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Abstract

Atomistic simulations play a central role in many fields of science. However,
their usefulness is often limited by the fact that many systems are character-
ized by several metastable states separated by high barriers, leading to kinetic
bottlenecks. Transitions between metastable states are thus rare events that
occur on significantly longer timescales than one can simulate in practice.
Numerous enhanced sampling methods have been introduced to alleviate
this timescale problem, including methods based on identifying a few cru-
cial order parameters or collective variables and enhancing the sampling of
these variables. Metadynamics is one such method that has proven successful
in a great variety of fields. Here we review the conceptual and theoretical
foundations of metadynamics. As demonstrated, metadynamics is not just a
practical tool but can also be considered an important development in the
theory of statistical mechanics.
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MD: molecular
dynamics

1. INTRODUCTION

Atomistic simulations (1, 2) play a central role in the fields of chemistry, physics, biology, and
materials science, allowing researchers to obtain valuable insights into a variety of problems. In
the past decade, there has been considerable progress in the size and complexity of the physical
systems that can be simulated. This progress has been fueled by improvements in hardware,
increased availability of computational resources, and highly optimized molecular dynamics (MD)
codes (3–5) that make efficient use of the available resources.

Nevertheless, the timescale that can be reached is still severely limited. This limitation is
intrinsic to MD given that the time step used to discretize the time evolution must be smaller than
the fastest motion in the system. For simulations employing classical force fields, this normally
restricts the timescale to microseconds, and several dynamical processes of interest usually occur
on the millisecond or longer timescale. The reason for such an extended timescale is that many
relevant systems are characterized by several metastable states separated by high barriers that lead
to kinetic bottlenecks. The transition between one state and another thus becomes a rare event
taking place often on a much longer timescale than one can simulate in practice. This limitation
becomes even more restrictive if one takes into account that a single transition event has only
a limited value, and one would need to observe many transition events to obtain meaningful
statistics. Thus, even if one is interested only in static properties, these kinetic bottlenecks slow
down sampling of phase space.

The recent development of dedicated hardware (6), capable of reaching the millisecond
timescale in protein simulations (7, 8), is very remarkable but so far is available only to a few
and still falls short of what is needed in many cases (9). Future improvements in computational
hardware appear likely not to come via an increase in CPU performance but rather through in-
creased parallelism. This will allow researchers to investigate larger and more realistic systems but
will not help much with regard to the timescale limitation as time evolution is intrinsically serial.

It is therefore easy to predict that advanced sampling methods that aim at overcoming the
timescale limitation of computer simulations will become an even more integral part of an atomistic
modeler’s toolbox. It would be far beyond the scope of this review to even partially cover the wide
range of available enhanced sampling methods. Here we focus on a few select ones and refer
readers to References 10–19 for overviews of some other relevant methods.

A vast array of enhanced sampling methods are based on the identification of few crucial order
parameters or collective variables whose fluctuations are critical for the rare event of interest to
take place. A unifying theme in these methods is to enhance the sampling of these variables by
the introduction of a bias that depends on the chosen variables. This idea can be traced back
to the umbrella sampling method introduced in 1977 by Torrie & Valleau (20) in which the
authors considered a static bias potential constructed by trial and error. However, obtaining an
appropriate and effective bias is far from trivial. One solution is to adaptively build the bias during
the simulation. A nonexhaustive list of methods that follow such strategy includes local elevation
(21), adaptive biasing force (22), the Wang–Landau algorithm (23), energy landscape paving (24),
and Gaussian-mixture umbrella sampling (25).

We focus here on metadynamics, first introduced in 2002 by Laio & Parrinello (26), and
further developed by numerous groups in the past decade. Our aim is to coherently present its
conceptual and theoretical foundations. In doing so, we do not follow its historical evolution nor
do we discuss in detail its many and successful applications in the fields of chemistry, physics,
biology, and materials science (27–60). Due to space limitations, we are furthermore not able to
cover the complete metadynamics methodological literature, and we apologize to those whose
contributions have not received the deserved attention.
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Collective variable
(CV): coarse-grained
order parameter that
typically distinguishes
between relevant
metastable states and
that is used to analyze
and bias atomistic
simulations

Free energy surface
(FES):
low-dimensional
description given in
terms of collective
variables containing
information about
metastable states, their
relative stability, and
the free energy
barriers separating
them

2. ENHANCED SAMPLING IN COLLECTIVE VARIABLE SPACE

It is common practice in physics and chemistry to reduce the description of a complex problem to
a restricted number of variables. Classical examples are the use of order parameters in Landau’s
theory of phase transitions (61) and the solvent coordinate in Marcus theory of electron transfer
(62). The need for finding the variables that best describe the system is also at the heart of any
statistical mechanics description (63), and even if we had the most powerful computer, we would
still need order parameters or collective variables (CVs) to represent our results in a concise and
easily understandable way.

From a mathematical point of view, CVs can be defined as functions, generally nonlinear, of the
atomic coordinates R: s(R) = (s1(R), s2(R), . . . , sd (R)). Briefly speaking, the set of CVs should be
able to describe the key features of the physical behavior that we are interested in. Furthermore,
the CV set should ideally distinguish between all relevant metastable states and include all the
slow degrees of freedom. The CVs and their choice are further discussed in Section 4.

Having defined the CVs, it is natural to consider the equilibrium distribution of the CVs,
defined as

P (s) =
∫

dR δ[s − s(R)]P (R) = 〈δ[s − s(R)] 〉, (1)

where P (R) = e−βU (R)/Z is the Boltzmann distribution corresponding to the potential energy
function U (R), β = (kBT )−1 is the inverse temperature, and Z = ∫

dR e−βU (R) is the partition
function of the system. Of course, other ensembles could in principle be considered as well.

The free energy surface (FES) is defined as the logarithm of this distribution:

F (s) = − 1
β

log P (s). (2)

Normally, one can ignore additive constants in F (s) as often only relative differences in free en-
ergies are of interest. The low-dimensional surface F (s) is generally much smoother than the
high-dimensional and rugged potential energy surface U (R). Figure 1 shows a typical FES,
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Figure 1
Free energy surface (FES) F (�, �) for alanine dipeptide in vacuum in terms of its two backbone dihedral angles � and �. F (�,�) is in
units of kBT , and � and � are given in radians. The FES is characterized by two metastable states, C7eq and C7ax, separated by a free
energy barrier of approximately 14 kBT , making transitions between them very rare.
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demonstrating that with an appropriate choice of CVs, the FES contains all the relevant in-
formation about the system, such as the location and relative stability of the metastable states
and the free energy barriers separating them. The relative free energy difference between two
metastable states A and B can be determined from F (s) by integrating the probabilities of the two
states:

�FA,B = − 1
β

log
∫

A ds e−βF (s)∫
B ds e−βF (s)

, (3)

where the integrations are performed over the two regions in CV space that define the two
metastable states A and B, respectively.

For an ergodic system, the FES can equivalently be computed as

F (s) = − 1
β

lim
t→∞

log N (s, t), (4)

where N (s, t) = ∫ t
0 dt′ δ [s − s(R(t′))]/

∫ t
0 dt′ is a normalized histogram accumulated in an unbiased

simulation. Therefore, it would seem straightforward in a conventional simulation to estimate an
FES by simply counting. However, as discussed above, this is often a rather hopeless endeavor
because, for many interesting physical systems, the sampling is nonergodic on the timescale that
can be afforded in an atomistic simulation. Instead, the simulation will just remain stuck in one
particular state, only executing fluctuations around the local equilibrium state.

One way to overcome this limitation is to consider a bias potential V (s(R)) that depends on s,
and thus on R through s(R), which is designed to enhance the sampling of CV space. This idea
can be traced back to umbrella sampling, which was first introduced in 1977 by Torrie & Valleau
(20). With this additional biasing potential, the CVs are distributed according to

PV (s) =
∫

dR δ[s − s(R)]PV (R) = e−β[F (s)+V (s)]∫
ds e−β[F (s)+V (s)]

, (5)

where PV (R) = e−β[U (R)+V (s(R))]/ZV is the Boltzmann distribution of the biased ensemble, and
ZV = ∫

dR e−β[U (R)+V (s(R))] is the partition function of the biased system. From this equation,
it can readily be seen that the unbiased FES can be obtained up to a constant as F (s) =
−(1/β) log N V (s) − V (s), where NV (s) is a histogram accumulated in the biased simulation.
Thus, given that the bias potential results in a proper sampling of phase space, the FES can be
recovered by reweighting the histogram from the biased simulation. Similarly, by employing the
relation P (R) ∝ PV (R)eβV (s(R)), one can in principle estimate any R-dependent function O(R) of
the unbiased ensemble by weighting each configuration obtained in the biased ensemble by the
value of the bias acting on it:

〈O(R)〉 = 〈O(R)eβV (s(R))〉V

〈eβV (s(R))〉V
, (6)

where the expectation values on the right-hand side are obtained in the biased ensemble. It is
important to note that these reweighting relations are strictly valid only if the bias potential is
static.

Let us now design a bias aimed at enhancing the fluctuations of the CVs in a controllable
manner. This can be achieved if we take the bias potential as

V (s) = −
(

1 − 1
γ

)
F (s), (7)

where γ is a positive constant greater than 1. The limit γ → 1 corresponds to the unbiased
ensemble. With this choice, the probability distribution in the biased ensemble PV (s) is related
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Figure 2
Model probability distribution of a system with two metastable states A and B separated by a transition region that is rarely visited. The
effect of the bias in Equation 7 is to broaden the two peaks [i.e., enhance collective variable (CV) fluctuations] such that the transition
region is more easily visited and transitions between the two states are more likely to occur.

TS: transition state

WTMetaD:
well-tempered
metadynamics

to the unbiased one P (s) by the relation

PV (s) = [P (s)]1/γ∫
ds [P (s)]1/γ

. (8)

It follows from Equation 8 that in the biased ensemble the peaks can be made broader by increasing
the value of γ , as shown in Figure 2. This reflects the fact that fluctuations in s increase with γ . If
the chosen CVs are able to capture the essential fluctuations that allow the system to migrate from
one free energy minimum to another, the exploration of the FES can be greatly and controllably
accelerated.

If we take the γ → ∞ limit, then

V (s) = −F (s) (9)

and

PV (s) = 1∫
ds

= const, (10)

leading to a uniform distribution and the complete disappearance of the free energy barriers
in the CV space. This is the bias potential considered by Torrie & Valleau (20) in their original
umbrella sampling paper and also in many other CV-based methods that aim at flattening the FES.
However, one is often interested in exploring not the whole FES but rather only its main features,
for instance, the metastable minima and the transition states (TSs). In this case, a judicious choice
of γ that allows barriers to be overcome, but does not push the system to explore very improbable
CV values, is preferred. The appropriate choice of γ then ultimately results from a compromise. It
should be large enough for the fluctuations in s to be amplified to the point at which the free energy
barriers can be overcome, yet small enough such that the calculation is not unduly expensive.

In reality, we do not know F (s) a priori because it is the very quantity we want to calculate.
As in other CV-based methods (21–25), we will try to adaptively build it on the fly. In particular,
in well-tempered metadynamics (WTMetaD; 64) one tries to build a bias that precisely obeys
Equation 7. As discussed above, this offers the possibility of tuning the CV fluctuations via an
appropriate choice of γ .

What sets WTMetaD apart from other methods is that the procedure is rigorous (65); it does
not depend on satisfying some form of adiabatic decoupling between the CVs and the microscopic
coordinates, as in some other methods (66–68); and during a WTMetaD run, the expectation values
of any position-dependent operator can be calculated on the fly without the need of a separate
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Biasing kernel: small
repulsive function that
is deposited
periodically in
collective variable
space and builds the
metadynamics bias

calculation (69, 70). It also provides a natural framework (71) for extracting kinetic rate constants
from metadynamics simulations, as shown in Section 8. Of course, the efficiency of metadynamics,
similar to that of all other CV-based methods, depends on a proper choice of CVs. If some slow
variable is missing, the metadynamics calculation will converge just as slowly as an unbiased one.

3. METADYNAMICS

Historically, metadynamics has been introduced in many variants (26, 64, 72, 73) and from different
points of view. Here we focus on its well-tempered version, WTMetaD (64), and take a more
formal viewpoint.

We define WTMetaD as a procedure that iteratively builds a bias V (s) that asymptotically
takes the form given by Equation 7, through the successive addition of small repulsive biasing
kernels G(s, s′) centered at the current CV value s′. Usually this biasing kernel takes the form of
a Gaussian localized in s space:

G(s, s′) = W e−||s−s′ ||2 , (11)

where W is the height of the Gaussian, and ||s − s′|| indicates the distance between s and s′ in
some chosen metric. For instance, in this way, a multivariate Gaussian, which is by far the most
widely employed choice for G(s, s′), is described by the metric

||s − s′||2 = 1
2

∑
i, j

(s i − s ′
i ) �−1

i, j (s j − s ′
j ), (12)

where �i, j is the covariance matrix, and �−1
i, j is its inverse. In practice, �i, j is normally taken as

a diagonal matrix, �i, j = δi, j σ 2
i , where σi is the width of the Gaussians for the i-th CV. The

appropriate σi values are normally estimated by considering the unbiased CV fluctuations. As
further discussed in Section 7, �i, j can also be estimated on the fly during the simulation (74),
allowing the shape of the multivariate Gaussians to change with time and adapt to the features of
the FES.

In metadynamics, the dynamical evolution of the system is altered by the addition of an external
bias potential that is periodically updated via the following stochastic iteration:

Vn(s) = Vn−1(s) + G(s, sn) exp
[
− 1

γ − 1
βVn−1(sn)

]
, (13)

where V0(s) = 0, and the factor (γ −1)β−1 is sometimes referred to as kB�T . The update consists
of adding a biasing kernel centered on the current CV value sn and scaled by exp [− 1

γ−1 βVn−1(sn)].
It can be shown that the scaling factor exp [− 1

γ−1 βVn−1(sn)] decreases as 1/n (64, 65). The change
of the external bias potential due to the iteration in Equation 13 thus becomes smaller as the
metadynamics simulation progresses.

The iteration in Equation 13 is performed every N G steps, which corresponds to a time interval
of τG = N G dt, where dt is the MD time step. We assume here that in between bias updates, the
system is evolved in an MD simulation, but the same principles hold if it is instead evolved in a
Monte Carlo simulation (75). Between any two iterations, the system moves under the action of
the bias potential Vn(s(R)). For a biasing kernel given by Equation 11, the bias potential at MD
time t in the interval τGn ≤ t < τG(n + 1) reads

V (s, t) =
n∑

k=1

W e−||s−sk ||2 exp
[
− 1

γ − 1
βVk−1(sk)

]
. (14)
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The remarkable feature of the stochastic iteration in Equation 13 is that the evolution of the
bias can be described asymptotically by an ordinary differential equation (65, 74, 76), which after
some manipulations (76) reads

dV (s, t)
dt

=
∫

ds′ G(s, s′) exp
[
− 1

γ − 1
βV (s′, t)

]
PV (s′, t), (15)

where similar to Equation 5

PV (s, t) = e−β[F (s)+V (s,t)]∫
ds e−β[F (s)+V (s,t)]

. (16)

For a formal derivation of Equation 15, based on the application of a theorem on stochastic itera-
tions (77), we refer the interested reader to Reference 65. The applicability of this theorem rests
heavily on the property that the scaling factor exp [− 1

γ−1 βVn−1(sn)] decreases as 1/n. Reference 74
presents a heuristic derivation of Equation 15 in the case in which G(s, s′) is infinitesimally narrow.
Although the arguments were heuristic, the WTMetaD scheme (64) was purposely designed so
that it had all the crucial properties that eventually made it possible to formally derive Equation
15 (65).

Even more remarkably, for any G(s, s′), Equation 15 has the asymptotic solution

V (s, t) = −
(

1 − 1
γ

)
F (s) + c (t), (17)

where

c (t) = 1
β

log
∫

ds e−βF (s)∫
ds e−β[F (s)+V (s,t)]

(18)

is independent of s (76). Metadynamics thus converges to the desired result in Equation 7. These
results were previously obtained in the limiting case in which the biasing kernel is a delta function
(64), but in fact they are general, and a recent perturbation analysis of the solution of Equation 15
shows that G(s, s′)-dependent correction terms decay very fast (76). Two interesting consequences
arise from these results.

First, it can be shown (76) that a time-independent estimator for F (s) is given by

F (s) = −
(

γ

γ − 1

)
V (s, t) + 1

β
log

∫
ds exp

[
γ

γ − 1
βV (s, t)

]
. (19)

This was previously obtained for delta function biasing kernels (70), but it is valid more generally.
This estimator allows us to judge the convergence and measure the statistical error in a standard
way (see 53–55 for examples).

Second, it offers a practical way of calculating the expectation value of any R-dependent func-
tion O(R) as the simulation proceeds (69, 70). The idea is that at time t the biased probability
distribution for R is given by

PV (R, t) = e−β[U (R)+V (s(R),t)]∫
dR e−β[U (R)+V (s(R),t)]

, (20)

which can be rewritten as

PV (R, t) = P (R) e−β[V (s(R),t)−c (t)], (21)

where P (R) is the Boltzmann distribution in the unbiased ensemble (see Equation 1), and c (t) is
given by Equation 18 above. The time-dependent function c (t) is an estimator for the reversible
work done by the bias and can be calculated in a variety of ways (70). For instance, by inserting
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Equation 19 into Equation 18, one obtains

c (t) = 1
β

log

∫
ds exp

[
γ

γ−1 βV (s, t)
]

∫
ds exp

[
1

γ−1 βV (s, t)
] . (22)

Using Equation 22 or other equivalent expressions (70), we obtain the result that the average of
O(R) over the unbiased ensemble can be calculated from the metadynamics trajectory as

〈O(R)〉 =
〈
O(R)eβ[V (s(R),t)−c (t)]

〉
V

. (23)

This powerful and simple reweighting operation is valid for any reasonable biasing kernel after a
short transient (76).

This reweighting can be used, for instance, to obtain the FES for some set of CVs s′ not biased by
considering the function O(R) = δ [s′ − s′(R)]. It is also useful if one considers O(R) = δ [s − s(R)]
and obtains the FES for the CVs that are biased. Disagreement between the FESs obtained directly
from the bias potential and through reweighting is a clear sign that the metadynamics simulation
has not converged and should be taken as a warning signal.

The above discussion is only strictly valid for a finite γ , but with some care the nontempered
limit γ → ∞ can be taken. One then obtains

V (s) = −F (s), (24)

again within a constant. This corresponds to the limit in which the bias fully compensates the
underlying free energy landscape. This was the idea that guided the first version of metadynamics
(26) in which the strength of the biasing kernel was kept constant at each iteration. The non-
tempered metadynamics has the advantage of a more rapid exploration of the FES, but it has the
disadvantage of being harder to converge. These considerations are, however, purely empirical,
and a rigorous study of the efficiency of metadynamics as a function of γ is still missing. We feel
that the standpoint in which one tries to enhance the CV fluctuations rather than completely
filling the FES is more insightful and useful.

As is common among CV-based methods, metadynamics is limited in the number of CVs it
can handle as the computational cost scales exponentially with the number of CVs. This generally
limits metadynamics simulation to three to four CVs.

4. COLLECTIVE VARIABLES

4.1. Overview

Metadynamics is in principle independent of the exact choice of the CVs. That is, one can pick
any set of CVs, perform metadynamics until convergence, and then reweight the trajectory to
obtain the expectation value of any position-dependent function. In fact, one of the many reasons
for the widespread success of metadynamics is that it is somewhat insensitive to the precise choice
of CVs. However, in practice with a nonoptimal choice, the computational time to convergence
can be prohibitively large. As such, prior to any metadynamics simulation, it is worthwhile to
invest some effort into a rational choice. Furthermore, picking CVs with care also allows one to
estimate kinetic rate constants, as discussed in Section 8. In the end, the choice of the CVs is deeply
connected to the title of this review: What are the important fluctuations one must enhance to
facilitate movement from one metastable state to another?
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4.2. A Recipe for Selecting Good Collective Variables

Over the years, many easy-to-use and robust CVs have been proposed and employed in different
applications. We do not discuss them here but rather refer the reader to the manual of the software
PLUMED (78, 79), which implements metadynamics and a wide range of CVs. Below we illustrate
only two possible CVs: the so-called path CVs (80) and the idea of employing the potential energy
as a CV (75, 81). The latter is discussed separately in Section 5.

In the spirit of this review, we describe here the process that is often followed in selecting
and constructing a good set of CVs. Generally, this is not a one-step process. However, with due
diligence, identifying appropriate CVs is not too difficult.

The first step is to use the experimental or theoretical information available as a guide in the
choice of the CVs. Many different examples of such a procedure can be found in the literature
(43–53, 82–84). Prior simulation studies on similar systems are also often a good indication of
what are the appropriate CVs.

When the final state is not known, whenever possible one should employ CVs that favor a
multitude of outcomes. If not much, or anything at all, is known about the system, it is often a
good choice to perform replica exchange simulations (see Section 6), which can provide useful
information about the metastable states and possible CVs (see 57 for an example).

Once a preliminary CV set has been selected, the next step is to employ it in a metadynamics
simulation and examine the system’s behavior. In the best possible scenario, one obtains a con-
verged free energy estimate in a reasonable amount of time with the preliminary choice of CVs.
In the worst case, one might find that the system does not even leave the starting basin. Both
these options are extreme, however, and one is generally in an intermediate regime, in which
the simulation displays hysteresis. Namely, the system is trapped for an extended amount of time
in different basins (see Figure 3), and the bias potential does not grow evenly, so obtaining a
converged FES is difficult. This is typically a clear indication of missing CVs. To deal with this
situation, one should take a close look at the simulation trajectory and identify stable interactions
or, more generally, slowly varying order parameters that might be responsible for the system
getting occasionally trapped in some region of the phase space. Based on this new information,
the CV set can be refined, leading to a metadynamics run that converges faster (for illuminating
examples of this procedure, see 37, 44, 45).

In some cases, it can be hard to identify CVs that correspond to all the slowly varying degrees
of freedom, or if they can all be identified, the CV set becomes unreasonably large if one is to
include them all. In such cases, it can be quite beneficial to combine metadynamics with a replica
exchange scheme (85) (see Section 6). The requirements on the quality of the CV set are then
reduced as the replica exchange will aid in sampling any missing slow degrees of freedom.

The requirements for CVs for obtaining kinetic rate constants from metadynamics are slightly
more strict than those for converging the FES. We postpone this discussion to Section 8.

4.3. Path-Based Collective Variables: Nonlocal Enhancement of Fluctuations

In path CVs (80), one assumes that the initial and final states A and B, corresponding to two
metastable basins, are known and given. One also assumes that the path that connects these two
states can be expressed in a space spanned by a set of CVs, S(R) = (S1(R), S2(R), . . . , SD(R)), where
the dimension D can be very large. One then writes a trajectory in this space in a parametric form
as S(t), where S(0) corresponds to the initial state A and S(1) to the final state B. There will be
an infinite set of trajectories that lead from A to B. Among all possible trajectories, one selects

www.annualreviews.org • Theory of Metadynamics 167

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
6.

67
:1

59
-1

84
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ita
 d

eg
li 

St
ud

i d
i P

ad
ov

a 
on

 0
1/

15
/2

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



PC67CH08-Parinello ARI 24 April 2016 11:35

–3.0

–1.5

0.0

1.5

3.0a

Ψ

b

–3.0

–1.5

0.0

1.5

3.0

0 2 4 6 8 10

Time

Φ

0 2 4 6 8 10

Time

Figure 3
Typical metadynamics trajectories for the two backbone dihedral angles � and � of the alanine dipeptide system in Figure 1 showing
the effect of missing a slow degree of freedom. Time is in units of nanoseconds, and � and � are given in radians. In panel a, we bias
only � and observe that metadynamics is not able to properly enhance transitions between the two metastable states C7eq and C7ax
because we are missing the slow collective variable �. In this case, the bias potential does not grow evenly, so obtaining a converged
free energy surface (FES) is difficult. In panel b, we bias both � and � and observe a significantly improved behavior as transitions
between C7eq and C7ax are greatly accelerated, and the FES converges without problems.

a reference path S0(t). A good choice of S0(t) helps, but the method is accommodating in this
respect, as discussed below. The last ingredient is the metric || · · · || with which distances in S
space are defined. With these ingredients, one can construct two variables, s and z, defined as

s (R) = lim
λ→∞

∫ 1
0 dt t e−λ||S(R)−S0(t)||2

∫ 1
0 dt e−λ||S(R)−S0(t)||2

, (25)

z(R) = lim
λ→∞

(
− 1

λ
log

∫ 1

0
dt e−λ||S(R)−S0(t)||2

)
. (26)

The variable s measures the progress along the path or, in more mathematical terms, induces a
foliation in S space. Close to S0(t), the foliation surfaces become planar and are orthogonal to
S0(t). The variable z instead expresses the distance from the reference path S0(t). In practice, S0(t)
is discretized, and λ is taken as the inverse distance between points in the path (80). Figure 4
presents an example of path CVs for a hypothetical two-dimensional S space.

In the spirit of other path-based methods (86, 87), Reference 80 suggested a method to optimize
the reference path such that one could find the minimum free energy path in the selected S space.
However, this is seldom needed. In fact, because the z variable forces the system to explore regions
far away from the reference path, precise knowledge of S0(t) is not necessary, and good path CVs
can be obtained even with a rather approximate S0(t). Usually, if the initial reference path S0(t)
is not satisfactory, a procedure similar to the one above for improving CVs can be helpful here as
well. An inspection of the F (s , z) surface obtained with the initial reference path can help identify
approximate free energy minima. One can then landmark a few of these minima and draw a new
reference path through them. Although this might not precisely be the minimum free energy path,
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Figure 4
Example of path-based collective variables (CVs). (a) A hypothetical free energy landscape in the CV space S = (S1, S2) with the given
starting and final states A and B and a reference path S0(t) (orange solid line). (b) s values (Equation 25) for the path along with s
contours that show the foliation in S space. The s values increase from 0 to 1 while going from A to B. (c) z values (Equation 26) for the
path. The z values rapidly increase from 0 as one goes away from the reference path.

it will suffice to define a good pair of s and z variables (44, 45). In other words, what matters are
these two CVs, and the reference path S0(t) plays only an auxiliary role. This is what sets the path
CV approach apart from previous path-based attempts (86, 87).

The path-based CVs s and z have two nice features. First, they are constructed in a multidimen-
sional space; therefore, they can express very complex transformations (44, 45). Second, F (s , z)
provides information not only on the low free energy path close to the reference path S0(t), but
also on other qualitatively different paths that could be separated from the reference path by large
barriers. Through this functionality, path CVs can capture nonlocal fluctuations. Given these two
features, path CVs have proven powerful in many applications (44–47).

4.4. Machine Learning and Dimensionality Reduction

The construction of proper CVs in very complex systems can still be challenging. A possible way
out is to construct them using machine learning and dimensionality reduction algorithms. This
has led to methods such as reconnaissance metadynamics (88), sketch-map (89–91), field CVs
(92), diffusion map (93, 94), and several other ideas in the same spirit (95–98). In principle, these
algorithms require minimal physical preknowledge about the system and can be truly exploratory.

4.5. Metadynamics Parameters

A question that naturally arises in relation to the selection of appropriate CVs involves the choice
of parameters for the metadynamics simulations. These are generally the deposition rate τG,
bias factor γ , height of the biasing kernel W , and widths σi of the multivariate Gaussian kernel
when employing a preassigned diagonal covariance matrix �i, j . For these, we refer readers to the
recent review by Bussi & Branduardi (34) in which the details of choosing proper metadynamics
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WTE: well-tempered
ensemble

parameters are discussed in great detail. Luckily, metadynamics is not very sensitive to this precise
choice, as long as extremely large or small values are not chosen.

5. THE WELL-TEMPERED ENSEMBLE: THE POTENTIAL ENERGY
AS A COLLECTIVE VARIABLE

A special role is played by a variant of metadynamics in which the potential energy U is used as
a CV (75, 81). This is not surprising given the central role that the potential energy plays in
statistical mechanics. Using Equation 2, one finds it straightforward to show that the free energy
associated with U has, modulo a constant, the following physically transparent expression:

F (U ) = U − 1
β

log N (U ) = U − T S(U ), (27)

where N (U ) = ∫
dR δ[U −U (R)] is the temperature-independent density of states, and S(U ) =

kB log N (U ) is the configurational entropy (99, 100). Thus, reconstructing F (U ) allows recon-
struction of the density of states N (U ), from which one can determine all the thermal properties
of the system (23, 99, 100).

In this review, we underline that metadynamics has the ability to enhance fluctuations. Of
course, the same holds here, and using U as a CV, one samples the ensemble

PV (U ) =
[
e−βU N (U )

]1/γ

∫
dU [e−βU N (U )]1/γ

= [P (U )]1/γ

∫
dU [P (U )]1/γ

, (28)

where P (U ) = e−βU N (U )/Z is the unbiased potential energy distribution. This equation defines
the well-tempered ensemble (WTE; 81), which is a bona fide statistical mechanical ensemble that
has the same average U as in the canonical ensemble but with mean square fluctuations of U am-
plified by a factor of γ . For a deeper discussion of this statement and its limits, readers are referred
to Reference 100. The WTE interpolates between the canonical (γ = 1) and multicanonical (101)
ensembles (γ → ∞) in which all values of U are equally probable.

6. REPLICA EXCHANGE METHODS AND METADYNAMICS

6.1. Replica Exchange Methods

Replica exchange methods form a vast class of enhanced sampling approaches that are based on
concurrently running multiple replicas or copies of the system. The replicas are arranged in a
ladder in which the lowest replica generally corresponds to the physical system of interest in
which sampling is difficult and one would normally be stuck in a metastable state. Moving up the
ladder, the replicas are then progressively modified by changing their thermodynamics conditions
(10, 102, 103) or, more generally, their Hamiltonians (104), such that gradually barriers are
lowered and it becomes increasingly likely for the system to go from one metastable state to
another.

Atomic configurations are then allowed to move up and down the ladder by periodically at-
tempting to exchange two neighboring configurations through a Monte Carlo move that is ac-
cepted with a probability

min
(
1, e�i, j

)
, (29)

where �i, j depends on the details of the replica exchange method. In this way, high barriers
present in the lower replica are overcome by going higher in the ladder, where barriers are lower
and more easily crossed.
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PT: parallel
tempering

PT-WTE: parallel
tempering in the
well-tempered
ensemble

The advantage of replica exchange methods is that they generally require very little a priori
knowledge of the system. However, the disadvantage is that they can be rather computationally
expensive as they might require a large number of replicas to have appreciable probability of
accepting exchanges. Furthermore, most replica exchange schemes are designed to reproduce
canonical sampling in the lowest replica, so TSs and higher-lying metastable free energy basins
are generally poorly sampled.

6.2. Parallel Tempering

The most popular replica exchange method is temperature replica exchange or parallel tempering
(PT; 10, 102, 103), which takes advantage of phase space sampling generally being much easier
and faster at higher temperatures than at lower temperatures. In PT, one considers M replicas,
and for each one a simulation is performed in the canonical ensemble at a different temperature.
The replicas are arranged in a temperature ladder T1 < T2 < · · · < T M , where normally the
lowest replica corresponds to the temperature of interest at which sampling is difficult, whereas
the highest one corresponds to a temperature at which sampling is considerably easier. In this
case, the acceptance probability in Equation 29 is calculated using

�i, j = (
βi − β j

) [
U (Ri ) − U (R j )

]
, (30)

where Ri and R j are atomic coordinates of the two replicas prior to attempting the exchange.
For an effective PT simulation to be achieved, the acceptance probability for an exchange given

by Equations 29 and 30 has to be sufficiently high; in other words, the potential energy fluctuations
of neighboring replicas need to have an appreciable overlap. For large systems (e.g., biomolecules
in explicit solvent), this forces one to reduce the temperature difference between replicas and thus
to increase the number of replicas, often making PT simulations rather costly. Methods that aim at
overcoming this limitation are, for example, solute tempering (105–107), PT in the WTE (81, 108),
and replica exchange with CV tempering (109). The last two are discussed in some detail below.

6.3. Parallel Tempering in the Well-Tempered Ensemble

The overlap between potential energy fluctuations in the PT replicas can be greatly increased if
we combine PT with the use of the WTE (PT-WTE; 81, 108), where the fluctuations in U can
be increased by simply increasing γ, while averages of U stay essentially the same. This leads to a
drastic reduction in the number of replicas needed. A further advantage of PT-WTE is that the
acceptance probability in Equation 29 is determined by

�i, j = γ −1 (
βi − β j

) [
U (Ri ) − U (R j )

]
, (31)

which is reduced by a factor of γ as compared to conventional PT in the canonical ensemble
(Equation 30). These properties of PT-WTE have proven to be quite useful in a number of
applications (57–59, 100, 108).

6.4. Combining Metadynamics and Replica Exchange Methods

Metadynamics can be combined with replica exchange methods, where in each replica one runs
a metadynamics simulation with the same set of CVs (85). For example, metadynamics has been
used in conjunction with PT (85), solute tempering (110), and PT-WTE (108).

As discussed in Section 4, such a combination reduces the quality requirement on the CVs as
the replica exchange scheme will help sample the slow degrees of freedom not included in the
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CV set. Furthermore, metadynamics will assist in sampling TSs and higher-lying metastable free
energy basins that are poorly sampled in most replica exchange methods, as discussed above.

With metadynamics and PT combined (85), the acceptance probability in Equation 29 is
determined by

�i, j =
(
βi − β j

) [
U (Ri ) − U (R j )

]
+βi

[
Vi (s(Ri ), t) − Vi (s(R j ), t)

] + β j
[
V j (s(R j ), t) − V j (s(Ri ), t)

]
, (32)

where the second line is the contribution coming from metadynamics, and Vi (s, t) and V j (s, t)
are bias potentials of the two replicas. Similar expressions hold when metadynamics is combined
with other replica exchange methods.

6.5. Bias Exchange Metadynamics

As discussed in Section 3, metadynamics is limited by the number of CVs that can be biased at
the same time. Bias exchange metadynamics (111–113) is a variant of metadynamics that aims at
overcoming this limitation and allows one to bias a large number of CVs simultaneously. In this
approach, there are multiple replicas running metadynamics simulations at the same temperature,
with each replica biasing a different set of CVs. The problem of missing slow degrees of freedom
within each replica is overcome through the exchange of configurations between replicas. In this
case, the acceptance probability in Equation 29 is determined by

�i, j = β
[
Vi (si (Ri ), t) − Vi (si (R j ), t) + V j (s j (R j ), t) − V j (s j (Ri ), t)

]
, (33)

where si and s j are the CVs biased in replicas i and j .
A bias exchange simulation directly yields the low-dimensional free energy profiles of the biased

CVs, whereas the multidimensional FES as a function of (part of ) the full CV set can in principle
be obtained through a reweighting procedure specific to bias exchange (113).

6.6. Replica Exchange with Collective Variable Tempering

The capability of WTMetaD to enhance CV fluctuations in a controlled way is put to use
elegantly in the replica exchange with CV tempering (109) method. In this method, one considers
M replicas with the same temperature and in each replica performs a concurrent WTMetaD
simulation in which each CV is biased separately with a one-dimensional bias. In this way, a large
number of degrees of freedom can be biased. The total bias in the i-th replica is thus a sum of
one-dimensional biases:

Vi (s, t) =
d∑

α=1

V α
i (sα, t), (34)

where d is the total number of CVs. The replicas differ in their value of γ and are arranged
in a ladder γ1 < γ2 < · · · < γM , where the lowest replica γ1 = 1 corresponds to the unbiased
ensemble. In this way, the fluctuations of the selected CVs are gradually enhanced as one moves
up the ladder. This replica exchange scheme thus requires considerably fewer replicas than does
PT, in which fluctuations of all degrees of freedom are enhanced when heating up the system.

7. EXTENSIONS AND VARIANTS OF METADYNAMICS

Throughout the years, numerous other extensions and variants of metadynamics have been pre-
sented in the literature. Here we briefly discuss the main ideas behind some of them. For full
methodological details, we refer readers to the original references.
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7.1. Multiple Walkers Metadynamics

Multiple walkers metadynamics is so named because we can think of a metadynamics simulation
as an agent (i.e., a walker) who moves in CV space and periodically deposits a biasing kernel
G(s, s′) centered at the current CV value s′ (see Equation 13). In multiple walkers metadynamics
(114), there are N w such walkers who run concurrently. The metadynamics bias that they feel is
equal for all the walkers and results from the sum of the biasing kernels deposited by all walkers.
That each walker simulation can be run in parallel offers the possibility of a significant wall-clock
time reduction and of a better use of contemporary parallel computer architecture. However,
the number of walkers cannot be increased indefinitely because their motion becomes correlated
beyond a certain number.

7.2. Metadynamics with Adaptive Gaussians

In the adaptive Gaussian scheme (74), the full covariance matrix �i, j in Equation 12 is used and
estimated on the fly during the metadynamics simulation, allowing the shape of the deposited
Gaussian biasing kernels to change with time and adapt to the features of the FES. This leads to
improved performance in cases in which employing a preassigned diagonal �i, j is nonoptimal, for
example, when the free energy basins of the FES differ considerably in their shape. Furthermore,
a diagonal �i, j does not reflect possible coupling between CVs and can lead to a nonoptimal
filling of the FES if the CVs are highly coupled. As shown in Reference 74, one can estimate
�i, j either from a time average over the CV trajectory (dynamically adapted scheme) or from the
underlying curvature of the CVs (geometrically adapted scheme). In both schemes, only a single
parameter is needed, thereby simplifying things as compared to having to choose all the widths σi

for a preassigned diagonal �i, j . With adaptive Gaussians, the relation between V (s) and F (s) given
by Equation 17 no longer holds; instead, one can estimate F (s) using an umbrella sampling–like
reweighting (74).

7.3. Flux-Tempered Metadynamics

In flux-tempered metadynamics (115, 116), one constructs a bias potential that leads to the diffusion
optimized distribution (117) given by

PV (s ) ∝ 1√
D(s )

, (35)

where D(s ) is the s -dependent local diffusivity, and s is assumed to be defined in a bounded
interval s− ≤ s ≤ s+. This distribution minimizes the round-trip time between s− and s+ and
thus maximizes the flux in s space (117). The construction of the bias potential proceeds through
two distinct phases. In the initial phase, one performs a normal metadynamics simulation. The
deposition of Gaussians is then stopped after a certain time, and the metadynamics bias potential
is kept fixed. In the second phase, the bias potential is further updated through an iterative scheme
designed to maximize the flux and obtain the CV distribution given by Equation 35. Flux-tempered
metadynamics was originally designed for the one-dimensional case but has also been extended to
the more general multidimensional case (116).

7.4. Transition-Tempered Metadynamics

In transition-tempered metadynamics (118), the stochastic iteration (Equation 13) is modified such
that initially the strength of the biasing kernel is kept constant at each iteration as in nontempered
metadynamics. Once the bias has filled up all the relevant metastable basins, the strength of
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TST: transition state
theory

the added biasing kernels is gradually reduced as in WTMetaD. In the asymptotic limit, this
leads to a bias potential that fully compensates the FES and to a uniform sampling of CV space.
Transition-tempered metadynamics thus combines the more rapid exploration of the FES offered
by nontempered metadynamics with the favorable convergence properties of WTMetaD. The
procedure is completely automatic but has the drawback of requiring a priori knowledge of the
metastable basins of interest.

7.5. Boundary Conditions

Any sharp boundary in the FES cannot be correctly represented as a sum of finite-width Gaus-
sians, which is the biasing kernel mostly used in metadynamics (112, 119). For CVs defined on
a compact support, this can lead to systematic errors in the boundary region. Luckily, in many
cases, the interesting part of the FES is located away from the boundary, so this is less of an issue,
especially when using WTMetaD in which the boundary region is rarely visited. However, when
it is necessary to explore the boundary region, various fixes have been suggested (112, 119–121).

8. DYNAMICS FROM METADYNAMICS

So far we have focused our attention on the problem of mapping out the free energy landscape,
which was the intended purpose of metadynamics. We have not yet considered the problem
of calculating kinetic rate constants, whose importance can be seen from the diverse range of
creatively designed methods proposed over the past few decades (11–13, 71, 113, 122–132).

Recent work (71, 113, 132) has made it possible to use metadynamics to answer the question
of how much time the system takes to escape from one metastable basin to another. Here we limit
our attention solely to the infrequent metadynamics (71, 133) approach to rate calculations.

An established starting point for solving the problem of calculating rates of rare events is
transition state theory (TST) (134) and its generalizations. In the generalized approach, the rate k
of escaping from a state A to B is proportional to the relative flux crossing through the TS region
per unit time and is given by

kTST = ωκ
ZTS

ZA
, (36)

where ZTS and ZA are the partition functions of the TS and the starting state A, respectively,
and ω is a constant depending on the temperature and mass of the reaction coordinates (for exact
values of ω, see, for example, 12). The transmission coefficient κ ≤ 1 accounts for the fact that not
every trajectory that crosses over from A to B through the TS is necessarily a reactive trajectory.
That is, a certain fraction of such trajectories might actually recross the TS multiple times before
settling in a new metastable basin. A neglect of recrossings (i.e., the assumption that κ = 1 in
Equation 36) is conventionally regarded as the defining feature of traditional TST.

Although Equation 36 is exact in principle (134, 136), it is actually quite daunting to employ in
practice for many reasons. First, only an extremely small part of the trajectory visits the TS, if at
all. Thus, it is not at all trivial to get a converged value of ZTS. Second, in biomolecular systems,
it is often not easy to characterize the TS region in terms of order parameters as this is a far more
demanding task than finding order parameters that distinguish one metastable state from another
(137). In fact, the very definition of a TS as a stationary point on the potential energy surface can
be called into question. A classic example is that of alanine dipeptide (71, 137): Its dihedral angles
� and � are sufficient to distinguish the two metastable states (see Figure 1), but as pointed out by
Chandler and coworkers (137), describing the TS ensemble requires an additional third dihedral
angle. In more generic terms, knowing the TS requires knowing the so-called reaction coordinate
(138), which is often challenging to obtain. Third, with a poorly chosen TS, the transmission
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Acceleration factor:
quantitative
relationship between
the physical kinetic
rate and the one
obtained in a biased
simulation

coefficient κ can take values much smaller than 1, and it is not at all trivial to calculate (139, 140).
Issues such as these make it theoretically and practically difficult to obtain rate constants using
Equation 36 in complex systems.

With these difficulties in mind, an alternate approach was taken in Reference 71, inspired by
References 124, 125, and 127. This approach is based on the following three key assumptions.
First, the process is characterized by movements from one metastable state to another via dynam-
ical bottlenecks that are rarely but quickly crossed; in other words, there exists a separation of
timescales between residence and transition times. Second, the transmission coefficient κ is solely
determined by the properties of the TS region (134, 135). Third, although there is no need for
prior knowledge of the nature or location of the TS, one should have CVs that can distinguish
between the metastable basins. Furthermore, one supposes that it is possible to construct a bias
potential that leaves the TS region untouched.

With these assumptions, the rates in this biased ensemble can be written as

k∗
TST = ωκ

ZTS

Z∗
A

, (37)

where all quantities except Z∗
A are the same as in Equation 36 given that the TS region is left

untouched. The ratio of k∗
TST to kTST is given by the so-called acceleration factor:

α = Z∗
A

ZA
. (38)

The challenge is then to construct a metadynamics bias that keeps the TS region bias-free.
Tiwary & Parrinello (71) proposed a simple solution: By making the bias deposition slower than
the time spent in the TS region, they were able to keep it bias-free during the simulation.

In a crucial development, it was later shown that one can assess the reliability of the kinetics
thus obtained through a statistical analysis that quantitatively estimates how precisely the above
assumptions have been met (133). This test relies on the fact that the escape times from a long-lived
metastable state exhibit a time-homogeneous Poisson distribution.

The acceleration factor in Equation 38 can be calculated as a running average accumulated
through the course of the metadynamics simulation (71, 125, 127):

α = 〈eβV (s,t)〉V . (39)

In practice, one can simply calculate the physical or boosted time tb by summing up the MD steps
taken so far, with the MD time step dt appropriately scaled at each step:

tb =
nMD∑

i

dt eβV (s(ti ),ti ), (40)

where nMD is the total number of MD steps, and ti = i dt is the MD time at the i-th time step.
The use of metadynamics for obtaining kinetic information is still in its infancy; however, its

usefulness has already been tested by several groups in a range of systems (44, 71, 133, 141–143).
We expect it to be more widely used in the coming years, along with other CV-based methods
that make use of the powerful acceleration factor concept (125, 127) to obtain rate constants. One
such method is discussed in Section 9.

9. VARIATIONALLY ENHANCED SAMPLING

Recently, a new idea for building up a bias potential has been presented, the so-called varia-
tionally enhanced sampling method (144). Strictly speaking, this method does not belong to the
metadynamics family as the principles behind it are somewhat different. Nevertheless, it is
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appropriate to discuss here as in many respects it builds on previous work on and experience with
metadynamics. For instance, all the effort devoted to finding good CVs can come to fruition
here, and many extensions developed for metadynamics can be used directly with this method.

The variationally enhanced sampling approach (144) relies on the following functional of the
bias potential V (s):


[V ] = 1
β

log
∫

ds e−β[F (s)+V (s)]∫
ds e−βF (s)

+
∫

ds p(s)V (s), (41)

where p(s) is a predefined probability distribution assumed to be normalized, and as before, F (s)
is the FES corresponding to the CV set s. This functional is related to the relative entropy (145,
146) and to the Kullback–Leibler divergence (147). It can be shown that 
[V ] is invariant under
the addition of a constant to V (s) and, more importantly, that it is a convex functional. It can also
be shown that 
[V ] has a minimum given within a constant by

V (s) = −F (s) − 1
β

log p(s), (42)

and thus directly relates to F (s). From the convexity of 
[V ], it follows that this is the global
minimum. Furthermore, at this minimum, the CVs are distributed according to p(s), which is thus
called the target distribution. There is considerable flexibility in choosing the target distribution,
as discussed further below.

This variational principle provides a rather interesting and novel viewpoint for tackling sam-
pling problems. We can enhance the sampling of the CVs and determine F (s) by minimizing the
functional 
[V ] with respect to V (s). Of course, this minimization process is greatly facilitated
by the convexity of 
[V ]. Furthermore, we can tailor the enhancement in sampling by appropri-
ately choosing the target distribution p(s). In practice, the minimization of 
[V ] is performed by
assuming some given functional form for V (s; α) that depends on a set of variational parameters
α = (α1, α2, . . . , αK ), which allows us to define the multidimensional function 
(α) = 
[V (α)].
The components of the corresponding gradient ∇
(α) are

∂
(α)
∂αi

= −
〈
∂V (s; α)

∂αi

〉
V (α)

+
〈
∂V (s; α)

∂αi

〉
p
, (43)

where the two expectation values on the right side are obtained in the biased ensemble given
by V (s; α) or over the target distribution p(s), respectively. The Hessian is defined in a similar
manner.

The minimization process is performed in a biased simulation under the action of V (s; α), in
which one estimates ∇
(α) and iteratively updates the variational parameter α using a gradient-
based optimization algorithm. As ∇
(α) is obtained from statistical averaging, is it intrinsically
noisy, and one would need very long sampling times if employing conventional deterministic
optimization algorithms. Instead, it is better to use stochastic optimization methods (77), and in
particular, the optimization algorithm introduced in Reference 148 has proven to be an efficient
choice. Other choices are, however, possible.

It is often convenient to take the bias potential to be a linear expansion in some set of basis
functions fk(s):

V (s; α) =
∑

k

αk fk(s). (44)

With an appropriate choice of the basis functions, for example, plane waves or products of Cheby-
shev polynomials (149), one is able to represent any generic FES. The FESs are in general smooth
functions, and just a small number of expansion terms is needed.
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There is considerable flexibility in choosing the target distribution p(s), which allows us to
tailor the sampling. In principle, one can use anything from a completely localized delta function
to a completely delocalized uniform distribution. It has been proven useful (150) to take the
viewpoint of WTMetaD and consider a target distribution that enhances CV fluctuations in a
controllable manner, thus focusing the sampling toward the lowest FES regions. This can be
achieved by considering the well-tempered distribution discussed above (Equation 8):

p(s) = [P (s)]1/γ

∫
ds [P (s)]1/γ

= e−(1/γ )βF (s)∫
ds e−(1/γ )βF (s)

, (45)

where the issue of dependence on the a priori unknown F (s) is circumvented by employing a simple
yet effective iterative scheme (150). The target distribution can also be employed to localize the
sampling on a specific region in CV space. It is also rather natural to introduce restraints on the
CVs through the target distribution.

An intriguing possibility that the variationally enhanced sampling method offers is the idea of
employing the variational property of 
[V ] in innovative ways, such as those in the few examples
given below.

One idea is to employ purpose-built functional forms for the bias potential. This is similar in
spirit to the idea of Hylleraas-type wave functions in quantum chemistry (151) or Jastrow-type
wave functions in quantum Monte Carlo (152). It is advantageous to design such bespoke functions
so that the number of variational parameters is smaller than that needed by the linear expansion
in Equation 44. For example, one could employ a known empirical model of the FES as a bias
potential and optimize its parameters.

A related idea that is fairly generally applicable is to introduce certain approximations to the
bias potential, which should allow one to bias high-dimensional CV spaces (153). For instance,
one can write V (s; α) as a sum of pairwise terms

V (s1, s2, . . . , s d ; α) =
∑
i, j

V (s i , s j ; α(i, j )), (46)

where each pairwise term is expanded in a basis set as in Equation 44.
A final example is the variationally optimized free energy flooding method introduced in

Reference 154, which allows one to construct a bias potential that only fills the FES up to a
given cutoff. One can thus greatly accelerate transitions between metastable free energy minima
while ensuring bias-free TSs. Kinetic rates can then be obtained using the same principles as
described in Section 8.

10. A BRIEF OUTLOOK

Starting from very simple heuristic considerations (26), metadynamics has grown considerably in
the past decade. This has been possible thanks to the efforts of a large community that has both
improved the method and applied it in novel and innovative ways. The contribution of those who
have developed new and clever CVs should not be underestimated in this respect.

An ever-growing number of problems are being solved thanks to metadynamics, and this
approach has proven to be a convenient starting point for introducing new ideas and new concepts.
The recent demonstration of the validity of metadynamics in Reference 65 is not just the formal
crowning of the metadynamics effort but has also led to the rigorous proof of the existence
of an ordinary differential equation to whose solution metadynamics tends (Equation 15). This
ordinary differential equation opens the way to deeper analysis and new discoveries (76). In this
sense, metadynamics is not just a practical tool, but it is also an important development in the
theory of statistical mechanics. This will become increasingly evident as time goes by.
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One subject only briefly mentioned in Section 4 is the use of ideas based on machine learning
and dimensionality reduction. We expect their role and importance in atomistic simulations to
increase over the years.

This review has been focused on the study of classical systems, but a recent application has
shown that metadynamics can also play a great role in the study of quantum systems as described
by path integral MD (84).

Despite the newly developed variationally enhanced sampling approach, which appears to be a
strong competitor, we expect that metadynamics will remain an active and vibrant field of research
for many years to come. In fact, we believe that metadynamics and the variationally enhanced
sampling method complement each other in many ways and that there will be a useful exchange
of ideas between these two methods.
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RELATED RESOURCE

PLUMED (http://www.plumed.org/): a plug-in to numerous MD codes that allows users to
analyze and bias molecular simulations. It implements metadynamics and a wide range of
CVs and includes a tutorial on how to get started with metadynamics simulations.
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