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From the underlying master equations we derive one-dimensional stochastic processes that describe gener-
alized ensemble simulations as well as tempering �simulated and parallel� simulations. The representations
obtained are either in the form of a one-dimensional Fokker-Planck equation or a hopping process on a
one-dimensional chain. In particular, we discuss the conditions under which these representations are valid
approximate Markovian descriptions of the random walk in order parameter or control parameter space. They
allow a unified discussion of the stationary distribution on, as well as of the stationary flow across, each space.
We demonstrate that optimizing the flow is equivalent to minimizing the first passage time for crossing the
space and discuss the consequences of our results for optimizing simulations. Finally, we point out the limi-
tations of these representations under conditions of broken ergodicity.
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I. INTRODUCTION

The effective simulation of complex thermal systems like
proteins and glasses is a constant challenge in contemporary
computational physics. Markov chain Monte Carlo simula-
tion techniques for these systems have undergone remarkable
advances in the last decades. Two main classes that have
evolved are generalized ensemble and parallel tempering
methods.

In the generalized ensemble �GE� approach �1� the goal is
to sample the state space of a physical system so that par-
ticularly rare but important states—e.g., low energy or bar-
rier states—are encountered frequently. A variety of weight
functions have been tested, as well as methods for iteratively
improving these functions �2�.

A persistent problem of such simulations is that relaxation
is slow due to barriers and bottlenecks, and for a long time it
was not clear whether and how they can be controlled by
using particular weight functions on the usual order param-
eter spaces. Parallel tempering �PT�—sometimes also called
replica exchange method—promised a way out of this di-
lemma �3–5�. Here simulations are performed in parallel at
different values of a control parameter, most often the tem-
perature. At certain times the current conformations of repli-
cas at neighboring control parameter values are exchanged
according to a generalized Metropolis rule. Thereby an indi-
vidual replica can perform an additional random walk in con-
trol parameter space and, due to shorter relaxation times in
some control parameter regime, explore state space more
evenly.

However, the problem of slow relaxation arises also this
time in the form of a slow and possibly uneven random walk
through control parameter space. At least part of this prob-
lem is related to finding an efficient discretization of control
parameter space.

Increasing the flow through order parameter space in GE
sampling as well as through control parameter space in PT

was always an incentive. Usually it was discussed only in-
formally, and only recently Trebst and co-workers �6–9�
have made an attempt to look at that problem systematically.
Instead of concentrating on the stationary distributions that
arise from the sampling, they concentrated on the stationary
flow across order parameter and control parameter space. In
order to optimize the flow they derived weight functions and
control parameter discretization schemes.

In this contribution we want to give that approach a more
fundamental basis. We will first concentrate on the underly-
ing master equations describing GE and PT simulations.
From them we will derive in a systematic way the one-
dimensional stochastic equations that form the basis for a
flow analysis in order parameter and control parameter
space. These equations will also allow us to investigate con-
nections between flow analysis and another concept describ-
ing the dynamics of stochastic processes, the first passage
time �FPT�. The one-dimensional representations are valid
approximations for the underlying simulations only under
certain conditions. If they are violated, optimization schemes
may still fail. For parallel tempering we will find a criterion
from which the validity can be determined.

We will focus in the next section on generalized ensemble
sampling, while parallel tempering is the focus of Sec. III.
We will close with a discussion of the effects of broken
ergodicity on our results and an outlook.

II. GENERALIZED ENSEMBLE SAMPLING

Markov chain Monte Carlo simulations utilize a certain
move set in combination with an acceptance probability,
most often of Metropolis form �10�, to impose stochastic
dynamics on a physical system. A move from state s to s� is
accepted with the probability

pM�s → s�� = min„1,w�s��/w�s�… . �1�

The original choice for the weight function w�s� is the ther-
mal or Boltzmann weight
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w�s� � exp�− �E�s�� , �2�

resulting in canonical sampling at inverse temperature �
=1/kBT. However, other choices are possible as well, de-
pending on which particular aspect of state space should be
emphasized. We will assume in the following that the weight
function is based only on the energy E�s� of the state s, and
we will use w�s�=w�E�s��=w�E� interchangeably.

In order to get a deeper understanding of simulations
based on Eq. �1� we should look at their description via a
master equation in state space. P�s , t� is the probability to be
in state s at time t, and its evolution in discrete computer
time is given by

P�s,t + 1� = �
s��s

P�s�,t�Ws�s� → s� + P�s,t�

��1 − �
s��s

Ws�s → s��� , �3�

where the sums are over all possible states. The transition
probabilities W�s→s�� in this equation are

Ws�s → s�� =
��s → s��

�
s�

��s → s��
pM�s → s�� , �4�

where ��s→s�� is the characteristic function of the move set
with ��s→s��=1 if the move from s to s� is allowed and
zero otherwise. Provided the move set is balanced and er-
godic, the stationary distribution reached by this Markov
chain is P0�s��w�s� because of detailed balance. Note how-
ever that in addition to ��s→s��=��s�→s�, for �s ,s�� with
��s→s��=1 the property �s���s→s��=�s���s�→s�� must
be fulfilled. Particularly the latter property—i.e., every state
must connect to the same number of other states—is some-
times overlooked.

Equation �3� is an exact description of the simulation pro-
cess and it is also the basis for more thorough investigations
in the mathematics of Metropolis simulations �11–14�. How-
ever, from a physicist’s point of view a reduced description
in terms of slow order parameters is of more interest. Promi-
nent among the order parameters chosen is the energy itself.
Using adiabatic elimination of fast degrees of freedom �see
the Appendix�, an approximate master equation in energy
space can be formulated:

P�E,t + 1� = �
E��E

P�E�,t�WE�E� → E� + P�E,t�

��1 − �
E��E

WE�E → E��� . �5�

The effective transition probabilities WE�E→E�� can be de-
rived from Eqs. �3� and �4�, and are given in that appendix,
too. Note however that, in contrast to Eq. �3�, Eq. �5� is an
approximation, valid only if all other degrees of freedom
relax much faster than the energy. Nevertheless, even if re-
laxation orthogonal to the energy is slow, Eq. �5� can still be
viewed as a Markovian approximation to the fully non-
Markovian process. Due to the degeneracy of states with

energy, the stationary distribution of Eq. �5� is now

P0�E� � n�E�w�E� . �6�

Here, n�E� is the density of states and we have assumed that
the weight function for the Metropolis algorithm is based on
energies only, as mentioned above in the discussion of Eq.
�1�.

Coarse graining time and energy leads to a form of the
master equation that is continuous in both variables:

�

�t
P�E,t� = �

E�
P�E�,t�RE�E� → E� − P�E,t��

E�
RE�E → E�� ,

�7�

where the transition probabilities have been replaced by the
rates RE�E→E��. Note that for various systems state space
and energy E could have been continuous from the start; i.e.,
the sums in Eqs. �3� and �5� could have already been inte-
grals. The continuous form of the master equation in energy
space is now the starting point for our final approximation. If
the transition rates RE�E→E�� are strongly peaked around
E�	E, a second-order partial differential equation can be
derived from Eq. �7� by various techniques: e.g., Kramers-
Moyal expansion �15–17�. This Fokker-Planck equation �16�
for P�E , t� is given by

�

�t
P�E,t� =

�

�E
D�E�� �

�E
− F�E��P�E,t� , �8�

and we have written it already in a form that separates static
and dynamic properties. D�E� is the energy-dependent diffu-
sion coefficient that describes the local mobility and F�E� is
the drift term which in one dimension can always be derived
from a potential, F�E�=−�d /dE�U�E�. In particular the sta-
tionary distribution of Eq. �8� is fully determined by this
potential only,

P0�E� � exp�− U�E�� . �9�

We emphasize again that the transition from the master
equation �7� to the Fokker-Planck equation �8� is possible
only if the transition rates RE�E→E��—i.e., the underlying
transition probabilities WE�E→E��—are sufficiently local in
energy. Only in that limit is the Fokker-Planck equation an
effective description of the more general equation �7�. Nev-
ertheless, even if there are nonlocal contributions to the tran-
sition rates, Eq. �8� can be viewed as the best local approxi-
mation to Eq. �7�.

Equation �8� can be written in a more compact form using
the stationary distribution P0�E�,

�

�t
P�E,t� = � �

�E
D�E�P0�E�

�

�E
P0�E�−1�P�E,t� . �10�

In this form the fact that P0�E� is the stationary distribution
can be seen immediately from the vanishing of the rightmost
derivative on the right-hand side �RHS� if P�E , t� is replaced
by P0�E�. This equation will be the basis for our further
analysis of distribution and flow in energy space.

The stationary distribution in energy space, P0�E�, is ac-
tually the histogram H�E� of the energy distribution that is
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observed in an actual simulations. It is still given by Eq.
�6�—i.e., by the Metropolis weight function w�E� multiplied
by the density of states, n�E�. By an appropriate choice of the
weight function any histogram can be produced in the simu-
lation. The usual choice of Boltzmann weights leads to the
canonical distribution H�E��n�E�exp�−�E�, while the
choice w�E��1/n�E� leads to a flat histogram H�E�=const
�2,18�. A flat histogram would be most appropriate to de-
scribe the properties of the system in question over a wide
temperature range with equal accuracy, provided the Monte
Carlo error at each energy is the same. Various methods have
been discussed to actually obtain approximations to n�E� by
iteratively improving simulations �2,19�. However, all of
them are still plagued by the problem that equilibration in the
system can be slow, in particular when a wide energy range
is considered �20,21�. Moreover, it turned out that, even if a
flat histogram is reached, the error distribution is not flat at
all �6,22�.

It was the important new step by Trebst et al. �6� to look
systematically at the flow in energy space in simulations.
Instead of monitoring the histogram H�E�, corresponding to
the stationary distribution, they added a label to the system
and changed its value whenever it reached minimal and
maximal values in the energy—i.e. Emin and Emax. By count-
ing just these labels at each energy E, the distributions of
systems moving up and down in energy, denoted by nup�E�
and ndown�E�, respectively, can be monitored. The original
histogram is recovered from H�E�=nup�E�+ndown�E�. How-
ever, in this way it is also possible to measure the fraction of
systems moving up,

fup�E� =
nup�E�

nup�E� + ndown�E�
, �11�

and, correspondingly, that of systems moving down in en-
ergy, fdown�E�. Note that fup�E�+ fdown�E�=1. Both distribu-
tions actually are the stationary distributions of probability
flow in the systems with boundary conditions fup�Emin�=1,
fup�Emax�=0 and fdown�Emin�=0, fdown�Emax�=1, respectively.

This flow in energy space can now be analyzed using the
above Fokker-Planck equations. Equations �8� and �10� are
actually continuity equations for the probability flow,

�

�t
P�E,t� =

�

�E
J�E,t� , �12�

with J�E , t� the probability current. The current between Emin

and Emax can now be determined as the stationary solution of
Eq. �12�,

J = �D�E�P0�E�
�

�E
P0�E�−1�PJ�E� 
 const, �13�

with PJ�E� being the stationary distribution for the flow un-
der the above boundary conditions. Note that the stationary
distribution P0�E� discussed before is actually the solution of
Eq. �13� for zero flow. Integrating that equation we obtain

PJ�E�
P0�E�

−
PJ�Emin�
P0�Emin�

= J�
Emin

E

dE�
1

D�E��P0�E��
. �14�

Using any of the above boundary conditions the total flow
across energy space is then given by

�J� = ��D�E�P0�E��−1
−1, �15�

where we used the notation �·
=�Emin

EmaxdE.
In order to optimize the weight function w�E� used for the

simulation to reach maximal flow across energy space,
Trebst et al. maximized Eq. �15� under the constraint of
keeping the distribution P0�E� normalized, which is done by
adding a Lagrange multiplier

�

�P0�E�
���D�E�P0�E��−1
−1 + ��P0�E�
� = 0. �16�

Stationary flow is not the only concept that can be used to
investigate the stochastic dynamics in a system. Another of-
ten used concept is the mean FPT �23�. It is the average time
a particle starting at one end of a diffusion space needs to
reach the other end for the first time. The total mean first
passage time for crossing energy space from Emin to Emax in
both directions,

� = ��Emin → Emax� + ��Emax → Emin� , �17�

can be derived from Eqs. �8� and �10� and is given by �24�

� = �
Emin

Emax

dE
1

D�E�P0�E��Emin

E

dE�P0�E��

+ �
Emin

Emax

dE
1

D�E�P0�E��E

Emax

dE�P0�E��

= ��D�E�P0�E��−1
�P0�E�
 . �18�

Note that P0�E� does not have to be normalized here. Mini-
mization of � with respect to P0�E� leads to

�

�P0�E�
���D�E�P0�E��−1
�P0�E�
� = 0. �19�

Both variational equations �16� and �19� lead to the same
solution

P0,opt �
1

�D�E�
, �20�

which is already derived in �6� from Eq. �16�. This current-
optimized stationary distribution leads to a symmetric form
of the Fokker-Planck equation,

�

�t
P�E,t� = � �

�E
�D�E�

�

�E
�D�E��P�E,t� . �21�

In order to reach such a current optimized histogram
Hopt�E� in an actual simulation, the weight function has to be
chosen accordingly. For this purpose it is necessary to obtain
the local diffusion coefficient from a simulation using some
initial weight function w�E�. Differentiating Eq. �14�, D�E�
is obtained from
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D�E� = �P0�E�
d

dE

PJ�E�
P0�E��−1

= �H�E�f��E��−1, �22�

where we used the fact that

f�E� =
PJ�E�
P0�E�

�23�

holds. Both fup�E� and fdown�E� can be used for that purpose.
However, some smoothening may have to be performed to
obtain a smooth derivative, as discussed in �6�. Since
P0,opt�E�=n�E�wopt�E�, the optimized weight function is
given by

wopt�E� =
1

n�E��D�E�
. �24�

Using the fact that n�E� is obtained from the actual simula-
tion by n�E�=H�E� /w�E�, we arrive at the iteration formula

wopt�E� = w�E�� f��E�
H�E�

. �25�

At the fixed point of this iteration f��E�=H�E�, leading to
H�E�=1/�D�E� as required; see Eq. �22�.

In an actual simulation situation one iteration might not
suffice. This is discussed in detail in �6–8�. In the following
we will attempt to apply the same approach to tempering
simulations.

III. PARALLEL TEMPERING

Generalized ensemble sampling can be extended by add-
ing movement in control parameter space. In addition to
moves among different states of the system at a particular
value of the control parameter, moves along one or more
control parameter directions are possible. The motivation be-
hind such an extension is that relaxation in some control
parameter regime may be faster, thereby facilitating relax-
ation in the whole state+control parameter space �3�.

Usually, the motion along control parameter directions is
not made continuous. Instead, a list of monotonically in-
creasing or decreasing values �n is chosen, thereby introduc-
ing control parameter hopping. The most commonly used
control parameter is temperature, although other choices are
possible, too �25�. Simulations at a particular control param-
eter value are performed using the Metropolis criterion �1�
with a weight function w�� ,s�, as before. Although Boltz-
mann weights are usually chosen, leading to canonical simu-
lations at each parameter value, in principle any weight func-
tion is possible.

Parallel tempering is the parallelized extension of a
method called simulated tempering which we will sketch
only briefly. In simulated tempering �26,27�, a single in-
stance of the system is simulated only. After certain times, an
attempt is made to change the control parameter value. In
order to ensure that the stationary distribution at each control
parameter value is given by w�� ,s�, the Metropolis criterion

pM„��,s� → ���,s�… = min�1,
w���,s�
w��,s� � �26�

is used for the acceptance of a control parameter change. In
order to ensure appreciable exchange between different con-
trol parameter values using Boltzmann weights �2�, the
weight function has to be adjusted by a control parameter
dependent function g���,

w��,s� = exp�− �E�s� + g���� . �27�

This function g��� actually determines the distribution of the
single system among the control parameter values and, up to
an additive constant, the optimal choice is the free energy
g���=�F��� of the system analyzed �27�. However, the
problem of determining g��� has hampered this approach.

This problem is solved in parallel tempering. Here, copies
of the system are simulated in parallel at each of the various
control parameter values. At certain times exchanges of rep-
licas with neighboring control parameter values are at-
tempted. In order to ensure that the stationary distribution at
a control parameter value � is given by w�� ,s�, the general-
ized Metropolis criterion

pM„��,s� → ���,s��… = min�1,
w��,s��w���,s�
w��,s�w���,s��

� �28�

has to be used for the acceptance of such an attempt. It can
be seen easily that any function g��� in the weight function
�27�, in particular the one that was necessary to ensure
equilibration among control parameter values in simulated
tempering, simply drops out in the parallel form. Thereby,
the problem of determining the free energy in order to opti-
mize the simulation vanishes. In the case of Boltzmann
weights Eq. �28� reduces to

pM„��,s� → ���,s��… = min„1,exp����E�… , �29�

with ��=��−� and �E=E�−E.
We will concentrate on temperature hopping in the fol-

lowing and choose the list of inverse temperatures �0	�1
	 ¯ 	�N. In a parallel implementation simulations at a par-
ticular value �n are usually run on a particular node of the
parallel computer, conveniently labeled n. In order to sim-
plify the notation, we will therefore abbreviate �n by n
whenever possible and also use “node” synonymously with
“control parameter value.”

It is sufficient to follow only a single replica through state
and control parameter space, since all replicas are equivalent.
For times between replica exchanges, simulations are per-
formed at each node independently, and the time evolution of
the distribution function P���n ,s� , t� at a particular node n is
described by the master equation �3� with the respective tran-
sition probabilities determined by the appropriate tempera-
ture �n. For times t=mT, m=1,2 , . . ., replica exchange is
attempted. For this time step the master equation in state and
temperature space is

WALTER NADLER AND ULRICH H. E. HANSMANN PHYSICAL REVIEW E 75, 026109 �2007�

026109-4



P„��n,s�,t + 1… = �
s�

�P„��n−1,s��,t…Ws„��n−1,s�� → ��n,s�…

+ P„��n+1,s��,t…Ws„��n+1,s�� → ��n,s�…�

+ P„��n,s�,t…

��
s�

�1 − Ws„��n,s� → ��n−1,s��…

− Ws„��n,s� → ��n+1,s��…� . �30�

The transition probabilities are given by

Ws„��,s� → ���,s��… =
1


N
pM„��,s� → ���,s��… for s � s�.

�31�

Here, 
 is the normalization by state space and reflects the
fact that any conformations can be exchanged, which is dif-
ferent from the case of GE sampling where the move set was
restricting possible conformation changes; see Eq. �4�. N
takes into account that just for one random neighboring pair
of nodes a replica exchange is attempted at time t=mT.
However, other strategies are possible, too, that would lead
to a different normalization constant. Due to the exchange of
replicas in parallel tempering the transition probabilities are
symmetric—i.e.,

Ws„��,s� → ���,s��… = Ws„���,s�� → ��,s�… . �32�

Elimination of fast degrees of freedom orthogonal to the en-
ergy is possible in the same way as it was discussed in the
last section. This leaves us with

P„��n,E�,t + 1… = �
E�

�P„��n−1,E��,t…

�WE„��n−1,E�� → ��n,E�…

+ P„��n+1,E��,t…WE„��n+1,E�� → ��n,E�…�

+ P„��n,E�,t…

��
E�

�1 − WE„��n,E� → ��n−1,E��…

− WE„��n,E� → ��n+1,E��…� . �33�

The symmetry �32� naturally leads to a similar symmetry for
the transition rates between nodes in reduced—i.e., energy—
space,

WE„��,E� → ���,E��… = WE„���,E�� → ��,E�… . �34�

In order to finally derive an effective master equation for
hopping in temperature space, we have to additionally as-
sume fast relaxation in energy space—i.e., on times scales
t�T. This means that at any particular node we assume to
have reached the respective equilibrated distribution
P0�� ,E�. Using similar reasoning as in Appendix A for GE
sampling, this last approximation leads to the final form of
the master equation in temperature space on a coarse-grained
time scale t→ t /TN,

P��n,t + 1� = P��n−1,t�W���n−1 → ��

+ P��n+1,t�W���n+1 → �� + P��n,t�

��1 − W��� → �n−1� − W��� → �n+1�� .

�35�

In a way similar to the derivation of Eq. �A3�, effective tran-
sition probabilities can be derived from the equilibrated dis-
tributions at a node,

W��� → ��� =� dE� dE�P0��,E�

�pM„�E,�� → �E�,���…P0���,E�� . �36�

We will discuss in Appendix B the properties of these effec-
tive transition probabilities in particular situations. Finally,
the symmetry of the transition probabilities

W��� → ��� = W���� → �� �37�

holds analogously here, too.
Due to this last property, the stationary distribution for PT

can be derived easily from Eq. �35� and is given simply by

P0��� = const; �38�

i.e., in an equilibrated simulation every single replica appears
on each control parameter node with the same probability
1 / �N+1�, with N+1 being the number of nodes. This result
is an important simplification of the situation over the case of
simulated annealing and over GE sampling, and is due to the
construction of replica exchange.

Flow between the control parameter nodes can now be
analyzed, too. Here, replicas reaching node 0 or N are la-
beled and the respective distributions over the nodes can be
monitored. Using the same notation as before, nup�i� being
the number of replicas at node i that came from node 0 and
ndown�i� being the number of replicas at node i that came
from node N, we can measure the fraction of replicas moving
up

fup�i� =
nup�i�

nup�i� + ndown�i�
, �39�

and a corresponding quantity for those moving down,
fdown�i�. Both distributions are stationary distributions of
probability flow between temperature nodes, with boundary
conditions fup�0�=1, fup�N�=0 and fdown�0�=0, fdown�N�=1,
respectively. As before, they can be analyzed by looking at
the stationary solution of the underlying stochastic equation
�35�. It can be written as

P��n,t + 1� − P��n,t� = J��n,t� − J��n−1,t� , �40�

which is the discrete form of the continuity equation �12�.
The discrete case current J��n , t� is given by

J��n,t� = P��n+1,t�W���n+1 → �n� − P��n,t�W���n → �n+1� .

�41�

Consequently, the stationary current J is determined from
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J = PJ��n+1�W���n+1 → �n� − PJ��n�W���n → �n+1� = const,

�42�

with PJ��n� being the stationary distribution for flow under
the above boundary conditions. Taking into account the sym-
metry properties of the transition probabilities, the stationary
distribution for constant current between nodes �0 and �N is
given by

PJ��n� = J−1�
i=0

n−1
1

W���i → �i+1�
, �43�

with the current

J = ��
i=0

N−1
1

W���i → �i+1��−1

. �44�

Due to the simple form of the stationary distribution among
nodes �38�, the analytic forms for PJ�i� and J are consider-
ably simpler than for GE sampling.

Again, as before with GE sampling, a concept different
from stationary flow can also be analyzed, the total mean
first passage time to cross the network of nodes. For the
general hopping process �35�, this is given by �15,17�

� = ��0 → N� + ��N → 0�

= �
i=0

N−1
1

P0��i�W���i → �i+1��j=0

i

P0��i�

+ �
i=1

N
1

P0��i�W���i → �i−1��j=i

N

P0��i�

= ��
i=0

N−1
1

P0��i�W���i → �i+1����
i=0

N

P0��i�� . �45�

This final result is practically a discrete version of Eq. �18�.
Taking into account that the stationary distribution in PT is
constant, we finally obtain a result that is just the inverse of
Eq. �44�,

� = �
i=0

N−1
1

W���i → �i+1�
. �46�

Here is an important difference from GE sampling. There
the local diffusion coefficient was fixed by the move set and,
as turned out in actual simulations, mostly independent from
the chosen weight function. The stationary distribution, how-
ever, was free to be chosen by varying the weight function.

In the case of PT this is exactly the opposite. Here the
stationary distribution is fixed by construction of the replica
exchange process. However, by adjusting the control param-
eter intervals, the transition probabilities can be chosen rela-
tively freely. Hence, we are interested in obtaining the opti-
mal distribution of transition probabilities that maximizes the
flow across the control parameter space. Since we are mainly
interested in local variations of the optimized transition
probabilities—i.e., in deviations from an average value

�which will be actually determined afterwards�, we keep the
average transition probability constant via a Lagrangian
multiplier—i.e.,

�

�W��� j → � j+1����
i=0

N−1
1

W���i → �i+1��−1

+ ���
i=0

N−1

W���i → �i+1��� = 0. �47�

An equivalent equation results for optimizing �.
It is easily seen that optimizing the current as well as the

mean first passage time simply gives a constant transition
probability between neighboring nodes the whole range of
control parameter values,

Wopt = const, �48�

as optimal solution. Consequently, from Eq. �43� we can con-
clude that the optimal flow distribution among the nodes is
linear in the node number,

PJ��n� = n/N . �49�

Therefore, the temperature spacing is optimal if such a flow
distribution together with constant transition probabilities
can be obtained in an actual simulation. The linear depen-
dence of the flow distribution on the node number, Eq. �49�,
was obtained for PT already in �7–9� by mapping PT onto the
Fokker-Planck equation for GE sampling, Eq. �8�, and as-
suming a particular temperature dependence for the local dif-
fusion coefficient. Here, however, we see that it follows di-
rectly from the hopping description of PT. In addition, we
obtain its equivalence to constant transition probabilities, Eq.
�48�.

The iteration scheme used in Refs. �7–9� for assigning
temperatures to nodes appeared to exhibit fast convergence
to the optimal behavior of �49�. We can rephrase it here
without having to recur to some intermediate local diffusivity
�and we stick to our use of inverse temperatures as example
control parameters�.

�i� A particular set of control parameters �0	�1	 . . .
	�N−1	�N gives rise to a flow distribution fup�0�=1
� fup�1�� . . . � fup�N−1�� fup�N�=0.

�ii� These later values give rise to stepwise defined func-
tion g�f�, with g�f�i��=�i, in particular g�1�=�0 and g�1�
=�N, and linear interpolation in between these values.

�iii� The new control parameter values are determined
from this function by �i�=g�i /N� , i=1, . . . ,N−1, keeping �0

and �N fixed.
This procedure is actually illustrated quite nicely in Fig. 2

of Ref. �7�, and we can refrain from repeating it here.
It is important to note at this point that the above results,

in particular the equivalence of constant transition probabili-
ties and a flow distribution that is linear in the node number,
depend on the validity of the underlying one-dimensional
representation of the simulation process. It turns out that,
while the flow distribution �49� is readily attainable in actual
simulations, this is usually not accompanied by acceptance
probabilities that are constant over the whole system �7–9�.
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In the following final section we will discuss reasons for
such a discrepancy.

IV. SUMMARY, DISCUSSION, AND OUTLOOK

The goal of most recent advances in Markov chain Monte
Carlo sampling is to analyze and increase the flow through
state space. To do so, heuristic equations have been used to
describe the flow in reduced state space along a slow order
parameter—e.g., the energy—in generalized ensemble sam-
pling and among nodes performing simulations at various
control parameter values in parallel tempering �PT� �6–8�. In
this contribution we have derived such one-dimensional sto-
chastic equations for GE and PT sampling from the underly-
ing master equations. Using these stochastic equations,
weight functions for GE sampling and strategies for finding
optimal control parameter values for PT can be devised that
optimize the flow through order parameter and control pa-
rameter space, respectively. We have also demonstrated that
optimization of flow is equivalent to minimizing the first
passage time to cross the system.

All considerations in the previous sections were based on
the assumptions that the Fokker-Planck equation �8� or hop-
ping equation �35� are a valid Markovian representation of
the underlying more complex dynamics. That, however, is
true only if the approximations discussed there apply.

In the case of GE sampling these approximations are such
that relaxations in the degrees of freedom orthogonal to the
energy are fast, together with the locality of transitions.
Since the ultimate goal of deriving Eq. �8� is the optimization
of flow through state space, a violation of the latter condition
is not detrimental. Nonlocality in the energy of the move set
usually leads to faster relaxation since state space is con-
nected more densely. This is, for example, one reason for the
success of the Swendsen-Wang algorithm �28�. Although in
such a situation Eq. �8� may not be able to capture the full
dynamics correctly, it nevertheless is still able to identify
local bottlenecks. Optimizing the flow according to the meth-
ods discussed can handle these local bottlenecks in the tran-
sition between neighboring energy values.

However, slow relaxation orthogonal to the energy leads
to a more complicated situation. Now it may not be possible
anymore to reach all values of the additional degrees of free-
dom by moves local in the energy. Instead, detours via
other—usually high-energy—areas of the state space have to
be performed. This leads to the comblike structure of the
accessible state space sketched in Fig. 1. It describes the
situation that free energy basins at constant energy are dis-
connected.

Actually, it is this feature of state space partitioning that
led us to the requirement of large flow between low- and
high-energy areas of state space in the first place. Only for a
large flow can the “teeth” of the comblike structure in Fig. 1
be sampled adequately. Nevertheless, it also leads to the situ-
ation that the effective one-dimensional Fokker-Planck equa-
tion �8� is only the best Markovian one-dimensional approxi-
mation of an underlying effectively higher-dimensional
process.

This situation is even clearer in the case of PT. If the
relaxation at a particular control parameter value is faster

than the time scale of hopping in control parameter space,
then the requirements for the analysis performed in the pre-
vious section are fulfilled. However, if that is not the case,
the state space at such a node partitions into disjoint free
energy basins that do not communicate. Viewed over the
whole control parameter range, we are dealing with a hierar-
chical network of free energy basins as sketched in Fig 2.
Such a situation has been aptly termed broken ergodicity
�29,30� and was discussed in the field of glassy dynamics
several years ago.

In principle, the topology of the treelike control+state
space depends on the time scale of the control parameter
hopping. If relaxation is possible at all nodes, then no bifur-
cations occur and the system is just a one-dimensional hop-
ping chain as was analyzed in the previous section. However,
this is true only in the limit of infinite time between replica
exchange steps, T→
. Practically the topology of the
branching will be the same over a wide range of time scales
and only the position of the branching nodes may vary.

For a truly one-dimensional system the optimized transi-
tion probabilities are constant and, equivalently, the optimal
flow stationary distribution is f�n��n, Eq. �49�. Under con-
ditions of broken ergodicity, the situation is more compli-
cated. Now, several transition rates between neighboring
nodes may have to be taken into account, describing ex-
change along the different branches depicted in Fig. 2. More-
over, observed acceptance rates are weighted averages of

FIG. 1. Sketch of state space for generalized ensemble sampling
in the case of broken ergodicity; X denotes any degree of freedom
orthogonal to the control parameter �energy�.

FIG. 2. Sketch of bifurcations and multifurcations in the case of
broken ergodicity for parallel tempering; for certain nodes, the sys-
tem partitions into several disjoint free energy wells.
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these various transition probabilities. Therefore, the equiva-
lence of constant observed acceptance ratios to a flow distri-
bution linear in the node number may no longer hold. This
discrepancy has been observed already in Refs. �7–9�. While
satisfying Eq. �49� was possible by an appropriate choice of
node temperatures, constant acceptance rates were not ob-
tained concomitantly. Such a result can be used as a clear
signature of broken ergodicity occurring in PT. In contrast to
GE sampling, where such a clear criterion is not available
yet, PT has a particular advantage here.

Naturally, the question arises how to optimize flow in PT
under conditions of broken ergodicity. Control via the choice
of node temperatures is somewhat limited in such a situation,
since changes may affect different transition probabilities
differently. Nevertheless, even in such a situation the choice
of a flow distribution f�n��n still assures that the flow of
replicas along the main branch–i.e., between the lowest and
the highest temperature node—is still optimal. In contrast,
the effect of making apparent acceptance ratios constant, if
possible at all, is unclear and depends on knowledge of the
particular structure of ergodicity breaking. In the final analy-
sis, however, optimizing flow under such conditions means
that, in addition to the flow between the lowest and highest
nodes, also flow among side branches has to be considered.
In order to assure that flow among all side branches is opti-
mized, too, a more detailed flow analysis—i.e., determining
the flow matrix between all individual nodes—would have to
be performed.

We believe that an additional advantage of PT is that such
branching situations can be analyzed directly, without resort-
ing to an actual system. In a way, it will be possible to
simulate the simulations to investigate possible flow behav-
iors. By analyzing the master equations modeling the hierar-
chical broken ergodicity networks, conclusions about the be-
havior of actual simulations can be drawn �31�. Thereby, the
present results open the way to investigate the effects of
broken ergodicity in GE and PT sampling in a more system-
atic way.
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APPENDIX A: ADIABATIC ELIMINATION OF FAST
DEGREES OF FREEDOM

As a first step to eliminate the fast degrees of freedom in
Eq. �3�, we have to single out the slow degree of freedom by
appropriate labeling. Therefore, we replace the state label s
by a more detailed one that consists of the energy E—i.e.,
the slow degree of freedom—and an additional label sE that
designates all microstates with energy E, s
�E ,sE�. Equa-
tion �3� is then replaced by

P„�E,sE�,t + 1… = �
E��E

�
sE�

P„�E�,sE��,t…

�Ws„�E�,sE�� → �E,sE�… + P„�E,sE�,t…

��1 − �
E��E

�
sE�

Ws„�E,sE� → �E�,sE��…� ,

�A1�

where the sums are over all possible energies E and states sE
for each energy. If relaxation among the microstates for a
particular energy is fast, each of these states will assume the
same probability, and we can approximate

P��E,sE�,t� 	
1

N�E�
P�E,t� , �A2�

with N�E� being the number of states—i.e., �sE
=N�E�, intro-

duced to ensure correct normalization, �EP�E , t�=1. This ap-
proximation is the crucial step, since it allows us to sum over
all microstates sE for each energy in Eq. �A1�. After carrying
out such a summation, we arrive at the master equation for
the energy, Eq. �5�, with the transition probabilities
WE�E→E�� given by

WE�E → E�� =
1

N�E��sE

�
sE�

Ws„�E,sE� → �E�,sE��… .

�A3�

Note the asymmetry with respect to E and E� that is due to
the nonconstant density of states.

A more rigorous and systematic treatment, which would
also allow the derivation of corrections, would involve pro-
jection operator techniques as they are used, e.g., in Chap.
6.4 of Ref. �17�. However, since the above approach suffices
for our purposes, we refrain from embarking on such a more
detailed elaboration.

APPENDIX B: TRANSITION PROBABILITIES FOR
PARALLEL TEMPERING

In GE sampling, a general analysis of the effective tran-
sition probabilities W�E→E�� is not easy since they depend
strongly on the—usually unknown—distributions orthogonal
to the energy, combined with a possibly sparse move set. In
contrast to GE sampling, PT allows more insight into the
effective transition probabilities that govern the temperature
hopping. Since transitions are possible between any energy
values, the complications due to a particular sparse move set
do not arise. The only requirement is the assumption of
equilibration at each temperature. In this limit, we can cal-
culate the effective transition probability by

W�� → ��� =� dE� dE�P0��,E�

�pM„�E,�� → �E�,���…P0���,E�� , �B1�

with P0�� ,E� being the equilibrated distribution at � and pM

given by Eq. �28�.
There have been several approaches to evaluate that for-

mula. Predescu et al. �32� and Kofke �33� emphasize the
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importance of taking into account the asymmetry of an actual
distribution, having a low-energy cutoff and an exponential
tail at high energies. Nevertheless, Kone and Kofke �34� later
use an approximation based on a Gaussian approximation—
i.e., symmetric without cutoff and nonexponential tail—
together with the assumption of constant specific heat over
the entire range. All authors limit themselves to unimodal
distributions in their analysis and do not question the peak is
quadratic in energy.

However, the distributions change dramatically at critical
values of the control parameter—i.e., at first- and second-
order phase transitions. While at second-order phase transi-
tions the functional form of the peak changes from quadratic
to quartic, at first-order phase transitions the energy distribu-
tions become bimodal. With respect to the distribution tails,
on the other hand, since the goal is anyhow to optimize the
transition probabilities, one should try to avoid control pa-
rameter intervals so large that the explicit structure of the
tails become relevant. Moreover, Eq. �B1� is anyhow only
valid in the limit of fast relaxation at a node. So it is from the
outset only an approximation to the actually observed tran-
sition rate. Since in order to optimize the flow large values of
the transition probabilities are sought for, a quantitative
analysis makes sense only for the cases where the overlap is
appreciable—i.e., for small temperature differences.

We therefore add here our approach to evaluate Eq. �B1�
using the first-order approximations to these distributions—
i.e. Gaussians,

P0��,E� � exp�−
�E − Ē����2

2�2���
� , �B2�

with Ē��� the average energy and �2���= �E− Ē����2 the en-
ergy fluctuations at �. However, we avoid the unrealistic and
very limiting assumption of a constant specific heat �34�.

Assuming ����, using a step function approximation of
error functions that result from the inner integrals, and per-
forming a symmetric evaluation we obtain

W�� → ��� 	
1

4
exp����E +

1

2
��2�� + ����

��2 + erf��E + ����2 + ��2�
�2�

�
+ erf��E + ����2 + ��2�

�2��
��

+
1

4�erfc� �E
�2�

� + erfc� �E
�2��

�� , �B3�

where we have used the abbreviations ��=�−�� and �E

= Ē���− Ē����. We can now employ the fact that the specific
heat is given by

c =
d

dT
Ē�T� = − �2 d

d�
Ē��� , �B4�

as well as by

c = �2�E − Ē����2 = �2�2��� , �B5�

to obtain a relationship between the derivative of the average
energy and the energy fluctuations:

−
d

d�
Ē��� = �E − Ē����2. �B6�

Using

Ē���� 

d

d�
Ē��� = − �2��� , �B7�

this relation can be employed to approximate the difference
of the average energies by

�E = Ē��� − Ē���� 	
1

2
�Ē���� + Ē��������

= −
1

2
��2 + ��2��� . �B8�

Note that we have assumed ����—i.e., ���0—and, con-
sequently, �E	0 in the evaluation of Eq. �B1�. This result
shows that the exponent in Eq. �B3� cancels and, using
erf�−x�=−erf�x�, we have the final approximate expression
for the transition probability:

W�� → ��� 	
1

2�erfc� �E
�2�

� + erfc� �E
�2��

��
= �erfc� ������2 + ��2�

2�2�
�

+ erfc� ������2 + ��2�

2�2��
�� . �B9�

For small values of �E /� this can be further approximated
to

W�� → ��� 	 1 −
1

�2�
� �E

�2�
+

�E
�2��

� +
1

6�2�

��� �E
�2�

�3

+ � �E
�2��

�3� + O��E5� .

�B10�
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