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We describe a strategy to improve the efficiency of free energy estimates by reducing dissipation in
nonequilibrium Monte Carlo simulations. This strategy generalizes the targeted free energy pertur-
bation approach [C. Jarzynski, Phys. Rev. E 65, 046122 (2002)] to nonequilibrium switching sim-
ulations, and involves generating artificial, “escorted” trajectories by coupling the evolution of the
system to updates in external work parameter. Our central results are: (1) a generalized fluctuation
theorem for the escorted trajectories, and (2) estimators for the free energy difference �F in terms of
these trajectories. We illustrate the method and its effectiveness on model systems. © 2011 American
Institute of Physics. [doi:10.1063/1.3544679]

I. INTRODUCTION

The computation of free energy differences is an essen-
tial component of computer studies of biological, chemical,
and molecular processes, with applications to topics such as
phase coexistence and phase equilibria, ligand binding events,
and solvation of small molecules.1, 2 Given the importance of
free energy calculations in computational thermodynamics,
there is a need for robust, efficient, and accurate methods to
estimate free energy differences.

In a standard formulation of the free energy estimation
problem, we consider two equilibrium states of a system,
corresponding to the same temperature T but different val-
ues of an external parameter, λ = A, B, and we are inter-
ested in the free energy difference between the two states,
�F = FB − FA. While many widely used free energy esti-
mation methods, such as thermodynamic integration and free
energy perturbation rely on equilibrium sampling, there has
been considerable interest in methods for estimating �F that
make use of nonequilibrium simulations.1, 2 In the most direct
implementation of this approach, a number of independent
simulations are performed in which the external parameter is
varied at a finite rate from λ = A to λ = B, with initial con-
ditions sampled from the equilibrium state A. The free energy
difference �F can then be estimated using the nonequilib-
rium work relation3, 4

e−β�F = 〈e−βW 〉, (1)

where W denotes the work performed on the system dur-
ing a particular realization (i.e., simulation) of the process,
angular brackets 〈. . .〉 denote an average over the realiza-
tions of the process and β = 1/T . In principle, this approach
allows one to compute �F from trajectories of arbitrar-
ily short duration. However, the number of realizations re-
quired to obtain a reliable estimate of �F grows rapidly with
the dissipation, 〈Wdiss〉 ≡ 〈W 〉 − �F , that accompanies fast

a)Author to whom correspondence should be addressed. Electronic address:
svaikunt@umd.edu.

switching simulations.5–7 The dissipation is positive as a con-
sequence of the second law of thermodynamics, and reflects
the lag that builds up as the system pursues—but is unable
to keep pace with—the equilibrium distribution correspond-
ing to the continuously changing parameter λ.8–11 This idea is
illustrated schematically in Fig. 1.

In Ref. 12, we described a strategy to improve the ef-
ficiency of free energy estimates obtained with nonequilib-
rium molecular-dynamics simulations. This strategy involved
adding nonphysical terms to the equations of motion, to re-
duce the lag and therefore the dissipation. As illustrated in
Ref.12 using a simple model system, when these terms suc-
cessfully “escorted” the system through a near-equilibrium
sequence of states, the convergence of the free energy es-
timate improved dramatically. In the present paper we ex-
tend these results to simulations evolving according to Monte
Carlo dynamics. We then show that the escorted trajectories
satisfy a fluctuation theorem, and we discuss and illustrate the
application of this result to the estimation of free energy dif-
ferences.

In Sec. II we introduce escorted nonequilibrium switch-
ing simulations for systems evolving according to Monte
Carlo dynamics. The approach we take here is motivated
by previous work12–15 and involves generating artificial, or
“escorted,” trajectories, Eq. (10), by modifying the dynamics
with terms that directly couple the evolution of the system
to changes in the external parameter. The central result of
this section is an identity for �F in terms of these escorted
trajectories, Eq. (19). In Sec. III we extend this result by
showing that these trajectories satisfy a fluctuation relation
analogous to Crooks’s fluctuation relation.16–18 This in turn
allows us to combine our approach with Bennett’s acceptance
ratio method19 which provides an optimal, asymptotically
unbiased estimator, Eq. (38), for �F (Ref. 20). In Sec. IV,
we show that while Eqs. (19) and (38) are identities for
all escorted simulations, they are particularly effective as
estimators of �F when the modified dynamics successfully
reduce the lag described above. In particular, if these terms
eliminate the lag entirely, then Eqs. (19) and (38) provide
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FIG. 1. The axes schematically represent configuration space (z-space). The
unshaded ovals denote the statistical state of the system, ρ(z, t), and the
shaded ovals denote the equilibrium state, ρλ(t)

eq (z), corresponding to the value
of external parameter, λ(t), at various instants of time. As the work param-
eter λ is switched from A to B, a lag builds up as the state of the system,
ρ(z, t), pursues the equilibrium distribution corresponding to the changing
work parameter, ρ

λ(t)
eq (z).

perfect (zero variance) estimators: W = �F for every
realization. Finally in Sec. V, we illustrate the effectiveness
of our approach on two model systems.

II. ESCORTED NONEQUILIBRIUM SIMULATIONS

Consider a system whose energy is given by a classi-
cal Hamiltonian, Hλ(z), where z denotes a microstate, that
is a point in the D-dimensional configuration space of the
system,21 and λ is an external work parameter. At a tempera-
ture β−1, the equilibrium state of this system is described by
the distribution

ρλ
eq(z) = e−β Hλ(z)

Zλ

, (2)

with the free energy Fλ = −β−1 ln Zλ. We wish to compute
the free energy difference �F = FB − FA between two equi-
librium states at the same temperature, β−1, but different val-
ues of the work parameter, λ = A, B.

To estimate the value of �F , we assume we have at our
disposal a discrete-time Monte Carlo algorithm, parameter-
ized by the value of λ and defined by the transition probabil-
ity Pλ(z|z0): if z0 represents the microstate of the system at
one time step, then the next microstate z is sampled randomly
from Pλ(z|z0). We assume this algorithm satisfies the condi-
tions of detailed balance,

Pλ(z|z0)

Pλ(z0|z)
= e−β Hλ(z)

e−β Hλ(z0)
, (3)

and ergodicity.22 Routinely used Monte Carlo schemes such
as the Metropolis algorithm1 satisfy these conditions. Equa-
tion (3) implies the somewhat weaker condition of balance,∫

dz0 Pλ(z|z0) e−β Hλ(z0) = e−β Hλ(z), (4)

which we will use in the analysis below. With this Monte

Carlo algorithm in place, we first describe a standard pro-
cedure for estimating �F using nonequilibrium simulations,

Eqs. (5)–(9) below, and then we introduce our modified ver-
sion of this approach.

Imagine a process in which the system is initially pre-
pared in equilibrium, at λ = A and temperature β−1, and
then the system evolves under the Monte Carlo dynamics de-
scribed above, as the value of λ is switched from A to B in N
steps according to some predetermined protocol. This evolu-
tion generates a trajectory γ = {z0, z1, . . . , zN−1} that can be
represented in more detail using the notation

[z0, λ0] ⇒ [z0, λ1] → [z1, λ1] ⇒ · · · → [zN−1, λN−1]

⇒ [zN−1, λN ]. (5)

Here, the symbol ⇒ denotes an update in the value of λ, with
the microstate held fixed, while → denotes a Monte Carlo
step at fixed λ, e.g., the microstate z1 is sampled from the
distribution Pλ1 (z1|z0). Moreover,

λ0 ≡ A, λN ≡ B, (6)

and the initial point z0 is sampled from ρ A
eq(z0).

Because it is specified by the sequence of mi-
crostates z0, . . . , zN−1, the trajectory γ can be viewed as
a point in a DN -dimensional trajectory space, with dγ

= dz0, . . . , dzN−1. For the process described in the previous
paragraph, the probability density for generating this trajec-
tory is

p[γ ] = PλN−1 (zN−1|zN−2) · · · Pλ2 (z2|z1) Pλ1 (z1|z0) ρ A
eq (z0),

(7)

where the factors Pλi (zi |zi−1) in this equation (read from right
to left) correspond to the symbols → in Eq. (5) (read from left
to right). The work performed on the system during this pro-
cess is the sum of energy changes due to updates in λ,4, 17, 23, 24

W [γ ] =
i=N−1∑

i=0

δWi ≡
i=N−1∑

i=0

[Hλi+1 (zi ) − Hλi (zi )]. (8)

Using Eqs. (3), (7) and (8), we arrive at the nonequilibrium
work relation for Monte Carlo dynamics4, 17

〈e−βW 〉 ≡
∫

dγ p[γ ]e−βW [γ ] = e−β�F . (9)

Thus we can estimate �F by repeatedly performing sim-
ulations to generate trajectories of the sort described by
Eq. (5), computing the work associated with each trajec-
tory, Eq. (8), and finally constructing the exponential average,
Eq. (9). As mentioned in the Introduction, however, this aver-
age converges poorly when the process is highly dissipative.

To address the issue of poor convergence, let us now as-
sume that for every integer 0 ≤ i < N , we have a determinis-
tic function Mi : z → z′ that takes any point z in configuration
space and maps it to a point z′. We assume that each of these
functions is invertible (M−1

i exists), but otherwise the func-
tions are arbitrary. These Mi ’s then constitute a set of bijective
mappings, which we use to modify the procedure for gener-
ating trajectories, as follows. When the value of the work pa-
rameter is switched from λi to λi + 1, the configuration space
coordinates are simultaneously subjected to the mapping Mi .
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Equation (5) then becomes

[z0, λ0]
M0⇒ [z′

0, λ1] → [z1, λ1]
M1⇒ · · · → [zN−1, λN−1]

MN−1⇒ [z′
N−1, λN ], (10)

where

z′
i ≡ Mi (zi ), (11)

as indicated by the notation
Mi⇒. (As before, the symbol

→ denotes a Monte Carlo move at fixed λ.) The bijective
maps effectively escort the system by directly coupling in-
crements in λ to changes in the microstate. This is similar
to the “metric scaling” approach introduced by Miller and
Reinhardt,15 in which each update in λ is accompanied by
a linear scaling of coordinates; however, in the present paper
we do not assume the Mi ’s are linear in z.

In the escorted trajectory [Eq. (10)], the system visits a
sequence of 2N points in configuration space: the N “pri-
mary” microstates z0, . . . , zN−1, alternating with the N “sec-
ondary” microstates z′

0, . . . , z′
N−1. Since each z′

i is uniquely
determined from zi [Eq. (11)], the sequence of primary mi-
crostates γ = {z0, . . . , zN−1} fully specifies the trajectory;
that is, trajectory space remains DN -dimensional, with dγ

= dz0, . . . , dzN−1. The probability density for generating a
trajectory γ is given by the following modification of Eq. (7):

p[γ ] = PλN−1 (zN−1|z′
N−2) · · · Pλ2 (z2|z′

1) Pλ1 (z1|z′
0) ρ A

eq(z0).

(12)

Taking a cue from Refs. 13 and 15, let us now define

W ′[γ ] =
N−1∑
i=0

δW ′
i ≡

N−1∑
i=0

[
Hλi+1 (z′

i ) − Hλi (zi )

−β−1 ln Ji (zi )
]
, (13)

where Ji (z) = |∂z′/∂z| is the Jacobian associated with the
map Mi : z → z′. Averaging exp(−βW ′[γ ]) over the ensem-
ble of trajectories, we have

〈e−βW ′ 〉 =
∫

dγ p[γ ] e−βW ′[γ ]

= 1

Zλ0

∫
dzN−1 · · ·

∫
dz0 e−β

∑N−1
i=0 δW ′

i

× PλN−1 (zN−1|z′
N−2) . . . Pλ1 (z1|z′

0) e−β Hλ0 (z0). (14)

To evaluate this expression, we first identify all factors in
the integrand that do not depend on z0 or z′

0, and we pull these
outside the innermost integral,

∫
dz0, which gives us (for that

integral):∫
dz0 e−βδW ′

0 Pλ1 (z1|z′
0) e−β Hλ0 (z0) (15)

=
∫

dz0 J0(z0) Pλ1 (z1|z′
0) e−β Hλ1 (z′

0) (16)

=
∫

dz′
0 Pλ1 (z1|z′

0) e−β Hλ1 (z′
0) = e−β Hλ1 (z1). (17)

We have used Eq. (13) to get to the second line, followed by
a change in the variables of integration to get to the third line,
dz0 J0(z0) → dz′

0, and we have invoked Eq. (4) to arrive at
the final result. This process can be repeated for the integrals∫

dz1 to
∫

dzN−2, which brings us to

〈e−βW ′ 〉 = 1

Zλ0

∫
dzN−1 e−βδW ′

N−1 e−β HλN−1 (zN−1)

= 1

Zλ0

∫
dzN−1 JN−1(zN−1) e−β HλN (z′

N−1)

= 1

Zλ0

∫
dz′

N−1 e−β HλN (z′
N−1) = ZλN

Zλ0

, (18)

and therefore

〈e−βW ′ 〉 = e−β�F . (19)

Equation (19) is an identity for �F in terms of escorted
trajectories, generated as per Eq. (10). For the special case
in which each mapping is the identity, Mi = I , we recover
the usual scheme, Eq. (5), and then Eq. (19) reduces to the
nonequilibrium work relation, Eq. (9). Following Miller and
Reinhardt,15 we will find it convenient to interpret W ′ as the
work done during the switching process and simply denote it
by W . As we will discuss in Sec. IV below, when the map-
pings {Mi } are chosen so as to reduce the dynamic lag illus-
trated in Fig. 1, then the efficiency of the estimate of �F im-
proves, often dramatically.

III. FLUCTUATION THEOREM

Let us now consider not only the switching process de-
scribed by Eq. (10), which we will henceforth designate
the forward process, but also its time-reversed analogue, the
reverse process. In the reverse process, the system is prepared
in equilibrium at λ = B and temperature β−1. The work pa-
rameter is then switched to λ = A in N steps, following a
sequence {λ̃0, λ̃1, . . . , λ̃N } that is the reversal of the protocol
used during the forward process:

λ̃i ≡ λN − i . (20)

During the reverse process, changes in λ are coupled to the
system’s evolution through the inverse mapping functions,
M̃i ≡ M−1

N−1−i , generating a trajectory

[z̃′
N−1, λ̃N ]

M̃N−1⇐ [z̃N−1, λ̃N−1] ← · · · M̃1⇐ [z̃1, λ̃1]

← [z̃′
0, λ̃1]

M̃0⇐ [z̃0, λ̃0], (21)

where z̃′
i ≡ M̃i (z̃i ), and the initial state z̃0 is sampled from

ρB
eq. The direction of the arrows indicates the progression

of time. The probability density for obtaining a trajectory γ̃

= {z̃0, z̃1, . . . , z̃N−1} is

p[γ̃ ] = Pλ̃N−1
(z̃N−1|z̃′

N−2) · · · Pλ̃2
(z̃2|z̃′

1) Pλ̃1
(z̃1|z̃′

0) ρB
eq(z̃0),

(22)
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with dγ̃ = d z̃0 · · · d z̃N−1. Following Eq. (13), the work per-
formed during this process is

WR[γ̃ ] =
N−1∑
i=0

[Hλ̃i+1
(z̃′

i ) − Hλ̃i
(z̃i ) − β−1 ln J̃i (z̃i )], (23)

where J̃i (z̃) = |∂ z̃′/∂ z̃| is the Jacobian for the mapping M̃i .
Here and below we use the subscripts F and R to specify the
forward and reverse processes, respectively.

We will now show that the work distributions corre-
sponding to these two processes satisfy Crooks’s fluctuation
relation,16–18 namely

PF (W )

PR(−W )
= eβ(W−�F), (24)

where

PF (W ) =
∫

dγ pF [γ ] δ (W − WF [γ ]) , (25)

denotes the distribution of work values for the forward pro-
cess, and PR(W ) is similarly defined for the reverse process.

To establish this result, consider a conjugate pair of
trajectories, γ and γ ∗, related by time-reversal. Specif-
ically, if γ = {z0, . . . , zN−1}F is a trajectory generated
during the forward process, that visits the sequence of
microstates

z0
M0⇒ z′

0 → z1
M1⇒ z′

1 → · · · → zN−1
MN−1⇒ z′

N−1 , (26)

then its conjugate twin, γ ∗ = {z′
N−1, . . . , z′

0}R , generated dur-
ing the reverse process, visits the same microstates, in reverse
order:

z0
M̃N−1⇐ z′

0 ← z1
M̃N−2⇐ z′

1 ← · · · ← zN−1
M̃0⇐ z′

N−1, (27)

that is, z̃i = z′
N−1−i and z̃′

i = zN−1−i [see Eq. (21)]. Note that
the primary microstates of γ are the secondary microstates
of γ ∗, and vice versa, and the work function is odd under
time-reversal:

WF [γ ] = −WR[γ ∗]. (28)

We wish to evaluate the quantity

PF (W ) e−β(W−�F)

=
∫

dγ pF [γ ] e−β(WF [γ ]−�F) δ(W − WF [γ ]), (29)

with pF [γ ] given by Eq. (12). To this end, we first decompose
WF [γ ] as follows:

WF [γ ] = �EF [γ ] − QF [γ ] − β−1SF [γ ], (30)

where

�EF [γ ] ≡ HλN (z′
N−1) − Hλ0 (z0), (31a)

QF [γ ] ≡
N−1∑
i=1

[
Hλi (zi ) − Hλi (z

′
i−1)

]
, (31b)

SF [γ ] ≡
N−1∑
i=0

ln Jλi (zi ) = ln
N−1∏
i=0

∣∣∣∣∂z′
i

∂zi

∣∣∣∣ = ln

∣∣∣∣∂γ ∗

∂γ

∣∣∣∣ . (31c)

Here �EF [γ ] is the total change in the energy of the system
as it evolves along the trajectory γ , QF [γ ] can be interpreted
as the heat transferred to the system from the reservoir,15 and
SF [γ ] is an entropylike term, which arises because the map-
pings Mi need not preserve volume. The quantities defined in
Eq. (31) satisfy the properties

PλN−1 (zN−1|z′
N−2) · · · Pλ1 (z1|z′

0)

= PλN−1 (z′
N−2|zN−1) · · · Pλ1 (z′

0|z1) e−βQF [γ ], (32a)

ρλ0
eq (z0) = ρλN

eq (z′
N−1) eβ(�EF [γ ]−�F), (32b)

where we have used Eqs. (2) and (3). These properties then
give us

pF [γ ] = PλN−1 (zN−1|z′
N−2) · · · Pλ1 (z1|z′

0) ρλ0
eq (z0)

= PλN−1 (z′
N−2|zN−1) · · · Pλ1 (z′

0|z1) e−βQF [γ ]

× ρλN
eq (z′

N−1) eβ(�EF [γ ]−�F)

= pR[γ ∗] eβ(WF [γ ]−�F) eSF [γ ], (33)

hence

pF [γ ] e−β(WF [γ ]−�F) = pR[γ ∗]

∣∣∣∣∂γ ∗

∂γ

∣∣∣∣ . (34)

Substituting this result into the integrand on the right side of
Eq. (29), then changing the variables of integration from dγ

to dγ ∗, and invoking Eq. (28), we finally arrive at the result
we set out to establish:

PF (W ) e−β(W−�F) = PR(−W ). (35)

Equation (35) in turn implies that the average of any func-
tion f (W ) over work values generated in the forward process,
can be related to an average over work values obtained in the
reverse process:16

〈 f (W )〉F

〈 f (−W )e−βW 〉R
= e−β�F . (36)

In principle, this result can be used with any f (W ) to esti-
mate �F . The problem of determining the optimal choice of
f (W ) was solved by Bennett in the context of equilibrium
sampling,19 and this solution can be applied directly to the
nonequilibrium setting.16, 20 Specifically, if we have nF work
values from the forward simulation, and nR work values from
the reverse simulation, then the optimal choice is

f (W ) = 1

1 + exp(βW + βK )
, (37)

where K = −�F + β−1 ln(nF/nR). The value of �F is then
estimated by recursively solving the equation,

e−β�F = 〈1/(1 + eβ(W+K ))〉F

〈1/(1 + eβ(W−K ))〉R
eβK , (38)

as described in detail in Ref. 19. This procedure for estimating
�F is known as Bennett’s acceptance ratio method (BAR).
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IV. COMPUTATIONAL EFFICIENCY AND
FIGURES OF MERIT

While Eqs. (19) and (38) are valid for any set of invert-
ible mapping functions, {Mi }, the efficiency of using escorted
simulations to estimate �F depends strongly on the choice of
these functions. Since the convergence of exponential aver-
ages such as Eq. (19) deteriorates rapidly with dissipation,5–7

which in turn correlates with the lag illustrated in Fig. 1,
it is reasonable to speculate that a choice of mappings that
decreases the lag will improve the convergence of estimator
[Eq. (19)].

To pursue this idea, let us first consider the extreme case
of a set of mapping functions {M∗

i } that entirely eliminates
the lag. By this we mean the following: for an ensemble of
trajectories generated using Eq. (10), with z0 sampled from
pA

eq(z0), the subsequent microstates zi are distributed accord-
ing to pλi

eq(zi ), for all 1 ≤ i < N . That is, the shaded and un-
shaded ovals coincide in Fig. 1. This occurs if under the bijec-
tive mapping M∗

i : z → z′, the equilibrium distribution ρλi
eq(z)

transforms to the distribution ρ
λi+1
eq (z′),13 in other words

ρλi+1
eq (z′) = ρλi

eq(z)

J ∗
λi

(z)
. (39)

[Under a bijective map M : x → y, a distribution f (x) is
transformed to the distribution η(y) = f (x)/J (x), where
J (x) = |∂y/∂x|.] When all the M∗

λi
’s satisfy this condition,

we will say that the set of mappings is perfect. Using ρλ
eq

= eβ(Fλ−Hλ), and taking the logarithm of both sides of
Eq. (39), we obtain (for a perfect set of mappings)

δWi ≡ Hλi+1 (z′) − Hλi (z) − β−1 ln J ∗
λi

(z) = Fλi+1 − Fλi ,

(40)

hence W [γ ] = �F for every trajectory γ [Eq. (13)]. Thus for
a perfect set of mappings we have PF (W ) = δ(W − �F), and
Eq. (19) provides a zero-variance estimate of the free energy
difference. It is straightforward to show that if the M∗

i ’s form
a set of perfect mappings for the forward process, then the
M̃∗

i ’s form a set of perfect mappings for the reverse process,
and PR(W ) = δ(W + �F).

The considerations of the previous paragraph support the
idea that reducing lag improves convergence. While we gen-
erally cannot expect to be able to construct a perfect set of
mapping functions (this is likely to be far more difficult than
the original problem of estimating �F!12), in many cases it
might be possible to use either intuition or prior information
about a system to construct a set of Mi ’s that reduce the lag
substantially. In such cases the dissipation accompanying the
escorted simulations is less than that for the unescorted sim-
ulations, leading to improved convergence of the free energy
estimate.

As an example of a strategy that can be used to construct
good mappings, consider a system of identical, mutually in-
teracting particles, in an external potential Uλ(r):

Hλ(z) =
∑

k

Uλ(rk) +
∑
k<l

V (rk, rl ). (41)

The probability distribution of a single, tagged particle is then
given by the single-particle density

ρ
(1)
λ (r) = 1

Zλ

∫
dz δ[rk(z) − r] e−β Hλ(z), (42)

where rk(z) specifies the coordinates of the tagged particle as
a function of the microstate z. Now consider a reference sys-
tem of noninteracting particles, described by a Hamiltonian

H̄λ(z) =
∑

k

Ūλ(rk), (43)

with a similarly defined single-particle density ρ̄
(1)
λ (r); and

imagine that Ūλ is chosen so that these single-particle densi-
ties are identical or nearly identical: ρ

(1)
λ (r) ≈ ρ̄

(1)
λ (r). In this

case a set of mappings {Mi } that are perfect or near-perfect
for the reference system (H̄λ), might be quite effective in re-
ducing lag in the original system (Hλ). We will illustrate this
mean-field-like approach in Sec. V B, and we note that a sim-
ilar strategy was explored by Hahn and Then in the context of
targeted free energy perturbation.14

It will be useful to develop a figure of merit, allowing
us to compare the efficiency of our method for different sets
of mappings. One approach would be simply to compare the
error bars associated with the statistical fluctuations in the
respective free energy estimates. Unfortunately, estimates of
�F obtained from convex nonlinear averages such as the
one obtained from Eq. (19), are systematically biased for any
finite number of realizations.7, 25 This bias can be large, and as
a result the statistical error bars by themselves might not be
sufficiently reliable to quantify the efficiency of the mapping.
In the following paragraphs we discuss alternative figures of
merit.

We begin by noting that when the unidirectional estima-
tor, Eq. (19), is used in conjunction with simulations of the
forward process, then the number of realizations (Ns) required
to obtain a reliable estimate of �F is roughly given by5, 6

Ns ∼ eβ(〈W 〉R+�F), (44)

where 〈W 〉R + �F is the dissipation accompanying the re-
verse process. While this provides some intuition for the con-
vergence of Eq. (19), its usefulness as a figure of merit is
somewhat limited as it requires simulations of both the for-
ward and the reverse processes, and in that case we are better
off using a bidirectional estimator such as Eq. (38).

When we do have simulations of both processes, then
an easily computed figure of merit is the hysteresis, 〈Wdiss〉F

+ 〈Wdiss〉R = 〈W 〉F + 〈W 〉R . The value of this quantity is
zero if the mappings are perfect, otherwise it is positive. It
is interesting to note that the hysteresis can be related to
an information-theoretic measure of overlap between the for-
ward and reverse work distributions PF (W ) and PR(−W ):26

D[PF ||PR] + D[PR||PF ] = β(〈W 〉F + 〈W 〉R). (45)

Here D[p||q] ≡ ∫
p ln(p/q) ≥ 0 denotes the relative en-

tropy between the distributions p and q, and the sym-
metrized quantity D[p||q] + D[q||p] (also known as the
Jeffreys divergence27) provides a measure of the difference, or
more precisely the lack of overlap, between the distributions.
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The right side of Eq. (45) can be estimated from a modest
sample of forward and reverse simulations. If a set of map-
pings reduces the hysteresis, 〈W 〉F + 〈W 〉R , then this indi-
cates increased overlap between the work distributions, and
therefore improved convergence.6

When nF = nR = Ns � 1, the mean square error of the
Bennett estimator is14, 19, 20, 28

〈(Fest
BAR − �F)2〉 = 2

β2 Ns

(
1

2C
− 1

)
. (46)

Here Fest
BAR denotes the estimate of �F obtained from

Eq. (38), and

C≡
∫

dW
PF (W )PR(−W )

PF (W ) + PR(−W )
=

〈
1

1 + exp[β(W − �F)]

〉
F

=
〈

1

1 + exp[β(W + �F)]

〉
R

(47)

[this result can be generalized to the case nF �= nR (Ref. 14).]
As discussed by Bennett19 and Hahn and Then,14, 28 the value
of C measures the overlap between PF (W ) and PR(−W ), and
provides a rough figure of merit for the Bennett estimator.
When lag is eliminated and the two distributions coincide,
then C attains its maximum value, C = 1/2, whereas when
there is poor overlap, C ≈ 0. Thus we expect that the higher
the value of the overlap function C , the smaller the number of
realizations Ns required to estimate �F from Eq. (38) with a
prescribed accuracy. Indeed, Eq. (46) suggests a lower bound
on the number of realizations needed to achieve a mean square
error less than β−2: Ns > 1/C . Note that since C is an en-
semble average [Eq. (47)], it can readily be estimated from
available simulation data.

In the Appendix, we derive an upper bound on the num-
ber of realizations needed to obtain a reliable estimate of
�F using Bennett’s method, Ns [Eq. (A4)]. Combining these
bounds gives us

1

C
< Ns <

1

C2
. (48)

While Eq. (48) cannot be used to obtain a good estimate for
Ns (Ref. 29), it does allow us to argue heuristically that when-
ever a set of mappings succeeds in increasing the value of C ,
the convergence of the Bennett estimator is improved. We will
illustrate this point in Sec. V.

V. EXAMPLES

A. Cavity expansion

As a first example, we estimate the free energy cost as-
sociated with growing a hard-sphere solute in a fluid. Con-
sider a system composed of n p point particles inside a cubic
container of volume L3, centered at the origin with periodic
boundaries. The particles are excluded from a spherical region
of radius R, also centered at the origin. The particles interact
with one another via the WCA pairwise interaction potential1

which is denoted by V (rk, rl ). The energy of the system at a

microstate z = (r1, r2, . . . , rn p ) is given by

HR(z) = 
(z, R) +
n p−1∑
k = 1

n p∑
l>k

V (rk, rl ), (49)

where 
(z, R) = 0 whenever |rk | > R for all k = 1, · · · n p,
that is when there are no particles inside the spherical cav-
ity; and 
(z, R) = ∞ otherwise. The function 
(z, R) en-
sures that particles are excluded from the spherical region
around the origin. We wish to compute the free energy cost,
�F , associated with increasing the radius of the cavity from
RA to RB (see Fig. 2).

A hypothetical estimate of �F using unescorted
nonequilibrium simulations [Eq. (5)] involves “growing out”
the spherical cavity in discrete increments, as follows. Start-
ing with a microstate z0 sampled from equilibrium at R = RA,
the radius of the sphere is increased by an amount δR0. If
all n p fluid particles remain outside the enlarged sphere, then
δW0 = 0; but if one or more particles now finds itself in-
side the sphere (rk < RA + δR0) then δW0 = ∞. One or more
Monte Carlo steps are then taken, after which the radius is
again increased by some amount, δR1, and δW1 is determined
in the same fashion as δW0. In principle this continues until
the radius of the sphere is RB , and then the work is tallied
for the entire trajectory: W = �iδWi . In practice the trajec-
tory can be terminated as soon as δWi = ∞ at some step i ,
since this implies W = ∞. For this procedure, Eq. (1) can be
rewritten as

P = e−β�F , (50)

where P is the probability of generating a trajectory for which
W = 0; that is, a trajectory in which the sphere is successfully
grown out to radius RB , without overtaking any fluid particles
along the way. The quantity P is estimated directly, by gen-
erating a number of trajectories and counting the “successes”
(W = 0). For a sufficiently dense fluid, however, a success-
ful trajectory is a rare event (P � 1), and this approach con-
verges poorly. Note also that this approach does not give the
correct free energy difference in the reverse case of a shrink-
ing sphere (from R = RB to R = RA), since W = 0 for every
trajectory in that situation.

For the hypothetical procedure just described, Eq. (50)
implies that the probability to generate a successful trajectory
does not depend on the number of increments used to grow
the cavity from RA to RB . Therefore the most computation-
ally efficient implementation is to grow the sphere out in a
single step, which corresponds to the free energy perturba-
tion method (FEP) (Refs. 1 and 2). In this case P is just the

FIG. 2. A schematic of the cavity expansion problem.
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probability to observe no particles in the region RA < r
< RB , for an equilibrium simulation at cavity radius RA.

To improve convergence by means of escorted simula-
tions [Eq. (10)], we constructed mapping functions Mi that
move the fluid particles out of the way of the growing sphere,
to prevent infinite values of δWi . Specifically, as the cavity
radius R is increased from Ri to Ri+1, the location of the nth
particle, rn , is mapped to r′

n = mi (rn),13 where

mi (rn) = [
1 +

(
R3

i+1 − R3
i

)(
L3 − 8r3

n

)
(
L3 − 8R3

i

)
r3

n

]1/3
rn

if rn ≤ L/2, (51)

and mi (rn) = rn if rn > L/2. The notation mi : rn → r′
n de-

notes a single-particle mapping; the full mapping Mi : z → z′

is obtained by applying mi to all n p fluid particles. To picture
the effect of this mapping, let Si denote the region of space
defined by the conditions Ri ≤ r ≤ L/2, that is a spherical
shell of inner radius Ri and outer radius L/2 (just touching the
sides of the cubic container). Under the mapping mi : r → r′,
the shell Si is compressed uniformly onto the shell Si+1, leav-
ing the eight corners of the box r > L/2 untouched.30 In this
manner, the particles that would otherwise have found them-
selves inside the enlarged sphere are pushed outside of it, re-
sulting in a finite contribution to the work [Eq. (13)],

δWi =
n p−1∑
k=1

n p∑
l>k

[
V (r′

k, r′
l ) − V (rk, rl )

] − n0β
−1 ln γ, (52)

where n0 = n0(z) is the number of particles found within the
shell Ri ≤ r ≤ L/2 (before the mapping is applied), and γ

= (L3 − 8R3
i+1)/(L3 − 8R3

i ) < 1 is the ratio of shell vol-
umes, |Si+1|/|Si |. The first term on the right side of Eq. (52)
gives the net change in the energy of the system associ-

ated with the escorted switch [zi , Ri ]
Mi⇒ [z′

i , Ri+1], while the
second is the Jacobian term −β−1 ln Ji (zi ).

Unlike the unescorted approach or free energy pertur-
bation, the escorted approach with the mapping given by
Eq. (51) is applicable in both the forward (growing spheri-
cal cavity) and reverse (shrinking cavity) directions. In the
reverse direction, as the solute radius is decreased from Ri+1

to Ri , the shell Si+1 is uniformly expanded onto the shell Si .
The corresponding increment in work is given by a formula
similar to Eq. (52). As a result, one can combine work values
from forward and reverse escorted simulations using BAR,
Eq. (38).

We have performed both forward and reverse simu-
lations of this system using n p = 1000 WCA particles,
with L = 10.42σ, RA = 2.0σ, RB = 2.05σ, and T ∗ ≡ kB T/ε

= 1, where the WCA parameters σ and ε set the units of
length and energy, respectively. Minimum image convention
and periodic boundary conditions were used.1

Figure 3 shows a running estimate of P = exp(−β�F)
obtained from escorted simulations in which the solute ra-
dius was switched from RA to RB in N = 10 steps, with each
increment in R alternating with one Monte Carlo sweep. Us-
ing a total of Ns = 50 000 independent escorted trajectories,
estimates of �F and the figures of merit were obtained, and
are summarized in Table I (the value of C and �Fest

BAR were

FIG. 3. Running estimate of P = exp(−β�F) from escorted free energy
simulations, plotted as a function of the number of trajectories used to obtain
the estimate.

estimated using nF = nR = Ns = 50 000 trajectories). Statis-
tical error bars were computed using the bootstrap method.31

While an analytical expression for �F is not available for this
example, the agreement between the estimates obtained by
growing the solute (F), shrinking it (R), and applying BAR
gives us confidence in the result, �F ≈ 18.4 kB T .

As an additional consistency check, in Fig. 4 we verify
that the escorted simulations satisfy the fluctuation theorem
Eq. (35). We do this by following steps analogous to those in
Sec. III of Ref. 19 to obtain a restatement of Eq. (35),

L2(W ) − L1(W ) ≡
[

ln PR(−W ) + β
W

2

]

−
[

ln PF (W ) − β
W

2

]
= β�F. (53)

In Fig. 4 we plot L1, L2, and L2 − L1 as functions of W . The
flatness of the difference L2 − L1 over the region for which
we have good statistics is in agreement with Eq. (53), and
provides a useful and stringent consistency check,1, 32 which
gives us further confidence in our estimates.

While the highly accurate estimates listed in Table I
were generated using Ns = 50 000 escorted trajectories, we
found that we were able to obtain estimates of �F with error
bars around 1kB T using only Ns = 100 realizations for the

TABLE I. Estimates and figures of merit. Here �Fest
F denotes the estimate

of �F ≡ FB − FA from the forward process (RA → RB ) and �Fest
R denotes

the estimate of −�F from the reverse process (RA ← RB ). �Fest
BAR denotes

the estimate of �F obtained from Bennett’s acceptance ratio method.

〈W 〉F 22.288 ± 0.012
〈W 〉R −14.458 ± 0.013
〈W 〉F + 〈W 〉R 7.830 ± 0.018

�Fest
F 18.487 ± 0.085

�Fest
R −18.334 ± 0.078

�Fest
BAR 18.456 ± 0.011

C 0.120 ± 0.001
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FIG. 4. Graphical verification of the fluctuation theorem and estimation of
�F . The horizontal line indicates the estimate of �F obtained from the ac-
ceptance ratio method (Table I).

unidirectional estimators, and Ns = 10 realizations for the
bidirectional estimator (data not shown).

To compare the escorted method with unescorted FEP, we
first sampled Ns = 100 000 independent configurations from
the canonical ensemble with cavity radius R = RA, by gen-
erating a single, long equilibrium Monte Carlo trajectory and
sampling one configuration per ten Monte Carlo sweeps. This
involved a total computational time approximately equal to
that of generating 50 000 escorted trajectories. Among these
105 configurations we did not observe a single one in which
the region RA ≤ r ≤ RB was spontaneously devoid of parti-
cles (W = 0), in other words we were unable to obtain an
estimate of �F using free energy perturbation. This is con-
sistent with the result P ≈ e−18.4 ≈ 10−8 (Fig. 3, Table I),
which suggests that roughly 108 independent configurations
are needed to observe one for which W = 0.

For a more efficient implementation of FEP, we divided
the interval [RA, RB] into ten stages (subintervals), and then
used FEP to estimate the free energy change for each stage,
keeping the total computational time fixed. This provided a
final estimate of �F with error bars comparable to those of
the unidirectional escorted estimators in Table I, but still con-
siderably larger than those of the bidirectional estimates (data
not shown).33

B. Dipole fluid

As our second example, we consider n p point Lennard-
Jones dipoles in a cubic container of size L with periodic
boundaries, and we compute the free energy cost associated
with introducing a uniform electric field in the container. The
energy of the system in an external electric field E = E êz ,
where êz denotes a unit vector along the z axis, is given by

HE,γ (z) = −
n p∑

k=1

pk · E +
n p−1∑
k=1

n p∑
l>k

VLJ(rk, rl )

−γ
pk · pl

|rk − rl |4
, (54)

where z = {r1, p1, . . . , rn p , pn p }, pk denotes the dipole mo-
ment vector of the kth particle, and VL J (rk, rl ) denotes the
Lennard-Jones pairwise interaction potential. The parame-
ter γ controls the strength of the dipole–dipole interaction.
We set |pk | = 1 for all k. In spherical polar coordinates,
pk = (1, θk, φk), and the measure on z space is hence dz
= �

n p

k=1drkd cos(θk)dφk .
Taking the electric field to be the external parameter, we

wish to compute the free energy difference between the en-
sembles corresponding to E = 0 and E = E f at some tem-
perature β−1 by performing nonequilibrium switching sim-
ulations. Our first task is to construct a mapping function
that escorts the system along a near equilibrium path as E is
switched. Following Eq. (43), we consider the energy function
H̄E (z) ≡ HE,0(z) [i.e., γ = 0 in Eq. (54)], which describes a
system of noninteracting Lennard-Jones dipoles in a field of
strength E . The change in free energy as the field is switched
from Ei to Ei+1 can be solved analytically and is given by

F̄Ei+1 − F̄Ei = −n p
1

β
ln

[
sinh(βEi+1)

sinh(βEi )

Ei

Ei+1

]
. (55)

We now use this result to solve for a perfect set of mappings
for this system of noninteracting dipoles.

Let mi : ζ ≡ cos(θ ) → ζ ′ denote a mapping that acts on
the ζ = cos(θ ) degree of freedom of a dipole when the exter-
nal field is switched from Ei to Ei+1. The full mapping Mi is
obtained by applying the mapping mi to all n p particles. We
look for the perfect mapping Mi that transforms the canoni-
cal distribution corresponding to H̄Ei (z) to the canonical dis-
tribution corresponding to H̄Ei+1 (z′). The following equation
for the perfect single particle mapping mi can be obtained
from Eq. (40) by using Eqs. (54) and (55) and by noting that
pk · E = Eζk :

Ei+1mi (ζ ) − Eiζ − 1

β
ln

dmi (ζ )

dζ

= − 1

β
ln

sinh(βEi+1)

sinh(βEi )

Ei

Ei+1
. (56)

This differential equation has the solution

mi (ζ ) = 1

βEi+1
ln

[
sinh(βEi+1)

sinh(βEi )
(eβEi ζ − eβEi ) + eβEi+1

]
.

(57)

While Eq. (57) is a perfect mapping only when there are no
dipole–dipole interactions (γ = 0) we expect this mapping to
work reasonably well for small values of γ . We will use the
term simple mapping in reference to Eq. (57).

We also constructed a set of mapping functions us-
ing mean field34 arguments as follows. In the absence of
long range order, mean field theory suggests that the in-
teracting dipole-fluid system (γ �= 0) in an electric field of
strength E can be approximated by a system of noninteract-
ing dipoles (γ = 0) in an effective field of strength E ′. We
obtained approximate values for this effective electric field
by first numerically evaluating the single-dipole distribution
P(ζ ) , ζ = cos(θ ), at E = E f . The thermal distribution of
ζ for a noninteracting dipole in a field of strength E ′

f , is
P0(ζ ) ∝ exp(βE ′

f ζ ). Hence E ′
f can be estimated by fitting
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P0 to the numerically obtained distribution P(ζ ). For all other
values of E , we calculate the effective fields by linear scaling,
E ′ = E E ′

f /E f . Again, using Eq. (40) with H̄E (z) = HE ′,0(z)
we obtain a new set of mapping functions. In particular, when
the E field is switched from Ei to Ei+1, the ζk = cos(θk) de-
gree of freedom of the kth dipole is transformed according to
Eq. (58)

mi (ζk) = 1

βE ′
i+1

ln

[
sinh(βE ′

i+1)

sinh(βE ′
i )

(eβE ′
i ζk − eβE ′

i ) + eβE ′
i+1

]
.

(58)

We will refer to Eq. (58) as a mean field mapping. Since the
single-dipole distributions for the interacting system at field
strength E are (by construction) closely approximated by the
single-particle distributions for the noninteracting system at
E ′, we expect the mean field mappings to perform better than
the simple mappings of Eq. (57).

We performed numerical simulations with n p = 800 par-
ticles. The parameters σ , ε of the Lennard-Jones potential
set the length and the energy scale of the system, and we
took L = 10σ and T ∗ = kB T/ε = 1. Minimum image con-
vention and periodic boundary conditions1 were used. We
performed Ns = 104 forward and reverse simulations to es-
timate the free energy difference between the ensembles cor-
responding to E = 0 and E = 1, switching the field strength
in N = 10 equal increments. Ten Monte Carlo sweeps were
performed between these updates in E . We obtained estimates
of �F using: (1) unescorted switching simulations [Eq. (1)],
(2) escorted simulations with the simple mappings [Eq. (57)],
and (3) escorted simulations with the mean field mappings
[Eq. (58)]. For the latter, the effective fields were obtained as
described in the previous paragraph. In particular, we found
E ′

f ≈ 1.5E f and therefore we took E ′
i = 1.5Ei in Eq. (58).

Figure 5 shows the work distributions PF (W ) and
PR(−W ) for these sets of simulations, and reveals a progres-
sion from virtually no overlap for the unescorted simulations,
to some overlap for the simulations with the simple map-
pings, to nearly perfect overlap when using the mean field
mappings. This trend is in agreement with the expectations
mentioned above, and provides direct evidence that the map-
pings we have constructed substantially reduce the lag and
dissipation. The first three rows of Table II quantify these ob-
servations. In particular, row 3 gives the distance between the

FIG. 5. Work histograms obtained from forward and reverse simulations per-
formed at γ = 0.1. The degree of overlap between PF (W ) and PR(−W )
provides an indication of the efficiency of the free energy estimate. For un-
escorted simulations (no mapping) we see no overlap, reflecting considerable
dissipation and poor efficiency (Table II). With the mapping given by Eq. (57)
the overlap is much improved, and with the mean field mapping, Eq. (58) the
forward and reverse distributions are nearly identical.

means of PF (W ) and PR(−W ), and shows that this hystere-
sis proceeds from nearly 250 kB T to about 24 kB T to less
than 1kB T in the three cases. Rows 4 to 6 illustrate the effect
of this trend on the efficiency and accuracy of the free en-
ergy estimates. The estimates of �F (that is, �Fest

F , −�Fest
R ,

and �Fest
BAR) obtained from the unescorted simulations dif-

fer substantially from one another, indicating a high degree
of bias. The estimates corresponding to the simple mappings
are markedly better, though they still suggest a degree of bias
on the order of 1kB T . Finally, the simulations with the mean
field mappings are in agreement to within about 0.05kB T , in-
dicating excellent accuracy and efficiency. These findings are
also in agreement with the values of the overlap integral C ,
shown in row 7. This was too low to be estimated using the
unescorted simulations, and approaches its maximal value of
1/2 when using the mean field mappings. Using escorted sim-
ulations with the mean field mappings, with the acceptance
ratio method (BAR), we found that we were able to generate
estimates of �F with error bars on the order of 0.2kB T , with
about Ns ∼ 1/C2 ∼ 10 (data not shown).

TABLE II. Estimates and figures of merit for γ = 0.1. Note that the simulations with the mapping are much
more efficient than those without. The forward and reverse work histograms obtained from the simulations with-
out any mappings were so far apart that a reliable estimate of C could not be obtained.

No mapping Mapping Mean field mapping

〈W 〉F −60.409 ± 0.126 −177.074 ± 0.039 −189.079 ± 0.010

〈W 〉R 302.958 ± 0.132 200.607 ± 0.045 189.971 ± 0.010

〈W 〉F + 〈W 〉R 242.549 ± 0.182 23.533 ± 0.060 0.892 ± 0.014

�Fest
F −114.189 ± 3.913 −187.612 ± 0.405 −189.552 ± 0.011

�Fest
R 262.232 ± 0.711 191.877 ± 0.310 189.502 ± 0.0140

�Fest
BAR −128.215 ± 3.324 −189.599 ± 0.110 −189.530 ± 0.008

C ∼0 0.011 ± 0.001 0.407 ± 0.001
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VI. SUMMARY

Nonequilibrium fast switching estimates of free energy
differences often perform poorly due to dissipation (see
Fig. 1). The strategy developed here seeks to address this is-
sue. By modifying the dynamics with additional terms that
serve to escort the system along a near equilibrium trajectory
and consequently reduce dissipation, we obtain efficient fast
switching estimators [Eq. (19)] for the free energy difference.
The success of the strategy depends crucially on the choice
of the mapping functions Mi : the more effectively these re-
duce the dissipation, the more efficient the resulting estimator
of �F .

The examples presented in Sec. V illustrate this point.
For the hard sphere solute, we used a simple mapping func-
tion that uniformly compresses the solvent, vacating the re-
gion into which the hard sphere expands [Eq. (51)]. With
this escorting function we were able to estimate �F directly
from single-stage switching simulations, which would not
have been feasible without escorting. In the example of the
Lennard-Jones dipole fluid, we used a reference system of
noninteracting dipoles to construct a reasonable set of map-
ping functions [Eq. (57)], and then we further refined these
mappings using mean field arguments [Eq. (58)]. Figure 5 and
Table II illustrate the correlation between reduced dissipation
and increased computational efficiency. Because mean field
theory often provides an good description of many-body sys-
tems, we speculate that this approach will prove effective for
more complex problems of physical interest.

We have also discussed figures of merit, specifically the
dissipation in the forward and reverse processes, and the over-
lap integral C [Eqs. (44), (45), (47)]. For the two examples in
Sec. V, we found that these quantities indeed track the effec-
tiveness of the mapping functions. This suggests that these
figures of merit might be useful to iteratively improve the per-
formance of the mapping functions.

Finally, the efficiency of our method might further be im-
proved by applying it in combination with other methods,
such as biased or umbrella sampling algorithms (see, e.g.,
Refs. 35–38).
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APPENDIX: FIGURE OF MERIT FOR BAR ESTIMATOR

Here we derive a relation between Ns and C for the bidi-
rectional estimator, Eq. (38). The Bennett estimator, Eq. (38)
can be rewritten as a ratio of two free energy perturbation
identities39

〈PH (W )/PF (W )〉PF (W )

〈PH (W )/PR(−W )〉PR (−W )
= 1, (A1)

where 〈. . .〉PF (W ) denotes an average over W val-
ues sampled from PF (W ), 〈. . .〉PR (−W ) denotes an

average over W values sampled from PR(−W ),
PH (W ) ≡ C−1(PF (W )PR(−W )/PF (W ) + PR(−W )) with
C = ∫

dW (PF (W )PR(−W )/PF (W ) + PR(−W )) is the nor-
malized harmonic mean distribution. As the averages in the
numerator and the denominator are over different ensembles,
let us separately consider the number of the realizations
required for each to converge.

The dominant contributions to the average in the nu-
merator come from work values that are typically sam-
pled from the harmonic mean distribution PH .6 The prob-
ability that these dominant values are observed in the
forward process can be given by P = ∫

Typical dW PF (W )

= ∫
Typical dW PH PF (W )/PH , where

∫
Typical denotes that the

integration is performed over the range of W values that
are typically sampled from the harmonic mean distribution
(PH (W )).

Following Ref. 6, we now write

P ∼
∫

Typical
dW PH eln PF

PH ∼ e
〈

ln PF
PH

〉
H

×
∫

Typical
dW PH ∼ e

〈
ln PF

PH

〉
H . (A2)

The number of realizations Ns required for adequate sampling
can be roughly given by Ns ∼ P−1 ∼ exp D[PH ||PF ], where
we have used −〈ln PF

PH
〉H = D[PH ||PF ]. The relative entropy

D[PH ||PF ] satisfies the following inequality

D[PH ||PF ] =
∫

1

C

PR PF

PR + PF
ln

PR

C(PF + PR)

≤ ln
∫

1

4C2

4P2
R PF

(PR + PF )2

≤ ln
1

4C2

∫
PR

= −2 ln 2C, (A3)

where we have used the Jensen’s inequality27 for concave
functions together with the identity 4PF PR ≤ (PF + PR)2.
Finally, using Eq. (A3), the number of realizations required
to obtain a reliable estimate of �F using Bennett’s method is
bounded by

Ns ≤ 1

C2
. (A4)

We have not included the numerical factors in the above rela-
tion as it is already an approximate equation.

1D. Frenkel and B. Smit, Understanding Molecular Simulation, ed. (Aca-
demic, San Diego, 2002).

2C. Chipot and A. Pohorille, Free Energy Calculations (Springer, Berlin,
2007).

3C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
4C. Jarzynski, Phys. Rev. E 56, 5018 (1997).
5D. A. Kofke, Mol. Phys. 104, 3701 (2006), and references therein.
6C. Jarzynski, Phys. Rev. E 73, 046105 (2006).
7J. Gore, F. Ritort, and C. Bustamante, Proc. Natl. Acad. Sci. U.S.A 100,
12564 (2003).

8D. A. Pearlman and P. Kollman, J. Chem. Phys. 91, 7831 (1989).
9R. Wood, J. Phys. Chem. 95, 4838 (1991).

10J. Hermans, J. Phys. Chem. 95, 9029 (1991).
11S. Vaikuntanathan and C. Jarzynski, EPL 87, 60005 (2009).
12S. Vaikuntanathan and C. Jarzysnki, Phys. Rev. Lett. 100, 190601 (2008).

http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1103/PhysRevE.56.R5
http://dx.doi.org/10.1080/00268970601074421
http://dx.doi.org/10.1103/PhysRevE.73.046105
http://dx.doi.org/10.1073/pnas.1635159100
http://dx.doi.org/10.1063/1.457251
http://dx.doi.org/10.1021/j100165a045
http://dx.doi.org/10.1021/j100176a002
http://dx.doi.org/10.1209/0295-5075/87/60005
http://dx.doi.org/10.1103/PhysRevLett.100.190601


054107-11 Escorted free energy simulations J. Chem. Phys. 134, 054107 (2011)

13C. Jarzynski, Phys. Rev. E 65, 046122 (2002).
14A. M. Hahn and H. Then, Phys. Rev. E 79, 011113 (2009).
15M. A. Miller and W. P. Reinhardt, J. Chem. Phys. 113, 7035 (2000).
16G. Crooks, Phys. Rev. E 61, 2361 (2000).
17G. E. Crooks, J. Stat. Phys. 90, 1481 (1998).
18G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
19C. H. Bennett, J. Comput. Phys. 22, 245 (1976).
20M. R. Shirts, E. Bair, G. Hooker, and V. S. Pande, Phys. Rev. Lett. 91,

140601 (2003).
21As is usually the case with Monte Carlo simulations, we do not include

momenta in the microstate.
22N. G.V. Kampen, Stochastic Processes in Physics and Chemistry (Elsevier,

New York, 2007).
23W. P. Reinhardt and J. E. Hunter III, J. Chem. Phys. 97, 1599 (1992).
24J. E. Hunter III, W. P. Reinhardt, and T. F. Davis, J. Chem. Phys 99, 6856

(1993).
25D. M. Zuckerman and T. B. Woolf, Phys. Rev. Lett. 89, 180602 (2002).
26E. H. Feng and G. E. Crooks, Phys. Rev. Lett. 101, 090602 (2008).
27T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-

Interscience, New York, 2006).
28A. M. Hahn and H. Then, Phys. Rev. E 81, 041117 (2010).
29For C � 1, the upper and lower bounds in Eq. (48) can be orders of

magnitude apart. Nevertheless, Eq. (48) can serve as a good consistency
check for the quality of the estimates. For example an estimate of �F

using Bennett’s method from a data set of size Ns ∼ 106 is reliable if
C ∼ 0.001.

30An even better mapping would uniformly compress the entire region r
> Ri , including the eight corners, onto the region r > Ri+1. However, due
to the geometric mismatch between the spherical inner surface and cubic
outer surface of these regions, such a mapping is not represented by a sim-
ple formula such as Eq. (51), and would need to be constructed numeri-
cally.

31B. Efron, The Jackknife, the Bootstrap and Other Resampling Plans (Soci-
ety for Industrial Mathematics, Philadelphia, Pennsylvania, 1982).

32A. Pohorille, C. Jarzynski, and C. Chipot, J. Phys. Chem. B 114, 10235
(2010).

33Of course, even after dividing the problem into stages, one can apply es-
corting by separately treating each stage as a switching simulation with one
step, N = 1, and using the mappings given by Eq. (51). We found that this
further reduces the error bars by nearly a factor of six.

34D. Chandler, Introduction to Modern Statistical Mechanics (Oxford Uni-
versity Press, New York, 1987).

35F. M. Ytreberg and D. M. Zuckerman, J. Chem. Phys. 120, 10876
(2004).

36D. Wu and D. A. Kofke, J. Chem. Phys. 122, 204104 (2005).
37S. X. Sun, J. Chem. Phys. 118, 5759 (2003).
38D. D. L. Minh, J. Chem. Phys. 130 (2009).
39R. J. Radmer and P. Kollman, J. Comp. Chem. 18, 902 (1997).

http://dx.doi.org/10.1103/PhysRevE.65.046122
http://dx.doi.org/10.1103/PhysRevE.79.011113
http://dx.doi.org/10.1063/1.1313537
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1016/0021-9991(76)90078-4
http://dx.doi.org/10.1103/PhysRevLett.91.140601
http://dx.doi.org/10.1063/1.463235
http://dx.doi.org/10.1063/1.465830
http://dx.doi.org/10.1103/PhysRevLett.89.180602
http://dx.doi.org/10.1103/PhysRevLett.101.090602
http://dx.doi.org/10.1103/PhysRevE.81.041117
http://dx.doi.org/10.1021/jp102971x
http://dx.doi.org/10.1063/1.1760511
http://dx.doi.org/10.1063/1.1906209
http://dx.doi.org/10.1063/1.1557413
http://dx.doi.org/10.1063/1.3139189
http://dx.doi.org/10.1002/(SICI)1096-987X(199705)18:<902::AID-JCC4>3.0CO;2-V

