞

0

cosðaxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ β2

p dx: ð64Þ

Apart from the normalization we observe from
Eq. (63), we also derive the Brownian behavior
hx2ðtÞi ¼ t ¼ 2hDistt, in accordance with Eqs. (24)
and (1).
Keeping in mind that here we are pursuing

the large value limit of the scaling variable
z ¼ xt−1=2 ≫ 1, we expand the Bessel function in
the form [52]

K0ðzÞ ∼
ffiffiffiffiffi
π

2z

r
e−z: ð65Þ

We thus find the asymptotic result

Pðx; tÞ ∼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjxjt1=2

p exp

�
−

jxj
t1=2

�
: ð66Þ

This expression reproduces the exponential shape
of the probability density function Pðx; tÞ of the
diffusing diffusivity model, with the power-law
correction jxj−1=2.
Figure 4 demonstrates excellent agreement of

our short time result (63) and simulations. For the
longest simulated time, the wings of the distribution
start to show some deviations, indicating that in this
case the short time limit is no longer fully justified.

(ii) For d ¼ n ¼ 2, we obtain

Pðr; tÞ ¼
Z

eik·rP̂ðk; tÞ dk
ð2πÞ2

¼ 1

2π

Z
∞

0

kJ0ðkrÞP̂ðk; tÞdk; ð67Þ

and thus

Pðr; tÞ ¼ 1

2πt
K0

�
rffiffi
t

p
�
: ð68Þ

Here, we used the relationZ
π

0

cosðkr cosφÞdφ ¼ πJ0ðkrÞ ð69Þ
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FIG. 3. The kurtosis K for d ¼ n ¼ 1 defined in Eq. (57), based
on relations (1) and (55), is shown by the solid line; simulation
results are represented by the symbols. The crossover occurs at
the correlation time τ ¼ 1. Over the entire displayed time range,
the agreement between theory and simulations is excellent.
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in terms of the modified Bessel function J0. The
distribution is normalized and encodes the Brownian
behavior hr2ðtÞi ¼ 4t ¼ 4hDistt. Expanding the
Bessel function K0 as above, we find that

Pðr; tÞ ∼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πrt3=2

p e−r=
ffiffi
t

p
: ð70Þ

(iii) Finally, in d ¼ n ¼ 3, the asymptotic probability
density becomes

Pðr; tÞ ¼
Z

eik·rP̂ðk; tÞ dk
ð2πÞ3

¼ 1

8π3

Z
∞

0

k2dk
Z

π

0

sin θdθ
Z

2π

0

dφeikr cos θ

× t−3=2
�
k2 þ 1

t

�
−3=2

¼ 1

4π2t3=2

Z
∞

0

k2dk
Z

1

−1
dξeikrξ

�
k2 þ 1

t

�
−3=2

¼ 1

2π2t3=2
K0

�
rffiffi
t

p
�
; ð71Þ

and we have hr2ðtÞi ¼ 9t ¼ 6hDistt. Expansion of
the Bessel function produces the asymptotic expo-
nential behavior

Pðr; tÞ ∼ 1

ð2πÞ3=2r1=2t5=4 e
−r=

ffiffi
t

p
: ð72Þ

As we will show in the following subsection, in all
dimensions, the short time limit reproduces the

superstatistical behavior. The subordination formulation,
the explicit result (63) in terms of the Bessel function, and
the asymptotic exponential (Laplace) form (66) [and their
multidimensional analogs (68) and (70)–(72)] constitute
our first main result. We note that the asymptotic forms
(66), (70), and (72) of the density function Pðx; tÞ by itself
lead to the Brownian scaling (54) of the corresponding
mean-squared displacement. When n ≠ d, the exponential
shape of the short-time behavior is conserved while the
subdominant prefactors change, as shown for the case
d ¼ 2 and n ¼ 1 in Appendix C.

C. Relation to the superstatistical approximation

Above, we formulated the concept of diffusing diffu-
sivities in terms of coupled stochastic equations for the
particle position rðtÞ and the random diffusivity DðtÞ. An
alternative approach suggested in Refs. [24,34] is that of the
superstatistical distribution of the diffusivity, as described
in Sec. II. In this superstatistical sense, the overall dis-
tribution function is given as the weighted average of a
single Gaussian over the stationary diffusivity distribution,

Psðr; tÞ ¼
Z

∞

0

pst
DðDÞGðr; tjDÞdD: ð73Þ

(i) In dimension d ¼ n ¼ 1, our minimal model
produces, with Eq. (28),

Psðx; tÞ ¼
1

2π
ffiffiffiffiffiffiffiffi
D⋆t

p
Z

∞

0

1

D
exp

�
−

D
D⋆

−
x2

4Dt

�
dD

¼ 1

π
ffiffiffiffiffiffiffiffi
D⋆t

p K0

� jxjffiffiffiffiffiffiffiffi
D⋆t

p
�
: ð74Þ

(ii) In d ¼ n ¼ 2, we have, with Eq. (32),

Psðr; tÞ ¼
1

4πD⋆t

Z
∞

0

1

D
exp

�
−

D
D⋆

−
r2

4Dt

�
dD

¼ 1

2πD⋆t
K0

�
rffiffiffiffiffiffiffiffi
D⋆t

p
�
: ð75Þ

(iii) Finally, in d ¼ n ¼ 3, we find, with Eq. (34),

Psðr;tÞ¼
2

π2ð4D⋆tÞ3=2
Z

∞

0

1

D
exp

�
−
D
D⋆

−
r2

4Dt

�
dD

¼ 1

2π2ðD⋆tÞ3=2
K0

�
rffiffiffiffiffiffiffiffi
D⋆t

p
�
: ð76Þ

For all d, the mean-squared displacement acquires the
linear Brownian scaling in time hr2i ¼ 2dhDistt, as it
should.
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FIG. 4. Probability density function Pðx; tÞ for d ¼ n ¼ 1 at
short times in dimensionless form (σ ¼ τ ¼ D⋆ ¼ 1). We com-
pare results from simulations of the set of Langevin equa-
tions (20a)–(20c), represented by the symbols, with the
explicit short-time solution (63). Excellent agreement is ob-
served; only for the longest time t ¼ 0.5 do the wings start to
show some deviations.
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This result is exactly that of our subordination scheme in
the short time limit, expressions (66), (68), and (71), written
in dimensional form. Thus, in our approach to the diffusing
diffusivity, the short time regime of the subordination
formalism leads directly to the superstatistical result. The
reason for this is as follows: At times less than the
diffusivity correlation time τ, the diffusion coefficient does
not change considerably, and the subordination scheme
describes an ensemble of particles, each diffusing with
its own diffusion coefficient. This mimics a spatially
inhomogeneous situation, when the local diffusion coef-
ficient is random, but stays constant within confined spatial
domains. In this case, the ensemble of particles moving in
different domains exhibits a superstatistical behavior, as
assumed in the original works [36]. However, in any system
with finite patch sizes, we would not expect the particles
to stay in their local patch of diffusivity D forever, thus
violating the assumption of the superstatistical approach.
Our annealed approach, in some sense, delivers a mean-
field approximation to the spatially disordered situation and
adequately describes the transition from short-time super-
statistical behavior to the Gaussian probability law at long
times, which will be shown in the subsequent section.
The full consistency in the short time limit between the
subordination approach and superstatistics is our second
main result.

D. Long time limit

We now turn to the long time limit encoded in the Fourier
transform (44) of the probability density Pðr; tÞ—that
is, the times larger than the diffusivity correlation time τ.
In dimensionless units, it corresponds to t ≫ 1, and the
hyperbolic functions assume the limiting behaviors

sinh
�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p �
∼ cosh

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p �
∼
1

2
exp

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p �
: ð77Þ

Combined with Eq. (48), we find

P̂ðk; tÞ ∼ 2n=2 exp ðnt
2
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
�Þ�

1þ 1
2

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
þ 1ffiffiffiffiffiffiffiffiffiffi

1þ2k2
p

i�
n=2 : ð78Þ

As in the short time limit above, this expression is
normalized, P̂ðk ¼ 0; tÞ ¼ 1.
Now, let us focus on the tails of the probability density

Pðr; tÞ, corresponding to the limit k ≪ 1, for which
Eq. (78) gives P̂ðk;tÞ∼expð−nk2t=2Þ¼ expð−hDistk2tÞ,
and thus

Pðr; tÞ ∼ 1

ð4πhDisttÞn=2
exp

�
−

r2

4hDistt
�
: ð79Þ

At long times, the probability density function Pðr; tÞ
assumes a Gaussian form, with the effective diffusivity
hDist ¼ n=2. This result is a consequence of the Ornstein-
Uhlenbeck variation of the diffusivity encoded in the
starting equations (19b) and (19c): At sufficiently long
times, the process samples the full diffusivity space and
behaves like an effective Gaussian process with renormal-
ized diffusivity. The explicit derivation of the crossover to
the Gaussian behavior is our third main result.
Figure 5 shows the crossover from the initial exponential

to the long-time Gaussian behavior of the probability
density function Pðx; tÞ for d ¼ n ¼ 1 by comparison to
the Gaussian distribution (79) for the short time t ¼ 0.1, the
crossover time t ¼ 1.0, and the longer time t ¼ 10.0.

V. BIVARIATE FOKKER-PLANCK
EQUATION AND RELATION TO THE

SUBORDINATION APPROACH

In this section, we derive the Fokker-Planck equation
corresponding to the set of stochastic equations (20a)–(20c)
of our diffusing diffusivity model. We also establish the
relation to the subordination approach of Sec. IV. Note that
here we restrict the discussion to the case d ¼ n ¼ 1, as
higher dimensional cases are completely equivalent.
Following our notation, we thus seek the Fokker-Planck

equation for the bivariate probability density function
fðx; y; tÞ, which has the structure

∂
∂t fðx; y; tÞ ¼ Lyfðx; y; tÞ þ y2

∂2

∂x2 fðx; y; tÞ: ð80Þ

The Fokker-Planck operator in y reads
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FIG. 5. Probability density function Pðx; tÞ for d ¼ n ¼ 1 from
simulations of the Langevin equations (20) for three different
times, in dimensionless form (σ ¼ τ ¼ D⋆ ¼ 1). Comparison
with the Gaussian distribution (79) demonstrates the strongly
non-Gaussian behavior at short times and the almost fully
Gaussian shape at longer times.
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Ly ¼
∂
∂y yþ

1

2

∂2

∂y2 ; ð81Þ

and the marginal probability density function for x is then

Pðx; tÞ ¼
Z

∞

−∞
fðx; y; tÞdy: ð82Þ

To proceed further, we introduce the joint probability
density function qðτ; y; tÞ of the Ornstein-Uhlenbeck proc-
ess YðtÞ and its integrated square τðtÞ, given by Eq. (39).
The corresponding system of stochastic equations has the
form

dy
dt

¼ −yþ ηðtÞ; ð83aÞ

dτ
dt

¼ y2; ð83bÞ

and thus the bivariate Fokker-Planck equation governing
the probability density qðτ; y; tÞ reads

∂
∂t qðτ; y; tÞ ¼ Lyqðτ; y; tÞ − y2

∂
∂τ qðτ; y; tÞ: ð84Þ

Now, we introduce an ansatz for the solution of Eq. (80) of
the form

fðx; y; tÞ ¼
Z

∞

0

Gðx; τÞqðτ; y; tÞdτ; ð85Þ

where Gðx; τÞ is the Gaussian probability density given by
Eq. (37). Then, in accordance with Eq. (82), the marginal
probability density Pðx; tÞ can be written in the subordi-
nation form of Eq. (38), where

Tðτ; tÞ ¼
Z

∞

∞
qðτ; y; tÞdy ð86Þ

is the marginal probability density function of the inte-
grated square of the Ornstein-Uhlenbeck process whose
Laplace transform is given by Eq. (42).
We now prove that the solution of Eq. (80) can be

presented in the form (85). To that end, we differentiate
Eq. (85) and use relation (84) to get

∂
∂t fðx; y; tÞ ¼

Z
∞

0

Gðx; τÞ ∂∂t qðτ; y; tÞdτ

¼
Z

∞

0

Gðx; τÞ
�
Lyqðx; y; tÞ− y2

∂
∂τqðx; y; tÞ

�
dτ

¼ Ly

�Z
∞

0

Gðx; τÞqðτ; y; tÞdτ
�

− y2
Z

∞

0

Gðx; τÞ ∂∂τqðx; y; tÞdτ: ð87Þ

We apply relation (85) to the first term and integrate the
second term by parts, obtaining

∂
∂t fðx; y; tÞ ¼ Lyfðx; y; tÞ − y2

�
qðτ; y; tÞGðx; τÞjτ¼∞

τ¼0

−
Z

∞

0

qðτ; y; tÞ ∂
∂τGðx; τÞdτ

�
: ð88Þ

Finally, with the relation ∂Gðx; τÞ=∂τ ¼ ∂2Gðx; τÞ=∂x2,
we see that

∂
∂t fðx; y; tÞ ¼ Lyfðx; y; tÞ þ y2

∂2

∂x2 fðx; y; tÞ
þ y2qðτ ¼ 0; y; tÞδðxÞ: ð89Þ

The last term vanishes, as τ is the integrated square of yðtÞ,
and thus we arrive at Eq. (80). Therefore, we showed that
the solution of the bivariate Fokker-Planck equation (80)
can be presented in the form (85), and consequently, the
marginal probability density function Pðx; tÞ can be written
in the subordination form (38).
The connection of the bivariate Fokker-Planck

equation (80) for the Langevin system (19a)–(19c), with
the subordination approach represented by relations (36)
and (38), is our fourth main result.

VI. DISCUSSION

An increasing number of systems are reported in which
the mean-squared displacement is linear in time, suggesting
normal (Fickian) diffusion of the observed tracer particles.
Concurrently, the (displacement) probability density func-
tion is pronouncedly non-Gaussian. Normal diffusion with
a Laplace distribution of particle displacements was pre-
viously explained in a superstatistical approach by Granick
and co-workers [24] as well as Hapca et al. [29]. The
experimentally observed crossover to Gaussian statistics at
longer times was interpreted as a consequence of the central
limit theorem, kicking in at times longer than the corre-
lation time of the diffusion fluctuations [24]. Chubinsky
and Slater [34] introduced the diffusing diffusivity model
and studied it numerically, concluding the crossover from
the initial exponential shape to a Gaussian with effective
diffusivity. Jain and Sebastian go further with the double
Langevin approach [35]. Here, we introduced a consistent
minimal model for a diffusing diffusivity. We explicitly
obtain the Fourier transform of the full probability density
function, from which we derive the analytical short and
long time limits. This allows us to determine the dynamical
crossover to the long-time Gaussian shape of the proba-
bility density at the correlation time of the fluctuating
diffusivity. Moreover, we demonstrate a full consistency of
our minimal model with the superstatistical approach, as
well as with the results of Jain and Sebastian. At the same
time, our model is more general and flexible: Phrasing the
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diffusing diffusivity approach in terms of a subordination
concept, we endow our model with an extremely flexible
basis, such that a wide range of different statistics for the
diffusivity can be included.
We also obtained the bivariate Fokker-Planck equation for

this diffusing diffusivity process and expressed its solution in
terms of the subordination integral. Excellent agreement with
simulations is provided for the probability density function,
the Brownian scaling of the mean-squared displacement, and
the kurtosis of the probability density function.
We are confident that this subordination integral formu-

lation of the diffusing diffusivity model will prove useful
for experimentalists observing such dynamics. Themodel can
be calibrated with respect to the two parameters τ and σ,
which can be obtained from experiment by analyzing the
time dependence of the mean-squared displacement and
the kurtosis. The latter provides information on the typical
diffusivity correlation time τ (see Fig. 3), whereas the former
allows one to estimate the parameter σ [see Eq. (56)].
Moreover, measurement of the diffusivity distribution, as
can be directly obtained experimentally [38], provides the
value of the parameter D⋆ ¼ σ2τ according to Eq. (28).
Additionally, the possibility to include a different dimension-
ality n for the subordinating process YðtÞ allows for fine-
tuning of the model to match the experimentally observed
probability density function, which might be necessary when
the model is used for quantitative predictions. As we show in
the example in Appendix C1, the difference in the dimen-
sionality n of the process YðtÞ does not change the dominant
exponential behavior at short times but affects the prefactors.
Similarly, the prefactors of the exponential in the diffusivity
distribution pst

DðDÞ are affected by the concrete value of n.
This fact may be employed to account for the deviations
from thepure exponential shapeof theprobability distribution
also reported in Ref. [24].
An intriguing question emerging from our analysis

concerns the physical origin of the dimensionality n of
the subordinating process YðtÞ. Intuitively, one might argue
that the diffusivity and thus YðtÞ should have as many
components as spatial directions in the particle trajectory
rðtÞ, i.e., d ¼ n. This is the case considered in the
derivations in Sec. IV. However, the mode concept for
DðtÞ introduced here may also have a more fundamental
physical meaning. As we showed here, the value n affects
the details of the shape of Pðr; tÞ as well as pst

DðDÞ, and
for large n values, the short-time exponential shapes may
even be fully suppressed. Advanced experiments allowing
one to determine n from the exact shape of the probability
densities Pðr; tÞ and pst

DðDÞ will provide important clues
concerning this question.
Possible generalizations may include diffusing diffusiv-

ity models with additional deterministic time dependence
of the diffusivity [53] or non-Gaussian anomalous visco-
elastic diffusion in crowded membranes [21], which
contrasts Gaussian anomalous viscoelastic diffusion in

noncrowded membranes [20]. Of course, the diffusing
diffusivity concept is a first step in capturing the full
spatiotemporal disorder of complex systems. Ultimately, a
full description of spatial and temporal stochasticity in
terms of a random diffusivity Dðx; tÞ will be desired.
Let us put the diffusing diffusivity approach into context

with other popular models with distributed transport
coefficients. Typically, these are constructed to describe
anomalous diffusion processes. Another model is scaled
Brownian motion, in which the diffusivity is a determin-
istic, power-law function of time [54,55]. On a stochastic
level, scaled Brownian motion appears naturally in granular
gases [56], in which nonideal collisions cause a decrease
of the system’s temperature (kinetic energy). Scaled
Brownian motion is nonergodic and displays a massively
delayed overdamping transition [57]. Heterogeneous dif-
fusion processes employ a continuous, deterministic space
dependence of the diffusivity and lead to nonergodic and
aging dynamics [55,58,59]. In contrast to these models,
random diffusivity approaches also have a considerable
history. Thus, segregation in solids in the context of
radiation was described by such an approach [60], and
Brownian motion in media with a fluctuating friction
coefficient, temperature fluctuations, or randomly inter-
rupted diffusion were used to describe, for instance,
randomly stratified media [61]. A random diffusivity
approach was elaborated to consider light scattering in a
continuous medium with a fluctuating dielectric constant
[62]. Motivated by the comparison of diffusion processes
assessed by different modern measurement techniques,
the concept of microscopic single-particle diffusivity was
developed [63]. In Ref. [64], the diffusivity varies randomly
but is constant on patches of random sizes. Such a random
patch model shows nonergodic subdiffusion due to the
diffusivity effectively changing at random timeswith a heavy-
tailed distribution. Intermittency between two values of the
diffusivitywere also considered [65]. Finally,wemention that
a deterministic time dependence of the diffusivity was
combined with a random diffusivity in Ref. [53]. As seen
in several experimental studies already, to describe stochastic
particle motion in real complex systems such as living
biological cells, combinations of different stochastic mech-
anisms are necessary to capture the observed dynamics [16].
Thus, the diffusing diffusivity picture may also need to be
complemented by other processes, as we saw in the example
of non-Gaussian viscoelastic subdiffusion based on the
observations in Refs. [21,38].
Despite the wealth of established stochastic processes,

the diffusing diffusivity model has quite unique properties.
Thus, the crossover from a short-time exponential shape to
Gaussian statistics at longer times, while the MSD remains
linear and thus classifies normal (Fickian) diffusion, cannot
be captured by existing models. Of course, crossovers
between non-Gaussian and Gaussian probability density
functions may be grasped by truncated continuous-time
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random walks or distributed-order fractional diffusion
equations [66]. However, in these models, the MSD also
exhibits a crossover from anomalous to normal diffusion.
In this sense, we believe that the diffusing diffusivity model
and its potential generalizations on the basis of our
subordination approach will emerge as a new paradigm
in the theory of stochastic processes.
We conclude by pointing out that the diffusing diffu-

sivity model developed here is closely related to the
Cox-Ingersoll-Ross (CIR) model for monetary returns,
which is widely used in financial mathematics [41]. To
show this relation, let us write the Langevin equation (19c)
for the Ornstein-Uhlenbeck process as

dYi ¼ −
1

τ
Yidtþ σdWiðtÞ; ð90Þ

where i ¼ 1;…; n and WiðtÞ is the Wiener process with
variance 1=2. Our aim is to design a Langevin equation in
the Itô form for the squared Ornstein-Uhlenbeck process in
n dimensions,

DðtÞ ¼
Xn
i¼1

Y2
i ðtÞ: ð91Þ

To this end, we employ the Itô formula of differentiation in
the function of an n-dimensional vector [67] to find

dD ¼ 2

τ

�
nσ2τ
2

−D

�
þ 2σ

ffiffiffiffi
D

p
dWðtÞ: ð92Þ

This is the stochastic differential equation of the CIR
process describing the time evolution of interest rates
[41]. The same process is used in the Heston model,
specifying the evolution of stochastic volatility of a given
asset [40]. Our results for the subordination approach
should therefore also be relevant to financial-market
modeling. Indeed, the technique of subordination, which
is closely related to random time changes, is a very
common concept in financial mathematics [68].
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APPENDIX A: SUPERSTATISTICS
WITH MODIFIED EXPONENTIAL
DIFFUSIVITY DISTRIBUTION

Consider the Gaussian probability density function that
is typical for viscoelastic subdiffusion in the overdamped
limit,

Gαðx; tjDαÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDαtα
p exp

�
−

x2

4Dαtα

�
; ðA1Þ

which is equivalent to fractional Brownian motion [12].
The associated mean-squared displacement is hx2ðtÞi ¼
2Dαtα. For the superstatistical distribution of the general-
ized diffusion coefficient, we choose the modified
exponential

pDðDαÞ ¼
1

Γð1þ 1=κÞD⋆
α
exp

�
−
�
Dα

D⋆
α

�
κ
�
: ðA2Þ

The resulting probability density function

Psðx; tÞ ¼
Z

∞

0

pDðDαÞGαðx; tjDαÞdDα; ðA3Þ

with Dα=D⋆
α → ~D and λ ¼ x2=½4D⋆

αtα�, becomes

Psðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πD⋆
αtα

p
Γð1þ 1=κÞ

Z
∞

0

~D−1=2e− ~Dκ−λ= ~Dd ~D:

ðA4Þ

After a change of variables according to y ¼ ~Dκ, we have

Psðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πD⋆
αtα

p
κΓð1þ 1=κÞ

×
Z

∞

0

y−1þ1=ð2κÞe−y−λy−1=κdy: ðA5Þ

With the identification

e−z ¼ H1;0
0;1

�
z





−−−−−−−ð0; 1Þ

�
; ðA6Þ

with the Fox H function [69], using the Laplace transform
rules for the H function [70] along with the standard rules
for the Fox H function [69], one arrives at the result

Psðx; tÞ ¼
1

Γð1=κÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πD⋆

αtα
p

×H2;0
0;2

�
x2

4D⋆
αtα





−−−−−−−ð1=½2κ�; 1=κÞ; ð0; 1Þ

�
: ðA7Þ

The asymptotic behavior is then [69]

Psðx; tÞ≃ jxjð1−κÞ=ð1þκÞ

Γð1=κÞ ffiffiffi
π

p ð4D⋆
αtαÞ1=ð1þκÞ

× exp

�
−

1þ κ

κκ=ð1þκÞ

�
x2

4D⋆
αtα

�
κ=ð1þκÞ�

: ðA8Þ

In Fig. 6, we show the behavior of the resulting
probability density (A3) from numerical inversion.
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For compressed exponential distributions pDðDαÞ with
κ > 1, the resulting function Psðx; tÞ is a stretched
Gaussian, while for a stretched exponential pDðDαÞ with
0 < κ < 1, the function Psðx; tÞ is a superstretched
Gaussian, which is broader than the exponential (Laplace)
distribution. Figure 6 also demonstrates that the asymptotic
behavior (A8) indeed fits the numerical inversion.

1. Asymptotics by Laplace’s method

The asymptotic behavior (A8) may also be obtained by
the Laplace method. As this is an interesting alternative
method to derive the asymptotic behavior of the integral
[see Eq. (A4)],

I ¼
Z

∞

0

~D−1=2e− ~Dκ−λ= ~Dd ~D ¼
Z

∞

0

y−3=2e−y
−κ−λydy ðA9Þ

for λ ≫ 1, we include this approach here. This is a Laplace
integral of the form

I ¼
Z

∞

0

fðyÞe−λydy: ðA10Þ

The standard methods to evaluate the asymptotics of I
cannot be applied since fðyÞ in Eq. (A9) equals zero at
y ¼ 0 with all of its derivatives. Thus, to evaluate the
asymptotics, we need to find the maximum of the function

φðyÞ ¼ −λy − y−κ; ðA11Þ

which is reached at ym ¼ ðκ=λÞ1=ð1þκÞ. We now introduce
the new variable t ¼ y=ym, such that Eq. (A9) becomes

I ¼
�
λ

κ

�
1=½2ð1þκÞ� Z ∞

0

t−3=2 expð−λκ=ð1þκÞ

× ½κ−κ=ð1þκÞt−κ þ tκ1=ð1þκÞ�Þ: ðA12Þ

After substitution, τ ¼ tκ1=ð1þκÞ, we get

I ¼ λ1=½2ð1þκÞ�
Z

∞

0

τ−3=2eλ̄SðτÞdτ; ðA13Þ

where λ̄ ¼ λκ=ð1þκÞ and SðτÞ ¼ −τ − τ−κ.
Now, the standard Laplace method can be applied to

Eq. (A13). The function SðτÞ reaches its maximum at
τm ¼ κ1=ð1þκÞ. Following the standard procedure, we find

I ∼ λ1=½2ð1þκÞ�
Z

τmþε

τm−ε
τ−3=2

× exp

�
λ̄

�
SðτmÞ þ

ðτ − τmÞ2
2

S00ðτmÞ
��

∼ λ1=½2ð1þκÞ�τ−3=2m eλ̄SðτmÞ
Z

∞

∞
exp

�
−
λ̄

2
jS00ðτmÞjτ2

�

¼ λ1=½2ð1þκÞ�τ−3=2m eλ̄SðτmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π

λ̄S00ðτmÞ

s
: ðA14Þ

With SðτmÞ¼−ð1þκÞκ−κ=ð1þκÞ and S00ðτmÞ¼−ð1þκÞ
κ−1=ð1þκÞ and applying this result to the above probability
density function (A4), we obtain the same asymptotic
behavior (A8), up to a numerical prefactor.

2. Power-law diffusivity distribution

We now consider the power-law distribution

pDðDÞ ¼ αDα⋆
ðD⋆ þDÞ1þα ðA15Þ

with α > 0. With the relation (7), we separately consider
the following cases:

(i) 0 < α < 1. The Laplace transform of the diffusivity
distribution reads
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FIG. 6. Top panel: Superstatistical probability density function
Psðx; tÞ according to Eq. (A3) from numerical integration, for
exponents κ ¼ 0.5, 1, and 2 (see the figure key). Bottom panel:
Convergence of the full numerical solution to the analytical
asymptotic form (A8) for κ ¼ 0.5 and 2. All distributions are
drawn for t ¼ 1 (a.u.).
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~pDðsÞ¼αDα⋆
Z

∞

0

dD
ðD⋆þDÞ1þαe

−DsdD

¼1−D⋆sαeD⋆s
�
Γð1−αÞ−

Z
D⋆s

0

z−αe−zdz

�
;

ðA16Þ

after substituting and integrating by parts. In the
tails, we then obtain the following scaling behavior
for the probability density function,

lim
k→0

Pðk; tÞ
∼ 1 −D⋆k2αtαð1þD⋆k2tþ � � �Þ

×

�
Γð1 − αÞ − ðD⋆k2tÞ1−α

1 − α
þ ðD⋆k2tÞ2−α

2 − α
− � � �

�
:

ðA17Þ

It thus follows that

Pðx; tÞ≃ 1

jxj2αþ1
ðA18Þ

such that the second moment does not exist.
(ii) α ¼ 1. After integrating by parts once, we obtain

Pðk; tÞ ∼ 1 −D⋆k2t logðD⋆k2tÞ: ðA19Þ

The second moment still does not exist.
(iii) 1 < α < 2. Integrating by parts twice, we find

~pDðsÞ ¼ 1 −
D⋆s
α − 1

þDα⋆sαeD⋆s

α − 1

×

�
Γð2 − αÞ −

Z
D⋆s

0

z1−αe−zdz

�
; ðA20Þ

such that we obtain

Pðx; tÞ≃ 1

jxj2αþ1
ðA21Þ

with the MSD

hx2ðtÞi ∼ 2D⋆
α − 1

t: ðA22Þ

Power-law diffusivity distributions lead to a long-tailed,
power-law distribution Pðx; tÞ in the superstatistical
approach. The second moment diverges for 0 < α ≤ 1,
while normal diffusion emerges for α > 1.

APPENDIX B: DIMENSIONLESS UNITS
FOR THE MINIMAL MODEL

To simplify the calculations and obtain a more elegant
formulation, we introduce dimensionless variables accord-
ing to t0 ¼ t=t0 and x0 ¼ x=x0 (and similarly for the y and z
components). For the x component, the set (19) of
stochastic equations then becomes

d
dt0

x0ðtÞ ¼ t0
x0

ffiffiffiffiffiffiffiffiffiffiffiffi
2DðtÞ

p
ξðt0t0Þ; ðB1aÞ

DðtÞ ¼ Y2ðtÞ; ðB1bÞ

d
dt0

Y ¼ −
Y

τ=t0
þ σηðt0t0Þ: ðB1cÞ

Noting that for the Gaussian noise sources we have
ξðt0t0Þ ¼ t−1=20 ξðt0Þ and ηðt0t0Þ ¼ t−1=20 ηðt0Þ, we rewrite
Eqs. (B1) as

d
dt0

x0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2D̄ðtÞ

q
ξðt0Þ; ðB2aÞ

D̄ðtÞ ¼ Ȳ2ðtÞ; ðB2bÞ

d
dt0

Ȳ ¼ −
Ȳ
τ̄
þ σ̄ηðt0Þ; ðB2cÞ

where

D̄ ¼ t0
x20

D; Ȳ ¼ t1=20

x0
Y; τ̄ ¼ τ

t0
: ðB3Þ

Now, we choose the temporal and spatial scales such that
τ̄ ¼ σ̄ ¼ 1, that is,

t0 ¼ τ; x0 ¼ στ: ðB4Þ

With this choice of units, the stochastic equations of
our minimal diffusing diffusivity model are then given
by Eqs. (20).

APPENDIX C: TWO EXAMPLES
FOR THE PROCESS YðtÞ
1. The case d = 2 and n= 1

As an example for the case when the dimensionality of
the process YðtÞ differs from the embedding dimension d
of the process rðtÞ, we take the case with d ¼ 2 and n ¼ 1.
In the short time limit, we get, from Eq. (62), that
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Pðr; tÞ ∼ 1

2πt1=2

Z
∞

0

kJ0ðkrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1=t

p dk

¼ 1ffiffiffiffiffiffiffi
2π3

p
t

�
rffiffi
t

p
�

−1=2
K1=2

�
rffiffi
t

p
�
: ðC1Þ

The asymptotic behavior is given by

Pðr; tÞ ∼ 1

2πr
ffiffi
t

p e−t=
ffiffi
t

p
: ðC2Þ

Comparing this result with Eq. (70) for the case d ¼ n ¼ 2,
we recognize the modified prefactor, including a different
scaling in r and t. Thus, the difference in the dimensionality
of the process YðtÞ does not change the dominating
exponential behavior.
The connection to the superstatistical approach in

analogy to the discussion in Sec. IV C, following
Eq. (73), with the two-dimensional Gaussian kernel

Gðr; tjDÞ ¼ 1

4πDt
e−r

2=ð4DtÞ ðC3Þ

and the stationary diffusivity distribution

pst
DðDÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

πDD⋆
p e−D=D⋆ ; ðC4Þ

for the case n ¼ 1, produces the distribution

Pðr; tÞ ¼ 1ffiffiffiffiffiffiffi
2π3

p
D⋆t

�
rffiffiffiffiffiffiffiffi
D⋆t

p
�

−1=2
K1=2

�
rffiffiffiffiffiffiffiffi
D⋆t

p
�
; ðC5Þ

which exactly matches Eq. (C1) written in dimensional
form.

2. Infinite-dimensional process YðtÞ
Here, we consider the limit of large dimension n for

the process YðtÞ. For short times t ≪ 1, the tails of the
probability density Pðr; tÞ follow from [compare Eq. (48)]

P̂ðk; tÞ ∼ ent=2

½t
2
ð1þ 2k2 þ 1Þ þ 1�n=2

¼ ent=2

½1þ tð1þk2Þn
2

n=2 �n=2
→

ent=2

eð1þk2Þnt=2 ¼ e−ntk
2=2: ðC6Þ

Thus, the tails of the probability density function Pðx; tÞ are
already Gaussian at short times.
The long-time behavior t ≫ 1 leads to

P̂ðk; tÞ ∼ 2n=2 exp ðnt
2
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
�Þh

1þ 1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

p
þ 1ffiffiffiffiffiffiffiffiffiffi

1þ2k2
p

�i
n=2 : ðC7Þ

Considering the tails, we take k ≪ 1, revealing that

P̂ðk; tÞ ∼ exp

�
−
nk2t
2

�
ðC8Þ

is also Gaussian, with the same variance. Thus, in the high-
dimensional case, the regime of exponential wings in the
probability density function does not exist at all, and the
Gaussian shape is established early on. This is equivalent to
the observation that the kurtosis (57) becomes Gaussian
already for short times when n is large.

APPENDIX D: FOURTH MOMENT OF Pðx;tÞ
With the help of relation (41), we obtain the fourth

moment of Pðx; tÞ. The necessary derivative of ~Tnðs; tÞ
with respect to s is

∂ ~Tnðs; tÞ
∂s ¼ −

nent=2

2

�
1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p
�
sinh ðt ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
p Þ þ cosh ðt ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
p Þ

�
−n=2−1

�
s

ð1þ 2sÞ3=2 sinh ðt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p Þ

þ t
2

�
1þ 1

1þ 2s

�
cosh ðt ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
p þ tffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
p sinh ðt ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
p Þ

�
; ðD1Þ

and thus

∂ ~Tnðs; tÞ
∂s






s¼0

¼ −
nt
2
: ðD2Þ

The second differentiation and subsequent limit s → 0 produces, after some steps,

∂2 ~Tnðs; tÞ
∂s2






s¼0

¼ hτ2ðtÞi ¼ −
n
4
ð1 − e−2tÞ þ nt

2
þ n2t2

4
: ðD3Þ
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