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Abstract

In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and
nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional
simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these
energy local minima. Enhanced conformational sampling techniques are thus in great demand. A simula-
tion in generalized ensemble performs a random walk in potential energy space and can overcome this
difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities
as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques.
In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-
known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method,
are described first. BothMonte Carlo and molecular dynamics versions of the algorithms are given. We then
present various extensions of these three generalized-ensemble algorithms. The effectiveness of the meth-
ods is tested with short peptide and protein systems.

Key words: Monte Carlo, Molecular dynamics, Generalized-ensemble algorithm, Replica-exchange
method, Simulated tempering, Multicanonical algorithm

1. Introduction

Conventional Monte Carlo (MC) and molecular dynamics (MD)
simulations of biomolecules are greatly hampered by the multiple-
minima problem. The canonical fixed-temperature simulations at
low temperatures tend to get trapped in a few of a huge number of
local-minimum-energy states which are separated by high energy
barriers. One way to overcome this multiple-minima problem is to
perform a simulated annealing (SA) simulation (1), and it has been
widely used in biomolecular systems (see, e.g., Refs. (2–8) for
earlier applications). The SA simulation mimics the crystal-making
process, and temperature is lowered very slowly from a sufficiently
high temperature to a low one during the SA simulation. The
Boltzmann weight factor is dynamically changed, and so the
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thermal equilibrium is continuously broken. Hence, although the
global-minimum potential energy or the value close to it may be
found, accurate thermodynamic averages for fixed temperatures
cannot be obtained.

A class of simulation methods, which are referred to as the
generalized-ensemble algorithms, overcome both above difficulties,
namely, the multiple-minima problem and inaccurate thermody-
namic averages (for reviews see, e.g., Refs. (9–16)). In the
generalized-ensemble algorithm, each state is weighted by an arti-
ficial, non-Boltzmann probability weight factor so that a random
walk in potential energy space may be realized. The random walk
allows the simulation to escape from any energy barrier and to
sample much wider conformational space than by conventional
methods. Unlike SA simulations, the weight factors are fixed during
the simulations so that the eventual reach to the thermal equilib-
rium is guaranteed. From a single simulation run, one can obtain
accurate ensemble averages as functions of temperature by the
single-histogram (17, 18) and/or multiple-histogram (19, 20)
reweighting techniques (an extension of the multiple-histogram
method is also referred to as the weighted histogram analysis method
(WHAM) (20)).

One of the most well-known generalized-ensemble algorithms is
perhaps themulticanonical algorithm (MUCA) (21, 22) (for reviews
see, e.g., Refs. (23, 24)). The method is also referred to as entropic
sampling (25–27) and adaptive umbrella sampling (28) of the poten-
tial energy (29). MUCA can also be considered as a sophisticated,
ideal realization of a class of algorithms calledumbrella sampling (30).
Also closely related methods are Wang-Landau method (31, 32),
which is also referred to as density of states Monte Carlo (33), and
meta dynamics (34) (see also Ref. (35)). MUCA and its general-
izations have been applied to spin systems (see, e.g., Refs. (36–42)).
MUCA was also introduced to the molecular simulation field (43).
Since then,MUCA and its generalizations have been extensively used
in many applications in protein and other biomolecular systems
(44–78). Molecular dynamics version ofMUCA has also been devel-
oped (29, 50, 54) (see also Refs. (50, 79) for the Langevin dynamics
version). MUCA has been extended so that flat distributions in other
variables instead of potential energy may be obtained (see, e.g.,
Refs. (37, 38, 49, 55, 57, 70, 76)). This can be considered as a special
case of the multidimensional (or, multivariable) extensions of
MUCA, where a multidimensional random walk in potential energy
space and in other variable space is realized (see, e.g., Refs. (49, 55,
56, 72, 78)). In this article, we just present one of such methods,
namely, themultibaric-multithermal algorithm (MUBATH)where a
two-dimensional random walk in both potential energy space and
volume space is realized (72–75).

While a simulation in multicanonical ensemble performs a free
1D random walk in potential energy space, that in simulated
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tempering (ST) (80, 81) (the method is also referred to as the
method of expanded ensemble (80)) performs a free random walk in
temperature space (for a review, see, e.g., Ref. (82)). This random
walk, in turn, induces a random walk in potential energy space and
allows the simulation to escape from states of energy local minima.
ST and its generalizations have also been applied to chemical phys-
ics field and biomolecular systems (51, 52, 83–91).

MUCA and ST are powerful, but the probability weight factors
are not a priori known and have to be determined by iterations of
short trial simulations. This process can be nontrivial and very
tedious for complex systems with many degrees of freedom.

In the replica-exchange method (REM) (92–94), the difficulty
of weight factor determination is greatly alleviated. (A closely
related method was independently developed in Ref. (95). Similar
methods in which the same equations are used but emphasis is laid
on optimizations have been developed (96, 97). REM is also
referred to as multiple Markov chain method (98) and parallel
tempering (82). Details of literature about REM and related algo-
rithms can be found in recent reviews (10, 15, 99).) In this method,
a number of noninteracting copies (or, replicas) of the original
system at different temperatures are simulated independently and
simultaneously by the conventional MC or MDmethod. Every few
steps, pairs of replicas are exchanged with a specified transition
probability. The weight factor is just the product of Boltzmann
factors, and so it is essentially known.

REM has already been used in many applications in protein
systems (100–115). Other molecular simulation fields have also
been studied by this method in various ensembles (116–120).
Moreover, REM was introduced to the quantum chemistry field
(121). The details of molecular dynamics algorithm for REM,
which is referred to as the replica-exchange molecular dynamics
(REMD) have been worked out in Ref. (101), and this led to a
wide application of REM in the protein folding and related pro-
blems (see, e.g., Refs. (122–144)).

However, REM also has a computational difficulty: As the
number of degrees of freedom of the system increases, the required
number of replicas also greatly increases, whereas only a single
replica is simulated in MUCA and ST. This demands a lot of
computer power for complex systems. Our solution to this problem
is: Use REM for the weight factor determinations ofMUCA, which
is much simpler than previous iterative methods of weight determi-
nations, and then perform a long MUCA production run. The
method is referred to as the replica-exchange multicanonical algo-
rithm (REMUCA) (105, 109, 110). In REMUCA, a short replica-
exchange simulation is performed, and the multicanonical weight
factor is determined by the multiple-histogram reweighting tech-
niques (19, 20). Another example of a combination of REM and ST
is the replica-exchange simulated tempering (REST) (86). In REST,
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a short replica-exchange simulation is performed, and the
simulated tempering weight factor is determined by the multiple-
histogram reweighting techniques (19, 20).

We have introduced two further extensions of REM, which we
refer to as multicanonical replica-exchange method (MUCAREM)
(105, 109, 110) (see also Refs. (133, 134)) and simulated temper-
ing replica-exchange method (STREM) (87) (see also Ref. (135) for
a similar idea). In MUCAREM, a replica-exchange simulation is
performed with a small number of replicas each in multicanonical
ensemble of different energy ranges. In STREM, on the other
hand, a replica-exchange simulation is performed with a small
number of replicas in “simulated tempering” ensemble of different
temperature ranges.

Finally, one is naturally led to a multidimensional (or, multivari-
able) extension of REM, which we refer to as themultidimensional
replica-exchangemethod (MREM) (103) (see also Refs. (117, 145)).
(The method is also referred to as generalized parallel sampling
(146),Hamiltonian replica-exchange method(108), andModel Hop-
ping(147).) Some other special cases of MREM can be found in, e.
g., Refs. (132, 148–153). Another special realization of MREM is
replica-exchange umbrella sampling (REUS) (103), and it is partic-
ularly useful in free energy calculations (see also Ref. (104) for a
similar idea). In this article, we just present one of such methods,
namely, the REM in the isobaric-isothermal ensemble, where not
only temperature values but also pressure values are exchanged in
the replica-exchange processes (11, 118, 120, 128, 129). (The
results of the first such application of the two-dimensional replica-
exchange simulations in the isobaric-isothermal ensemble were pre-
sented in Ref. (11).)

In this article, we describe the generalized-ensemble algorithms
mentioned above. Namely, we first review the three familiar meth-
ods: REM, ST, and MUCA. We then describe various extensions of
these methods (103, 154–157). Examples of the results by some of
these algorithms are then presented.

2. Generalized-
Ensemble
Algorithms

2.1. Replica-Exchange

Method

Let us consider a system ofN atoms of massmk (k ¼ 1, . . ., N) with
their coordinate vectors andmomentum vectors denoted by q ! {q1,
. . ., qN} and p ! {p1, . . ., pN}, respectively. TheHamiltonianH(q, p)
of the system is the sum of the kinetic energy K(p) and the potential
energy E(q):

H ðq; pÞ ¼ K ðpÞ þ EðqÞ; (1)
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where

KðpÞ ¼
X

N

k¼1

pk
2

2mk
: (2)

In the canonical ensemble at temperature T, each state x ! (q, p)
with the HamiltonianH(q, p) is weighted by the Boltzmann factor:

W Bðx;T Þ ¼ exp %bH ðq; pÞð Þ; (3)

where the inverse temperature b is defined by b ¼ 1=kBT (kB is the
Boltzmann constant). The average kinetic energy at temperature T
is then given by

hKðpÞiT ¼
X

N

k¼1

pk
2

2mk

* +

T

¼ 3

2
NkBT : (4)

Because the coordinates q and momenta p are decoupled in
Eq. 1, we can suppress the kinetic energy part and can write the
Boltzmann factor as

W Bðx;T Þ ¼W BðE;T Þ ¼ expð%bEÞ: (5)

The canonical probability distributionof potential energyPNVT(E; T)
is then given by the product of the density of states n(E) and the
Boltzmann weight factorWB(E; T):

PNVTðE;T Þ / nðEÞW BðE;T Þ: (6)

Because n(E) is a rapidly increasing function and the Boltzmann
factor decreases exponentially, the canonical ensemble yields a bell-
shaped distribution of potential energy which has a maximum
around the average energy at temperature T. The conventional
MC or MD simulations at constant temperature are expected to
yield PNVT(E; T). An MC simulation based on the Metropolis
algorithm (158) is performed with the following transition proba-
bility from a state x of potential energy E to a state x

0
of potential

energy E
0
:

wðx ! x 0Þ ¼ min 1;
W BðE 0;T Þ
W BðE;T Þ

# $

¼ min 1; exp %bDEð Þð Þ; (7)

where

DE ¼ E 0 % E: (8)

A MD simulation, on the other hand, is based on the following
Newton equations of motion:

_qk ¼
pk
mk

; (9)

_pk ¼ %
@E

@qk
¼ f k; (10)
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where fk is the force acting on the kth atom (k ¼ 1, . . ., N). This set
of equations actually yield the microcanonical ensemble, however,
and we have to add a thermostat in order to obtain the canonical
ensemble at temperature T. Here, we just follow Nosé’s prescrip-
tion (159, 160), and we have

_qk ¼
pk
mk

; (11)

_pk ¼ %
@E

@qk
% _s

s
pk ¼ f k %

_s

s
pk; (12)

_s ¼ s
P s

Q
; (13)

_P s ¼
X

N

k¼1

pk
2

mk
% 3NkBT ¼ 3NkB T ðtÞ % Tð Þ; (14)

where s is Nosé’s scaling parameter, Ps is its conjugate momentum,
Q is its mass, and the “instantaneous temperature” T(t) is defined
by

T ðtÞ ¼ 1

3NkB

X

N

k¼1

pkðtÞ
2

mk
: (15)

However, in practice, it is very difficult to obtain accurate
canonical distributions of complex systems at low temperatures by
conventional MC or MD simulation methods. This is because
simulations at low temperatures tend to get trapped in one or a
few of local-minimum-energy states. This difficulty is overcome by,
for instance, the generalized-ensemble algorithms, which greatly
enhance conformational sampling.

The REM is one of effective generalized-ensemble algorithms.
The system for REM consists of Mnoninteracting copies (or, repli-
cas) of the original system in the canonical ensemble at M different
temperatures Tm (m ¼ 1, . . ., M). We arrange the replicas so that
there is always exactly one replica at each temperature. Then there
exists a one-to-one correspondence between replicas and tempera-
tures; the label i (i ¼ 1, . . ., M) for replicas is a permutation of the
label m (m ¼ 1, . . ., M) for temperatures, and vice versa:

i ¼ iðmÞ ! f ðmÞ ;
m ¼ mðiÞ ! f %1ðiÞ;

(

(16)

where f (m) is a permutation function of m and f%1(i) is its inverse.

Let X ¼ x
½ið1Þ,
1 ; . . . ; x

½iðM Þ,
M

n o

¼ x
½1,
mð1Þ; . . . ; x

½M ,
mðM Þ

n o

stand for a

“state” in this generalized ensemble. Each “substate” xm
[i] is speci-

fied by the coordinates q[i] and momenta p[i] ofN atoms in replica i
at temperature Tm:
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x ½i,m ! q ½i,; p½i,
( )

m
: (17)

Because the replicas are noninteracting, the weight factor for
the state X in this generalized ensemble is given by the product of
Boltzmann factors for each replica (or at each temperature):

W REMðX Þ ¼
Y

M

i¼1
exp %bmðiÞH q ½i,; p½i,

( )n o

¼
Y

M

m¼1
exp %bmH q ½iðmÞ,; p½iðmÞ,

( )n o

;

¼ exp %
X

M

i¼1
bmðiÞH q ½i,; p½i,

( )

( )

¼ exp %
X

M

m¼1
bmH q ½iðmÞ,; p½iðmÞ,

( )

( )

; (18)

where i(m) and m(i) are the permutation functions in Eq. 16.
We now consider exchanging a pair of replicas in this ensemble.

Suppose we exchange replicas i and j which are at temperatures Tm

and Tn, respectively:

X ¼ . . . ; x ½i,m ; . . . ; x
½j ,
n ; . . .

n o

! X 0 ¼ . . . ; x ½j ,0m ; . . . ; x ½i,0n ; . . .
n o

:

(19)

Here, i, j, m, and n are related by the permutation functions in
Eq. 16, and the exchange of replicas introduces a new permutation
function f 0:

i ¼ f ðmÞ ! j ¼ f 0ðmÞ;
j ¼ f ðnÞ ! i ¼ f 0ðnÞ-

(

(20)

The exchange of replicas can be written in more detail as

x
½i,
m ! q ½i,; p½i,

, -

m
! x

½j ,0
m ! q ½j ,; p½j ,0

, -

m
;

x
½j ,
n ! q ½j ,; p½j ,

, -

n
! x

½i,0
n ! q ½i,; p½i,0

, -

n
;

8

<

:

(21)

where the definitions for p[i]
0
and p[j]

0
will be given below. We

remark that this process is equivalent to exchanging a pair of
temperatures Tm and Tn for the corresponding replicas i and j as
follows:

x
½i,
m ! q ½i,; p½i,

, -

m
! x

½i,0
n ! q ½i,; p½i,0

, -

n
;

x
½j ,
n ! q ½j ,; p½j ,

, -

n
! x

½j ,0
m ! q ½j ,; p½j ,0

, -

m
:

(

(22)

In the original implementation of the REM (92–94), Monte
Carlo algorithm was used, and only the coordinates q (and the
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potential energy function E(q)) had to be taken into account.
In molecular dynamics algorithm, on the other hand, we also
have to deal with the momenta p. We proposed the following
momentum assignment in Eq. 21 (and in Eq. 22) (101):

p½i,0 !
ffiffiffiffiffi

T n

Tm

q

p½i,;

p½j ,0 !
ffiffiffiffiffi

Tm

T n

q

p½j ,;

8

>

<

>

:

(23)

which we believe is the simplest and the most natural. This assign-
ment means that we just rescale uniformly the velocities of all the
atoms in the replicas by the square root of the ratio of the two
temperatures so that the temperature condition in Eq. 4 may be
satisfied immediately after replica exchange is accepted.

The transition probability of this replica-exchange process is
given by the usual Metropolis criterion:

wðX ! X 0Þ ! w x ½i,m x ½j ,n
4

4

( )

¼ min 1;
W REMðX 0Þ
W REMðX Þ

# $

¼ min 1; exp %Dð Þð Þ;

(24)

where in the second expression (i.e., w(xm
[i]jxn[j])) we explicitly

wrote the pair of replicas (and temperatures) to be exchanged.
From Eqs. 1, 2, 18, and 23, we have

W REMðX 0Þ
W REMðX Þ

¼ exp %bm K p½j ,0
( )

þ E q ½j ,
( )h i

% bn K p½i,0
( )

þ E q ½i,
( )h in

þbm K p½i,
( )

þ E q ½i,
( )h i

þ bn K p½j ,
( )

þ E q ½j ,
( )h io

;

¼ exp %bm
Tm

T n
K p½j ,
( )

% bn
T n

Tm
K p½i,
( )

þ bmK p½i,
( )

þ bnK p½j ,
( )

7

%bm E q ½j ,
( )

% E q ½i,
( )h i

% bn E q ½i,
( )

% E q ½j ,
( )h io

-

(25)

Because the kinetic energy terms in this equation all cancel out, D in
Eq. 24 becomes

D ¼ bm E q ½j ,
( )

% E q ½i,
( )( )

% bn E q ½j ,
( )

% E q ½i,
( )( )

; (26)

¼ bm % bnð Þ E q ½j ,
( )

% E q ½i,
( )( )

- (27)

Here, i, j, m, and n are related by the permutation functions in
Eq. 16 before the replica exchange:

i ¼ f ðmÞ;
j ¼ f ðnÞ:

7

(28)
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Note that after introducing the momentum rescaling in
Eq. 23, we have the same Metropolis criterion for replica
exchanges, i.e., Eqs. 24 and 27, for both MC and MD versions.

Without loss of generality, we can assume T1 < T2 < - - - <
TM. The lowest temperature T1 should be sufficiently low so that
the simulation can explore the global-minimum-energy region, and
the highest temperature TM should be sufficiently high so that no
trapping in an energy-local-minimum state occurs. A simulation of
the REM is then realized by alternately performing the following
two steps:

1. Each replica in canonical ensemble of the fixed temperature is
simulated simultaneously and independently for a certain MC or
MD steps.

2. A pair of replicas at neighboring temperatures, say xm
[i] and

x
½j ,
mþ1, are exchanged with the probability w(xm

[i]|x
½j ,
mþ1) in

Eq. 24.

Note that in Step 2 we exchange only pairs of replicas
corresponding to neighboring temperatures, because the accep-
tance ratio of the exchange process decreases exponentially with
the difference of the two b’s (see Eqs. 27 and 24). Note also that
whenever a replica exchange is accepted in Step 2, the permutation
functions in Eq. 16 are updated. A random walk in “temperature
space” is realized for each replica, which in turn induces a random
walk in potential energy space. This alleviates the problem of get-
ting trapped in states of energy local minima.

The REM simulation is particularly suitable for parallel com-
puters. Because one can minimize the amount of information
exchanged among nodes, it is best to assign each replica to each
node (exchanging pairs of temperature values among nodes is much
faster than exchanging coordinates and momenta). This means that
we keep track of the permutation function mði; tÞ ¼ f %1ði; tÞ in
Eq. 16 as a function of MC or MD step t during the simulation.
After parallel canonical MC or MD simulations for a certain steps
(Step 1), M/2 pairs of replicas corresponding to neighboring tem-
peratures are simultaneously exchanged (Step 2), and the pairing is
alternated between the two possible choices, i.e., (T1, T2),
(T3, T4), . . . and (T2, T3), (T4, T5), . . ..

After a long production run of a replica-exchange simulation,
the canonical expectation value of a physical quantity A at temper-
ature Tm (m ¼ 1, . . ., M) can be calculated by the usual arithmetic
mean:

<A>Tm
¼ 1

nm

X

nm

k¼1
A xmðkÞð Þ; (29)
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where xm(k) (k ¼ 1, . . ., nm) are the configurations obtained at
temperature Tm and nm is the total number of measurements
made at T ¼ Tm. The expectation value at any intermediate tem-
perature T ( ¼ 1=kBb) can also be obtained as follows:

<A>T ¼

P

E

AðEÞPNVTðE;T Þ
P

E

PNVTðE;T Þ
¼

P

E

AðEÞnðEÞ expð%bEÞ
P

E

nðEÞ expð%bEÞ : (30)

The summation instead of integration is used in Eq. 30, because we
often discretize the potential energy E with step size EðE ¼ Ei;

i ¼ 1; 2; . . . ). Here, the explicit form of the physical quantity A
should be known as a function of potential energy E. For instance,
A(E) ¼ E gives the average potential energy <E> T as a function of
temperature, and AðEÞ ¼ b2ðE %<E>T Þ2 gives specific heat.

The density of states n(E) in Eq. 30 is given by the multiple-
histogram reweighting techniques (19, 20) as follows. Let Nm(E)
and nm be respectively the potential-energy histogram and the total
number of samples obtained at temperature Tm ¼ 1=kBbm (m ¼ 1,
. . ., M). The best estimate of the density of states is then given by
(19, 20)

nðEÞ ¼

P

M

m¼1
g%1m NmðEÞ

P

M

m¼1
g%1m nm expð f m % bmEÞ

; (31)

where we have for each m (¼ 1, . . ., M)

expð%f mÞ ¼
X

E

nðEÞ expð%bmEÞ: (32)

Here, gm ¼ 1þ 2tm, and tm is the integrated autocorrelation time
at temperature Tm. For many systems, the quantity gm can safely be
set to be a constant in the reweighting formulae (20), and hereafter
we set gm ¼ 1.

Note that Eqs. 31 and 32 are solved self-consistently by
iteration (19, 20) to obtain the density of states n(E) and the
dimensionless Helmholtz free energy fm. Namely, we can set all
the fm (m ¼ 1, . . ., M) to, e.g., zero initially. We then use Eq. 31 to
obtain n(E), which is substituted into Eq. 32 to obtain next values
of fm, and so on.

Moreover, the ensemble averages of any physical quantity A
(including those that cannot be expressed as functions of potential
energy) at any temperature T ( ¼ 1=kBb) can now be obtained from
the “trajectory” of configurations of the production run. Namely,
we first obtain fm (m ¼ 1, . . ., M) by solving Eqs. 31 and 32 self-
consistently, and then we have (109) (see also (161))
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<A>T ¼

P

M

m¼1

P

nm

k¼1
AðxmðkÞÞ 1

P

M

‘¼1
n‘ exp f ‘%b‘EðxmðkÞÞ½ ,

exp %bEðxmðkÞÞ½ ,

P

M

m¼1

P

nm

k¼1
1

P

M

‘¼1
n‘ exp f ‘%b‘EðxmðkÞÞ½ ,

exp %bEðxmðkÞÞ½ ,
;

(33)

where xm(k) (k ¼ 1, . . ., nm) are the configurations obtained at
temperature Tm.

Eqs. 30 and 31 or any other equations which involve summa-
tions of exponential functions often encounter with numerical
difficulties such as overflows. These can be overcome by using, for
instance, the following equation (23, 162): For C ¼ A þ B (with
A > 0 and B > 0), we have

lnC ¼ ln maxðA;BÞ 1þ minðA;BÞ
maxðA;BÞ

# $9 :

;

¼ maxðlnA; lnBÞ þ ln 1þ exp minðlnA; lnBÞ %maxðlnA; lnBÞ½ ,f g-
(34)

We now give more details about the momentum rescaling in
Eq. 23 (163). Actually, Eq. 23 is only valid for the Langevin
dynamics (164), Andersen thermostat (165), and Gaussian con-
straint method (166–168). The former two thermostats are based
on the weight factor of Eq. 3 with Eqs. 1 and 2, and the Gaussian
constraint method is based on the following weight factor:

W ðq; pÞ ¼ d
X

N

k¼1

p2k
2mk

% gkBT

2

 !

exp %bEðqÞ½ ,: (35)

For Nosé’s method (159, 160), which gives the equations of
motion in Eqs. 11–14, the Nosé Hamiltonian is given by

HNose ¼
X

N

k¼1

~p2k
2mks2

þ EðqÞ þ P2
s

2Q
þ gkBT log s : (36)

Here, g ( ¼ 3N) is the number of degrees of freedom, s is a position
variable of the thermostat, Ps is a momentum conjugate to s, and ~pk
is a virtual momentum, which is related to the real momenta pk as
pk ¼ ~pk=s. The weight factor for the Nosé’s method is then given
by

W ðq; ~p; s ;P sÞ ¼ d HNose % Eð Þ; (37)

where E is the initial value ofHNose. Namely, in the Nosé’s method,
the entire system including the thermostat is in the microcanonical
ensemble. Note that the mass Q of the thermostat can have differ-
ent values in each replica in REMD simulations. The rescaling
method for the Nosé thermostat is given by Eq. 23 and
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P ½i,0s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T nQ n

TmQ m

s

P ½i,s ; P ½j ,0s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TmQ m

T nQ n

s

P ½j ,s ; (38)

s ½i,0 ¼ s ½i, exp
1

gkB

Eðq ½i,Þ % Em
Tm

% Eðq ½i,Þ % En
T n

# $9 :

;

s ½j ,0 ¼ s ½j , exp
1

gkB

Eðq ½j ,Þ % En
T n

% Eðq ½j ,Þ % Em
Tm

# $9 :

; (39)

where Em and En are the initial values of HNose in the simulations
with Tm and Tn, respectively, before the replica exchange. Note that
the real momenta have to be used in the rescaling method in
Eq. 23, not the virtual momenta.

For the Nosé–Hoover thermostat (169), the states are specified
by the following weight factor:

W ðq; p; zÞ ¼ exp %b
X

N

k¼1

p2k
2mk

þ EðqÞ þQ

2
z2

 !" #

; (40)

where z is a velocity of the thermostat and Q is its mass parameter.
The rescaling method for the Nosé–Hoover thermostat is given by
Eq. 23 and

z½i,0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T nQ m

TmQ n

s

z½i,; z½j ,0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TmQ n

T nQ m

s

z½j ,; (41)

where Qm and Qn are the mass parameters in the replicas at tem-
perature values Tm and Tn, respectively, before the replica exchange.

The rescaling method for the Nosé–Hoover thermostat can be
generalized to the Nosé–Hoover chains (170) in a similar way. The
weight factor for the Nosé–Hoover chains is given by

W ðq; p; z1; . . . ; zLÞ ¼ exp %b
X

N

k¼1

p2k
2mk

þ EðqÞ þ
X

L

‘¼1

Q ‘

2
z2‘

 !" #

;

(42)

where L is the number of thermostats, z‘ ð‘ ¼ 1; . . . ;LÞ is the
velocity of the ‘th thermostat, and Q ‘ ð‘ ¼ 1; . . . ;LÞ is a mass
parameter corresponding to the ‘th thermostat. A rescaling method
for REMD with the Nosé–Hoover chains is given by Eq. 23 and
the following:

z
½i,0
‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T nQ m;‘

TmQ n;‘

s

z
½i,
‘ ; z

½j ,0
‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TmQ n;‘

T nQ m;‘

s

z
½j ,
‘ ; ð‘ ¼ 1; . . . ;LÞ; (43)

where Qm,‘ and Qn,‘ are the mass parameters in the replicas at
temperature values Tm and Tn, respectively, which correspond to
the ‘th thermostat.
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In the Nosé-Poincaré thermostat (171), the states are specified
by x ! ðq; ~p; s ;P sÞ, and the weight factor is given by

W ðq; ~p; s ;P sÞ / d s HNose % Eð Þ½ ,; (44)

where HNose is the Nosé Hamiltonian in Eq. 36 and E is its initial
value. A rescaling method of the Nosé-Poincaré thermostat is the
same as in the Nosé’s thermostat and given by Eqs. 23, 38, and 39
above.

2.2. Simulated

Tempering

We now introduce another generalized-ensemble algorithm, the
simulated tempering (ST) method (80, 81). In this method tem-
perature itself becomes a dynamical variable, and both the configu-
ration and the temperature are updated during the simulation with
a weight:

W STðE;T Þ ¼ exp %bE þ aðT Þð Þ; (45)

where the function a(T) is chosen so that the probability distribu-
tion of temperature is flat:

PSTðT Þ ¼
Z

dE nðEÞ W STðE;T Þ

¼
Z

dE nðEÞ exp %bE þ aðT Þð Þ ¼ constant: (46)

Hence, in simulated tempering, temperature is sampled uniformly.
A free random walk in temperature space is realized, which in turn
induces a random walk in potential energy space and allows the
simulation to escape from states of energy local minima.

In the numerical work we discretize the temperature in M
different values, Tm (m ¼ 1, . . ., M). Without loss of generality
we can order the temperature so that T1 < T2 < - - - < TM. The
probability weight factor in Eq. 45 is now written as

W STðE;TmÞ ¼ expð%bmE þ amÞ; (47)

where am ¼ a(Tm) (m ¼ 1, . . ., M). Note that from Eqs. 46
and 47, we have

expð%amÞ /
Z

dE nðEÞ expð%bmEÞ: (48)

The parameters am are therefore “dimensionless” Helmholtz free
energy at temperature Tm (i.e., the inverse temperature bm multi-
plied by the Helmholtz free energy).

Once the parameters am are determined and the initial config-
uration and the initial temperature Tm are chosen, a simulated
tempering simulation is realized by alternately performing the fol-
lowing two steps (80, 81):

1. A canonical MC or MD simulation at the fixed temperature Tm

is carried out for a certain steps.
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2. The temperature Tm is updated to the neighboring values Tm

3 1 with the configuration fixed. The transition probability of
this temperature-updating process is given by the following
Metropolis criterion (see Eq. 47):

wðTm ! Tm31Þ ¼ min 1;
W STðE;Tm31Þ
W STðE;TmÞ

# $

¼ min 1; exp %Dð Þð Þ;

(49)

where

D ¼ bm31 % bmð ÞE % am31 % amð Þ: (50)

Note that in Step 2 we update the temperature only to the
neighboring temperatures in order to secure sufficiently large
acceptance ratio of temperature updates.

We remark that when MD simulations are performed in Step 1
above, we also have to deal with the momenta p, and the kinetic
energy term should be included in the weight factor. When tem-
perature Tm031 is accepted for T-update in Step 2, we rescale the
momenta in the same way as in REMD (101, 155, 157):

pk
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tm031
Tm0

s

pk: (51)

The kinetic energy terms then cancel out in Eq. 50, and we can use
the same D in the Metropolis criterion in Step 2 for both MC and
MD simulations. Similar momentum scaling formulae given above
should also be introduced for various other thermostats (163).

The simulated tempering parametersam ¼ a(Tm) (m ¼ 1, . . .,M)
can be determined by iterations of short trial simulations (see, e.g.,
Refs. (52, 82, 84) for details). This process can be nontrivial and very
tedious for complex systems.

After the optimal simulated tempering weight factor is deter-
mined, one performs a long simulated tempering run once. The
canonical expectation value of a physical quantity A at temperature
Tm (m ¼ 1, . . ., M) can be calculated by the usual arithmetic mean
from Eq. 29. The expectation value at any intermediate tempera-
ture can also be obtained from Eq. 30, where the density of states is
given by the multiple-histogram reweighting techniques (19, 20).
Namely, let Nm(E) and nm be respectively the potential-energy
histogram and the total number of samples obtained at temperature
Tm ¼ 1=kBbm (m ¼ 1, . . ., M). The best estimate of the density of
states is then given by solving Eqs. 31 and 32 self-consistently.

Moreover, the ensemble averages of any physical quantity A
(including those that cannot be expressed as functions of potential
energy) at any temperature T ( ¼ 1=kBb) can now be obtained from
Eq. 33.
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2.3. Multicanonical

Algorithm

The third generalized-ensemble algorithm that we present is the
MUCA (21, 22). In the multicanonical ensemble, each state is
weighted by a non-Boltzmann weight factor WMUCA(E) (which
we refer to as the multicanonical weight factor) so that a uniform
potential energy distribution PMUCA(E) is obtained:

PMUCAðEÞ / nðEÞWMUCAðEÞ ! constant: (52)

The flat distribution implies that a free one-dimensional ran-
dom walk in the potential energy space is realized in this ensemble.
This allows the simulation to escape from any local-minimum-
energy states and to sample the configurational space much more
widely than the conventional canonical MC or MD methods.

The definition in Eq. 52 implies that the multicanonical weight
factor is inversely proportional to the density of states, and we can
write it as follows:

WMUCAðEÞ ! exp %baEMUCAðE;T aÞ½ , ¼ 1

nðEÞ ; (53)

where we have chosen an arbitrary reference temperature,
T a ¼ 1=kBba, and the “multicanonical potential energy” is defined by

EMUCAðE;T aÞ ! kBT a lnnðEÞ ¼ T aSðEÞ: (54)

Here, S(E) is the entropy in the microcanonical ensemble. Because
the density of states of the system is usually unknown, the multi-
canonical weight factor has to be determined numerically by itera-
tions of short preliminary runs (21, 22).

A multicanonical MC simulation is performed, for instance,
with the usual Metropolis criterion (158): The transition probabil-
ity of state xwith potential energy E to state x

0
with potential energy

E
0
is given by

wðx ! x 0Þ ¼ min 1;
WMUCAðE 0Þ
WMUCAðEÞ

# $

¼ min 1;
nðEÞ
nðE 0Þ

# $

¼ min 1; exp %baDEMUCAð Þð Þ; (55)

where

DEMUCA ¼ EMUCAðE 0;T aÞ % EMUCAðE;T aÞ: (56)

The MD algorithm in the multicanonical ensemble also naturally
follows from Eq. 53, in which the regular constant temperature
MD simulation (with T ¼ Ta) is performed by replacing E by
EMUCA in Eq. 12 (50, 54):

_pk ¼ %
@EMUCAðE;T aÞ

@qk
% _s

s
pk

¼ @EMUCAðE;T aÞ
@E

f k %
_s

s
pk: (57)
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If the exact multicanonical weight factor WMUCA(E) is known,
one can calculate the ensemble averages of any physical quantity A
at any temperature T ( ¼ 1=kBb) from Eq. 30, where the density of
states is given by (see Eq. 53)

nðEÞ ¼ 1

WMUCAðEÞ
: (58)

In general, the multicanonical weight factor WMUCA(E), or the
density of states n(E), is not a priori known, and one needs its estima-
tor for a numerical simulation.This estimator is usually obtained from
iterations of short trial multicanonical simulations. The details of this
process are described, for instance, in Refs. (36, 45). However, the
iterative process can be nontrivial and very tedious for complex
systems.

In practice, it is impossible to obtain the ideal multicanonical
weight factor with completely uniform potential energy distribu-
tion. The question is when to stop the iteration for the weight factor
determination. Our criterion for a satisfactory weight factor is that
as long as we do get a random walk in potential energy space, the
probability distribution PMUCA(E) does not have to be completely
flat with a tolerance of, say, an order of magnitude deviation. In such
a case, we usually perform with this weight factor a multicanonical
simulation with high statistics (production run) in order to get even
better estimate of the density of states. LetNMUCA(E) be the histo-
gram of potential energy distribution PMUCA(E) obtained by this
production run. The best estimate of the density of states can then
be given by the single-histogram reweighting techniques (17, 18) as
follows (see the proportionality relation in Eq. 52):

nðEÞ ¼ NMUCAðEÞ
WMUCAðEÞ

: (59)

By substituting this quantity into Eq. 30, one can calculate ensem-
ble averages of physical quantity A(E) as a function of temperature.
Moreover, the ensemble averages of any physical quantity A
(including those that cannot be expressed as functions of potential
energy) at any temperature T ( ¼ 1=kBb) can also be obtained as
long as one stores the “trajectory” of configurations from the
production run. Namely, we have (109)

<A>T ¼

P

ns

k¼1
AðxkÞW %1

MUCAðEðxkÞÞ exp %bEðxkÞ½ ,

P

ns

k¼1
W %1

MUCAðEðxkÞÞ exp %bEðxkÞ½ ,
; (60)

where xk is the configuration at the kth MC (or MD) step and ns is
the total number of configurations stored. Note that when A is a
function of E, Eq. 60 reduces to Eq. 30 where the density of states
is given by Eq. 59.
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Some remarks are in order. The major advantage of REM over
other generalized-ensemble methods such as simulated tempering
(80, 81) andMUCA (21, 22) lies in the fact that the weight factor is
a priori known (see Eq. 18), while in simulated tempering and
MUCA, the determination of the weight factors can be very tedious
and time-consuming. In REM, however, the number of required
replicas increases greatly ( /

ffiffiffiffiffi

N
p

) as the system size N increases
(92), while only one replica is used in simulated tempering and
MUCA. This demands a lot of computer power for complex sys-
tems. Moreover, so long as optimal weight factors can be obtained,
simulated tempering and MUCA are more efficient in sampling
than the REM (15, 77, 87, 110).

2.4. Replica-Exchange

Simulated Tempering

and Replica-Exchange

Multicanonical

Algorithm

TheREST (86) and theREMUCA (105, 109, 110) overcome both
the difficulties of ST and MUCA (the weight factor determinations
are nontrivial) and REM (many replicas, or a lot of computation
time, are required).

In REST (86), we first perform a short REM simulation (with
M replicas) to determine the simulated tempering weight factor and
then perform with this weight factor a regular ST simulation with
high statistics. The first step is accomplished by the multiple-
histogram reweighting techniques (19, 20), which give the dimen-
sionless Helmholtz free energy. Let Nm(E) and nm be respectively
the potential-energy histogram and the total number of samples
obtained at temperature Tm ( ¼ 1=kBbm) of the REM run. The
dimensionless Helmholtz free energy fm is then given by solving
Eqs. 31 and 32 self-consistently by iteration.

Once the estimate of the dimensionless Helmholtz free energy
fm are obtained, the simulated tempering weight factor can be
directly determined by using Eq. 47 where we set am ¼ fm (com-
pare Eq. (48) with Eq. 32). A long simulated tempering run is then
performed with this weight factor. Let Nm(E) and nm be respec-
tively the potential-energy histogram and the total number of
samples obtained at temperature Tm ( ¼ 1=kBbm) from this
simulated tempering run. The multiple-histogram reweighting
techniques of Eqs. 31 and 32 can be used again to obtain the best
estimate of the density of states n(E). The expectation value of a
physical quantity A at any temperature T ð¼ 1=kBbÞ is then calcu-
lated from Eq. 30.

We now present the REMUCA (105, 109, 110). In
REMUCA, just as in REST, we first perform a short REM simula-
tion (with M replicas) to determine the multicanonical weight
factor and then perform with this weight factor a regular multi-
canonical simulation with high statistics. The first step is accom-
plished by the multiple-histogram reweighting techniques (19, 20),
which give the density of states. Let Nm(E) and nm be respectively
the potential-energy histogram and the total number of samples
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obtained at temperature Tm ( ¼ 1=kBbm) of the REM run. The
density of states n(E) is then given by solving Eqs. 31 and 32 self-
consistently by iteration.

Once the estimate of the density of states is obtained, the
multicanonical weight factor can be directly determined from
Eq. 53 (see also Eq. 54). Actually, the density of states n(E) and
the multicanonical potential energy, EMUCA(E; T0), thus deter-
mined are only reliable in the following range:

E1 5 E 5 EM ; (61)

where

E1 ¼ <E>T 1
;

EM ¼ <E>TM
;

7

(62)

and T1 and TM are respectively the lowest and the highest tempera-
tures used in the REM run. Outside this range, we extrapolate the
multicanonical potential energy linearly (105):

EMUCAðEÞ !

@EMUCAðE;T 0Þ
@E

4

4

4

4

E¼E1

ðE % E1Þ þ EMUCAðE1;T 0Þ; for E<E1;

EMUCAðE;T 0Þ; for E1 5 E 5 EM ;

@EMUCAðE;T 0Þ
@E

4

4

4

4

E¼EM

ðE % EM Þ þ EMUCAðEM ;T 0Þ; forE>EM :

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(63)

For Monte Carlo method, the weight factor for REMUCA is
given by substituting Eq. 63 into Eq. 53 (105, 109):

W MUCAðEÞ ¼ exp %b0EMUCAðEÞ½ ,

¼

exp %b1Eð Þ ; for E<E1;

1

nðEÞ ; for E1 5 E 5 EM ;

exp %bMEð Þ; for E>EM :

8

>

>

>

<

>

>

>

:

(64)

The multicanonical MC and MD runs are then performed
respectively with the Metropolis criterion of Eq. 55 and with the
modified Newton equation in Eq. 57, in which EMUCAðEÞ in
Eq. 63 is substituted into EMUCA(E; T0). We expect to obtain a
flat potential energy distribution in the range of Eq. 61. Finally, the
results are analyzed by the single-histogram reweighting techniques
as described in Eq. 59 (and Eq. 30).

The formulations of REST and REMUCA are simple and
straightforward, but the numerical improvement is great, because
the weight factor determination for ST and MUCA becomes very
difficult by the usual iterative processes for complex systems.
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2.5. Simulated

Tempering

Replica-Exchange

Method

and Multicanonical

Replica-Exchange

Method

In the previous subsection we presented REST and REMUCA,
which use a short REM run for the determination of the simulated
tempering weight factor and the multicanonical weight factor,
respectively. Here, we present two modifications of REM and
refer to the new methods as the STREM (87) and MUCAREM
(105, 109, 110). In STREM the production run is a REM simula-
tion with a few replicas that perform ST simulations with different
temperature ranges. Likewise, in MUCAREM, the production run
is a REM simulation with a few replicas in multicanonical ensem-
bles, i.e., different replicas perform MUCA simulations with differ-
ent energy ranges.

While ST and MUCA simulations are usually based on local
updates, a replica-exchange process can be considered to be a global
update, and global updates enhance the conformational sampling
further.

3. Multidimensional
Extensions of the
Three Generalized-
Ensemble
Algorithms

3.1. General

Formulations

We now give the general formulations for the multidimensional
generalized-ensemble algorithms (154–156). Let us consider a
generalized potential energy function El(x), which depends on L
parameters l ¼ (l(1), . . ., l(L)), of a system in state x. Although
El(x) can be any function of l, we consider the following specific
generalized potential energy function for simplicity:

ElðxÞ ¼ E0ðxÞ þ
X

L

‘¼1
lð‘ÞV ‘ðxÞ: (65)

Here, there are L þ 1 energy terms, E0(x) andV‘(x) (‘ ¼ 1, . . ., L),
and l(‘) are the corresponding coupling constants for V‘(x).

After integrating out the momentum degrees of freedom, the
partition function of the system at fixed temperature T and para-
meters l is given by

Z ðT ;lÞ ¼
Z

dx expð%bElðxÞÞ

¼
Z

dE0dV 1 - - - dV L nðE0;V 1; . . . ;V LÞ exp %bElð Þ;

(66)

where n(E0, V1, . . ., VL) is the multidimensional density of states:

nðE0;V 1; . . . ;V LÞ ¼
Z

dxdðE0ðxÞ % E0ÞdðV 1ðxÞ

% V 1Þ - - - dðV LðxÞ % V LÞ: (67)

Here, the integration is replaced by a summation when x is discrete.
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The expression in Eq. 65 is often used in simulations. For
instance, in simulations of spin systems, E0(x) and V1(x) (here,
L ¼ 1 and x ¼ {S1, S2, - - - } stand for spins) can be respectively
considered as the zero-field term and the magnetization term cou-
pled with the external field l(1). (For Ising model,
E0 ¼ %J

P

;j>S iS j , V 1 ¼ %
P

iS i, and l(1) ¼ h, i.e., external mag-

netic field.) In umbrella sampling (30) in molecular simulations,
E0(x) and V‘(x) can be taken as the original potential energy and the
(biasing) umbrella potential energy, respectively, with the coupling
parameter l(‘) (here, x ¼ {q1, . . ., qN} where qk is the coordinate
vector of the kth particle andN is the total number of particles). For
the molecular simulations in the isobaric-isothermal ensemble,
E0(x) andV1(x) (here, L ¼ 1) correspond respectively to the poten-
tial energy U and the volume V coupled with the pressure P.
(Namely, we have x ¼ fq1; . . . ; qN ;Vg, E0 ¼ U, V 1 ¼ V, and

lð1Þ ¼ P, i.e., El is the enthalpy without the kinetic energy con-
tributions). For simulations in the grand canonical ensemble with
N particles, we have x ¼ {q1, . . ., qN, N}, and E0(x) and V1(x)
(here, L ¼ 1) correspond respectively to the potential energy U
and the total number of particles N coupled with the chemical
potential m. (Namely, we have E0 ¼ U, V1 ¼ N, and lð1Þ ¼ %m.)

Moreover, going beyond the well-known ensembles discussed
above, we can introduce any physical quantity of interest (or its
function) as the additional potential energy term V‘. For instance,
V‘ can be an overlap with a reference configuration in spin glass
systems, an end-to-end distance, a radius of gyration in molecular
systems, etc. In such a case, we have to carefully choose the range
of l(‘) values so that the new energy term l(‘)V‘ will have roughly
the same order of magnitude as the original energy term E0. We
want to perform a simulation where a random walk not only in the
E0 space but also in the V‘ space is realized. As shown below, this
can be done by performing a multidimensional REM, ST, or
MUCA simulation.

We first describe the multidimensional replica-exchange method
(MREM) (103). The crucial observation that led to this algorithm
is: As long as we have M non-interacting replicas of the original
system, the Hamiltonian H(q, p) of the system does not have to be
identical among the replicas and it can depend on a parameter with
different parameter values for different replicas. The system for the
multidimensional REM consists of M non-interacting replicas of
the original system in the “canonical ensemble” with M( ¼ M0

8M1 8- - - 8ML) different parameter sets Lm (m ¼ 1, . . ., M),
where Lm ! ðTm0

;lmÞ ! ðTm0
; lð1Þm1

; . . . ; lðLÞmL
Þ with m0 ¼ 1; . . . ;

M 0;m‘ ¼ 1; . . . ;M ‘ (‘ ¼ 1, . . ., L). Because the replicas are non-
interacting, the weight factor is given by the product of Boltzmann-
like factors for each replica:
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WMREM !
Y

M 0

m0¼1

Y

M 1

m1¼1
- - -

Y

M L

mL¼1
exp %bm0

Elm

, -

: (68)

Without loss of generality we can order the parameters so that

T 1<T 2< - - -<TM 0
andl

ð‘Þ
1 <l

ð‘Þ
2 < - - -<l

ð‘Þ
M ‘

(for each ‘ ¼ 1, . . ., L).

The multidimensional REM is realized by alternately performing the
following two steps:

1. For each replica, a “canonical” MC or MD simulation at the
fixed parameter set is carried out simultaneously and indepen-
dently for a certain steps.

2. We exchange a pair of replicas i and jwhich are at the parameter
sets Lm and Lm + 1, respectively. The transition probability for
this replica-exchange process is given by

wðLm $ Lmþ1Þ ¼ min 1; expð%DÞð Þ; (69)

where we have

D ¼ bm0
% bm0þ1

, -

Elm
q ½j ,
( )

% Elm
q ½i,
( )( )

; (70)

for T-exchange, and

D ¼ bm0
Elm‘
ðq ½j ,Þ % Elm‘

ðq ½i,Þ
( )

% Elm‘þ1
ðq ½j ,Þ % Elm‘þ1

ðq ½i,Þ
( )h i

;

(71)

for l(‘)-exchange (for one of ‘ ¼ 1, . . ., L). Here, q[i] and q[j]

stand for configuration variables for replicas i and j, respec-
tively, before the replica exchange.

We now consider the multidimensional simulated tempering
(MST) which realizes a random walk both in temperature T and
in parameters l (154–156). The entire parameter set L ¼ (T, l)
! (T, l(1), . . ., l(L)) becomes dynamical variables, and both the
configuration and the parameter set are updated during the simu-
lation with a weight factor:

WMSTðLÞ ! exp %bEl þ f ðLÞð Þ; (72)

where the function f (L) ¼ f(T, l) is chosen so that the probability
distribution of L is flat:

PMSTðLÞ /
Z

dE0dV 1 - - - dV L nðE0;V 1; . . . ;V LÞ

exp %bEl þ f ðLÞð Þ ! constant: (73)

Thismeans that f (L) is the dimensionless (“Helmholtz”) free energy:

exp %f ðLÞð Þ ¼
Z

dE0dV 1 - - - dV L nðE0;V 1; . . . ;V LÞ expð%bElÞ:

(74)

7 Enhanced Sampling Algorithms 173



In the numerical work we discretize the parameter set L in M
(¼ M0 8M1 8- - - 8ML) different values: Lm ! ðTm0

;lmÞ ! ðTm0
;

lð1Þm1
; . . . ; lðLÞmL

Þ, where m0 ¼ 1; . . . ;M 0;m‘ ¼ 1; . . . ;M ‘ (‘ ¼ 1, . . .,

L). Without loss of generality we can order the parameters so that

T 1<T 2< - - -<TM 0
and l

ð‘Þ
1 <l

ð‘Þ
2 < - - -<l

ð‘Þ
M ‘

(for each ‘ ¼ 1, . . ., L).

The free energy f(Lm) is now written as f m0;m1;...;mL
¼ f ðTm0

; lð1Þm1
;

. . . ; lðLÞmL
).

Once the initial configuration and the initial parameter set are
chosen, the multidimensional ST is realized by alternately
performing the following two steps:

1. A “canonical” MC or MD simulation at the fixed parameter set

Lm ¼ ðTm0
;lmÞ ¼ ðTm0

; lð1Þm1
; . . . ; lðLÞmL

Þ is carried out for a cer-

tain steps with the weight factor expð%bm0
Elm
Þ (for fixed Lm,

f(Lm) in Eq. 72 is a constant and does not contribute).

2. We update the parameter set Lm to a new parameter set Lm 3 1

in which one of the parameters inLm is changed to a neighbor-
ing value with the configuration and the other parameters
fixed. The transition probability of this parameter updating
process is given by the following Metropolis criterion:

wðLm ! Lm31Þ ¼ min 1;
WMSTðLm31Þ
WMSTðLmÞ

# $

¼ min 1; exp %Dð Þð Þ:

(75)

Here, there are two possibilities for Lm 3 1, namely, T-update
and l(‘)-update. For T-update, we have Lm31 ¼ ðTm031;lmÞ
with

D ¼ bm031 % bm0

, -

Elm
% f m031;m1;...;mL

% f m0;m1;...;mL

( )

: (76)

For l
(‘)-update (for one of ‘ ¼ 1, . . ., L), we have Lm31 ¼

ðTm0
;lm‘31Þ with

D ¼ bm0
ðElm‘31

% Elm‘
Þ % f m0;...;m‘31;--- % f m0;...;m‘;---

( )

; (77)

wherelm‘31¼ð. . . ;lð‘%1Þm‘%1
; l
ð‘Þ
m‘31; l

ð‘þ1Þ
m‘þ1

; - - - Þand lm‘
¼ð. . .;lð‘%1Þm‘%1

;

lð‘Þm‘
; lð‘þ1Þm‘þ1

; - - - Þ.

We nowdescribe themultidimensionalmulticanonical algorithm
(MMUCA)which realizes a randomwalk in the (L þ 1)-dimensional
space of E0(x) and V‘(x) (‘ ¼ 1, . . ., L).

In themultidimensionalMUCAensemble, each state is weighted
by the MUCA weight factor WMMUCA(E0, V1, . . ., VL) so that a
uniform energy distribution of E0, V1, - - - , and VLmay be obtained:

PMMUCAðE0;V 1; . . . ;V LÞ / nðE0;V 1; . . . ;V LÞWMMUCA

ðE0;V 1; . . . ;V LÞ ! constant; (78)
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where n(E0, V1, . . ., VL) is the multidimensional density of states.
From this equation, we obtain

WMMUCAðE0;V 1; . . . ;V LÞ ! exp %baEMMUCAðE0;V 1; . . . ;V LÞð Þ

/ 1

nðE0;V 1; . . . ;V LÞ
; (79)

where we have introduced an arbitrary reference temperature,
T a ¼ 1=kBba, and wrote the weight factor in the Boltzmann-like
form. Here, the “multicanonical potential energy” is defined by

EMMUCAðE0;V 1; . . . ;V L ;T aÞ ! kBT a lnnðE0;V 1; . . . ;V LÞ:
(80)

The multidimensional MUCA MC simulation can be performed
with the following Metropolis transition probability from state x

with energy El ¼ E0 þ
PL

‘¼1l
ð‘ÞV ‘ to state x

0
with energy

El
0 ¼ E0

0 þPL
‘¼1l

ð‘ÞV ‘
0 :

wðx ! x 0Þ ¼ min 1;
WMMUCAðE0

0;V 1
0; . . . ;V L

0Þ
WMMUCAðE0;V 1; . . . ;V LÞ

# $

¼ min 1;
nðE0;V 1; . . . ;V LÞ
nðE0

0;V 1
0; . . . ;V L

0Þ

# $

: (81)

An MD algorithm in the multidimensional MUCA ensemble also
naturally follows from Eq. 79, in which a regular constant temper-
ature MD simulation (with T ¼ Ta) is performed by replacing the
total potential energy El by the multicanonical potential energy
EMMUCA in Eq. 12:

_pk ¼ %
@EMMUCAðE0;V 1; . . . ;V L ;T aÞ

@qk
% _s

s
pk: (82)

We remark that the random walk in E0 and in V‘ for the MUCA
simulation corresponds to that in b and in bl(‘) for the ST simulation:

E0 !b;

V ‘ !blð‘Þ ; ð‘ ¼ 1; . . . ;LÞ-

(

(83)

They are in conjugate relation.

3.2. Weight Factor

Determinations for

Multidimensional ST

and MUCA

Among the threemultidimensional generalized-ensemble algorithms
described above, onlyMREM can be performed withoutmuch prep-
aration because the weight factor for MREM is just a product of
regular Boltzmann-like factors. On the other hand, we do not know
the MST and MMUCA weight factors a priori and need to estimate
them. As a simple method for these weight factor determinations, we
can generalize the REST and REMUCA presented in the previous
subsections to multidimensions.

Suppose we have made a single run of a short MREM simula-
tion with M( ¼ M0 8M1 8- - - 8ML) replicas that correspond to M
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different parameter sets Lm (m ¼ 1, . . ., M). Let Nm0;m1;...;mL

ðE0;V 1; . . . ;V LÞ and nm0;m1;...;mL
be respectively the (L þ 1)-

dimensional potential-energy histogram and the total number of
samples obtained for the mth parameter set Lm ¼ ðTm0

; lð1Þm1
;

. . . ; lðLÞmL
Þ. The generalized WHAM equations are then given by

nðE0;V 1; . . . ;V LÞ

¼

P

m0;m1;...;mL

Nm0;m1;...;mL
ðE0;V 1; . . . ;V LÞ

P

m0;m1;...;mL

nm0;m1;...;mL
exp f m0;m1;...;mL

% bm0
Elm

( ) ; (84)

and

expð%f m0;m1;...;mL
Þ ¼

X

E0;V 1;...;V L

nðE0;V 1; . . . ;V LÞ exp %bm0
Elm

, -

:

(85)

The density of states n(E0, V1, . . ., VL) (which is inversely propor-
tional to the MMUCA weight factor) and the dimensionless free
energy f m0;m1;...;mL

(which is the MST parameter) are obtained by
solving Eqs. 84 and 85 self-consistently by iteration.

3.3. Expectation Values

of Physical Quantities

We now present the equations to calculate ensemble averages of
physical quantitieswith any temperatureTandanyparameterl values.

After a long production run of MREM and MST simulations,
the canonical expectation value of a physical quantity A with the
parameter values Lm (m ¼ 1, . . ., M), where Lm ! ðTm0

;lmÞ !
ðTm0

;lð1Þm1
; . . . ;lðLÞmL

Þ with m0 ¼ 1; . . . ;M 0;m‘ ¼ 1; . . . ;M ‘ (‘ ¼ 1,

. . ., L), and M(¼ M0 8M1 8- - - 8ML), can be calculated by the
usual arithmetic mean:

<A>Tm0
;lm
¼ 1

nm

X

nm

k¼1
A xmðkÞð Þ; (86)

where xm(k) (k ¼ 1, . . ., nm) are the configurations obtained with
the parameter values Lm (m ¼ 1, . . ., M), and nm is the total
number of measurements made with these parameter values. The
expectation values of A at any intermediate T ( ¼ 1=kBb) and any l
can also be obtained from

<A>T ;l ¼

P

E0;V 1;...;V L

AðE0;V 1; . . . ;V LÞnðE0;V 1; . . . ;V LÞ exp %bElð Þ
P

E0;V 1;...;V L

nðE0;V 1; . . . ;V LÞ exp %bElð Þ ;

(87)

where the density of states n(E0, V1, . . ., VL) is obtained from the
multiple-histogram reweighting techniques. Namely, from the
MREM or MST simulation, we first obtain the histogram
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Nm0;m1;...;mL
ðE0;V 1; . . . ;V LÞ and the total number of samples

nm0;m1;...;mL
in Eq. 84. The density of states n(E0, V1, . . ., VL) and

the dimensionless free energy f m0;m1;...;mL
are thenobtainedby solving

Eqs. 84 and 85 self-consistently by iteration. Substituting the
obtained density of states n(E0, V1, . . ., VL) into Eq. 87, one can
calculate the ensemble average of the physical quantity A at any T
and any l.

Moreover, the ensemble average of the physical quantity A
(including those that cannot be expressed as functions of E0 and
V‘ (‘ ¼ 1, . . ., L) can be obtained from the “trajectory” of config-
urations of the production run (155). Namely, we first obtain
f m0;m1;...;mL

for each ðm0 ¼ 1; . . . ;M 0;m1 ¼ 1; . . . ;M 1; . . . ;mL ¼
1; . . . ;M LÞ by solving Eqs. 84 and 85 self-consistently, and then
we have

<A>T ;l ¼

P

M 0

m0¼1
- - -

P

M L

mL¼1

P

xm

AðxmÞ exp %bElðxmÞð Þ
P

M0

n0¼1
---
P

ML

nL¼1
nn0 ;...;nL

exp f n0 ;...;nL
%bn0Eln ðxmÞ

, -

P

M 0

m0¼1
- - -

P

M L

mL¼1

P

xm

exp %bElðxmÞð Þ
P

M0

n0¼1
---
P

ML

nL¼1
nn0 ;...;nL

exp f n0 ;...;nL
%bn0Eln ðxmÞ

, -

;

(88)

where xm are the configurations obtained at Lm¼ðTm0
;lmÞ ¼

ðTm0
; lð1Þm1

; . . . ; lðLÞmL
Þ. Here, the trajectories xm are stored for each

Lm separately.
For theMMUCAsimulationwith theweight factorWMMUCA(E0,

. . ., VL), the expectation values ofA at anyT ( ¼ 1=kBb) and anyl can
also be obtained from Eq. 87 by the single-histogram reweighting
techniques as follows. LetNMMUCA(E0, V1, . . ., VL) be the histogram
of the distribution of E0, V1, . . ., VL, PMMUCA(E0, V1, . . ., VL),
obtained by the production run. The best estimate of the density of
states n(E0, V1, . . ., VL) is then given by

nðE0;V 1; . . . ;V LÞ ¼
NMMUCAðE0;V 1; . . . ;V LÞ
WMMUCAðE0; . . . ;V LÞ

: (89)

Moreover, the ensemble average of the physical quantity A (includ-
ing those that cannot be expressed as a function of E0 andV‘ (‘ ¼ 1,
. . ., L)) can be obtained as long as one stores the “trajectory” of
configurations xk from the production run. We have

<A>T ;l ¼

P

ns

k¼1
AðxkÞW %1

MMUCAðE0ðxkÞ; . . . ;V LðxkÞÞ exp %bElðxkÞð Þ

P

ns

k¼1
W %1

MMUCAðE0ðxkÞ; . . . ;V LðxkÞÞ exp %bElðxkÞð Þ
:

(90)
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Here, xk is the configuration at the kth MC (or MD) step and ns is
the total number of configurations stored.

3.4. Multidimensional

Generalized-Ensemble

Algorithms for the

Isobaric–Isothermal

Ensemble

As examples of the multidimensional formulations in the previous
subsections, we present the generalized-ensemble algorithms for the
isobaric-isothermal ensemble (or, the NPT ensemble) (157). Let us
consider a physical system that consists ofN atoms and that is in a box
of a finite volume V. The states of the system are specified by coordi-
nates q ! {q1, q2, . . ., qN} and momenta p ! {p1, p2, . . ., pN} of the
atoms and volume V of the box. The potential energy Eðq;VÞ for the
system is a function of q and V.

In the isobaric-isothermal ensemble (159, 160, 165, 172), the
probability distribution PNPTðE;V;T ;PÞ for potential energy E
and volume V at temperature T and pressure P is given by

PNPTðE;V;T ;PÞ / nðE;VÞWNPTðE;V;T ;PÞ ¼ nðE;VÞe%bH:
(91)

Here, the density of states nðE;VÞ is given as a function of both E
and V, and H is the “enthalpy” (without the kinetic energy con-
tributions):

H ¼ E þ PV: (92)

This weight factor produces an isobaric-isothermal ensemble at
constant temperature (T) and constant pressure (P). Note that
this is a special case of the general formulations in Eq. 7.65 with
L ¼ 1, E0 ¼ E, V 1 ¼ V, and lð1Þ ¼ P.

In order to perform the isobaric-isothermal MC simula-
tion (172), we perform Metropolis sampling on the scaled coordi-
nates s ¼ {s1, s2, . . ., sN} where sk ¼ V%1=3qkðk ¼ 1; 2; . . . ;N Þ
(qk are the real coordinates) and the volume V (here, the particles
are placed in a cubic box of a side of size V%1=3). The trial moves
from state x with the scaled coordinate s with volume V to state
x
0
with the scaled coordinate s0 and volume V 0 are generated by

uniform random numbers. The enthalpy is accordingly changed
from HðEðs;VÞ;VÞ to H0ðEðs0;V 0Þ;V 0Þ by these trial moves.
The trial moves will be accepted with the following Metropolis
criterion:

wðx ! x 0Þ ¼ min 1; exp½%bfH0 %H%NkBT lnðV 0=VÞg,ð Þ; (93)

where N is the total number of atoms in the system.
As for the MD method in this ensemble, we just present the

Nosé-Andersen algorithm (159, 160, 165). The equations of
motion in Eqs. 11–14 are now generalized as follows:

_qk ¼
pk
mk
þ

_V
3V qk; (94)
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_pk ¼ %
@H
@qk
% _s

s
þ

_V
3V

# $

pk (95)

¼ f k %
_s

s
þ

_V
3V

# $

pk; (96)

_s ¼ s
P s

Q
; (97)

_P s ¼
X

N

i¼1

p2i
mi
% 3NkBT ¼ 3NkB T ðtÞ % Tð Þ; (98)

_V ¼ s
PV
M ; (99)

_PV ¼ s
1

3V
X

N

i¼1

p2i
mi
%
X

N

i¼1
qi -

@H
@qi

 !

% @H
@V

" #

(100)

¼ s PðtÞ % Pð Þ; (101)

whereM is the artificial mass associated with the volume, PV is the
conjugate momentum for the volume, and the “instantaneous
pressure” PðtÞ is defined by

PðtÞ ¼ 1

3V
X

N

i¼1

piðtÞ
2

mi
þ
X

N

i¼1
qiðtÞ - f iðtÞ

 !

% @E

@V ðtÞ: (102)

In REM simulations for the NPT ensemble, we prepare a
system that consists of M T 8M P noninteracting replicas of the
original system, where MT and M P are the number of temperature
and pressure values used in the simulation, respectively. The replicas
are specified by labels iði ¼ 1;2; . . . ;M T 8M PÞ, temperature by
m0 (m0 ¼ 1, 2, . . ., MT), and pressure by m1ðm1 ¼ 1;2; . . . ;M PÞ.

To perform REM simulations, we carry out the following two
steps alternately: (1) perform a usual constant NPT MC or MD
simulation in each replica at assigned temperature and pressure and
(2) try to exchange the replicas. If the temperature (specified bym0

and n0) or pressure (specified by m1 and n1) between the replicas is
exchanged in Step 2, the transition probability fromX ! f. . . ; ðs½i,;
V ½i,;Tm0

;Pm1
Þ; . . . ; ðs½j ,;V ½j ,;T n0

;Pn1
Þ; - - - g to X 0 ! f. . . ; ðs½i,;V ½i,;

T n0
;Pn1
Þ; . . . ; ðs½j ,;V ½j ,;Tm0

;Pm1
Þ; - - - g at the trial is given

by (11, 120)

wREMðX ! X 0Þ ¼ min 1; expð%DREMÞ½ ,; (103)

where

DREM ¼ ðbm0
% bn0

Þ E s½j ,;V ½j ,
( )

% E s½i,;V ½i,
( )h i

þ ðbm0
Pm1
% bn0

Pn1
Þ V ½j , % V ½i,
( )

: (104)
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In STsimulations for theNPTensemble,we introduce a function
f ðT ;PÞ and use a weight factor W STðE;V;T ;PÞ ! exp½%bðEþ
PVÞ þ f ðT ;PÞ, so that the distribution function PSTðT ;PÞ of T
and P may be uniform:

PSTðT ;PÞ /
Z 1

0

dV
Z

V
dq W ST½Eðq;VÞ;V;T ;P, ¼ constant:

(105)

From Eq. 105, it is found that f ðT ;PÞ is formally given by

f ðT ;PÞ ¼ % ln

Z 1

0

dV
Z

V
dq exp %b Eðq;VÞ þ PVð Þ½ ,

7 A

; (106)

and this function is the dimensionless Gibbs free energy except for a
constant.

To perform ST simulations, we again discretize temperature
and pressure into M0 8M1 set of values ðTm0

;Pm1
Þðm0 ¼

1; . . . ;M 0; m1 ¼ 1; . . . ;M 1Þ. We carry out the following two
steps alternately: (1) perform a usual constant NPT MC or MD
simulation and (2) try to update the temperature or pressure. In
Step 2 the transition probability from the state X ! fs;V;
Tm0

;Pm1
g to the state X 0 ! fs;V;T n0

;Pn1
g is given by

wSTðX ! X 0Þ ¼ min 1; expð%DSTÞ½ ,; (107)

where

DST ¼ ðbn0
% bm0

ÞEðs;VÞ þ ðbn0
Pn1
% bm0

Pm1
ÞV

% f n0;n1
% f m0;m1

( )

: (108)

We remark that when we perform MD simulations with REM
and ST, the momenta should be rescaled if the replicas are
exchanged for the temperature in REM and the temperature is
updated in ST as shown above in the previous subsections.

From the production run of REM or ST simulations in the
NPT ensemble, we can calculate isobaric-isothermal averages of a
physical quantity A at ðTm0

;Pm1
Þðm0 ¼ 1; . . . ;M 0; m1 ¼ 1; . . . ;

M 1Þ by the usual arithmetic mean:

<A>Tm0
;Pm1
¼ 1

nm

X

nm

k¼1
A xmðkÞð Þ; (109)

where xm(k) (k ¼ 1, . . ., nm) are the configurations obtained with
the parameter values ðTm0

;Pm1
Þ and nm is the total number of

measurements made with these parameter values. The expectation
values of A at any intermediate temperature T ( ¼ 1=kBb) and any
intermediate pressure P can also be obtained from
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<A>T ;P ¼

P

E;V
AðE;VÞnðE;VÞ exp %bðE þ PVÞð Þ
P

E;V
nðE;VÞ exp %bðE þ PVÞð Þ ; (110)

where the density of states nðE;VÞ is obtained from the multiple-
histogram reweighting techniques. Namely, from the REM or ST
simulation, we first obtain the histogram Nm0;m1

ðE;VÞ and the
total number of samples nm0;m1

. The density of states nðE;VÞ and
the dimensionless free energy f m0;m1

are then obtained by solving
the following equations self-consistently by iteration (see Eqs. 84
and 85 above):

nðE;VÞ ¼

P

m0;m1

Nm0;m1
ðE;VÞ

P

m0;m1

nm0;m1
exp f m0;m1

% bm0
ðE þ Pm1

VÞ
( ) ; (111)

and

expð%f m0;m1
Þ ¼

X

E;V
nðE;VÞ exp %bm0

ðE þ Pm1
VÞ

, -

: (112)

Substituting the obtained density of states nðE;VÞ into Eq. 110,
one can calculate the ensemble average of the physical quantityA at
any T and any P.

We now introduce the MUCA into the isobaric-isothermal
ensemble and refer to this generalized-ensemble algorithm as the
MUBATH (72–75). The molecular simulations in this generalized
ensemble perform random walks both in the potential energy space
and in the volume space.

In the MUBATH ensemble, each state is sampled by the
MUBATH weight factorWmbtðE;VÞ ! expf%baHmbtðE;VÞg (Hmbt

is referred to as the multibaric-multithermal enthalpy) so that a
uniform distribution in both potential energy E and volume V is
obtained (72):

PmbtðE;VÞ / nðE;VÞWmbtðE;VÞ
¼ nðE;VÞ expf%baHmbtðE;VÞg ! constant; (113)

where we have chosen an arbitrary reference temperature,
T a ¼ 1=kBba.

The MUBATH MC simulation can be performed by replacing
H by Hmbt in Eq. 93:

wðx ! x 0Þ ¼ min 1; exp½%bafH0mbt %Hmbt %NkBT a lnðV 0=VÞg,ð Þ:
(114)

In order to perform theMUBATHMDsimulation, we just solve
the above equations of motion (Eqs. 94–101) for the regular
isobaric-isothermal ensemble (with arbitrary reference temperature
T ¼ Ta), where the enthalpy H is replaced by the multibaric-
multithermal enthalpyHmbt in Eqs. 95 and 100 (74).
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In order to calculate the isobaric-isothermal-ensemble
averages, we employ the single-histogram reweighting techniques
(17, 18). The expectation value of a physical quantity A at any T
and any P is obtained by substituting the following density of states
into Eq. 110:

nðE;VÞ ¼ NmbtðE;VÞ
WmbtðE;VÞ

; (115)

where NmbtðE;VÞ is the histogram of the probability distribution
PmbtðE;VÞ of potential energy and volume that was obtained by the
MUBATH production run.

4. Examples
of Simulation
Results

We tested the effectiveness of thegeneralized-ensemble algorithms by
using a system of a 17-residue fragment of ribonuclease T1 (in Refs.
(110, 173)) (154–156). It is known by experiments that this peptide
fragment forms a-helical conformations (173). We have performed a
two-dimensional REM simulation and a two-dimensional ST simula-
tion. In these simulations, we used the following energy function:

El ¼ E0 þ lESOL ; (116)

where we set L ¼ 1;V 1 ¼ ESOL , and l(1) ¼ l in Eq. 65. Here, E0 is
the potential energy of the solute and ESOL is the solvation free
energy. The parameters in the conformational energy as well as the
molecular geometry were taken from ECEPP/2 (174–176).

The solvation term ESOL is given by the sum of terms that are
proportional to the solvent-accessible surface area of heavy atoms of
the solute (177). For the calculations of solvent-accessible surface
area, we used the computer code NSOL (178).

The computer code KONF90 (7, 8) was modified in order to
accommodate the generalized-ensemble algorithms. The simulations
were started from randomly generated conformations. We prepared
eight temperatures (M0 ¼ 8) which are distributed exponentially
between T1 ¼ 300 K and TM 0

¼ 700 K (i.e., 300.00, 338.60,
382.17, 431.36, 486.85, 549.49, 620.20, and 700.00 K) and four
equally spaced l values (M1 ¼ 4) ranging from 0 to 1 (i.e., l1 ¼ 0,
l2 ¼ 1/3, l3 ¼ 2/3, and l4 ¼ 1) in the two-dimensional REM
simulation and the two-dimensional ST simulation. Simulations with
l ¼ 0 (i.e., El ¼ E0 ) and with l ¼ 1 (i.e., El ¼ E0 þ ESOL) corre-
spond to those in gas phase and in aqueous solution, respectively.

We first present the results of the two-dimensional REM simu-
lation. We used 32 replicas with the eight temperature values and
the four l values given above. Before taking the data, we made
the two-dimensional REM simulation of 100,000 MC sweeps
with each replica for thermalization. We then performed the
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two-dimensional REM simulation of 1,000,000 MC sweeps for
each replica to determine the weight factor for the two-dimensional
ST simulation. At every 20 MC sweeps, either T-exchange or
l-exchange was tried (the choice of T or l was made randomly).
In each case, either set of pairs of replicas ((1,2),. . .,(M % 1,M)) or
((2,3),. . .,(M,1)) was also chosen randomly, whereM isM0 andM1

for T-exchange and l-exchange, respectively.
In Fig. 1 we show the time series of labels of Tm0

(i.e., m0) and
lm1

(i.e., m1) for one of the replicas. The replica realized a random
walk not only in temperature space but also in l space. The behav-
ior of T and l for other replicas was also similar (see Ref. (156)).
From Fig. 1, one finds that the l-random walk is more frequent
than the T-random walk.

We also show the time series of temperature T, total energy
ETOT, conformational energy EC, solvation free energy ESOL, and
end-to-end distance D for the same replica in Fig. 2. From Figs. 2
(a) and 2(e), we find that at lower temperatures the end-to-end
distance is about 8 Å, which is the length of a fully a-helical
conformation, and that at higher temperatures it fluctuates much
for a range from 7 Å to 14 Å. It suggests that a-helix structures exist
at low temperatures and random-coil structures occur at high
temperatures. There are transitions from/to a-helix structures
to/from random coils during the simulation. It indicates that the
REM simulation avoided getting trapped in local-minimum-energy
states and sampled a wide conformational space.

The canonical probability distributions of ETOT and ESOL at the
32 conditions obtained from the two-dimensional REM simulation
are shown in Fig. 3. For an optimal performance of the REM
simulation, there should be enough overlaps between all pairs of
neighboring distributions, which will lead to sufficiently uniform
and large acceptance ratios of replica exchanges. There are indeed
ample overlaps between the neighboring distributions in Fig. 3.
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Fig. 1. Time series of the labels of Tm0
, m0, (a) and lm1

, m1, (b) as functions of MC sweeps, and that of both m0 and m1

for the region from 400,000 MC sweeps to 700,000 MC sweeps (c). The results were from one of the replicas (Replica 1).
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We now use the results of the two-dimensional REM simulation
to determine the weight factors for the two-dimensional ST simula-
tion by the multiple-histogram reweighting techniques. Namely, by
solving the generalizedWHAMequations in Eqs. 84 and 85with the
obtained histograms at the 32 conditions (see Fig. 3), we obtained 32
values of the ST parameters f m0;m1

ðm0 ¼ 1; . . . ; 8;m1 ¼ 1; . . . ; 4Þ.
After obtaining the ST weight factor, W ST ¼ expð%bm0

ðEC

þlm1
ESOLÞ þ f m0;m1

Þ, we carried out the two-dimensional ST simu-

lation of 1,000,000MC sweeps for data collection after 100,000MC
sweeps for thermalization. At every 20MC sweeps, eitherTm0

or lm1

was respectively updated to Tm031 or lm131 (the choice of T or l
update and the choice of 3 1 were made randomly).
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We show the average total energy, average conformational
energy, average l 8ESOL, and average end-to-end distance in
Fig. 4. The results are in good agreement with those of the REM
simulation (data not shown).

We found that the results of the two-dimensional ST simulation
are in complete agreement with those of the two-dimensional REM
simulation for the average quantities. The only difference between
the two simulations is the number of replicas. In the present simu-
lation, while the REM simulation used 32 replicas, the ST simula-
tion used only one replica. Hence, we can save much computer
power with ST.

A second example of our multidimensional generalized-
ensemble simulations is a pressure ST (PST) simulation in the
isobaric-isothermal ensemble (157). This simulation performs a
random walk in one-dimensional pressure space. The system that
we simulated is ubiquitin in explicit water. This system has been
studied by high-pressure NMR experiments and known to undergo
high-pressure denaturations (179, 180). Ubiquitin has 76 amino
acids and it was placed in a cubic box of 6,232 water molecules.
Temperature was fixed to be 300 K throughout the simulations,
and we prepared 100 values of pressure ranging from 1 bar to
10,000 bar. Temperature and pressure were controlled by
Hoover-Langevin method (181), and particle mesh Ewald method
(182, 183) was employed for electrostatic interactions. The time
step was 2.0 fsec. The force field CHARMM22 (184) with CMAP
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(185, 186) and TIP3P water model (184, 187) were used, and the
program package NAMD version 2.7b3 (188) was modified to
incorporate the PST algorithm.

We first performed 100 independent conventional isobaric-
isothermal simulations of 4 nsec with T ¼ 300 K (i.e., M0 ¼ 1)
and 100 values of pressure (i.e., M1 ¼ 100). Using the obtained
histogram Nm0;m1

ðE;VÞ of potential energy and volume distribu-
tion, we obtained the ST parameters f m0;m1

by solving the WHAM
equations in Eqs. 111 and 112. We then performed the PST pro-
duction of 500 nsec and repeated it 10 times with different seeds
for random numbers (so, the total simulation time for the produc-
tion run is 5.0 ms).

In Fig. 5, we show the time series of pressure and potential
energy during the PST production run.

In the figure, we see a random walk in pressure between 1 bar
and 10,000 bar. A randomwalk in potential energy is also observed,
and it is anti-correlated with that of pressure, as it should be.

We calculated the fluctuations
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<d2>%<d>2
p

of the distance
d between pairs of Ca atoms. The results are shown in Fig. 6.

We see that large fluctuations are observed between residues
around 7–10 and around 20–40, which are in accord with the
experimental results (179, 180).

Fig. 5. Time series of pressure (left ) and potential energy (right ) during the PST production

run.

Fig. 6. Fluctuations of distance between pairs of Ca atoms that was calculated from the

PST production run.
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The fluctuating distance corresponds to that between the turn
region of the b-hairpin and the end of the a-helix as depicted in
Fig. 7. While at low pressure this distance is small, at high pressure
it is larger and water comes into the created open region.

5. Conclusions

In this article we first introduced three well-known generalized-
ensemble algorithms, namely, REM, ST, and MUCA, which can
greatly enhance conformational sampling of biomolecular systems.
We then presented various extensions of these algorithms. Examples
are the general formulations of the multidimensional REM, ST, and
MUCA.We generalized the original potential energy functionE0 by
adding any physical quantities V‘ of interest as a new energy term
with a coupling constant l(‘)(‘ ¼ 1, . . ., L). The simulations in
multidimensional REM andmultidimensional STalgorithms realize
a randomwalk in temperature and l(‘)(‘ ¼ 1, . . ., L) spaces. On the
other hand, the simulation in multidimensional MUCA algorithms
realizes a random walk in E0, V1, . . ., VL spaces.

While the multidimensional REM simulation can be easily
performed because no weight factor determination is necessary,
the required number of replicas can be quite large and computa-
tionally demanding. We thus prefer to use the multidimensional
ST or MUCA, where only a single replica is simulated, instead of
REM. However, it is very difficult to obtain optimal weight factors

Fig. 7. Snapshots of ubiquitin during the PST production run at low pressure (left ) and at high pressure (right ).
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for the multidimensional ST andMUCA.Here, we have proposed a
powerful method to determine these weight factors. Namely, we
first perform a short multidimensional REM simulation and use the
multiple-histogram reweighting techniques to determine the
weight factors for multidimensional ST and MUCA simulations.

The multidimensional generalized-ensemble algorithms that
were presented in the present article will be very useful for Monte
Carlo and molecular dynamics simulations of complex systems such
as spin glass, polymer, and biomolecular systems.
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The Nosé–Poincaré method for constant
temperature molecular dynamics. J Comput
Phys 151:114–134

172. McDonald IR (1972) NpT-ensemble Monte
Carlo calculations for binary liquid mixtures.
Mol Phys 23:41-58

173. Myers JK, Pace CN, Scholtz JM (1997) A
direct comparison of helix propensity in pro-
teins and peptides. Proc Natl Acad Sci USA
94:2833–2837

174. Momany FA, McGuire RF, Burgess AW,
Scheraga HA (1975) Energy parameters in
polypeptides. VII. Geometric parameters,
partial atomic charges, nonbonded interac-
tions, hydrogen bond interactions, and intrin-
sic torsional potentials for the naturally
occurring amino acids. J Phys Chem
79:2361–2381

175. Némethy G, Pottle MS, Scheraga HA (1983)
Energy parameters in polypeptides. 9. Updat-
ing of geometrical parameters, nonbonded
interactions, and hydrogen bond interactions
for the naturally occurring amino acids. J Phys
Chem 87:1883–1887

176. Sippl MJ, Némethy G, Scheraga HA (1984)
Intermolecular potentials from crystal data. 6.
Determination of empirical potentials for O-
H. . .O¼C hydrogen bonds from packing
configurations. J Phys Chem 88:6231–6233

177. Ooi T, Oobatake M, Némethy G, Scheraga
HA (1987) Accessible surface areas as a mea-
sure of the thermodynamic parameters of
hydration of peptides. Proc Natl Acad Sci
USA 84:3086–3090

178. Masuya M, unpublished; see http://biocom
puting.cc/nsol/.

179. Kitahara R, Akasaka K (2003) Close identity
of a pressure-stabilized intermediate with a
kinetic intermediate in protein folding. Proc
Natl Acad Sci USA 100:3167–3172

180. Kitahara R, Yokoyama S, Akasaka K (2005)
NMR snapshots of a fluctuating protein struc-
ture: ubiquitin at 30 bar–3 kbar. J Mol Biol
347:277–285

194 A. Mitsutake et al.



181. Quigley D, Probert MIJ (2004) Landevin
dynamics in constant pressure extended sys-
tems. J Chem Phys 120:11432–11441

182. Darden T, York D, Pedersen L (1993) Parti-
cle mesh Ewald—an Nlog(N) method for
Ewald sums in large systems. J Chem Phys
98:10089–10092

183. Essmann U, Perera L, Berkowitz ML, Darden
T, Lee H, Pedersen LG (1995) A smooth
particle mesh Ewald method. J Chem Phys
103:8577–8593

184. MacKerell AD Jr, Bashford D, Bellott M,
Dunbrack RL Jr, Evanseck JD, Field MJ,
Fischer S, Gao J, Guo H, Ha S, Joseph-
McCarthy D, Kuchnir L, Kuczera K, Lau
FTK, Mattos C, Michnick S, Ngo T, Nguyen
DT, Prodhom B, Reiher WE III, Roux B,
Schlenkrich M, Smith JC, Stote R, Straub J,
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