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Protein folding has become one of the most actively studied problems in modern molecular
biophysics. Approaches to the problem combine ideas from the physics of disordered systems,
polymer physics, and molecular biology. Much can be learned from the statistical properties of model
heteropolymers, the chain molecules having different monomers in irregular sequences. Even in
highly evolved proteins, there is a strong random element in the sequences, which gives rise to a
statistical ensemble of sequences for a given folded shape. Simple analytic models give rise to phase
transitions between random, glassy, and folded states, depending on the temperature T and the design
temperature Tdes of the ensemble of sequences. Besides considering the analytic results obtainable in
a random-energy model and in the Flory mean-field model of polymers, the article reports on
confirming numerical simulations.
CONTENTS

I. Introduction: Protein Folding as a Physical Problem 260
A. Historical background and an overview

of the field 260
1. Molecular biology perspective 260
2. Polymer physics perspective 261
3. Disordered systems and spin glasses 261

B. What is protein folding, and why is it a
problem? 262
1. How do proteins reach their native state? 262
2. How are protein sequences selected? 262
3. How can we predict a protein’s fold given its

sequence? 262
C. Freezing and sequence design 263

1. Freezing transition 263
2. Evolution and design of sequences 263

a. Nonrandomness of protein sequences 263
b. Quenched nonrandomness and evolution 263
c. Sequence design 264

3. Applications of design concepts to proteins 264
a. Experiments on proteinlike peptide chains 264
b. Correlations in protein sequences 265

II. Building Models 265
A. Phenomenological models 265

1. Go model 265
2. Random-energy model 265
3. Modifications of the random-energy model 266

B. Microscopic model: Compact globular
heteropolymer 267
1. Energy 267
2. Conformations 267

a. Nature of conformation space 267
b. Contacts of monomers and overlap of

conformations 268
c. Contact maps 269

3. Interactions 269
4. Sequences: Microcanonical and canonical

design 269
III. Developing the Theory 271
Reviews of Modern Physics, Vol. 72, No. 1, January 2000 0034-6861/2000
A. Preliminary arguments 271
1. What is important about conformational

entropy? 271
2. A naive estimate of conformational entropy 271
3. The ‘‘all or nothing’’ minimum 272
4. Limitations of these preliminary arguments 272

B. Large incompressible globule 273
1. Self-averaging and the replica trick 273
2. Average over sequences 274
3. Saddle-point approximation and replica

symmetry breaking 275
a. Order parameter 275
b. Maximizing free energy in replicas 276
c. One-step replica permutation symmetry

breaking 276
d. Uncorrelated energy landscapes, or the

random-energy model 277
e. Replica free energy 277
f. Physical meaning of the D̂ operator 278
g. Reduction theorems 278

4. Phase transitions in the large-globule model 278
C. Geometric parametrization of the interaction

matrices 279
IV. Properties of Heteropolymers in the

Random-Energy Model 280
A. Phase diagram 280

1. Random sequences 280
2. Designed sequences 281

a. Design and folding governed by the same
set of interactions 282

b. Design and folding governed by two
different sets of interactions 283

3. ‘‘No-replica’’ derivation of the phase
diagram 283

B. How many designed sequences are there? 284
1. Sequence-space entropy 284
2. What is the best possible design? 285

C. Other random-energy-type systems: Screened
polyampholytes 285
259/72(1)/259(56)/$26.20 ©2000 The American Physical Society



260 Pande, Grosberg, and Tanaka: Heteropolymer freezing and design
D. Verifications of heteropolymer freezing
and design 286
1. Experiments 286
2. Computer simulations 286

V. A Deeper Look into Applicability of the
Random-Energy Model 288
A. Important deviations from the random-energy

model 288
B. Energy correlator as a measure of the validity

of the random-energy model 288
C. Sources of energy correlations 289

1. Conformations 289
2. Interactions 290

D. Sequence design as a tool for examining the
applicability of the random-energy model 290

E. Energy correlations for long-range interactions 291
F. Is the random-energy model valid? 292

VI. Properties of Heteropolymers due to Correlations
in Energy Landscape 292
A. Beyond the random-energy approximation 292

1. The random-energy model as a mean-field
approximation 292

2. Non-random-energy theory: A work in
progress 293

B. Interpolation expression for non-random
free energy 293
1. Contributions to the free energy 293
2. Homopolymer collapse contribution 294
3. Heteropolymer interaction part of free

energy 294
4. Conformational entropy 295

C. Phase diagram of a nonrandom heteropolymer 296
D. Simulations 297
E. Nonrandom properties of compact

polyampholytes 298
VII. Applying Heteropolymer Theory to Proteins 299

A. Is heteropolymer theory applicable for proteins? 299
1. Secondary structure 299
2. Designability of conformations 300
3. Monomers are not pointlike 300
4. Molten globule state as a distinct phase 300

B. What does the theory of designed
heteropolymers tell us about proteins? 301
1. Where in the heteropolymer phase diagram

are proteins? The stability gap 301
2. Determining parameters for proteins 302

a. Conformational entropy s 302
b. Protein interactions 302
c. Potentials for simulations of protein

folding 303
d. Composition 303

C. How optimal are present-day proteins? 304
1. Quantitative aspects of evolutionary

optimization 304
2. How far has evolution progressed? 304

VIII. Conclusions 304
Appendix A: Glossary of Phases 306
Appendix B: Properties of the Random-Energy Model 307

1. Density of states for the random-energy
model 307

2. Typical and atypical realizations in the
random-energy model 307

3. Thermodynamics of the random-energy
model 308

Appendix C: Rotation of Replica Space 308
1. Three auxiliary lemmas 308
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
2. Some general properties of the
‘‘direct-product’’ operation for matrices 309

a. Elimination of real-space coordinates 309
b. Elimination of replica variables 310

Acknowledgments 311
References 311

I. INTRODUCTION: PROTEIN FOLDING
AS A PHYSICAL PROBLEM

The subject matter of the present review is truly mul-
tidisciplinary. Although we concentrate almost exclu-
sively on the statistical physics of protein folding we be-
gin with a somewhat broader view of the problems and a
few historical remarks. For the reader unfamiliar with
proteins, we provide some basic definitions in Sec. I.B
and a list of relevant terms in Appendix A.

A. Historical background and an overview of the field

Protein folding is a field at the intersection of molecu-
lar biology, polymer physics, and the physics of disor-
dered systems. In this Introduction, we briefly review
the historical background and conceptual foundations of
the questions addressed in this review.

1. Molecular biology perspective

The most impressive achievement of the early years of
molecular biology may well be the beautiful way in
which hereditary information was found to be stored in
the linear, one-dimensional sequence of the DNA base
pairs. Once the main scheme had been established, with
its DNA→RNA→protein concept of information pro-
cessing, the emerging picture described the decoding of
one linear (one-dimensional) code into another linear
code.

While the details of the genetic code and the complex
cell machinery involved in real protein synthesis may be
complex, it is at least algorithmically simple to imagine
sequential processing in which codons (triplets of nucle-
otides) are read one by one and the corresponding
amino acids are added to the growing protein chain,
each independent of the previous or subsequent parts of
the sequence.

This ‘‘one-dimensional view’’ has permeated much of
molecular biology and is manifested in various sugges-
tions of different new ‘‘codes.’’ Yet biology offers strik-
ing examples in which neither storage nor processing of
information is to any degree one dimensional. More-
over, there are many similar examples of processes, such
as reading, in which the input is a one-dimensional se-
quence (ordered because the process proceeds linearly
in time), while the output, which is an acquired idea (or
understanding), is something of a completely different
nature and by no means one dimensional.

Most of the catalytic and other chemical functions in
the living cell are performed by proteins. The question
then becomes how genetic information, translated into
the protein sequence, controls protein function. It was
long known (or at least believed) that protein functions
are defined by a particular three-dimensional configura-
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tion uniquely characteristic for each protein species
(Mirsky and Pauling, 1936), and thus the problem is re-
duced to a deceptively simple question: How does the
sequence of amino acids in a protein chain control the
fold of the chain in space? About 25 years ago, C. An-
finsen showed in a famous experiment that denatured
(that is, rendered incapable of functioning by elevated
temperature and/or inappropriate pH/salt conditions)
protein molecules are able to restore their function upon
return to the proper conditions in solution, without any
assistance from cellular machinery (Anfinsen, 1973);
moreover, it was later shown that denaturation is a first-
order transition (see Privalov, 1979; Uversky and
Ptitsyn, 1996). This phenomenon has become famous
and is known as protein folding. Protein folding is per-
haps the simplest example in which information process-
ing is dramatically multidimensional in nature: although
Anfinsen’s experiment suggests clearly that the se-
quence (also called the primary structure) contains all
the information necessary to find the native spatial fold
(called the tertiary structure), the information process-
ing cannot advance in a sequential symbol-by-symbol
fashion and must operate simultaneously, using remote
parts of the sequence.

2. Polymer physics perspective

Remarkably, a similar evolution of ideas can be found
in another scientific discipline important to our review,
namely, the theoretical physics of polymers. Indeed,
polymer chains were long viewed as just one-
dimensional chains of links. In the classic books (Flory,
1953, Volkenstein, 1959; Birshtein and Ptitsyn, 1964),
the one-dimensional Ising model (in different incarna-
tions) remained the main analytical tool for treating
phenomena ranging from chain flexibility and rubber
elasticity to the helix-coil transition. With some earlier
deep insights by Flory (1953), in the 1960s Edwards, de
Gennes, and Lifshitz emphasized interactions and the
three-dimensional nature of polymers, thus bringing
polymers into the realm of modern theoretical physics.

Protein globules have always been outstanding sub-
jects of interest for polymer theorists. As soon as it was
realized that protein denaturation was accompanied by
the unfolding of the protein chain and a dramatic in-
crease in its three-dimensional packing size (measured,
say, by a diffusion coefficient), a model appeared that
associated a random-walk-type coil with the denatured
state and a collapsed, condensed globule with the native
state (Ptitsyn and Eizner, 1965). This initiated studies of
the coil-to-globule transition of (homo)polymers,
viewed as a first step in the study of proteins. In particu-
lar, I. M. Lifshitz, as early as 1968, explicitly stressed the
vital role of quenched disorder for proteins, although
technically he examined only homopolymer globules, in
which the linear chain structure is quenched (Lifshitz,
1968).

Twenty years ago, a review article by Lifshitz et al.
(1978) appeared in Reviews of Modern Physics, detailing
the properties of globules and coil-to-globule transitions.
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Most notably, it showed that the difference between the
coil and globule states is qualitative; indeed, the transi-
tion between these two phases is a phase transition,
which means that in the N→` limit there is a point of
discontinuity of certain thermodynamic functions. Fur-
thermore, other peculiarities of both the globule state
and the coil-to-globule transition are brought about pre-
cisely by the presence of the quenched linear memory
(to use Lifshitz’s original terminology).

The main qualitative difference between the two
phases is that chain connectivity provides for long-range
correlations in the coil state (as well as in the dilute or
semidilute solution of coils; de Gennes, 1979); moreover,
attraction between monomers and/or external pressure
is strong enough in the globule to suppress those corre-
lations, making the (single-molecule) globule a thermo-
dynamically uniform system, with an interior similar to a
concentrated polymer solution or a melt. Unfortunately,
this subtlety remains poorly understood and is often the
source of erroneous models.

In the conclusion of the article (Lifshitz et al., 1978),
the authors wrote

Since ‘‘living matter is the most interesting subject of
investigation for the living matter that is able to in-
vestigate’’ (L. A. Blumenfeld) . . . it is very important
to determine the degree of influence of the primary
structure on the thermodynamic properties of a glob-
ule. . . . The model theory developed in this article
describes with qualitative accuracy the homopolymer
chain in fairly simple situations and can, apparently,
be used as a basis for further, more realistic approxi-
mations. As to biopolymers, this theory can stimulate
the formulation of interesting problems. [p 71]

We now are in a position to continue from where Lif-
shitz et al. (1978) left off. With regard to homopolymers,
the theory of the coil-globule transition has now been
developed to quantitative accuracy (Grosberg and Kuz-
netsov, 1992). More complicated scenarios also have
been examined, including charged macromolecules, in-
tramolecular liquid crystals, topological constraints, and
several others. As for biopolymers and ‘‘the degree of
influence of the primary structure,’’ in recent years pro-
tein folding theories have substantially elaborated on
the original ideas of Lifshitz et al. (1978).

Such a theory was first attempted by Garel and Or-
land (1988a). An important breakthrough in the under-
standing of heteropolymers came with the work of Sha-
khnovich and Gutin. While Shakhnovich and Gutin
(1989a) employed a simplified model of random se-
quences that assumed that the interaction energies be-
tween monomers could be taken from a Gaussian distri-
bution, this was the first microscopic theory to include
both the fundamental features of a globular state and a
quenched sequence. This work bridged the gap between
the insights of polymer physics and the ideas of yet an-
other line of development important to our field,
namely, the theory of spin glasses.

3. Disordered systems and spin glasses

A third line of development of importance for the
advancement of protein folding theory is the theory of
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disordered systems (Binder and Young, 1986; Mezard
et al., 1987). In particular, the pioneering work of Bryn-
gelson and Wolynes (1987) suggested a phenomenologi-
cal approach to protein folding based on the analogy of
a protein with a spin glass.

The physical concept of frustration is important in
both spin glasses and proteins. A system is said to be
frustrated if the degrees of freedom cannot be optimized
simultaneously, usually due to some constraints imposed
by quenched disorder (see p. 1 of Mezard et al., 1987 for
a nice discussion of frustration). Indeed, frustration in
the case of proteins is due to the chain connectivity be-
tween monomers with opposite affinities to the neigh-
bors and/or environment. Frustration leads to a rugged
energy landscape, with the consequences of a compli-
cated topology of valleys, high barriers, strong traps,
long-lived states, history dependence of kinetics, etc.
The insight of Bryngelson and Wolynes (1987) was to
postulate the applicability of the random-energy model,
a simplified spin-glass model suggested by Derrida
(1980), to the heteropolymer freezing problem. This
model neglects correlations between energies of differ-
ent (micro)states, and perhaps in some part due to its
simplicity, it has been an exceptionally useful paradigm
for understanding the basic aspects of folding thermody-
namics.

Two years later, Shakhnovich and Gutin (1989a)
proved, albeit for a simplified model, the applicability of
the random-energy model and its insights. This paper
gave rise to the development of modern views that com-
bine the microscopic approaches of (hetero)polymer
theory with the methods and results borrowed from
spin-glass theory. Before we examine this picture, with
its concepts of heteropolymer freezing and sequence de-
sign, we first need to establish the basic terminology and
explain why protein folding is considered a problem.

B. What is protein folding, and why is it a problem?

Proteins are long chain molecules, typically about 50
to 500 monomer units (amino acids) long. It is well es-
tablished that as polymers in general (and proteins in
particular) are submerged in a liquid solvent, they can
be viewed as classical stringlike objects undergoing con-
formational fluctuations governed by interactions not
only between neighboring monomers along the chain,
but also throughout the volume of the system, i.e., be-
tween monomers approaching each other in the course
of fluctuations.

The distinguishing feature of proteins as polymers is
that they are heteropolymers: they consist of 20 different
species of monomeric units (called amino acid residues).
For each particular protein, monomers are connected
along the chain in a strictly defined nonuniform se-
quence, called the primary structure. To perform bio-
chemical functions, a protein chain must attain a particu-
lar, well-defined three-dimensional conformation. In this
native fold, the spatial positions of heavy (nonhydrogen)
atoms are determined with an accuracy on the order of
0.5 Å. Many (but not all) proteins are able to find their
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
native fold spontaneously, without the assistance of any
kinetic mechanisms of the living cell, and thus the phe-
nomenon of correct spontaneous folding of proteins rep-
resents an outstanding challenge for physicists.

Understanding protein folding means understanding
the relationship between a protein’s sequence and its
native-state structure. There are, however, three aspects
of this relationship under vigorous study, detailed below.

1. How do proteins reach their native state?

A polymer chain has many different possible confor-
mations. Imagine that there are discrete ‘‘rotational iso-
mers,’’ which means that there are, on average, g pos-
sible orientations of each monomer with respect to its
immediate neighbor along the chain (g is estimated to
be '1.6), and accordingly a polymer with N monomers
has M5gN conformations (Grosberg and Khokhlov,
1994). Protein folding means finding just one of them. A
naive way to find this native state would be to search
exhaustively through all of the states. Unfortunately, as
M grows exponentially with N, this search would require
much longer than the experimental folding time scale of
about 0.1 second; even an astronomically longer time
scale would be insufficient. This problem was first explic-
itly formulated by Levinthal (1968) and is known as the
Levinthal paradox. Alternatively perhaps sequences of
proteins should be selected such that they provide the
necessary bias towards the native state. We know that
certain sequences were selected in the course of evolu-
tion, at both the prebiological and biological stages
(Volkenstein, 1994; Ptitsyn, 1995). An attempt to ratio-
nalize the evolutionary selection of sequences leads,
however, to another paradox: how were proteins se-
lected by evolution such that they fold?

2. How are protein sequences selected?

As 20 types of monomers are used to build proteins,
there are 20N possible sequences for proteins of length
N. Neither the material on the earth (or, for that matter,
in the universe) nor the time since the earth or the uni-
verse were formed is sufficient to exhaustively try all.
Therefore ‘‘good folders’’ could not have been selected
by an unbiased search through the space of sequences.
This is not surprising, as protein sequences are the result
of evolution. However, what biases evolutionary se-
quence selection toward ‘‘good folding’’ sequences?
This review will describe how to select sequences of pro-
teinlike heteropolymers that overcome the Levinthal
paradox, i.e., given a desired native-state fold, we will
detail methods used to design sequences to fold into that
conformation. Whether nature makes an evolutionary
selection in this same manner is still an open and fasci-
nating question.

3. How can we predict a protein’s fold given its sequence?

An organism’s genome details the protein sequences
present, but tells nothing of what these proteins do.
Structure prediction, i.e., predicting a protein’s native-
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state structure given its sequence, is a critical step to-
wards connecting this genomic information to biological
functionality. Currently the most successful attempts at
such predictions are based on empirical approaches
(Finkelstein, 1997). One approach assumes that small-
scale, local changes in proteins can be made without dis-
turbing the nature of the overall fold; such an approach
assumes that two similar sequences will have very simi-
lar folds. Also of note is ‘‘threading,’’ in which the inves-
tigated sequence is mounted over an equally long part of
a target fold (Finkelstein, 1997). We shall not discuss
these ideas here, as further details of structure predic-
tion are beyond the scope of this review, and we suggest
one of the many recent reviews on this topic (Finkel-
stein, 1997; Levitt et al., 1997).

C. Freezing and sequence design

1. Freezing transition

The most notable result of the theories mentioned
above (Bryngelson and Wolynes, 1987; Shakhnovich and
Gutin, 1989a) is the concept of the heteropolymer freez-
ing transition—the transition between two phases of the
heteropolymer chain, of which one is dominated by very
few @O(1)# conformations, while the other is dominated
by exponentially many of them @O(eN)# . This transition,
long known for the random-energy model and other
spin-glass models, is now believed to be a property of a
broad class of heteropolymers. In heteropolymers, just
as in spin glasses, this transition is caused by the pres-
ence of frustrations (Mezard et al., 1987); the ‘‘desire’’ of
attractive monomers to be in contact systematically con-
flicts with the ‘‘desire’’ of repelling monomers to hide
from each other. When the freezing transition was pre-
dicted phenomenologically, based on the random-
energy model (Bryngelson and Wolynes, 1987), and mi-
croscopically, for a model with O(N2) independent
interactions (Shakhnovich and Gutin, 1989a), it ap-
peared that a satisfactory basic model for protein folding
was already at hand. Indeed, these theories demon-
strated the possibility of a frozen thermodynamic state
of a polymer chain dominated by a single conformation.
An obvious temptation was to identify this one confor-
mation directly with the native state.

Both of these theories operated, explicitly or implic-
itly, with only random-sequence heteropolymers. This
was consistent with the fact that real protein sequences
statistically look very much like random sequences
(Ptitsyn, 1995), which is in turn consistent with the idea
that an evolutionary search could explore only a tiny
part of the sequence space and thus could not pull se-
quences too far away from random (see also Monod,
1971). Thus it was important to learn from these models
that even a heteropolymer with a random sequence
could be dominated by one conformation. However, it
was later shown that random sequences were not suffi-
ciently proteinlike, as we detail below.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
2. Evolution and design of sequences

a. Nonrandomness of protein sequences

There are three interconnected difficulties with ran-
dom sequences:

(1) When a random sequence freezes, it has the pro-
teinlike property of a unique ground state. However, the
conformation that is the ground state is also random.
This is unacceptable for a protein, in which particular
features of the native state are of decisive importance
for its function.

(2) While the lowest-energy native state for a random
heteropolymer may be thermodynamically the most
stable, some other states are typically only about AN
higher in energy. As the structures of these states are
typically completely unrelated to the native one, and as
they are only negligibly higher in energy, they serve as
strong traps, making the folding kinetics hopelessly slow
and unreliable.

(3) Due to the AN difference in energy between low-
energy states, a minute change (;1/AN) of interaction
energies (induced, for example, by a change in the sur-
rounding solution or a mutation in the sequence) leads
to a complete alteration of the native state, with a new
native-state conformation that is absolutely unrelated to
the old one (Bryngelson, 1994).

In light of what we have just said, random sequences
do not appear to be sufficiently proteinlike. Bryngelson
and Wolynes (1987) have argued that some special se-
quences are required to overcome these problems and
have specifically conjectured that sequences should be
selected such that they fold with relatively little frustra-
tion (‘‘minimal frustration’’). In hindsight, this conclu-
sion is perhaps not surprising, as protein sequences are
known to have undergone at least some (Volkenstein,
1994), although not necessarily perfect (Monod, 1971),
evolutionary optimization.

b. Quenched nonrandomness and evolution

From a physical point of view we can say that protein
sequences are quenched but not random. They are
quenched because they are controlled by stable covalent
chemical bonds between monomers, and on the time
scale relevant for folding (typically milliseconds, but
sometimes up to minutes) sequences certainly remain
unchanged. In typical physical systems, such as spin
glasses, whatever is quenched is usually random. Thus
the nonrandomness of protein sequences is the major
peculiarity that makes the entire field so interesting and
exciting: nonrandomness reflects the biological evolu-
tionary origin of proteins, and thus examining protein
folding is possibly the first area in which we can achieve
understanding of a physical process controlled by bio-
logical information.

Although quenched on a folding time scale, protein
sequences are believed to change over a much longer,
evolutionary time. Of course, in this case we are not
speaking of a single protein molecule, but rather of an
ensemble of different proteins in the evolving multitude
of living species. Although not much is known about this
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process, the situation with two distinct relaxation times,
as described above, is reminiscent of neural networks
(Amit et al., 1987), in which image recognition and
learning are analogous to folding and evolution, respec-
tively (Friedrichs and Wolynes, 1989; Sasai and
Wolynes, 1990; Pande, Grosberg, and Tanaka, 1994c;
Ramanathan and Shakhnovich, 1994). There are at-
tempts to simulate, both experimentally (see Sec.
I.C.3.a) and computationally, the evolutionlike selection
of ‘‘good folders.’’ Computational models of evolution
(Gutin et al., 1995; Mirny et al., 1998), however exciting,
require enormous computational power, even for lattice
simulations—these studies simulate evolution by accept-
ing mutations that speed the mean first passage time for
folding (which is computationally intensive). Ideally,
there should be some way to bypass the complexities of
simulated evolution and to come up with a more effec-
tive, even if artificial, approach to designing sequences
capable of robust folding. This requires a more direct
means for implementing the minimal frustration prin-
ciple.

c. Sequence design

Sequence design can also be called inverse folding.
Two algorithms for achieving it using the minimal frus-
tration principle were suggested independently by Sha-
khnovich and Gutin (1993) and by the present authors
(Pande, Grosberg, and Tanaka, 1994b). Both schemes
suggest that sequences can be designed by annealed
search in the sequence space biased by the interactions
between monomers as if they were in the desired target
native conformation. Note that sequence annealing is
just the opposite of heteropolymer folding, which can be
considered as conformation annealing for a fixed se-
quence. Roughly speaking, sequence design selects se-
quences whose energy in the desirable target conforma-
tion is as low as possible. More accurately, it can be
described in terms of statistical-thermodynamic equili-
bration in sequence space. In other words, sequence se-
lection is modeled by drawing sequences from a Gibbs
distribution (1/Z)exp@2E/Tdes# , where E is the energy
of the polymer in the native state, the ‘‘design’’ tempera-
ture Tdes characterizes the quality of design, or degree of
optimization, and 1/Z is the normalization factor. This
latter formulation gives rise to a powerful analytical
theory.

It is very important to note that sequence selection
based on these design algorithms (Shakhnovich and Gu-
tin, 1993; Pande, Grosberg, and Tanaka, 1994b), as well
as on others1 does not encounter frustrations and that it
occurs in a nonrugged landscape in sequence space. In
general, when suggesting any kind of sequence selection
approach, one has to confront the evolution paradox
problem, whether related or unrelated to the real evolu-

1Similar and/or improved schemes include those of Kurosky
and Deutsch, 1995; Sun et al., 1995; Deutsch and Kurosky,
1996; Morrissey and Shakhnovich, 1996; Seno et al., 1996;
Khokhlov and Khalatur, 1998; Micheletti, Banavar, et al., 1998.
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tion. The absence of frustration for annealed sequences
guarantees that this approach avoids the evolution para-
dox.

The idea of sequence design is fundamental and will
be central to this review. We shall see that stronger de-
sign (lower Tdes) yields sequences that are better at re-
solving the Levinthal folding paradox, although they are
harder to select, and vice versa. We shall even speculate
that Tdes can serve as a phenomenological descriptor of
the stage reached by the evolution.

3. Applications of design concepts to proteins

a. Experiments on proteinlike peptide chains

One can investigate design concepts in proteinlike
heteropolymers by examining the results of two recent
experiments. First, in analogy to the conceptual picture
of sequence selection, Robert Sauer (1996) and his col-
leagues created an ensemble of random amino acid se-
quences and then selected sequences by applying bio-
technological agents that remove chains that have folded
poorly. The resulting ensemble is therefore one of de-
signed sequences. Analyses of these sequences show
that a large fraction of the remaining sequences have the
proteinlike properties of stability and secondary struc-
ture. (See also Kauffman and Ellington, 1999.)

Second, Michael Hecht and co-workers designed
amino acid sequences to fold into a particular fold (a
four-helix bundle). To accomplish this, Hecht’s group
first considered the set of amino acid sequences that
would lead to four helices, i.e., the restricted set limited
by the constraints of a fixed secondary structure. This set
was further limited by the constraint that monomers on
the surface of the protein should be hydrophilic and
monomers in the core should be hydrophobic. The re-
maining set of sequences was still quite large, and se-
quences from this ensemble were generated and exam-
ined (Hecht et al., 1990).

While the motivation behind this ‘‘design scheme’’ is
formally independent of questions such as the relevance
of the random-energy model, these questions lie at the
heart of the problem: one selects a sequence from an
ensemble that minimizes the energy of a desired confor-
mation in such a way that the other conformations are
not favored energetically. (Here this is done by the se-
lection of hydrophobic residues in the core and hydro-
philic on the surface.) The existence of secondary struc-
ture helps to simplify this process, as the resulting
conformation space is greatly diminished, effectively re-
moving undesired conformations from the phase space
of the protein.

More recent experimental approaches (Regan and
DeGrado, 1988; Dahiyat and Mayo, 1996; DeGrado,
1997; Lazar et al., 1997) follow sequence design more
closely, as they minimize the energy of the sequence in
the desired conformation or some energy-inspired fit-
ness score (Dahiyat and Mayo, 1996). These experi-
ments have demonstrated that such design techniques
can indeed yield sequences that fold to desired native-
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state conformations, but with little similarity to the origi-
nal, wild-type protein sequence.

b. Correlations in protein sequences

Design implies that the sequences are not taken at
random. One may ask if real protein sequences look
random, or if they bear some fingerprint of evolutionary
optimization. Moreover, one can predict the qualitative
character of sequence correlations to be expected if pro-
teins are indeed designed in the sense described above.
This has been done by Pande, Grosberg, and Tanaka
(1994a) and Irback et al. (1996), and we briefly summa-
rize the methodology and results below.

From our theoretical models, we expect that evolu-
tionary selection of protein sequences should lead to
correlations of monomer species along the chain consis-
tent with energy minimization. For example, we expect
that positively charged monomers will predominantly be
followed by negatively charged monomers; also, as hy-
drophobicity induces an effective attraction between hy-
drophobic monomers, we expect hydrophobic mono-
mers to be followed by other hydrophobic monomers
along the protein chain.

To convert amino acid sequences into a language
more convenient for analysis, Pande, Grosberg, and
Tanaka (1994a) used mappings that translated the 20
amino acids into a three-digit code 21, 0, 11. For ex-
ample, one such mapping translated amino acids based
upon their charge. Pande, Grosberg, and Tanaka
(1994a) next employed a sensitive mathematical tech-
nique to find correlations in the translated three-letter
code sequences. Correlations were found in these se-
quences, but more interestingly, these correlations were
consistent with energy minimization. For example, we
found anticorrelations in the Coulomb mapping (11 is
typically followed by 21, etc.) and correlations in hydro-
phobic mappings.

In a recent work (Irback, et al., 1996), correlations in
protein sequences were reexamined, and a discrepancy
was found with Pande, Grosberg, and Tanaka (1994a)
regarding the type of correlations present. The most
likely explanation is related to the difference in map-
pings used by Pande, Grosberg, and Tanaka (1994a) and
by Irback et al. (1996). Whatever the explanation for this
discrepancy, the existence of correlations based on
physical ‘‘charges’’ (interaction properties) of monomers
was confirmed by Irback et al. (1996). We stress that this
is highly nontrivial, as correlations reflect the role of en-
ergies and interactions in a slow process, i.e., over an
evolutionary time scale. It is also interesting to note that
the search for correlations in protein sequences has a
long history (see Ptitsyn, 1995 and references therein),
but correlations were not found until the particular
design-induced character of the correlations had been
predicted (Pande, Grosberg, and Tanaka, 1994a).

II. BUILDING MODELS

A. Phenomenological models

We now describe models that provide a framework
for discussing the microscopic details.
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1. Go model

One of the first phenomenological models of proteins
was suggested by Ueda et al. (1975). It is based on the
idea that the native conformation of proteins is energeti-
cally very well optimized. If this is true, we may assume
that native contacts (contacts between monomers
present in the native state) are energetically favored.
This leads to the conclusion that the polymer energy
depends primarily on a conformation-dependent prop-
erty, such as the number of native contacts Q; thus

E5~1/2!eQ[E!q , (2.1)

where e,0 is the energy brought to a monomer by one
native contact, q5Q/Qmax<1, and E!5eQmax/2 is the
energy of the native state. Of course, in reality there
may be some overall (homopolymeric) attraction or re-
pulsion, and energies of some non-native contacts may
be non-negligible, which modifies the above. However,
as we shall see, this will not be important for many as-
pects of freezing, and these aspects are correctly cap-
tured by the Go model [named after its creator, N. Go
(1983)].

The Go model assumes that every native contact con-
tributes equally. We shall later derive the Go model en-
ergy from a microscopic theory in the limit of well-
designed sequences. We shall show that Eq. (2.1) can be
used even when non-native energies do not vanish.
Moreover, corrections to it can be systematically com-
puted. It also turns out that the Go representation (2.1)
is exact for a system with independent random interac-
tions.

The Go model is often criticized as a model that ‘‘uses
the answer to answer the question,’’ i.e., uses knowledge
of the native state to describe folding. This is a valid
issue if one’s interest is structure prediction, but it is not
important for the question we address, i.e., how proteins
reach the native state. If one wishes to study the statis-
tical mechanics of proteinlike heteropolymers and, in
particular, to examine the nontrivial role of the poly-
meric entropy, use of Eq. (2.1) clearly delineates the
roles of energy and entropy. In particular, if one as-
sumes that the energy is linear in q, then the cooperat-
ivity of the transition must come purely from the nature
of polymeric entropy, and thus the cooperativity found
may be the result of general polymeric properties and
not interaction-dependent details.

2. Random-energy model

Imagine a protein folded in its native state, and then
unfold it and fold it into a completely unrelated confor-
mation. How does the energy change? In the new con-
formation, the set of contacting pairs of monomers is
totally different from that in the original native state. As
energy is mainly determined by interacting pairs of
monomers, this implies that energies of different confor-
mations could be unrelated to each other. Thinking in
terms of the theory of disordered systems (Mezard et al.,
1987) and identifying particular protein sequences with
particular random realizations of disorder, Bryngelson



266 Pande, Grosberg, and Tanaka: Heteropolymer freezing and design
and Wolynes (1987) came to the conclusion that ener-
gies of different conformations should be considered in-
dependent random variables. This idea corresponds pre-
cisely to the random-energy model, introduced by
Derrida (1980). Briefly, this model can be described as
follows.

Formally, to compute the partition function Z of an
arbitrary system, one needs only the energies
E1 ,E2 ,. . . ,EM of all microstates: Z5( i51

M exp@2Ei /T#,
where M is the number of states. Generally, M is huge,
as it scales exponentially with the number of particles
(monomers) N, M.exp(vN), where v;1 depends on
the conformations available, i.e., on chain flexibility,
packing conditions, lattice geometry in the case of lattice
models, etc. All of these energies depend, of course, on
the sequence. In the random-energy model, one says
that the energy of each conformation, say, E1 , is distrib-
uted over the realizations of disorder in the same way as
energies of all other conformations and is statistically
independent of them. If we call P(E) the probability
distribution of the energy of some particular conforma-
tion over disorder, and P(E1 ,E2) the joint probability
distribution that conformations 1 and 2 have energies E1
and E2 , respectively, then the basic assumption of the
random-energy model is that

P~E1 ,E2!5P~E1!P~E2!. (2.2)

It is also usually supposed that the P(E) distribution is
Gaussian:

P~E !5~2pNE 2!21/2 expF2
E2

2NE2G , (2.3)

where E is the characteristic width of the distribution,
but this assumption is far less important than the statis-
tical independence of states expressed in Eq. (2.2).

We now summarize the main properties of the
random-energy model (for more details, see Appendix
B):

(1) The defining property is the statistical indepen-
dence of states (2.2).

(2) The energy spectrum consists of a quasicontinuous
part, which is independent of disorder, and a few dis-
crete energy levels that are placed very individually for
each realization of disorder.

(3) The ground state for typical realizations is of order
AN below the edge of the continuous spectrum, which,
in turn, is of order N below the mean energy. Also, for
typical realizations discrete levels are of order AN from
each other.

(4) There is a certain temperature T freeze5E/A2v such
that at T.T freeze the system explores the high-entropy
continuous part of its spectrum, while at T,T freeze it is
locked with vanishing entropy into discrete individual
states.
(5) The free energy is given by the equation

F~T !5H 2T ln^Zseq~T !& if T.T freeze

2T freeze ln^Zseq~T freeze!& if T<T freeze ,
(2.4)

which means that the disorder is irrelevant above the
freezing point.
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Note that these properties are independent of the
Gaussian form of the single energy distribution (2.3).

3. Modifications of the random-energy model

One modification of the random-energy model was
motivated by the desire to describe lattices in which pos-
sible energy values are markedly discrete. The corre-
sponding ‘‘discrete’’ version of the model (DREM) has
been examined by Gutin and Shakhnovich (1993). This
model retains the statistical independence of states, but
it appears useful in sorting out the degeneracy of
computer-simulated lattice heteropolymer models.

The generalized random-energy model (GREM) rep-
resents a much more serious departure, as it allows for
some statistical interdependence between states. In par-
ticular, it was assumed in the work of Derrida (1985)
that all states form an ultrametric set, and correlations
exist between members of the same family, but not be-
tween different families. We shall discuss in more detail
the deviations from the random-energy model and the
relevance of correlations between states in Sec. VI.

The question of kinetics is, of course, very important
for protein folding. The random-energy model itself,
without additional assumptions, says nothing about ki-
netics: one needs to specify the states 1, . . . ,M and, for
example, assume which states are (mechanically, geo-
metrically, kinetically, etc.) next to each other in the
conformational space. This may seem easy for regular
spin models, in which an ‘‘elementary kinetic move’’ is
just a single spin flip; see the discussion, for instance, by
Parisi (1997). However, for the random-energy model in
general one must make some additional assumptions to
even speak about kinetics. An example of such an as-
sumption is discussed by Bryngelson and Wolynes
(1989). Of course, these additional assumptions may
contain—explicitly or implicitly—some bias toward the
native state. However, without such a bias, the model
itself would leave the Levinthal paradox unresolvable.
Indeed, if the energy landscape is pure uncorrelated
white noise, then, even if our system happens to come
very close (in terms of conformations) to the desired
native state, it cannot have any clue that the goal is
close, or any hint of which direction to go. Since there is
no bias, random-energy kinetics amount to diffusion in a
multidimensional space, which is certain to have a slim
chance of reaching the desired point. In fact, in this case
the folding time is the Levinthal time (Bryngelson and
Wolynes, 1989).

Thus, however useful the model may be for shaping
our views of folding thermodynamics, folding kinetics
will certainly require understanding the corrections to,
and deviations from, the random-energy model. In this
review, we shall concentrate on the equilibrium proper-
ties of proteins and proteinlike heteropolymers. For
more information on issues relating to kinetics, see the
recent reviews by Wolynes et al. (1995), Bryngelson
et al. (1995), Shakhnovich (1996), Dill and Chan (1997),
and Pande et al. (1998).
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B. Microscopic model: Compact globular heteropolymer

However useful phenomenological models may be,
the ultimate challenge is to achieve a complete molecu-
lar understanding and to build up a complete micro-
scopic theory, which starts from a microscopic, albeit
approximate and coarse-grained, Hamiltonian. As pro-
tein native states are globules, it is natural to begin with
a theory for compact, globular heteropolymers.

1. Energy

There are three important aspects of the problem,
namely, the quenched sequence of the particular set of
monomer species, interactions between them, and con-
formations of the polymer. The simplest Hamiltonian
that encompasses all three has the following form:

H~$sI%,$rI%!5(
I.J

N

BsIsJ
f~rI2rJ!. (2.5)

Capital Latin indices count the monomers along the
chain, sIP$1, . . . ,q% is the species of monomer I (and
thus the ordered list $sI% represents the polymer ‘‘se-
quence’’), q is the number of species, rI is the position of
monomer I (and thus $rI% represents ‘‘conformation’’),
Bss8 is the interaction free energy (i.e., including both
energetic and entropic effects of side chain interactions)
between monomers of species s with s8, and f(r) is the
interaction range function.

Throughout most of this paper, we shall consider
short-range interactions, where f(r)5D(r) is a function
concentrated on the neighboring sites in space:

D~r!5 H 1 when uru<r0

0 otherwise. (2.6)

On the lattice, r0 is naturally identified with the lattice
spacing. Thus our model simply says that the energy of a
polymer conformation is determined by the matrix of
species-species energies Bij for the monomers in con-
tact.

In writing the energy in the form (2.5), we implicitly
assume that all the following conditions are met:

• chain connectivity: points rI and rI11 are always
next to each other in space for all I;

• excluded volume: urI2rJu.v1/3 for IÞJ , where v is
the volume of monomers;

• dense packing: when structured as in their native-
state form, amino acid side chains are very well
packed. This can be modeled as monomers on a
lattice, with each of the N monomers occupying a
region with exactly N lattice sites. Thus the polymer
‘‘visits’’ every site once and only once.

The last condition describes compact globular states and
means, in particular, that the density of the globule can-
not fluctuate and is evenly distributed in space.

Equation (2.5) is an approximation, since it neglects,
for example, heteropolymeric three-body interactions,
which may be non-negligible due to the cooperative na-
ture of hydrophobicity. Nevertheless, it correctly cap-
tures most essential components of the problem, notably
interaction-induced frustrations for different conforma-
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tions. Also, the Hamiltonian (2.5) does not include any
signature or even any possibility of secondary structure
(such as a helices or b sheets), which is very important
for proteins. In considering the model (2.5) we assume a
coarse-grained representation of the polymer in terms of
some quasimonomers (Grosberg and Khokhlov, 1994),
in which the small-scale details of the monomer’s chem-
istry have been ‘‘renormalized out.’’ Thus, in het-
eropolymer lattice models, a single site represents some
arrangement of the elements of secondary structure,
rather than a single amino acid.

Interactions in our Hamiltonian (2.5) are only pair-
wise; this is generally incorrect. Moreover, interactions
depend on mutual rotations and other degrees of free-
dom for the monomers and not only on their coordi-
nates, as our Hamiltonian (2.5) implies. Finally, interac-
tions are not purely short range. We shall later address
the effect of long-range (e.g., Coulomb) interactions.

2. Conformations

a. Nature of conformation space

Various models of conformations have been moti-
vated by the desire to capture the essential physics while
keeping the model tractable. One common method of
drastically simplifying conformation space and making
the problem much more tractable computationally has
been to use lattice models for proteins.2 Lattice models
have a long history in polymer physics (see, for example,
Binder, 1995 and references therein).

Since protein native states are globules, any model of
folding or design must incorporate maximally compact
conformations. Examining only maximally compact con-
formations renders the problem much more tractable, as
the constraint of filling the space greatly reduces the
number of possible conformations and also allows one
to neglect complications due to density fluctuations.
Therefore it is not surprising that such models have be-
come common (Lau and Dill, 1989; Shakhnovich and
Gutin, 1990; Pande, Joerg, et al., 1994).

The enumeration of maximally compact conforma-
tions is much more feasible than, for example, the enu-
meration of all conformations of a chain with a given
length N. Nevertheless, exhaustive enumerations of
even maximally compact conformations of chains longer
than N527 require a great deal of computing power
(Pande, Joerg, et al., 1994). For example, 36-mers can be
easily enumerated on a massively parallel supercom-
puter. Pande, Joerg, et al. (1994) used a 128-node CM-5;
the maximally compact 48-mer conformations have also
been enumerated, but required 2 CPU weeks on the
128-node CM-5. For this reason 27-mers have become a
canonical model for folding and design studies. Recently
it has been conjectured that the number of contacts in a
space of 27-mers is similar to that found in short pro-

2See, for example, Lau and Dill, 1989; Shakhnovich and Gu-
tin, 1990; Camacho and Thirumalai, 1993; Olszewski et al.,
1996; Onuchic et al., 1996; Shakhnovich, 1996.
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teins (typically 60–80 amino acids; Luthey-Schulten
et al., 1995 Onuchic et al., 1995) thus 27-mers may be
reasonable coarse-grained models of small proteins.

Other sets of conformations have also been examined.
First, polymers have far fewer conformations in two di-
mensions than in three, so one can enumerate much
longer chains in two dimensions (Chan and Dill, 1993;
Dinner et al., 1994). Moreover, it has been argued that
enumerable two-dimensional chains (25-mers and 36-
mers, for example) have a surface-to-volume ratio more
like that of a protein than that of an enumerable three-
dimensional chain (a 27-mer or 36-mer; Chan and Dill,
1993). However, in general there are appreciable differ-
ences between two-dimensional and three-dimensional
models in statistical mechanics, and these differences are
more fundamental than, for example, the surface-to-
volume ratio. Such differences are well understood for
homopolymers (Grosberg and Khokhlov, 1994), and
thus there are no grounds to believe that heteropoly-
mers are an exception. Differences between two-
dimensional and three-dimensional heteropolymers will
be detailed in later sections.

A second approach is to enumerate in three dimen-
sions, but restrict the set of conformations. For example,
‘‘crumpled’’ 64-mers have been enumerated (a crumpled
64-mer consists of eight 23232 size 8-mer cubes, strung
together to make a single 43434 cube; Pande, Gros-
berg, Joerg, and Tanaka, 1996). They make an interest-
ing model as, unlike shorter chains such as 27-mers and
36-mers, crumpled 64-mers allow small-scale rearrange-
ments and perhaps model multidomain proteins
(Panchenko et al., 1995; Pande, Grosberg, Joerg, and
Tanaka, 1996).

We stress that sampling just the maximally compact
conformations may not be sufficient to describe the
freezing transition, especially if it is accompanied by a
coil-to-globule transition (i.e., the system goes directly
from a coil to a frozen globule phase; Klimov and Thiru-
malai, 1996; Pande, Gross, and Tanaka, 1997a). To study
all conformations, one must either perform Monte Carlo
kinetic simulations and use sampling techniques, such as
the Monte Carlo histogram technique (Socci and
Onuchic, 1995), to gather information about the density
of states or perform a full enumeration of all conforma-
tions. Of course, full enumeration of all conformations
(compact and noncompact) is extremely computation-
ally intensive and has been performed only for chains
with N<18 (Pande, Grosberg, and Tanaka, 1997b). On
the other hand, Monte Carlo simulations have been per-
formed on much longer chains, up to N5125 (Abkevich
et al., 1995).

Another aspect of modeling conformations is the
choice of the native state. In most of the simple models,
any of the maximally compact conformations appear
equally good for the role of the native state. However, it
was first noticed by Finkelstein et al. (1993) and later
stressed by Li et al. (1996) that some of the compact
conformations may be in some sense better; for ex-
ample, they may be more ‘‘designable’’ (Li et al., 1996).
We shall briefly return to this idea in Sec. VII.A.2.
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Finally, there has also been substantial progress in off-
lattice models, in which residues can take any position in
real space. Off-lattice models fall into two categories: (1)
realistic all-atom models, which are good at reproducing
specific chemical properties of proteins,3 and (2) coarse-
grained models, which trade atomic detail for computa-
tional tractability.4 Both models are now typically em-
ployed to examine protein folding kinetics, which is
beyond the scope of this review. We refer the reader to
other recent reviews on protein folding kinetics
(Wolynes et al., 1995; Dill and Chan, 1997; Pande et al.,
1998) for more details.

b. Contacts of monomers and overlap of conformations

The Hamiltonian (2.5) involves pair contacts of mono-
mers. According to our definition (2.6), monomers I and
J are said to be in contact5 if they are closer in space
than a certain cutoff length r0 : urI

a2rJ
au<r0 . The cutoff

D function facilitates counting these contacts, as the
number of pair contacts Fa for the conformation a is
simply

Fa5(
IÞJ

D~rI
a2rJ

a!. (2.7)

We are interested, however, not only in the total num-
ber of contacts in the current conformation a, but also in
how many of these contacts are also present in the na-
tive state !, because these contacts are typically of par-
ticularly low energy. To count this number of native
contacts, we first introduce the quantity

Qab5(
IÞJ

D~rI
a2rJ

a!D~rI
b2rJ

b!, (2.8)

which is called the ‘‘overlap’’ of two conformations a
and b. Qab represents the number of contacts that these
two conformations have in common. In terms of the
overlap, the fraction of native contacts for the conforma-
tion a is given by

3Such models have been proposed by Caflisch and Karplus
(1994); Li and Daggett (1994); Boczko and Brooks (1995); Van
Gunsteren et al. (1995); Tirado-Rives et al. (1997).

4These include the models of (Levitt and Warshel, 1975;
Thirumalai and Guo, 1995; Guo and Thirumalai, 1996; Rey
and Skolnick, 1996; Pande and Rokhsar, 1997).

5To avoid misunderstandings, we note here that our defini-
tion of contacts is somewhat the result of convention and is
model dependent. As soon as one considers more realistic
models, say an all-atom model of proteins, the position of each
residue cannot be specified in terms of a single vector rI , as
there are several atoms per residue and the side group of any
residue can rotate or deform. One can let the rI denote the
positions of the Ca atoms (carbon atoms of the main protein
chain to which the side group of the residue is covalently at-
tached). Then two amino acids are said to be in contact if the
distance between their respective Ca atoms is less than r0 ; for
example, in the work of Miyazawa and Jernigan (1985), r0 is
taken to be r056.5 Å. Clearly, such an approach disregards
possible rotations of the residues, the fact that they are of
different shapes, etc.
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qa[qa!5Qa! /Qmax , (2.9)
where the normalization factor in the denominator Qmax
stands for the maximal possible number of contacts,
which is restricted by the packing conditions and gener-
ally scales as N in the thermodynamic limit, N→` . We
note that typically the native state is as compact as pos-
sible, and thus Qmax equals the number of contacts in the
native state, that is, Qmax5Q!! .

c. Contact maps

Another equivalent way to describe conformations in
terms of pair contacts is to use the so-called contact ma-
trix, or contact map (Mirny and Domany, 1996). The
contact map of conformation a is defined as

CIJ
a 5D~rI

a2rJ
a!. (2.10)

The matrix element (I,J) is unity if monomers I and J
are in contact, and vanishes otherwise. In terms of con-
tact matrices, it is easy to rewrite both the Hamiltonian
(2.5),

H~$sI%,$rI%!5(
I.J

N

BsIsJ
CIJ

! , (2.11)

and the overlap parameter

Qa ,b5(
I.J

CIJ
a CIJ

b 5
1
2

Tr ĈaĈb. (2.12)

This representation is often useful.6

3. Interactions

Natural proteins include q520 species of monomers
(amino acids), and thus the interaction matrix Bij should
be 20320. Neither the values of the matrix elements nor
the characteristics aspects of models with a smaller num-
ber of species have been agreed upon in the literature.
The most commonly employed 20320 matrices for
simple models have been extracted from the statistics of
the protein database (Miyazawa and Jernigan, 1985; Ko-
linski et al., 1993; Mirny and Shakhnovich, 1996; Thomas
and Dill, 1996, and references therein). The fact that
rather different criteria are employed stresses that per-
haps none of the known matrices should be trusted ab-
solutely. Of course, the matrix Hamiltonian, Eq. (2.5), is

6In particular, one can calculate the thermal average overlap
directly from the thermal average of the contact matrix:

^Qa1a2
&5 (

a1a2

Qa1a2
Pa1

Pa2

5 (
aIa2

(
IÞJ

CIJ
a1Pa1

CIJ
a2Pa2

5(
IÞJ

^CIJ&
2,

where Pa is the Boltzmann probability of finding conformation
a in equilibrium. Furthermore, this relation is readily general-
ized for an arbitrary m conformation overlap. As freezing is
marked by the onset of overlap between conformations found
in equilibrium and ^CIJ& is straightforward to calculate, this is
a useful computational technique to measure freezing.
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itself an approximation, neglecting, for example, three-
body and long-range interactions.

At the opposite extreme, as hydrophobicity is be-
lieved to be the main driving force of protein collapse,
various models are used with just two monomeric spe-
cies, hydrophobic and polar (Chan and Dill, 1993). The
independent interaction model, in which the number of
monomer species is as large as the total number of
monomers, so that each matrix element Bij enters in the
energy of any conformation at most once and never
more than once, is somewhat special; matrix elements
are then taken independently from a Gaussian distribu-
tion. This model is convenient for theorists (as we shall
see in later sections). The most often used and natural
interaction matrices have been recently summarized by
Du et al. (1998).

One may ask how the solvent enters into our model
Hamiltonian (2.5). We assume that the solvent mol-
ecules equilibrate considerably faster than the polymer
and thus we integrate over all solvent degrees of free-
dom. This leads to an effective interaction between
monomer species, i.e., our interaction matrix Bij . For
example, the hydrophobic effect explicitly details the in-
teraction between oily molecules and water, but leads to
an effective attraction between hydrophobic molecules
as they come together in order to try to avoid the water
molecules (Chan and Dill, 1993).

4. Sequences: Microcanonical and canonical design

As mentioned in Sec. I.C.2, sequences of real proteins
are close to random; since only extremely sensitive sta-
tistical tools can detect the correlations present, the non-
randomness of sequences is crucially important. There-
fore the question is how to find those special sequences
capable of robust folding. In principle, this question has
two aspects, equilibrium and kinetic. The latter (how to
find sequences that lead quickly and reliably to folding
to the native state) is not completely understood at
present and falls beyond the scope of the present review;
see other recent reviews (Bryngelson et al., 1995;
Wolynes et al., 1995; Shakhnovich, 1996; Dill and Chan,
1997; Pande et al., 1998). We shall concentrate on the
former aspect, which is how to find sequences that are
thermodynamically stable in the desired conformation.
Throughout this review, we shall call this the desired
native target conformation !.

In general, when the sequence is quenched, the distri-
bution of the polymer over its conformations obeys the
standard Boltzmann formula:

Pconf~seq!5
exp@2H~seq,conf!/T#

(conf exp@2H~seq,conf!/T#

5exp@„F~seq!2H~seq,conf!…/T# , (2.13)

where F(seq)52T ln (conf exp@2H(seq,conf)/T# . This
is the probability distribution over conformations for a
given sequence; this distribution is realized when a real
polymer is immersed in a solvent and undergoes thermal
conformational motion. In the last line of this formula,
the free energy of the given sequence F(seq) comes as a
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conformation-averaged energy. In terms of this distribu-
tion, the objective of sequence design can be formulated
as finding a sequence for which the probability distribu-
tion (2.13) is peaked—as sharply as possible—at the de-
sirable conformation !. As Eq. (2.13) indicates, this
should be achieved by minimizing H(seq,!)2F(seq),
i.e., taking the sequence that has low energy in the con-
formation ! [H(seq, !) is minimal], or, more accurately,
whose energy in the conformation ! is minimized com-
pared to its energies in all other competing conforma-
tions.

This way of thinking about the sequence design is en-
hanced by insight gained from the random-energy ap-
proach. First of all, disordered systems usually obey the
self-averaging principle, and the free energy is typically
the same, or almost the same, for different samples, in
which realization of disorder is different. In the case of
heteropolymers, this implies that F(seq) is in fact inde-
pendent of the sequence. Of course, self-averaging holds
in the thermodynamic limit, and for any real computa-
tional model there is some sequence dependence of the
free energy. However, for the analytic theory, which op-
erates with the thermodynamic limit, we can safely ig-
nore the sequence dependence of F(seq) as long as the
overall monomer composition is fixed. A second and
even more significant simplification comes with the idea
that the energies of different compact states are inde-
pendent of each other, as stipulated by the random-
energy model. If this is true, selection of sequences with
any given value of H(seq, !) does not affect energies of
other compact conformations. More accurately, the dis-
tribution of energies of any compact conformation dis-
tinct from ! over the sequences is the same for both the
ensemble of all (random) sequences and the (much
smaller) ensemble of sequences restricted to a fixed
value of H(seq, !). Thus selecting sequences with small
H(seq, !) does not lead to sequences with low energies
in other competitive conformations—pulling the native
state down does not affect competitors.

This yields an extremely powerful prescription for se-
quence design: one selects sequences with the given
value of native-state energy E!5H(seq,!), not worry-
ing at all about other conformations. Selection of low E!

presumably yields good folder sequences, with lower E!

yielding target conformations with greater thermody-
namic stability.

The ensemble of sequences with a given ground-state
energy E! is similar to the microcanonical ensemble in
statistical mechanics. A design based on E! can be
called microcanonical. In statistical mechanics, it is tech-
nically more convenient to use the canonical ensemble
in which temperature is fixed instead of energy. A simi-
lar idea is also valid for sequence design. We use an
analog of the canonical ensemble in which the native-
state energy E! is not fixed, but rather controlled
through an artificial temperature which we call the de-
sign temperature Tdes. Equivalently, we constrain the
energy E!5H(seq,!) with a Lagrange multiplier 1/Tdes.
In this canonical ensemble, each sequence appears with
Boltzmann-distributed probability
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
Pseq
! 5

Pseq
~0 ! exp@2Hdes~seq,! !/Tdes#

(seqPseq
~0 ! exp@2Hdes~seq,! !/Tdes#

, (2.14)

where

Pseq
~0 !5)

I51

N

psI
(2.15)

is the probability for the sequences made randomly from
independent monomer species with occurrence prob-
abilities ps ,7 and Hdes is the Hamiltonian used for the
design. Normally, Hdes is close enough to H that the
difference between them is frequently neglected and Eq.
(2.14) is written directly in terms of H. Nevertheless, it is
important to write it in a more general form, as we shall
explain later (see Secs. IV.A.2.b. and VII.B.2.c).

Note that the normalization factor in the design dis-
tribution (2.14) is quite different from that in Eq. (2.13):
in Eq. (2.13), it incorporates the sum over real confor-
mations visited by the real chain during its real heat
motion; by contrast, in Eq. (2.14) it is the sum over dif-
ferent sequences. This is why the design prescription
based on Eq. (2.14) is often referred to as sequence an-
nealing. Indeed, the way to computationally realize the
distribution (2.14) is to run Monte Carlo dynamics simu-
lations in which elementary moves change monomer
species on top of the frozen conformation ! (Shakhnov-
ich and Gutin, 1993). Another way to obtain essentially
the same distribution (2.14), with the added advantage
of hints at some experimental paths, was suggested by
Pande, Grosberg, and Tanaka (1994b, 1995b) and called
‘‘imprinting.’’ This prescription works even for such
complex conformations ! as conformations with knots,
or with a pocket imitating the enzyme active site (Pande,
Grosberg, and Tanaka, 1994b).

Throughout this paper we shall mostly examine the
implications of the design prescription in Eq. (2.14), but
we first point out some of its obvious limitations:

• Equation (2.14) implies that overall composition of
the sequence is fixed. It may be advantageous to
relax this requirement, as was done by Morrissey
and Shakhnovich (1996).

• Self-averaging may be inaccurate, particularly for
relatively short chains of computer models. This
problem may also be exacerbated for some types of
interactions and conformations, such as, for in-
stance, the two-dimensional hydrophobic-polar
model. To circumvent this problem may require ex-
plicit minimization of H(seq,!)2F(seq) instead of
just H(seq, !). This is computationally very inten-
sive, because it requires summing over conforma-
tions for each sequence encountered during the
search through the sequence space. Nevertheless,

7If the polymer is prepared under conditions of equilibrium
with some ‘‘monomer supply bath’’ in which chemical poten-
tials of the species s are ms , then ps5exp(ms /T des)
3@( j exp(mj /T des)#21, where Tdes is the design temperature.
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this program has been carried out for some simple
models with good results.8

• The idea that sequence selection based on E! does
not affect other energies is certain to be somewhat
inaccurate (see Sec. V). It is sometimes said that
along with designing the desirable state ‘‘in’’ by
pulling E! down, we have to also design other states
‘‘out’’ by pulling their respective energies up (Yue
et al., 1995). Apart from difficulties in implementa-
tion, in practice such an idea is probably needed
only for some special cases, such as the
hydrophobic-polar model. The design implications
of Eq. (2.14) beyond the random-energy model are
poorly understood at present.

• In our formulation, we did not discuss how to
choose the target conformation !; in most of the
paper, we shall consider it to be chosen arbitrarily,
with the only constraint that of being compact.
However, it has been pointed out by Finkelstein
et al. (1993) and further stressed by Li et al. (1996)
that some of the conformations ! may be much
more designable than others. Again, this is particu-
larly important for models with few monomer spe-
cies. We shall touch upon this problem in Sec. VII.

• The big problem is, of course, kinetics: even if Eq.
(2.14) yields sequences with very low E! , this tells
us nothing about their kinetic ability to actually find
the conformation ! reliably and in a short time.
While this problem can be overcome computation-
ally via evolutionlike selection algorithms (Mirny
et al., 1998), it remains a challenge for analytical
theory. Nevertheless, canonical design according to
Eq. (2.14) produces sequences whose kinetic prop-
erties are much better than those of random se-
quences: they fold in times much shorter than the
Levinthal time (Shakhnovich, 1994), even though
other ways of speeding up the kinetics are possible.

In this review, we shall concentrate on the canonical
ensemble of designed sequences described by the distri-
bution (2.14). Although imperfect, this distribution ap-
pears very effective, and a close examination of it yields
insights that turn out to be valuable in looking for fur-
ther improvements. We repeat that the canonical en-
semble of sequences is characterized by the value of
Tdes: for lower Tdes, we model sequences whose native
states are better optimized energetically, while for
higher Tdes we are left with an unaltered ensemble of
random sequences. However, the ensemble with lower
Tdes has fewer sequences in it, and those sequences are
therefore more difficult to select.

III. DEVELOPING THE THEORY

A. Preliminary arguments

1. What is important about conformational entropy?

In this section we derive the basic equations for de-
scribing the folding thermodynamics of designed het-

8See the papers of Kurosky and Deutsch, 1995; Deutsch and
Kurosky, 1996; Morrissey and Shakhnovich, 1996; Seno et al.,
1996; Frauenkron et al., 1998; Micheletti, Seno et al., 1998.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
eropolymers. We begin with a hand-waving argument to
promote physical intuition and then discuss a formal
replica approach.

We shall consider polymers whose sequences are de-
signed, as explained and discussed in Sec. II.B.4 above.
While it may seem counterintuitive, it is useful to con-
sider a heteropolymer with a random sequence as a
poorly designed heteropolymer. Although we shall ex-
plain this in more detail later (see the last paragraph of
Sec. IV.A.2.a), it is worth saying here that sequence de-
sign plays the role of an external field; thus considering
designed sequences is useful in the same sense as exam-
ining an Ising model with an external magnetic field
sheds light on the Ising model itself. Considering de-
signed sequences means, in particular, that the native-
state conformation is assumed to be known a priori.
Therefore there is an obvious order parameter, which is
the overlap of a current conformation with the native
one, or simply the number of native contacts Q in a
current conformation. We shall use q5Q/Qmax , where
Qmax is the number of monomer-monomer contacts in
the native state.

The situation is particularly simple for a well-designed
sequence (Sec. VI.B), in which the energy is simply lin-
ear in q, because each native contact has a large energy,
while energies of all other non-native contacts are neg-
ligible. As we have already mentioned (Sec. II.A.1), this
property of well-designed sequences is formalized in the
Go model (Ueda et al., 1975), in which all non-native
contacts are explicitly supposed to have zero energy, and
all native contacts are supposed to have the same energy
e. For such a model, the free energy per monomer as a
function of the order parameter q can be written in the
form

f~q !5eq2Ts~q !, (3.1)

where s(q) is the entropy per monomer, which is related
to the number of conformations with the given number
of native contacts q. At the mean-field level, the optimal
q is determined by the minima of f(q).

Of course, it is not surprising that a well-designed het-
eropolymer (large absolute value of e; e,0) at low
enough temperature tends to go to the maximal possible
value of q, which is q51, and which is the native state—
this is how the model was made, and Eq. (3.1) simply
formalizes this fact. The remarkable property of pro-
teins is, however, not that they attain the ground-state
conformation at essentially zero temperature, but that
they remain in this conformation up to some finite tem-
perature, in the room-temperature range, with thermal
fluctuations causing very small perturbations in the na-
tive conformations. This property must be included in
s(q), and this is why the conformational entropy s(q) is
of decisive importance.

2. A naive estimate of conformational entropy

Equation (3.1) shows that the reliable selection of a
low-energy state based on contact interaction energies
between monomers can only be possible with a properly
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restricted set of conformations. In general, conforma-
tions are restricted by both excluded-volume and chain
connectivity constraints. To estimate the effects of chain
connectivity, let us imagine that each of the Q native
contacts implies the formation of a Gaussian loop (i.e., a
polymer loop subject to chain connectivity, but not ex-
cluded volume) by the polymer piece between two con-
tacting monomers. With Q contacts and a total of N
monomers, each loop has to have a length of about l
;N/Q;1/q ; since the probability of forming a loop by
an l-monomer-long chain scales as l23/2 (this is the
Yacobsen-Stockmayer factor; see, for example, Gros-
berg and Khokhlov, 1994), the entropic price for making
each loop is about 2(3/2)ln l.(3/2)ln q, corresponding
to an entropy per monomer of

s loop.~3/2!q ln q . (3.2)

To a crude approximation, s loop takes care of the re-
strictions imposed by chain connectivity. As regards
excluded-volume restrictions, we can crudely assume
them simply to add up for each contact, thus making a
linear in q contribution

sbond.sq , (3.3)

which we refer to as the bond entropy. This term simply
renormalizes e and makes it temperature dependent.

Finally, we have to take into account a combinatorial
factor, because there may be many ways to choose Q
native contacts out of the Qmax possible ones. In prin-
ciple, this choice is also affected by the chain connectiv-
ity and excluded-volume constraints; neglecting this ef-
fect, we can write (per monomer)

smix.2q ln q2~12q !ln~12q !. (3.4)

Thus we arrive at an entropy estimate of the form

s~q !5smix1sbond1s loop , (3.5)

which implies that the free energy (3.1) can be written as

f~q !/T.~e/T2s !q2~1/2!q ln q1~12q !ln~12q !. (3.6)

3. The ‘‘all or nothing’’ minimum

In the mean-field approximation, only the minima of
free energy (3.6) are relevant. For the model discussed
in the previous section, there are two free-energy
minima as a function of q, at q close to one and at q
50. The q'1 minimum corresponds to the native state.
The fact that it is not at q51 reflects, on the one hand,
the primitive character of the model considered; specifi-
cally, mixing entropy is strongly overestimated at large
q, where the choice of contacts to be formed is severely
restricted. On the other hand, to say that the native state
consists of one conformation is obviously an idealiza-
tion, and our model captures this fact correctly. More
interestingly, the q50 minimum represents a mixture of
all conformations having no native contacts; obviously,
there is a vast number of such conformations and they
are structurally completely unrelated to the native con-
formation. These two minima never come close to each
other in q, and there is a first-order transition between
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the two corresponding states depending on e/T : at low
T, the energy bias toward the native state dominates,
while at higher T the entropic tendency toward a liquid-
like mixture of states dominates.

Our arguments suggest the powerful conclusion that
freezing is the transition between a state with q50 and
one with q'1. Conformations with intermediate q,
which have some partial structural similarity to the na-
tive fold, never play any significant role in the thermo-
dynamics. Thus all relevant states are structurally com-
pletely independent, since their energies are due to
completely uncorrelated sets of contacts. This implies a
complete lack of statistical interdependence between en-
ergies of different states, which precisely corresponds to
the random-energy model of Derrida (1980).

To illustrate the internal mechanism behind the appli-
cability of the random-energy model, it is useful to gen-
eralize Eq. (3.6) to an arbitrary spatial dimension d. The
energy, bond entropy, and mixing entropy are all inde-
pendent of dimension, while the loop entropy scales like
(d/2)q ln q instead of (3/2)q ln q. Thus the only change
in Eq. (3.6) is that the coefficient of the q ln q term be-
comes (22d)/2 instead of 21/2. Provided d.2, the
qualitative picture remains unaltered, and we expect the
random-energy model to remain applicable. However,
for d<2 the situation changes dramatically and the main
issue is the thermodynamic balance between the native
state and a set of structurally related competitors. The
corresponding phenomena are poorly understood at
present, and we shall not consider them further.

For the three-dimensional case, the application of the
random-energy model allows us to go far without invok-
ing large-caliber theoretical guns such as replicas. His-
torically, indeed, the random-energy model was first
postulated for heteropolymers (Bryngelson and
Wolynes, 1987). We shall discuss later (see Sec. IV) both
the model itself and the possibility of building a theory
using it as an (educated) assumption. Before that, we
consider a more sophisticated theory to gain further in-
sight into why and under which conditions freezing fol-
lows a random-energy ‘‘all-or-nothing’’ scenario, with
just one native state dominating one phase and the mix-
ture of completely unrelated conformations representing
the other phase. This theory closely follows the blue-
print outlined in Eq. (3.6), with q playing the role of an
order parameter and with conformational entropy deter-
mined by the conditions of chain connectivity and ex-
cluded volume.

4. Limitations of these preliminary arguments

The argument based on Eq. (3.6) is heuristic, and our
estimate for entropy is primitive. Real loops are not
Gaussian, but are restricted by the excluded-volume
constraints. Mixing entropy is strongly affected by both
excluded volume and chain connectivity constraints.
Moreover, all those constraints become increasingly se-
vere when density increases and the conformation ap-
proaches the native state. However, one lesson that we
can extract from these arguments is as follows. For rea-
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sons of conformational geometry in three dimensions,
there are relatively few conformations structurally simi-
lar to the native state. This makes freezing to the native
state relatively easy, makes the random-energy model a
useful paradigm, and allows for simple prescriptions for
successful sequence design. All these circumstances
clearly deserve further investigation and will be treated
in the following sections.

Another comment concerns the use of q as an order
parameter. This is possible only for a designed sequence
for which the native state is known a priori, since q is
defined as q5Q/Qmax , where Q is the overlap with the
native state. For random sequences, when the native
state is unknown, a more complex order parameter must
be defined. This is related to the matrix Qab , where
Greek indices show all possible pairs of conformations,
since each conformation is a potential candidate for the
role of a ground state. As we shall show later, the en-
semble of all random sequences is dominated by those
for which freezing is a smooth, second-order transition.
However, designed sequences exhibit a sharp first-order
freezing transition. Considering random sequences as
the limit of poorly designed ones is thus similar to con-
sidering a critical point as an end of a first-order phase-
transition line.

B. Large incompressible globule

In the previous section, we outlined a simple model
for calculating the free energy of designed heteropoly-
mers. In this section, we detail a more rigorous and sys-
tematic theory, which will be valid in the limit of a large,
dense globule.

The approximations in this section are valid for glob-
ules that are large enough that one can ignore effects
related to the surface of the globule, including both
higher solvent exposure for monomers near the surface
and the entropic contribution associated with chain
loops in the fringe around the globule, as discussed by
Grosberg and Khokhlov (1994; see Sec. 20). The globule
should also be dense, or maximally compact, in the sense
that local packing density fluctuates neither in time nor
in space, remaining constant throughout the globule. In
terms of the lattice model, this latter assumption means
that every lattice site within the globule is visited once
and only once because of the excluded-volume con-
straint; thus a lattice model of such a conformation is a
Hamiltonian path on the sublattice.

While an analysis of the large-compact-globule ex-
treme requires one to employ the mean-field replica ap-
proach, the outcome of the replica treatment suggests
the approximate validity of the random-energy para-
digm of ‘‘complete overlap or no overlap’’ (as discussed
in the previous section). This allows one to circumvent
the complexities of replicas for many purposes and ob-
tain important results in a simpler fashion (see Sec.
IV. A. 3). The reader uninterested in purely theoretical
issues, such as why the random-energy model is valid in
the large-globule model, may skip this section.
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1. Self-averaging and the replica trick

In general, each particular chain is characterized by
the sequence-dependent free energy F(seq) defined be-
low Eq. (2.13). However, the free energy is believed to
obey the principle of self-averaging (Mezard et al.,
1987), which says that the probability distribution of free
energies for independent samples is very narrow and
thus the free energy for almost all of the sequences prac-
tically coincides with the mean free energy. Thus we
come to the idea of averaging the free energy over the
sequences, in this case, over the set of designed se-
quences.

Recall that the design procedure works for a particu-
lar target conformation, which we label !. Thus, if we
average over the sequences designed for !, we obtain a
!-dependent free energy. We shall assume that the self-
averaging principle is obeyed at this level, too, and we
shall thus average the free energy over all compact tar-
get conformations !.

The question of ! dependence has been examined in
the literature, first by Finkelstein et al. (1993) and later
by Govindarajan and Goldstein (1996) and Li et al.
(1996). It has been hypothesized that some particular
conformations, for instance, those with secondary struc-
ture, are in some sense better fitted for protein needs
and thus have been selected by nature. This viewpoint
has been particularly strongly expressed by Li et al.
(1996). For our purposes in the present section, we shall
average out these differences by formally averaging over
target conformations !. A theory for the ! dependence
of freezing remains an interesting unsolved problem.

As we adopt a statistical approach, we analyze prop-
erties of an ensemble, in this case the ensemble of de-
signed sequences. Thus we average over both sequences
and target conformations:

F[^F~seq!&52T^ln Z~seq!&, (3.7)

where ^¯& denotes averaging over target conformations
and F(seq) already averages sequences for a given tar-
get conformation. To technically perform the average of
ln Z we employ the replica trick, that is, we employ the
identity

F52T^ln Z~seq!&52T lim
n→0

^Zn~seq!&21
n

. (3.8)

The probability of the appearance of a certain se-
quence in the design procedure is given by the distribu-
tion (2.14). Noting that the chain partition function is
given by the sum over all (compact) conformations C,

Z~seq!5(
C

expF2
1
T

H~C ,seq!G , (3.9)

we arrive at the conclusion that the average of Zn over
Pseq is naturally treated as an additional replica:

^Zn~seq!&5 (
sequence

)
I51

N

psI (
C0 ,C1 ,.. . ,Cn

exp@2Keff# ,
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Keff5 (
a50

n

Ha~Ca ,seq!/Ta , (3.10)

where the following notations are used: a50,1, . . . ,n
are the numbers of replicas: Ca5C1 ,. . . ,Cn stand for
conformations of replica number a; replica a50 is at-
tributed to the target conformation !, that is, C05! ;
Ta5Tdes, the design temperature, for a50 and Ta5T
otherwise. Similarly, Ha5H for aÞ0 and H05Hdes.
Note that for brevity we skip all normalization factors.
We shall take care of all of them at the end.

Recalling the structure of the Hamiltonian for our
model, we can rewrite Eq. (3.10) as

^Zn&5 (
sequence

)
I51

N

psI(
$rI

a%

3expF1
2 (

a50

n

(
IÞJ51

N

BsIsJ

a d~rI
a2rJ

a!/TaG
5 (

sequence
)
I51

N

psI(
$rI

a%

3expF1
2 (

a ,b50

n E dR1 dR2

3(
i ,j

q

r̃ i
a~R1!Bi ,j

abd~R12R2!r̃ j
b~R2!G , (3.11)

where

Bij
ab[

Bij
des

Tdes
da0d0b1

Bij

T
~dab2da0d0b! (3.12)

is a matrix that expresses the interactions used for both
chain preparation (i.e., replica a50) and chain folding
(other replicas). In the latter transformation we have
used the definition of densities for monomers of a given
species, position, and replica:

r̃ i
a~R!5(

I51

N

d~sI ,i !d~rI
a2R!. (3.13)

Hereafter conformations are given in terms of posi-
tion vectors rI

a for each monomer number I in each rep-
lica a. It is important that the sum over rI

a run over
conformations. This means that the set rI

a for each
replica a satisfies the conditions of chain connectivity
(urI

a2rI11
a u<a) and excluded volume (urI

a2rJ
au>r0).

Moreover, as we are dealing with a maximally compact
globule, we assume that the density is spatially uniform:

r[ra~R!5(
I51

N

d~rI
a2R!5(

i51

q

r̃ i
a~R!. (3.14)

To facilitate the summation in which the condition of
chain connectivity is strictly obeyed, Edwards (Doi and
Edwards, 1986) introduced a path-integral representa-
tion, and Lifshitz (1968) introduced a similar discrete
representation. In many later studies, additional terms in
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the Hamiltonian have been introduced to enforce chain
connectivity, excluded volume, and compactness. We do
not introduce these, considering all three conditions as
quenched properties of the system, which define the set
of microstates, or conformations over which we perform
the partition sum.

2. Average over sequences

Inspection of the structure of Eq. (3.11) shows that
the exponent is a quadratic form with respect to density
(since we assume two-body interactions in the Hamil-
tonian). For simplicity we use vector, matrix, and scalar
product notations to rewrite

^Zn&5 (
sequence

)
I51

N

psI(
$rI

a%

exp@2Keff# ,

Keff5^r̃W uB̂„q~n11 !…
^ Î ~`!ur̃W &„q~n11 !`…, (3.15)

where we use superscripts as a shorthand notation to
denote the dimensionalities of the space involved. Spe-
cifically, superscript n11 represents replica space (index
a); q represents species space (i); and ` represents real
space (r) or, more precisely, the Hilbert space of func-
tions of r. We use here the operation of direct product
^, in the following sense: if there are two matrices (or
operators) of different dimensionalities r and s, say Â(r)

and B̂(s), then Â(r)
^ B̂(s) is the matrix of dimensionality

rs obtained by mapping the matrix AuvB̂(s) onto each
matrix element (u ,v) of Â(r) matrix. The properties of
this operation are summarized by Pande et al. (1995a).
Operator Î(`) is the identity operator with respect to
real coordinate space, meaning that it has the kernel
d(R12R2).

The most serious problem with Eq. (3.15) is that sum-
mation over the sequences, or over sI variables, is diffi-
cult, because monomers interact with each other and the
corresponding monomer variables are coupled. One ap-
proach to this problem is to trade coupling of monomers
for coupling of replicas by performing the Hubbard-
Stratonovich transformation on the quantity r̃ i

a(R),
thus introducing the conjugate fields f i

a(R)9:

^Zn~seq!&seq5(
$rI

a%
E D$f%expH 1

2 ^fW u~B̂21!„q~n11 !…

^ Î ~`!ufW &„q~n11 !`…J
3 (

sequence
)
I51

N

psI
exp$^fW ur̃W &„q~n11 !`…%.

(3.16)

9The Hubbard-Stratonovich transformation is the equality

exp@^r̃WuÂur̃W &#5~4p det Â!21/2E d$f%expF14 ^fW uÂ21ufW &1^fW ur̃W &G .
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In this section, we skip the normalization factor gener-
ated by the transformation; this factor will be canceled
while performing the inverse transformation. Thus the
sum over sequences involves only uncoupled monomers
in the last factor (the ‘‘source’’ term) of the partition
function above. This facilitates the summation over the
sequences:

exp$source term%

5 (
sequence

)
I51

N

psI
exp$^fW ur̃W &„q~n11 !`…%

5)
I51

N

(
i51

q

pi expH (
a50

n E dR f i
a~R!d~rI

a2R!J .

(3.17)

We now make the single most important approximation
of the theory: we expand the source term in powers of f
and truncate the expansion to O(f2). As we discuss
later (see Sec. VI.B.3), this approximation is equivalent
to a high-temperature expansion, or, in other words, an
expansion over the disordered part of the interactions.
We thus arrive at the following expression for the source
term:

(
i51

q

(
a50

n E dR ra~R!pif i
a~R!

1
1
2 (

i ,j51

q

@pid ij2pipj#

3 (
a ,b50

n E dR1E dR2 f i
a~R1!

3Qab~R1 ,R2!f j
b~R2!, (3.18)

where the replica overlap order parameter10 is defined
as

Qab~R1 ,R2!5(
I51

N

d~rI
a2R1!d~rI

b2R2! (3.20)

and obeys the relations

E dR1 dR2 Qab~R1 ,R2!5N ;

E dR2 Qab~R1 ,R2!5ra~R1!;

E dR1 dR2 Qab
2 ~R1 ,R2!5Qab , (3.21)

where Qab is the contact overlap (2.8).
We define a new matrix D̂(q) with elements

10One can also define the k-replica overlap

Qa1 ,...,ak
~R1 , . . . ,Rk!5(

I51

N

)
k51

k

d~rI
ak2Rk!, (3.19)

which enters into higher-order terms of the expansion.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
~D̂~q !! ij[pid ij2pipj (3.22)

and new vectors

rW „q~n11 !`…[r i
a~R!5pi(

I51

N

d~rI
a2R!5pi(

j51

q

r̃ j
a~R!.

(3.23)

Note that rW „q(n11)`…5rW „(n11)`…

^ pW (q). Using these defi-
nitions, we rewrite the (n11)-replica partition function
in the form

^Zn&5(
$rI

a%
E D$f%expH K fW U14 ~B̂21!„q~n11 !…

^ Î ~`!

1
1
2

Q̂ „~n11 !`…

^ D̂~q !UfW L „q~n11 !`…

1^rW ufW &„q~n11 !`…J . (3.24)

We evaluate this Gaussian integral over f and arrive
at11

^Zn&5
1
2 (

$rI
a%

exp@2Keff# ,

Keff5^rW uB̂effurW &1
1
2

ln det B̂eff , (3.25)

B̂eff5~B̂1/2!„q~n11 !…
^ Î ~`!@ Î „q~n11 !`…1~Q̂ „~n11 !`…

^ D̂~q !!

3~B̂„q~n11 !…
^ Î ~`!!#21~B̂1/2!„q~n11 !…

^ Î ~`!.

3. Saddle-point approximation and replica
symmetry breaking

a. Order parameter

Before going forward with the calculation, it is useful
to stop and examine the physics of what we are trying to
calculate. Equation (3.25) represents a standard polymer
globule partition function, with summation over com-
pact conformations and with pairwise interactions (be-
cause the effective Hamiltonian is still quadratic in den-
sities). The only unusual aspect is that, in addition to the
interaction between monomers as described by the ma-
trix B̂, there is an interaction between replicas, which is
introduced by the matrix Q̂ . Indeed, B̂ is diagonal in
replica space (3.12), while the matrix Q̂ is not. It is
sometimes helpful to imagine this situation in terms of a
braid of polymers, each folded in its own space, possibly
with different conformations. Importantly, however,
they are all homopolymers; there is no quenched disor-
dered sequence in the partition function (3.25). This al-

11We use a symbolic notation ln det B̂eff , which is poorly de-
fined for an infinite-dimensional matrix—if understood liter-
ally. The precise meaning of that symbol will become apparent
later. For now, we can formally imagine that our system is
constrained to a lattice within a finite box.
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lows, following Shakhnovich and Gutin (1989a), applica-
tion of the general Lifshitz consideration of globules
(Lifshitz et al., 1978), which amounts to the use of a gen-
eralized density distribution as an order parameter. In
this case, it is the matrix Q̂ that generalizes the density
distribution and has to serve as the order parameter.
Indeed, the dependence of Keff (3.25) on the conforma-
tion comes through Q dependence only (similar to the
usual case, in which the dependence on conformations
comes through density, for example, in the virial terms
Br21Cr3). We therefore have to pass from summation
over conformations to integration over Q̂ . First, let us
write this purely formally: as Eq. (3.25) is of the form

^Zn&5(
$rI

a%

exp@2KeffˆQ$rI
a%‰# , (3.26)

we have

^Zn&5E DQ exp@2F$Q%# ;

F$Q%5Keff$Q%2S$Q%, (3.27)

where the entropy is formally defined as

eS$Qab%5(
$rI

a%

dS Qab2(
I51

N

d~rI
a2R1!d~rI

b2R2!D . (3.28)

It is possible to avoid calculating this entropy explicitly
by resorting to the following set of arguments, yielding
at the end the simple expression (3.34).

b. Maximizing free energy in replicas

The mean-field evaluation of the partition function
implies a saddle-point approximation for the integral
over Q̂ , Eq. (3.27). Normally this means taking the
maximal value of the integrand. It is commonly believed
(Mezard et al., 1987), however, that in order to find the
correct analytic continuation in the n→0 limit, one has
to take the minimal value of the integrand, or, in other
words, the maximal rather than the minimal value of the
relevant free energy F. As there are n(n21)/2 indepen-
dent off-diagonal elements in the Qab matrix, for the 0
,n,1 case, the integral over Qab formally represents
the summation over a negative number of variables. Fol-
lowing this principle, we write

^Zn&5exp@2Max$Q%F$Q%# , (3.29)

i.e., we have to maximize the effective free-energy func-
tional (3.27).

c. One-step replica permutation symmetry breaking

To maximize the free energy, we employ a variational
approach. For a large spatially uniform globule we have

Qab~R1 ,R2!5Qab~R12R2!;E dR Qab~R!5r . (3.30)

We adopt a trial function w(x) normalized such that
*dx w(x)51, and write
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Qab~R12R2!5
r

~Rt
ab!d wS R12R2

Rt
ab D , (3.31)

where d is the dimensionality of space and the normal-
ization condition defines the coefficient. The details
about the form of w are not important, and for simplicity
we have chosen w to be Gaussian.

Rt
ab can be interpreted as the diameter of the tube in

which replicas a and b coincide. Thus when Rt
ab is small,

i.e., on a microscopic scale such as the distance between
monomers along the chain Rt

ab;a , then replicas a and
b overlap completely and are therefore essentially the
same conformation. When Rt

ab is of a macroscopic
length scale, such as the size of the globule Rt

ab

;aN1/d, then the two conformations are completely dif-
ferent, i.e., they do not overlap at all.

To determine the nature of replica symmetry break-
ing, we must consider the possible equilibrium values of
the overlap. To examine this, we now repeat the argu-
ments of Shkhnovich and Gutin (1989a) and examine
the free energy as a function of Rt

ab , which is a measure
of the overlap between replicas a and b. We assume that
the chain in the large globule behaves as a Gaussian on
scales smaller than the overall globule size. If that is the
case, confinement of a polymer in a tube is associated
with an entropic price (de Gennes, 1979; Grosberg and
Khokhlov, 1994) that scales as 1/R2. This is independent
of the overall shape of the tube and should be applicable
for confinement of, say, replica a to within Rt

ab from
replica b—if we believe that conformations inside the
large globule obey the Flory theorem and follow Gauss-
ian statistics. This argument, however, should be modi-
fied for replicas in the n→0 limit: for n,1 we expect
that confinement will be associated with an entropic bo-
nus and thus we expect the entropy contribution to scale
as 2(Rt

ab)22. As to the energy, it is seen from the most
simple normalization consideration that it scales as Q
and thus as (Rt

ab)2d (3.31). Therefore every aÞb term
of the free energy has the functional form

Fab52
A1

~Rt
ab!2 1

A2

~Rt
ab!d , (3.32)

where A1 and A2 are positive numbers.
For d.2 we find two maxima (we have to maximize

free energy at n,1), namely, Rt
ab5` and Rt

ab50. The
first corresponds to two replicas, a and b, which are in-
dependent and do not overlap at all (Qab50), while the
second corresponds to replicas that coincide at the mi-
croscopic level @Qab5rd(R12R2)# . Thus, from these
scaling arguments in Rt

ab , we conclude that Qab is of
the form

Qab~R1 ,R2!5rqabd~R12R2!

⇒Q̂ „~n11 !`…

5rq̂ ~n11 !
^ Î ~`!, (3.33)

where off-diagonal elements of the new matrix qab are
either 0 or 1, while qaa51.
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The situation is completely different in d<2, where an
optimum in Eq. (3.32) is reached at some nontrivial in-
termediate scale. Note that the simple arguments of Sec.
III.A.2 also indicate complications at and below d52. It
can be seen in both cases that the main problem in low
dimensions, as opposed to d.2, is that most of the
neighbors of each monomer in space are also neighbors
along the polymer. One aspect of the complications is
that replica symmetry breaking is of a more delicate
form, as discussed by Shakhnovich and Gutin (1989b).
Moreover, the use of the mean-field approximation is
problematic for this case. We shall not further explore
this low-dimensional case here and simply remark that
this problem is poorly understood at present.

Coming back to d53, we are now left with optimiza-
tion with respect to a much simpler object, i.e., an
R-independent matrix qab . To maximize the n-replica
free energy over qab means in fact finding the optimal
grouping of replicas. Indeed, there is the following obvi-
ous transitivity rule: if, say, Rt

ab50 and Rt
bg50, mean-

ing that conformations of replicas a, b, and g are all the
same, then Rt

ag50 as well. In other words, if qab51 and
qbg51, then qag51 as well. Using matrix row and col-
umn operations, we can organize any such matrix into
block-diagonal form. This means gathering replicas that
overlap in the groups and placing replicas of the same
group into the same diagonal block in the matrix. One of
the blocks is composed of z5y11 replicas that do over-
lap (i.e., practically coincide) with the ‘‘target’’ replica 0
(i.e., conformation !). The other (n11)2(y11)5n
2y replicas belong to n/x groups, with x replicas in
each:

This is, of course, just a one-step Parisi matrix (Mezard
et al., 1987).

One can say that y replicas here are ‘‘adsorbed’’ on
the target conformation, which plays the role of an ex-
ternal field. A similar situation exists in neural networks
(Amit et al., 1987), where the memorized image plays a
role analogous to that of the target conformation. On
the other hand, the grouping of the replicas in the
x3x size groups is due to spontaneous replica permuta-
tion symmetry breaking.
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d. Uncorrelated energy landscapes,
or the random-energy model

It is important to stress that the character of replica
symmetry breaking implies that the statistical properties
of a large incompressible heteropolymer globule are ac-
tually those of the random-energy model (Derrida,
1980). Indeed, the Shakhnovich and Gutin argument
(3.32), with its consequence (3.33), indicates that repli-
cas either coincide on a microscopic scale or are totally
independent. In other words, they represent either the
same conformation (microstate), or two unrelated con-
formations. This is precisely the defining property of the
random-energy model, in which different microstates
are assumed to be statistically independent.12

e. Replica free energy

Returning to our calculations, we note that our order
parameter has simplified tremendously: from a complex
object Qab(R1 ,R2), to a much simpler qab , and finally
to just two numbers, x and y, which describe the group-
ing of replicas.

Of course, grouping of replicas costs entropy. To esti-
mate this entropy, one has to bear in mind that confor-
mations of the replicas coincide down to the microscopic
scale if the two replicas belong to the same group, as is
manifested in Qab(R1 ,R2);d(R12R2) [see Eq. (3.33)].
Consider, for instance, a group of w replicas. The con-
formation of one of them can be chosen arbitrarily,
while the w21 other conformations must coincide with
the chosen one. For any one replica, the entropic price
associated with fixed conformation is obviously propor-
tional to the number of monomers13; we write it as
2Ns . For (n2y)/x groups of x replicas each and one
target group of y11 replicas, the entropy is therefore

12We remind the reader, that the estimates discussed in Sec.
III.A.2 suggest the use of the random energy model. Thus it is
reasonable to study heteropolymer freezing phenomenologi-
cally, i.e., assuming the validity of the random-energy model
from the very beginning. Historically this approach was first
implemented in the seminal work of Bryngelson and Wolynes
(1987). Recently we have formulated a simple yet rigorous ap-
proach allowing one to avoid the replica trick, while systemati-
cally controlling and understanding the relevant approxima-
tions employed (Pande et al., 1997c); in particular, using this
approach (discussed in detail in Sec. IV.A.3), one can start
with a microscopic Hamiltonian as in replica approaches and
derive aspects of the freezing transition, such as the effect of
interactions on the freezing temperature, without resorting to
the replica trick. The price one pays for this simplicity is that
one must, as in the early works of Bryngelson and Wolynes
(1987), assume the validity of the random-energy model rather
than deriving it. The applicability of the model will be exam-
ined in a separate section (Sec. V).

13As we have already noted, it would be more accurate to
count contacts between monomers rather than monomers
themselves, and N should be understood throughout this
section as the number of contacts in the maximally compact
globule.
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S52NsFn2y

x
~x21 !1yG . (3.34)

The sign is minus, because this is entropy reduction; s is
a microscopic parameter characterizing polymer chain
chemical bonds (polymer rigidity). We discuss an esti-
mate of s for real proteins later in Sec. VII.B.2.a.

It is conceptually simple, although rather cumber-
some, to simplify the expression for the energy (3.25) by
removing both real and replica spaces and expressing
the effective Hamiltonian in terms of x and y. As there is
either complete or no overlap, replicas of different
groups do not interact. This is why the resulting expres-
sion for the energy has a structure similar to that of the
entropy (3.34): the number of nontarget groups
(n2y)/x times the energy of one nontarget group, plus
the energy of the target group. This is detailed in
Appendix C.

The free energy of the replica system finally reads

F~x ,y !

NT
5

n2y

2x H ln detF Î1x
D̂B̂

T
G

1K pWUx B̂

T
F Î1x

D̂B̂

T
G21UpW L J

1
1
2

ln detF Î1
D̂B̂des

Tdes 1y
D̂B̂

T
G

1K pWUF B̂des

2Tdes 1y
B̂

2TGF Î1
D̂B̂des

Tdes 1y
D̂B̂

T
G21UpW L

1sFy1~n2y !
~x21 !

x G , (3.35)

where B̂des is the preparation matrix and Tdes is the de-
sign temperature. From now on, we shall drop the su-
perscript indications of dimensionalities, as all vectors
and matrices are now in species space only, which is q
dimensional.

f. Physical meaning of the D̂ operator

Before further analysis, let us examine the physical
meaning of the operator D̂ and the term D̂B̂ which ap-
pear throughout our formulae. From the definition of D̂
in Eq. (3.22), we have

~D̂B̂ ! ik5(
j

~pid ij2pipj!Bjk5piBik2(
j

pipjBij .

(3.36)

We can always write Bij in terms of a sum of a ho-
mopolymeric attraction (B0) and heteropolymeric de-
viations: bij5Bij2^B&. From Eq. (3.36), we see that D̂
removes the mean interaction of species k from all ma-
trix elements Bkj . In other words, D̂ removes all ho-
mopolymeric effects. Not surprisingly, if we formally
take D̂B̂50, we recover the familiar homopolymer re-
sults.
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g. Reduction theorems

There are several cases in which the same physical
system can be depicted in terms of formally different
interaction matrices B̂ , B̂des and/or composition vectors
pW . Clearly, the expressions for the freezing and folding
temperatures, as well as for any other real physical
quantity, must not depend on any arbitrary choice.

For example, there might be a monomer species that
is formally included in the list and in the interaction
matrix but that is not physically present in the chain, i.e.,
pq50. It is easy to check that in this case Eq. (3.35) is
reduced to a smaller list of q21 monomer species with a
(q21)3(q21) interaction matrix. Another example is
the case of duplicate species: consider species labeled q
and q21 which are physically identical, i.e., they inter-
act in identical ways to all other species. Physically, we
would expect this problem to be identical to the q21
species case, except with the new composition pq218
5pq211pq , and this was confirmed by Pande et al.
(1995a, 1995b), Eq. (3.35).

These two statements, which we call ‘‘reduction theo-
rems,’’ are both checks of the consistency of our result
(3.35) and are often useful for other applications, as well
(see, for example, Du et al., 1998).

4. Phase transitions in the large-globule model

Equation (3.35) depends on two order parameters, x
and y, implying that there are at least three phases in the
corresponding phase diagram: random, glassy (or fro-
zen), and folded (or target).14 To see the structure of the
phase diagram, which we discuss in the next section, we
first look at the allowed variations of the order param-
eters x and y.

For simplicity, we consider here only the small-s re-
gime. In this case, freezing transitions, which are our
chief concern here, occur when B, or, more precisely,
D̂B̂ , is also small. Indeed, freezing phase transitions re-
sult physically from the competition between energetic
and entropic parts of the free energy (3.35), where the
energetic part favors the gathering of replicas into
groups while the entropic part favors the diversity of
replicas. For the energy to be competitive with entropy
when s is small, B must be small as well. This allows us
to simplify Eq. (3.35), truncating it to quadratic order in
B. Moreover, the small-s and small-D̂B̂ regime is the
most reasonable regime to consider after we have trun-
cated the source term to O(f2) in Eq. (3.17). In prin-
ciple, Eq. (3.35), obtained by the truncation of O(f2),
may be valid outside this regime (i.e., not-so-small val-
ues of s); for this case, phase transitions are discussed by
Pande et al. (1995a, 1995b). However, if s is small, then
everything is simpler and all approximations are consis-
tent with each other.

14We remind the reader that we consider here the collapsed
maximally compact globule, and thus the globule-to-coil phase
transition falls beyond the scope of the present section. This
will be covered in Sec. VI.B.
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As y is the number of replicas whose conformation
coincides with the target conformation, this value must
lie between 0 and n. What is relevant in the replica ap-
proach is the n→0 limit; only terms that are linear in n
are to be considered, because higher-order terms disap-
pear in the main equation ^ln Z&5limn→0(^Zn&21)/n .
Accordingly, since 0<y<n , we must linearize the free
energy in y as well (Pande, Grosberg, and Tanaka,
1994c, 1995b). This leads to a further simplification of
Eq. (3.35):

F

NT
5TrF ~n2y !H D̂B̂

2T
2x

D̂B̂D̂B̂

4T2 1
P̂B̂

2T
2x

P̂B̂D̂B̂

2T2 J
1

D̂B̂des

2Tdes 1y
D̂B̂

2T
2y

D̂B̂desD̂B̂

2TTdes 2
D̂B̂desD̂B̂d

4Tdes2

1
P̂B̂des

2Tdes 1y
P̂B̂

2T
2

P̂B̂desD̂B̂des

2Tdes2 2y
P̂B̂D̂B̂des

2TTdes

2y
P̂B̂desD̂B̂

2TTdes G1sFy1~n2y !
~x21 !

x G , (3.37)

where Pij[pipj .
While y describes the breaking of the symmetry be-

tween n replicas due to their attraction to the target
replica labeled 0, x describes spontaneous symmetry
breaking. When we have an integer number of replicas
n, clearly 1<x<n : x cannot be smaller than unity, be-
cause it is the number of replicas in the group. When
n→0, this constraint on the number of replicas in the
group is no longer applicable, but it is natural to think
that formal inequalities for x simply flip signs: n<x<1.
With this in mind, we optimize the free energy (3.37)
with respect to x, yielding the equation that determines
x:

s5
x2

4T2 Tr@D̂B̂D̂B̂12P̂B̂D̂B̂#

5
x2

4T2 F(
i ,j

piBijBijpj2(
i ,j

piBijpj(
k ,l

pkBklplG .

(3.38)

The freezing transition occurs at the temperature at
which x51, when replicas start to group. This is a tran-
sition to a unique ground state which is not necessarily
(and most likely not) the target conformation.

To examine freezing to the target conformation, we
must look at the conditions at which y.0. Since only the
free-energy terms linear in y have physical meaning in
the n→0 limit, the free-energy optimum corresponds to
either y50 (nontarget phase) or y5n (target phase). To
find the corresponding critical temperature, we must ex-
amine the slope of the free energy in y to determine
whether y50 or y5n is the stable solution (Pande et al.,
1995b). The condition ‘‘slope’’50 yields the relation-
ship
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x2
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i ,j

piBijpj(
k ,l

pkBklplG . (3.39)

By examining the structure of our results (3.38) and
(3.39), we may see quite clearly their natural geometric
parametrization.

C. Geometric parametrization of the interaction matrices

While Eq. (3.39) describes the folding transition for
all interaction matrices, this general approach yields for-
mulas that are difficult to understand physically. Part of
this difficulty is a lack of means to understand differ-
ences between interaction matrices. We have seen that
the mean and variance of the matrix are two properties
that are important in folding, but clearly matrices differ
in other ways. In this section, we present a way of de-
scribing matrices using correlators that are relevant for
folding and design.

To describe a given interaction matrix, we formally
define an abstract vector space in which q3q interaction
matrices B̂ are now considered to be vectors. The rules
necessary to define a vector space trivially follow: B̂1

1B̂2→Bij
1 1Bij

2 , cB̂→cBij , . . . . As interaction matrices
are symmetric (Bij5Bji), our space is q(q11)/2 dimen-
sional. Let us define the average interaction

B̄5(
i ,j

piBijpj , (3.40)

which is a particular component of our vector B̂ , and
also

dB̂ij5Bij2B̄ , (3.41)

which represents the vector dB̂ with zero component
along the direction of the mean.

Most important, for any two vectors in this space, say
dB̂† and dB̂8, we can define the scalar product as

dB̂†
•dB̂85(

ij
pi dBij

† dBij8 pj . (3.42)

Note that this has nothing to do with the matrix product
of the corresponding matrices. Accordingly, the norm,
or length, of the vector dB̂ is defined via

dB25(
i ,j

pi dBij dBij pj5dB̂•dB̂ . (3.43)
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In other words, dB is the variance of the interaction
matrix and details the diversity of the interaction ener-
gies Bij .

Finally, we define an angle f†8
between vectors dB̂†

and dB̂8, or its cosine g†8
5cos f†8

, as

g[
dB̂†

•dB̂8

A~dB̂†
•dB̂†!~dB̂8•dB̂8!

. (3.44)

Obviously, g can also be viewed as a connected cor-
relator, or ‘‘cumulant,’’ of two matrices. ‘‘Parallel’’
(completely correlated) interactions yield g51 (f50)
and ‘‘orthogonal’’ (completely uncorrelated) interac-
tions yield g50 (f5p/2).

Thus an arbitrary interaction matrix can be written in
the form

B̂5B̄1dB b̂ , (3.45)

where b̂ is a matrix of zero mean and unit variance and
serves as the unit vector in our vector space. It is impor-
tant to note that the angle between two vectors B̂1 and
B̂2 is the same as that between the corresponding b̂1 and
b̂2. Obviously, unit vectors b̂ should be parametrized in
terms of the corresponding spherical angles.

For instance, in the two-species, even composition
case (q52, p15p251/2), there is only one polar angle u
to parametrize such a matrix, and the matrix can be pre-
sented in the form15

bij~u!5s is j sin u1
1

&
~s i1s j!cos u , (3.46)

where s i561 are ‘‘hidden Ising spins’’ assigned to each
monomer. What is nice about this parametrization is

b~u1!•b~u2!5cos~u12u2!. (3.47)

This approach, which, is known as the generalized black-
and-white model, is described in greater detail by Pande,
Grosberg, and Tanaka (1997c). At particular angles the
matrix described by Eqs. (3.45) and (3.46) reproduces
various particular cases studied in the literature (Pande,
Grosberg, and Tanaka, 1997c).

For example, one of the most widely used models is
the hydrophobic-polar model, which makes the simplifi-
cation that hydrophobic interactions provide the most
important driving force for protein collapse. The energy
of a protein globule is taken to be proportional to the
number of contacts between hydrophobic monomers. In
the spirit of Eq. (3.45), the matrix B̂ should be written as

S 21 0

0 0 D 52
1
4

1
)

4 S 21/) 1/)

1/) 1/) D (3.48)

which, by comparison to Eq. (3.46), means that the angle
u for the hydrophobic-polar model is uHP5arccos@A2/3#

15A similar but more cumbersome expression for arbitrary p1
and p2 (p11p251) is given by Pande, Grosberg, and Tanaka
(1997c).
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'35°. Curiously, this angle corresponds to the maximal
skewness of the matrix (3.46) h(u)5(1/4)S i ,jbij

3 5
23 cos2 u sin u.

In the next section, we shall examine the conse-
quences of our results (3.38), (3.39), and discuss the cor-
responding phase diagram.

IV. PROPERTIES OF HETEROPOLYMERS
IN THE RANDOM-ENERGY MODEL

In Sec. III, we found that a random-energy type freez-
ing phase transition occurs in a heteropolymer globule
under the appropriate circumstances. In this section, we
describe the heteropolymeric properties that result from
a random-energy-model description.

A. Phase diagram

We begin with the phase diagram of the large incom-
pressible globule model (Sec. III.B). All of the phases
here are globular (i.e., compact). Since our system is
described by two order parameters, x and y, we expect
three globular phases, which we call random, frozen (or
glassy), and folded (or target). We have already arrived
at the condition (3.38), which determines the equilib-
rium grouping of nontarget replicas, and the condition
(3.39), which determines the conditions of the ‘‘switch’’
between y50 (none of the replicas in the target group)
and y5n (all of the replicas in the target group).

In terms of our geometric definitions, Eqs. (3.38) and
(3.39) read

s5
x2

4T2 dB2; (4.1)

s5
x

2TTdes dBdBdes g2
x2

4T2 dB2, (4.2)

where the g factor has been defined in Eq. (3.44), Tdes is
the design temperature, and Bdes is the preparation ma-
trix. We now examine the consequences of these results,
starting from the simplest case, random sequences.

1. Random sequences

Random sequences are obtained in the limit Tdes

→` . Freezing occurs when replicas start to group, or x
starts to deviate from 1, thus spontaneously breaking the
permutation symmetry. Therefore the freezing tempera-
ture is given by the relation

T freeze
2 5dB2/4s . (4.3)

In other words, the freezing temperature is given by the
variance of the renaturation interaction matrix (Pande
et al., 1995a). Note that this is a transition to a unique
ground state, which is not necessarily (and most likely
not) the target conformation. We call this phase the
glassy (or frozen) phase and we call the high-
temperature disordered phase in which there is no form
of freezing (i.e., many conformations dominate equilib-
rium) the random phase. In this sense, the random phase
is actually reminiscent of a large homopolymer globule.
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FIG. 1. Phase diagram of globular heteropolymers, based on the random-energy model. There are three phases: (1) Random: an
exponential number of globular conformations dominate equilibrium (similar to a homopolymer globular state); (2) Glassy: for
sequences that are not well optimized (sufficiently high design temperature Tdes), only one (or a few) conformations dominate
below the glass temperature T freeze , but these conformations are not the target conformation; one can consider random-sequence
ground states to be ‘‘poorly optimized’’ at Tdes5T freeze ; (3) Folded: the target conformation ! dominates equilibrium; for Tdes

,T freeze , ! is better optimized than the ground state of random sequences. In (a) these three phases are shown for a heteropoly-
mer whose sequence has been designed using the same interactions that govern folding. The gap is shown in which folding is the
most reliable, as the target state is thermodynamically stable, while freezing into any other conformation is not even metastable.
The gap is broader for the sequences prepared at low Tdes. This is why lower Tdes leads to better folders, while these sequences
are harder to select (there are far fewer of them). Part (b) shows a similar diagram for folding and design with interactions that are
somewhat different. In this case, the phases are labeled a little differently: when the system is pushed into the random globule
state, no folding is observed, i.e., exponentially many conformations are found in equilibrium. If the ground state is destabilized,
but the acting temperature is below the freezing temperature, the system freezes like a random sequence and the protein misfolds.
The equilibrium value of the order parameter x is thus
equal to

x5H 1 when T.T freeze

T/T freeze when T,T freeze .
(4.4)

The linearity of x in T/T freeze below the freezing point
indicates a first-order phase transition (Mezard et al.,
1987). We also remind the reader that according to the
general interpretation (Mezard et al., 1987), x is equal to

x~T ![12(
a

Pa
2 , (4.5)

where the sum is over all maximally compact conforma-
tions a and Pa is the probability that conformation a is
found in equilibrium i.e., Pa5Wa /Z , where Wa
5exp@2H(conf5a ,seq)/T# is the Boltzmann weight of
conformation a and Z5SbWb is the partition function.
Clearly, x is related to the number of thermodynamically
relevant (micro)states, M: assuming Pa;1/M, we get
M51/(12x). Thus this number decreases sharply be-
low T freeze .

Note that Eq. (4.2) does not contain the design tem-
perature Tdes at all, which means that the freezing tem-
perature, at which the glassy phase becomes thermody-
namically favored over the random phase, is
independent of Tdes. This is clearly the result of the sta-
tistical independence of states: while design at finite Tdes

does affect the energy of the chain in the target confor-
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mation !, it does not affect the energies of any other
conformation and thus does not affect T freeze . This is
reflected in Fig. 1(a), in which the phase diagram is
shown in terms of the acting temperature T (at which a
polymer ‘‘lives’’ in solution) and design temperature
Tdes (which controls the type of the sequence). We see
that at sufficiently high Tdes there is a line of freezing
transitions that is horizontal (i.e., independent of Tdes).
Heteropolymer freezing for random-sequence het-
eropolymers was first described by Shakhnovich and
Gutin (1989a).

2. Designed sequences

Equation (4.2) describes freezing to the target confor-
mation !. We call this the folding transition, and the
corresponding phase is the folded (or target) phase. In
this phase, the system freezes to the target conforma-
tion. The folding transition is marked by the conditions
at which replicas start to group with the target replica,
i.e., y switches from 0 to n. To write the equation that
defines the folding phase boundary, it is convenient to
define the boundary temperature T freeze

des according to the
equation

~T freeze
des ! 25dBdes

2 /4s . (4.6)

Equation (4.6) is similar to Eq. (4.3), except it includes a
preparation matrix B̂des instead of B̂ ; physically, T freeze

des
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is the temperature at which a random heteropolymer
would undergo a freezing transition provided its confor-
mations are governed by the B̂des interaction matrix.
T freeze

des sets a natural scale for Tdes. Solving for the con-
dition in which y switches from 0 to n, we find the
boundary of the folded phase, which is easier to write in
terms of the critical value of the design temperature:

Tcr
des

T freeze
des 5H g

2T/T freeze

11T2/T freeze
2 for T>T freeze

g for T<T freeze ,
(4.7)

where Tcr
des is the critical value of Tdes at which the de-

sign of sequences becomes effective enough to make the
target conformation the ground state, and g is defined in
Eq. (3.44).

Equation (4.7) implies that the boundary between the
folded and glassy phases is always vertical on the phase
diagram. Equation (4.7) has a clear physical meaning: as
both phases are characterized with negligibly small en-
tropies, the transition between the two cannot be con-
trolled by a temperature change. As Tdes is a quenched
property (due to the quenched sequence), for g51, a
given sample may exhibit either a regular freezing tran-
sition to the glassy phase or a folding phase transition to
the target phase, but not both. As long as we consider
the vicinity of the triple point on the phase diagram (Fig.
1), Eq. (4.7) can also be rewritten in terms of T fold , the
temperature at which the random-to-folded phase tran-
sition occurs:

T fold

T freeze
511&F12

Tdes

gT freeze
des G 1/2

. (4.8)

a. Design and folding governed by the same set
of interactions

We now consider the simplest case: B̂5B̂des or g51,
for which T freeze

des 5Tdes. The phase diagram shown in Fig.
1(a) represents the central point of this review. Its appli-
cability to specific systems such as proteins will be dis-
cussed in Sec. VII. The main feature of the diagram is
that for well-designed sequences, the folding phase tran-
sition occurs at a higher temperature than the freezing
transition of a random sequence.

To gain insight into the physical nature of this result,
let us consider a model with a discrete set of conforma-
tions, such as a lattice model, and discuss the spectrum
of energies of all conformations. For a random se-
quence, this spectrum typically looks like those shown in
Fig. 2: there is a very high density of states at medium
energy and a few, sparse low-energy levels. This is a
typical random-energy-type spectrum (see property 2,
Sec. II.A.2). At low Tdes, sequence design selects se-
quences whose energy in the target state is low: design
‘‘pulls down’’ the target-state energy. Decreasing Tdes

lowers the target-state energy of the corresponding se-
quences. As long as the assumption of the random-
energy model is valid, the energies of all other confor-
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
mations remain statistically unaffected by design, and
thus design does not pull the energies of nontarget con-
formations, as is illustrated in Fig. 2. It is therefore not a
surprise that, at low Tdes, freezing to the target state
occurs at a higher temperature than that for freezing to
a randomly chosen conformation of the glassy phase.

Furthermore, if we consider a polymer whose se-
quence has been prepared at Tdes,T freeze , we then find
a gap between the folding temperature T fold and the
glass temperature T freeze . This gap in temperature re-
flects the gap in the energy spectrum between the low
‘‘pulled’’ target-state energy and the other higher levels.

The question of the gap has been extensively dis-
cussed in the literature,16 both in terms of the difference
between temperatures T fold and T freeze and in terms of
the gap between energy levels. Based on phenomeno-
logical arguments, it has been argued that in order for a
protein to fold successfully, there must be two distinct
temperature scales, with a gap between them (Shakh-
novich, 1997). It seems reasonable to identify these two
characteristic temperatures with T fold and T freeze , re-
spectively, which are well-defined quantities. There was
also a debate in the literature (Klimov and Thirumalai,
1996; Shakhnovich, 1997) as to the existence, meaning,
and significance of the gap in the energy spectrum. As
we see, in the random-energy theory there is a one-to-
one correspondence between the two gaps (T fold
2T freeze and E2E. .) We shall show, however, that a
more accurate theory, which incorporates corrections to
the random-energy model and deviations from it, pre-
dicts that a small number of states have energies pulled
down together with that of the native state, so that the
idea of a gap in the energy spectrum appears valid but
requires further clarification (see Sec. VII below). More-

16See, for example, Goldstein et al., 1992; Shakhnovich and
Gutin, 1993; Pande et al., 1995b; Socci and Onuchic, 1995; Kli-
mov and Thirumalai, 1996; Shakhnovich, 1997.

FIG. 2. Typical random-energy-model spectra. Design affects
one particular energy level. When the design temperature Tdes

is high, this level is lost in the sea of others. When Tdes de-
creases, it is pulled down out of the sea of random-energy
states.
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over, these states appear to be decisively important for
the kinetics of folding.

From the discussion above, we can draw one more
conclusion regarding random sequences in our model.
The limit Tdes→` means that all sequences are weighted
equally. Thus the target conformation ! has no meaning.
However, it is often convenient to consider folding prop-
erties of random sequences, where ! is now the ground
state of a given random sequence. In this sense, one can
view random sequences as sequences designed at the
temperature that is equal to that of freezing: Tdes

5T freeze . Indeed, when Tdes5T freeze , design has not yet
done anything to the overall appearance of the spectrum
of energy levels, since E! lies where one normally ex-
pects to find the lower energy levels. Due to design, we
only know which particular state is the ground state,
while in all other respects the properties of the sequence
are just that of any random sequence. In other words,
for Tdes5T freeze , we select ‘‘typical’’ (i.e., not optimized)
sequences that have the desired ground state !. Simi-
larly, Tdes5T freeze1e , where e is small and positive, has
the physical meaning of selecting sequences that have !
as a low-energy state, but not necessarily the lowest.

b. Design and folding governed by two different sets
of interactions

When design and folding are governed by two differ-
ent sets of interactions, the interactions can be different
in a number of ways. Most simply, one can imagine that
the polymer folds under different solvent conditions
compared to the environment in which it was designed.
As another example, consider a computer simulation of
protein folding or design. One must approximate the na-
ture of the interaction potentials involved. This leads
directly to a problem: we believe that protein sequences
have been designed by Nature, and this natural design
was obviously governed by natural interactions; we are
now trying to fold this same polymer using simulated
potentials, which can be considered as a distorted or
‘‘noisy’’ copy of the ‘‘true’’ interactions. Equivalently,
consider the computer design of sequences using ap-
proximated potentials and then folding experimentally
in vitro.

The difference between interactions affects the phase
diagram. According to Eq. (4.7), the value Tcr

des is pro-
portional to g. The appearance of a positive but incom-
plete correlation (0,g,1) leads to an affine deforma-
tion of the boundary of the target-phase region, as
illustrated in Fig. 1(b). At g50, the target region disap-
pears, and it does not exist at g,0. This is clear because
when matrices B̂ and B̂des are anticorrelated, design
does not help, but rather inhibits folding into the desired
conformation, by raising the energy of !. This consider-
ation also makes clear that the very existence of a cor-
rectly folded phase is due to design: design optimizes the
ground-state energy to such an extent that moderate
mistakes do not harm its stability. We also conclude that
the ‘‘angle’’ between matrices, given by the factor g
(3.44), is an adequate measure of their proximity.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
One can use the difference between interactions to
simulate mutations. Experimentally, it is extremely in-
formative and useful to design new mutant proteins (by
means of protein engineering) and examine the changes
in folding in response to the mutations. In light of our
discussion, we can assume that mutations change the de-
gree of optimization of the native-state conformation
(which presumably remains close enough to the original,
unmutated native-state conformation). As long as that is
the case, a simple way to simulate mutants would be to
change the degree of optimization by designing the se-
quence under somewhat distorted interactions, in other
words, using interactions that are ‘‘turned’’ by a certain
mutation angle du compared to folding ones (see Sec.
III.C). This approach has been fruitfully used by Pande
et al. (1997b) and Vendruscolo et al. (1997).

3. ‘‘No-replica’’ derivation of the phase diagram

The theory derived above in Sec. III.B is a truly mi-
croscopic theory, in the sense that its starting point is a
microscopic, albeit simplified, Hamiltonian (2.5). The
fundamental approximation involved in this theory can
be called one-step replica symmetry breaking with no
overlap between groups. This is equivalent to the ap-
proximation of uncorrelated energies of the (mi-
cro)states. We have provided proof of the validity of this
approximation for a large incompressible globule in 3D,
both through a simple physical argument (see Sec.
III.A.3) and by more formal considerations (Sec.
III.B.3.c), as was first done by Shakhnovich and Gutin
(1989a). However, if one is interested only in getting to
specific results, one may choose to skip the question of
whether the random-energy model is valid and explicitly
take this model as an assumption, or (educated) guess,
from the very beginning, as was done originally by Bryn-
gelson and Wolynes (1987). Then it is possible to derive
the entire phase diagram (Fig. 1) based on this assump-
tion. In this section, we briefly describe this derivation
(for details, see Pande et al., 1997c).

The approach is based on Eq. (2.4), which states that
for a random-energy model above the freezing tempera-
ture, the quenched average free energy ^ln Z& coincides
with the annealed average ln^Z&. Thus one need com-
pute only the annealed average free energy, which is
considerably simpler than calculating the quenched free
energy. To compute ln^Z&, we resort to the first non-
trivial order of the high-temperature expansion, which
for the Hamiltonian (2.5) yields

Fann av~T !.QF B̄2
dB2

4T G2TQs , (4.9)

where Q;N is the total number of contacts in the glob-
ule, and eQs is the total number of (maximally compact)
conformations. Here s is the same as in Eq. (3.34) above.
Given that above T freeze , F(T)5Fann av , we examine the
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condition that the entropy vanishes,

S~T freeze!52
]F

]TU
T5Tfreeze

50, (4.10)
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which signals the freezing transition, and recover pre-
cisely Eq. (4.3). Furthermore, we use the probability dis-
tribution (2.14) and consider the design average native-
state energy
^E.~seq!&5(
seq

Pseq
. E!~seq!5

(seqPI51
N psI

expF2
Hdes~seq,! !

Tdes G•H~seq,! !

(seqPI51
N psI

expF2
Hdes~seq,! !

Tdes G , (4.11)
with Hamiltonians Hdes and H defined according to Eq.
(2.5) with matrices B̂des and B̂ , respectively. Simple al-
gebra allows us to rewrite this in the form

^E.~seq!&
T

52
1

W.

]W.

]n U
n→0

52
] ln W.

]n U
n→0

, (4.12)

where W. is the annealed average partition function

W.5 K expF2
Heff~seq,! !

T G L
5(

seq
Pseq

(0) exp@2Heff~seq,! !/T# , (4.13)

and the effective Hamiltonian Heff is given by

Heff~seq,! !

T
5

Hdes~seq,! !

Tdes 1n
H~seq,! !

T
. (4.14)

This represents our usual Hamiltonian (2.5), except with
a new interaction matrix,

B̂eff

T
5

B̂des

Tdes 1n
B̂

T
. (4.15)

To lowest order in 1/T and 1/Tdes, the annealed average
free energy is independent of ! (because all compact
conformations have the same number of monomer con-
tacts Q), and it is given by

2
ln W.

T
5QFBeff2

dBeff
2

4T G , (4.16)

in complete analogy with Eq. (4.9). We compute dBeff
2

using the scalar product rule (3.42) and thus obtain

^E.&5QF B̄22
dBdes dBg

2Tdes G . (4.17)

Finally, comparing this with the free energy of the ran-
dom phase, which above T freeze is given by Eq. (4.9), we
recover the result (4.7) for the folding phase transition.

The above derivation is interesting in two respects.
First, the n→0 limit in Eq. (4.12) appears independently
of replicas. As all of our operations mathematically par-
allel those one would employ with the replica trick, this
derivation sheds light on the replica trick itself. Indeed,
here n has the physical meaning of a source field that
tests the response of the designed sequence to folding
interactions.

Second, the nature of our theory is connected with the
truncated high-temperature expansion for an annealed
system. Note that the single most important approxima-
tion of the replica analysis is the truncation to f2 terms
in Eq. (3.18), which is equivalent to a high-temperature
expansion. Physically, the high-temperature expansion is
surprisingly applicable in the heteropolymer freezing
problem. At high temperatures, the system is dominated
by a single energy scale of the interaction matrix: the
variance dB2. For matrices with uncorrelated elements,
i.e., Gaussian random interactions as in the
independent-interaction model, dB2 is the only energy
scale and thus there are no further terms of the high-
temperature expansion. Correlations exist in more real-
istic matrices, and thus the consideration of higher-order
terms in the high-temperature expansion is necessary to
capture these details. Such effects describe new and in-
teresting physics, including microphase segregation in
the globule (Chan and Dill, 1991; Sfatos et al., 1993) at
low temperature. We shall not discuss these effects here.

B. How many designed sequences are there?

1. Sequence-space entropy

We mentioned in the Introduction that the evolution
paradox results from the need to select relatively few
‘‘good’’ sequences out of a very large sequence space.
Moreover, it is qualitatively clear that better optimized
sequences are more difficult to select. However, we can
make this statement quantitative and ask, What is the
fraction of all sequences with the given degree of opti-
mization, or with the given native-state energy E.? It is
easier to work with canonical design and ask how many
sequences there are in the ensemble that result from the
design at a given Tdes. Indeed, as long as we bypass the
kinetics of sequence selection and consider the canonical
design model with an equilibrium distribution in the se-
quence space (2.14), then the question of the number of
sequences is immediately answered in terms of the cor-
responding entropy in the sequence space:

S.~Tdes!52
]~2Tdes ln Z.!

]Tdes , (4.18)
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where

Z.5(
seq

exp@H~seq,! !/Tdes# . (4.19)

(We assume for simplicity here that the design is per-
formed with the Hamiltonian H5Hdes.)

To begin with, it is useful to keep in mind the expres-
sion for the total number of sequences, which follows,
for instance, from Eq. (4.18) in the Tdes5` limit:

N5(
seq

15qeff
N ;

ln qeff52(
i51

q

pi ln p1<ln q , (4.20)

where the effective number of monomer species qeff
reaches its maximal value of q if and only if all species
are equally abundant (pi51/q).

In principle, the entropy S.(Tdes) depends on both
Tdes and target conformation !, as indicated by a sub-
script. However, in the volume approximation adopted
here this ! dependence is negligible. Indeed, if we resort
to a high Tdes expansion, then to the order O(1/Tdes2

) we
get

S.5ln N2^d H2&/2Tdes2
; (4.21)

d H is the part of the energy due to dB̂ , and ^¯& means
an average over sequences. Similar to what we have in
Eq. (4.9), we find that ^d H2&5QdB2/2 is independent of
!, because it depends only on the number of bonds Q,
which is the same for all maximally compact conforma-
tions including !. It is convenient to express dB in terms
of T freeze using Eq. (4.3); we then get in terms of the
number of sequences designed at the temperature Tdes

for the conformation !

N.~Tdes!5N exp@2Qs~T freeze /Tdes!2# . (4.22)

First let us look at what our answer yields for Tdes

5T freeze . We know that the ensemble of sequences pre-
pared at Tdes5T freeze includes all—let us call it
N

.

(0)—sequences for which ! is the ground state. As
each sequence has its ground state on one of the com-
pact conformations, and as we neglect the dependence
on the particular compact conformation !, it is not sur-
prising that what we get for N

.

(0) is the number of all
sequences N divided by the number of compact confor-
mations, exp(Qs).

We can now rewrite Eq. (4.22) in terms of N
.

(0) :

N.~Tdes!5N
.

~0 ! exp@Qs„12~T freeze /Tdes!2
…# . (4.23)

It is plausible, although we do not have any proof, that
the random-energy model and its consequence, Eq.
(4.23), remain valid to a reasonable approximation even
when the volume approximation fails and ! dependence
becomes significant due to the sublinear in N (or Q)
terms in entropy. If that is the case, then N

.

(0) should be
interpreted as the designability of the conformation !

with respect to the given set of interactions B̂ , and Eq.
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(4.23) describes how the number of designed sequences
decreases with respect to pure designability when one
wants to select really well-optimized sequences.

2. What is the best possible design?

Another interesting aspect of formula (4.23) is that it
predicts a limit to improvements: since there should be
at least one sequence, N.(Tdes)>1, there is a minimal
design temperature. Noting that Q;N and, introducing
the conformational entropy per monomer v such that
Qs5Nv , we get

Tdes/T freeze>v/ln qeff . (4.24)

This shows the value of Tdes at which the design proce-
dure yields the best possible sequence, with the fewest
frustrations.

Thus when laying the groundwork for optimal design,
it is good to have more different species (larger qeff) and
less conformational freedom (smaller v, or s). More spe-
cies allows better selectivity, while less freedom makes it
easier to freeze. The latter shows, in particular, the pos-
sible role of secondary structure in proteins. Secondary
structure greatly reduces conformational freedom and
thus presumably creates room for better sequence de-
sign; this is precisely what is exploited in the experimen-
tal de novo design schemes (Hecht et al., 1990; Dahiyat
and Mayo, 1997). On the other hand, Eq. (4.24) also
implies that design may be difficult if only few monomer
species are in play. For instance, black-and-white models
should not be considered representative for design, and
indeed computational tests of the hydrophobic-polar
model are not always successful (Yue et al., 1995).
Clearly, if qeff,ev, then design is entirely impossible.
For instance, commonly employed computational mod-
els on a cubic lattice, such as 18-, 27-, 36-, and 48-mers,
have v values of, respectively, 0.42, 0.43, 0.51, and 0.53
(Pande, Joerg, et al., 1994); accordingly, ev'1.7 barely
leaves room for design for a hydrophobic-polar model
with two species even if qeff5q.

C. Other random-energy-type systems:
Screened polyampholytes

Up to now, we have considered only short-range in-
teractions. Although it is commonly held that hydropho-
bic interactions provide the dominant force (Chan and
Dill, 1993), some amino acids are charged at physiologi-
cal pH and thus Coulomb interactions are potentially
relevant (Creighton, 1992). In this section, we address a
simple random-energy-model estimate of freezing as-
suming that it is driven purely by long-range interac-
tions. That is, we consider a neutral polyampholyte
chain (a chain with an equal number of positively and
negatively charged monomers) and we assume that the
chain is in a dense globular state. Actually, the globular
state is very natural for polyampholytes with no net
charge (Dobrynin and Rubinshtein, 1995; Kantor and
Kardar, 1995a), but we shall not consider the density
dependence on the conditions and instead assume that
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maximal compactness is supported, say, by an external
box of size R. Even though there are no mobile counte-
rions in the globule, we also assume that conformational
flexibility of the chain is sufficient that Coulomb interac-
tions are well screened (Wittmer, 1993).

For this case, the freezing transition is expected to be
in conformity with the random-energy model; the freez-
ing temperature can then be estimated via the condition
Mn(T);1, where M5evN (vN5sQ) is the number of
(compact) conformations and n(T) is the density of
states for the plasma of disconnected monomers at an
energy in equilibrium at the temperature T; this latter
value17 is given by

n

n0
.H e2c~E/E0!2

5e2c~E0 /T !2 T.E0

e2c~E/E0!3
5e2c~E0 /T !3 T,E0 ,

(4.25)

where E05Ne2/R and c is a constant of order unity.
Assuming R5aN1/3, one obtains (Pande, Grosberg,

Kardar, et al., 1996)

T freeze;e2/av2/3. (4.26)

Most importantly, this is independent of N, suggesting
that the freezing transition is a true phase transition. We
shall see, however, that the long range of interactions
leads to a departure from the random-energy model (see
Sec. V.E).

D. Verifications of heteropolymer freezing and design

1. Experiments

We must admit that little is known experimentally
about the freezing transition of designed heteropoly-
mers. In terms of experiments on proteins, Sauer (1996)
examined a library of random amino acid sequences. A
considerable fraction exhibited proteinlike folding prop-
erties. Much remains to be done in both theory and ex-
periment to make a quantitative comparison of these
data with theory.

17Although Eq. (4.25) represents a fundamental property of a
regular plasma, we were surprised not to find it in standard
textbooks. It is derived in the following way. In general, the
density of states (DOS) n(E) is defined via the relation
Z(T)-*n(E)e2E/TdE with the partition function Z(T). Un-
der normal thermodynamic conditions, this integral is of the
saddle-point type, yielding n(E)5eS(E)5exp@2]F/]T#.. For a
plasma, there is the Debye length scale RD;(TR3/e2N)1/2

5RAT/E0 , which necessitates two regimes: (i) for T.E0 , the
size of the system is smaller than Debye length (R,RD , which
is of no interest for regular plasma applications, but may be the
case for an globule), the system is not screened, and one can
compute free energy and entropy using a high-temperature ex-
pansion, yielding the Gaussian DOS; (ii) for T , E0 the sys-
tem is screened (R . RD), and free energy is about T per
Debye volume F;2(R3/RD

3 )T , which upon computing en-
tropy yields Eq. (4.25). It is not surprising that screening
strongly suppresses the DOS as particles must be finely ar-
ranged to screen each other, and there are relatively few such
states.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
Also of interest are experiments on the freezing and
design of synthetic polymers. Normally, in a solution of
heteropolymers, there is a very broad distribution of se-
quences. It is overwhelmingly likely that each sequence
will be found once, in any experimentally realizable vol-
ume of the solution. In Nature, the protein synthesis
machinery of the living cell circumvents this problem.
However, one can turn this problem upside down and
examine a polymeric gel, which is in a sense a single,
macroscopic polymer. While our theory is not directly
applicable to gels (see Panyukov and Rabin, 1996), and
in particular we do not know if the random-energy
model is applicable to gels, experiments on heteropoly-
mer gels are being actively conducted by one of us
(Tanaka et al., 1998).

To illustrate the idea behind those experiments, let us
imagine the synthesis of a polyampholyte gel with bal-
anced amounts of positively and negatively charged
monomers. Let us first assume that there is no added salt
in the pre-gel solution. Then the positively and nega-
tively charged ‘‘prospective’’ monomers (i.e., those mol-
ecules that will be polymerized) can cause screening. As-
suming that the conversion of the gelation reaction is
100%, we obtain a gel in which the screened pattern of
charges of the pre-gel solution is imprinted as a three-
dimensional analog of the heteropolymer sequence. This
sequence is highly nonrandom: on the scale just above
the pre-gel Debye length, predominantly positive and
predominantly negative regions should be found to be
alternating in space, reminiscent of an ionic crystal, such
as NaCl. This gel should readily collapse upon submer-
sion into a poor solvent. Consider now another gel, pre-
pared with an abundance of salt present in the pre-gel
solution. In this case, monomers are screened from each
other by the added salt and thus are likely to form a
completely random pattern of charges imprinted on the
gel, with either positive or negative predominance of or-
der AV for any volume V at every scale. Obviously the
salt cannot be washed away from this gel: positive and
negative counterions remain captured in the respective
regions of the gel. Although there are many complica-
tions in these gel experiments, which will be reported
elsewhere, this brief discussion illustrates that design can
be implemented in a physical experiment that does not
utilize proteins or any form of biotechnology.

2. Computer simulations

To examine the validity of our model, we now com-
pare our results to computer simulations of lattice het-
eropolymers. First, we examine the behavior of the x(T)
order parameter [see Eq. (4.5)] for both random and
designed sequences for maximally compact 27-mers
(Fig. 3). We then demonstrate that the overlap param-
eter (Q) has a very well-defined bimodal distribution
(Fig. 4), thus confirming the first-order nature of freez-
ing. Furthermore, we examine the density of compact
(globular) states for a well-designed 36-mer sequence
(Fig. 5). Pande, Joerg, et al. (1994) calculated the energy
of all 84 731 192 compact conformations of the 36-mer to
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create this histogram. We note that the gap between the
ground state and the peak of the distribution is rather
pronounced.

We confirmed the phase diagram calculated analyti-
cally (Fig. 6) using computer simulations of compact 27-
mers. The computer simulations generated chains using
Monte Carlo annealing at a given design temperature
Tdes. Next, the partition function for maximally compact
conformations was exactly calculated, i.e., the energy of
all 103 346 maximally compact states was calculated. The
folding temperature was determined by the temperature
at which the order parameter [Eq. (4.5)] was x(T)
50.9. The results are shown in Fig. 6. This demonstra-
tion employed the 7-Potts model (Pande, Grosberg, and
Tanaka, 1994b) as it had been shown to be ‘‘most het-
eropolymeric’’ for 27-mers. Other models show similar
behavior. Due to finite-system effects, we see that the
folding temperature becomes constant for Tdes,0.5, as
we have reached the maximum degree of optimization
for 27-mers. Also, near Tdes/T freeze;1, there are large

FIG. 3. Order parameter x as a function of temperature T
calculated from the enumeration of all maximally compact 27-
mer conformations. We see that random sequences have a less
cooperative transition at a lower temperature (at T'T freeze)
than do designed sequences (which have a transition at T
'1.5T freeze). However, in all the cases shown here (27-mer se-
quences, independent-interaction-model interactions), the
ground state is unique, so there is a freezing transition.

FIG. 4. Probability P as a function of Q, the number of con-
tacts, for a well-designed 48-mer sequence near the coexist-
ence temperature. We see two distinct peaks at Q58 and Q
557 contacts (48-mers have at most 57 contacts). This bimodal
distribution clearly demonstrates that freezing is a first-order
transition.
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fluctuations due to small size effects, which lead to small
quantitative deviations from our theory.

To join the computer simulations with the analytic
predictions, we measured the freezing temperature
T freeze for random sequences directly from the simula-
tion data at high Tdes. With the measured value of T freeze
and the calculated value of the variance of the interac-
tion matrix, we plotted the theoretical curves using only
the lowest-order term O(1/T2). In our comparison be-
tween theory and simulation, there are no free param-
eters. The agreement is quite striking. However, we
should also stress that the freezing calculation described
here is that of globules (as described by the large-
globule theory presented in the previous section). For
phase transitions from a coil to the native state, the
agreement with the large-globule theory is of course not
as good. This is fundamentally important for proteins, as
we are generally interested in the coil-to-native-state
transition, not globule-globule transitions. A major part
of the disagreement, however, involves the failure of the
random-energy model for this system, which will be dis-
cussed in the next section.

FIG. 5. Density of compact states for a 36-mer calculated by
full enumeration. We see a Gaussian distribution centered at
E529 and a ground state at E5232.

FIG. 6. Quantitative agreement of the phase diagram for the
analytic model and simulation data for designed 7-Potts-model
heteropolymers: compact 27-mers on the 33333 cubic lattice
and analytic prediction with no free parameters.
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V. A DEEPER LOOK INTO APPLICABILITY
OF THE RANDOM-ENERGY MODEL

A. Important deviations from the random-energy model

As should be clear from the previous discussion, the
applicability of the random-energy model is not just an
academic problem of the validity of a particular approxi-
mation. We have demonstrated that this model is an ex-
tremely useful paradigm yielding insightful results re-
garding equilibrium thermodynamic properties of the
heteropolymer freezing transition. Moreover, it offers a
simple method of sequence design, i.e., manipulating
one target energy level without affecting all other levels.

On the other hand, to fully understand protein fold-
ing, we need to go further and to examine why and how
proteins deviate from the model. Indeed, as we have
already mentioned, a pure random-energy model would
leave the Levinthal paradox unresolvable, and, there-
fore, folding kinetically impossible on any reasonable
time scale: an uncorrelated energy landscape cannot (by
definition) provide any bias toward the native state, and
an unbiased random walk search for a single point (the
native state) in multidimensional conformational space
will last practically forever.

While the random-energy model is rarely mentioned
in experimental studies on proteins, the assumption of
statistical independence of states is implicit in the moti-
vation of several experiments; for example, de novo pro-
tein design (Regan and DeGrado, 1988; Hecht et al.,
1990; Dahiyat and Mayo, 1996; DeGrado, 1997; Lazar
et al., 1997) relies on the assumption that the selection of
sequences which lower the energy of a desired confor-
mation will not also lower the energies of other compet-
ing conformations. An opposite intuition is also preva-
lent in many works, such as computational generation
for a given sequence of a low, but not the lowest, energy
conformation (Holden, 1995), if the random-energy
model were valid, then a low but not lowest energy con-
formation would tell us nothing about the ground state.

To understand the random-energy model better, and
also to prepare for the discussion of other effects in Sec.
VI, let us consider the applicability of the model follow-
ing Pande, Grosberg, Joerg, and Tanaka (1996).

B. Energy correlator as a measure of the validity
of the random-energy model

Local rearrangement of conformations is the simplest
means of going beyond the random-energy model, as
illustrated in Fig. 7. To make this clear, imagine two
conformations, of which one conformation, a, represents
a small local rearrangement of the other conformation,
b (see Fig. 7). As the energies Ea and Eb are given as
sums over all pairs of monomers that are in contact (we
are speaking now about short-range interactions), they
are dominated by identical contributions and differ only
due to the small region of difference between a and b.
Clearly these two energies are strongly dependent,
which violates the defining rule of the random-energy
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
model, i.e., the statistical independence of energy levels
(2.2). Moreover, this consideration has an immediate
bearing on our understanding of design: as a design, in a
sense, pulls down the energy of the desired target con-
formation relative to typical conformations, it should
also affect similar conformations, albeit to a smaller de-
gree.

To make the above argument quantitative, one can
directly take the Hamiltonian (2.5) and calculate the de-
gree of statistical dependence of conformations a and b
by the connected energy-energy correlation function,

^EaEb&2^Ea&^Eb&5
1
2

dB2FQab1kKab2
c

NG ,

(5.1)

where k5( i ,j ,kÞipibijpjbjkpk , dB2 and bij are defined
via Eq. (3.45), and the last term is due to the constraint
of a fixed overall composition (c is a constant of order
unity). When interactions are short range, Qab is our
standard overlap parameter between conformations a
and b (the number of contacts these conformations have
in common; see Sec. II.B.2.b), and

Kab[ (
IÞJÞK

D~rI
a2rJ

a!D~rJ
b2rK

b ! (5.2)

describes the covariance of the coordination number of
monomers in conformations a and b.

It is natural that the overall scale of the energy cor-
relator be set by the standard deviation of the interac-
tion matrix dB . The appearance of the Qab term in the
correlator is also natural and corresponds precisely to
our qualitative argument regarding locally rearranged
conformations: obviously the conformations shown in
Fig. 7 have very high overlap Q. For the special interac-

FIG. 7. Local conformation fluctuation. Two different though
closely related conformations are shown; everywhere within
the shaded area they are identical, while the local difference is
seen in the window.
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tions for which the coefficient k vanishes, Qab50 means
statistical independence between states a and b. Physi-
cally this reflects the fact that, as these states have no
contacts in common, their energies will have no terms in
common and should be statistically independent; analo-
gously, for the case Qab5Qmax5Q, the two conforma-
tions are identical and thus are trivially statistically de-
pendent.

The appearance of Kab is more unexpected. It de-
scribes the correlation in coordination number of mono-
mers in conformations a and b. The coefficient of Kab ,
k5( ipi@( jpjbij#

2>0, represents an intricate property of
the interaction matrix. k can be interpreted as a measure
of the average ‘‘virtual interaction’’ between monomer
species i and k mediated through j; it can also be inter-
preted as a correlator of interaction matrix elements.
Thus there are qualitative differences between systems
with vanishing and nonvanishing k.

Energy correlations can be caused by conformational
overlaps, and this is the only source of correlations for a
system whose interactions correspond to k50. In this
case, the validity of the random-energy model may rest
on the statistical rarity of overlapping conformations.
For other systems, with kÞ0, there is a residual statisti-
cal dependence between states—even nonoverlapping
ones, with Qab'0—and the validity of the model is
even more problematic. Although for a finite system
with a fixed composition there is the possibility of com-
pensation due to the last term in Eq. (5.1), a random-
energy model for this case would remain questionable
because of higher-order correlations. In the next section,
we discuss the two possibilities k50 and kÞ0 in more
detail and give some computational examples. Then, in
Sec. V. D, we employ sequence design as a tool for sys-
tematically testing violations of the random-energy
model.

C. Sources of energy correlations

1. Conformations

The first term of the energy correlator equation (5.1)
is proportional to the number of contacts that conforma-
tions a and b have in common, Qab ; clearly, identical
contacts give identical contributions to energies of both
conformations, thus yielding a dependence. However, if
large Qab are rare, then the random-energy model re-
mains a good approximation. Let us examine this for
simple computational models typically employed.

Specifically, we perform the following calculation. We
first choose one conformation a (a ‘‘center’’ in confor-
mational space) and count (by enumeration) how many
other conformations b are within a given overlap ‘‘dis-
tance’’ Q from a; we then average this over a (over
different centers): P(Q)5(1/M)(abd(Qab2Q), where
M is the number of conformations in the given confor-
mational space. Figure 8 presents the results of such a
study for a variety of cubic lattice conformational
spaces; the data are presented in logarithmic scale, i.e.,
in terms of entropy DS(Q)5ln P(Q).
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One type of conformational space, which is typically
used in freezing simulations, includes all maximally com-
pact conformations. Pande, Grosberg, Joerg, and
Tanaka (1996), examined this space for 27-mers and 36-
mers, filling, respectively, 33333 and 33334 regions
of the cubic lattice. The first and most notable feature
seen in Fig. 8 is that P(Q) is peaked at low overlap and
has a deep minimum, where P(Q),1 (DS,0) at large
overlaps. It should be understood that P(Q),1 means
that, for most of the central conformations, there are no
other conformations with the given value of overlap Q;
only a few centers have one or more conformations with
which they have Q contacts in common. This is precisely
the situation that favors the random-energy model as
small rearrangements are not possible and P(Q) has vir-
tually no contributions in the large-Q range. We also
note that these features are more pronounced in 36-
mers than in 27-mers. It is natural to conjecture that
there exists an overall tendency toward sharpening of
the small-Q peak with increasing chain length N. This
agrees well with analytic arguments given above. An-
other simulation study (Pande, Grosberg, Kardar, et al.,
1996), performed for maximally compact conformations
visiting (once and only once) all the cubic lattice sites
within the sphere of a radius R<10 (that is, N up to
about 4000), indicates that the most probable value of Q
scales as

Qmost prob.;Ng, g'0.75. (5.3)

As Qmax is proportional to N, the ratio Q/Qmax vanishes
in the thermodynamic limit (see also Franz et al., 1999).

Following this logic, one would expect a sharper peak
at low Q and a deeper minimum at strong overlaps for
64-mers than we found for 36-mers. Figure 8 shows that
this is not the case for another type of conformational
space, the crumpled conformation, exemplified by the

FIG. 8. Entropy S as a function of Q, the number of contacts,
where S(Q)[ln@P(Q)# , for compact 27-mers, compact 36-
mers, and compact and crumpled 64-mers. Although all distri-
butions are peaked at small Q, the region with virtually no
overlapping conformations at large Q is narrower and less pro-
nounced for crumpled conformations. On the other hand, it
gets broader and deeper as chain length gets longer, as is indi-
cated by the comparison of compact 27- and 36-mers.



290 Pande, Grosberg, and Tanaka: Heteropolymer freezing and design
data for crumpled 64-mers (confined within 43434).
Here we follow the terminology of Grosberg et al.
(1988) and Pande, Grosberg, Joerg, and Tanaka (1996)
and call a conformation crumpled if it fills each subvol-
ume completely before entering the next one. Techni-
cally, the 43434 cube can be broken down into eight
23232 subcubes. Crumpled conformations fill every
site in a given subcube before entering a new one. Thus,
in crumpled conformations, neighbors along the chain
are likely to be neighbors in space. In this sense,
crumpled conformations perhaps crudely model the ef-
fect of secondary structure that localizes contacts. By
construction, crumpled conformations can be relatively
easily rearranged locally, and this is why there are much
closer relations among them. The validity of the
random-energy model is very problematic for crumpled
conformations.

The most spectacular departure from the model for
crumpled 64-mers is seen in the distribution of overlaps;
this is similar to Fig. 8, except not for all states—only for
those that are ground states for a given sequence and
interactions. Multiple degeneracy of states is typical for
lattice models with discrete values of interaction ener-
gies, giving rise to the discrete random-energy model, or
DREM (see Gutin and Shakhnovich, 1993 and Sec.
II.A.3 above). For either the basic model or the discrete
random-energy model to be valid, these ground states
should all be unrelated, and this is indeed the case for
regular maximally compact 27- or 36-mers with Potts
interactions, whose ground states yield a P(Q) indistin-
guishable from that of conformations taken at random
(Shakhnovich and Gutin, 1990; Gutin and Shakhnovich,
1993). The situation is dramatically different for
crumpled 64-mers: upon enumerating the energies of all
conformations for 1000 sequences with Ising interactions
and comparing the ground states, Pande, Joerg, et al.
(1994) have shown that the model fails for this confor-
mational space (see also Pande, Grosberg, Joerg, and
Tanaka, 1996). This does not merely demonstrate that
the random-energy model breaks down for crumpled 64-
mers in particular, but also reveals that we cannot as-
sume its validity a priori for all conformation spaces in
general, even in three dimensions.

2. Interactions

Apart from the variance of the elements of the inter-
action matrix, which determines the overall scale of the
energy correlator, Eq. (5.1), interactions also play a
more dramatic role in the second term in Eq. (5.1), as k
vanishes for only certain models. Note that Kab in Eq.
(5.2), for maximally compact conformations on the lat-
tice, is only very weakly conformation dependent; it de-
pends exclusively on the position of the chain ends in
conformations a and b. The appearance of a
conformation-independent term signals a departure
from the random-energy model, as even states with van-
ishing Q are statistically dependent. What forms of in-
teractions have this residual statistical dependence?
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The simplest case to examine is a system with just two
monomer species, with even composition (p15p2
51/2). In this case, for the matrix (3.46), it is easy to
compute k5(1/4)cos2 u. Thus k vanishes for an Ising
model (u590°), but it is essential for, say, hydrophobic-
polar interactions (u'35°).

From the point of view of energy correlations [Eq.
(5.1)], the Miyazawa and Jernigan 20320 matrix
(Miyazawa and Jernigan, 1985), a set of amino acid in-
teraction potentials derived from protein statistics,
seems like the hydrophobic-polar model plus some
noise; indeed, kÞ0 for the Miyazawa-Jernigan matrix,
as well. Another example is the case of one monomer
species that interacts particularly strongly with all oth-
ers; in this case, there is a correlated contribution to the
conformation energies even if they have no bond in
common. Finally, even a perfectly ordered interaction
matrix, such as the q-Potts model (in which values are
either 21 along the diagonal or 1 off diagonal), can yield
a nonzero k if the polymer composition is not even (pi
Þ1/q). We have to remind the reader, however, that
although none of these models favor the random-energy
model because of the residual energy correlation for
even unrelated conformations, this effect can be due to
the negative fixed-composition term in Eq. (5.1); thus, in
some cases (e.g., certain values of N), the model may
appear to be a good approximation due to a complicated
cancellation of factors.

The opposite examples, where k50, include models
with an even composition and a symmetric contribution
from monomer species, such as the Potts model or the
independent-interaction model, in which Bij are taken
from a Gaussian distribution (Shakhnovich and Gutin,
1989a). For these models, the conformation-
independent term vanishes and the only statistical de-
pendence comes from conformational overlap.

D. Sequence design as a tool for examining the
applicability of the random-energy model

As previously discussed, the validity of the random-
energy model has important implications for sequence
design. If the model were rigorously valid, the design
would affect a target conformation only, by pulling
down its energy level and not affecting other levels.
However, in reality, other closely related conformations
should also be involved in the design. To examine this
property, let us consider the following computer ‘‘ex-
periment’’: we perform sequence design for a particular
target conformation ! and we see how (to which degree,
in which direction, etc.) other states are affected. In this
sense, sequence selection acts as a field in which we test
the response of the energies of other conformations to
the manipulation of the energy of !.

In Fig. 9, we see from the density of states, P(E ,Q)
[(ad(Q2Qa!)d(E2Ha), for two differently designed
sequences with Ising interactions, that sequence selec-
tion acts on all states a to a degree that is roughly linear
in Qa! . Therefore the energy of a particular conforma-
tion a is largely determined by Qa! .
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Thus we see that sequence selection does not just pull
down the energy of a desired conformation but rather
affects the whole density of states. This is a dramatic
deviation from the random-energy model. Note, on the
other hand, that this is consistent with the assumption of
the Go model (see Sec. II.A.1), as energy appears to be
roughly linear in Q; we shall see later (Sec. VI) that this
is precisely what one should expect for a well-designed
sequence.

However, this effect does not necessarily detrimen-
tally affect folding to !. For models with a degree of
statistical antidependence (e.g., fixed, even hydrophobic-
polar composition), selection may act to push up the
energy levels of conformations other than !. Moreover,
as this statistical antidependence varies between se-
quences, it could be considered as a sequence selection
criterion (in addition to optimization of the ground
state) and therefore is a possible means to ‘‘design out’’
unwanted conformations (Yue et al., 1995).

E. Energy correlations for long-range interactions

While it is commonly held that short-range interac-
tions (and, in particular, hydrophobic collapse) predomi-
nate, some amino acids are charged and thus Coulomb
interactions are potentially relevant. In this section, we
address how long-range interactions between monomers
lead to a departure from the random-energy model.
Therefore we do not include the effects of screening by
counterions, which may render Coulomb interactions
short range for proteins in physiological conditions.

FIG. 9. Probability density P(E ,Q) for maximally compact
27-mer conformations (Qmax528), Ising interactions (Bij

5d ij) for a well-designed sequence (Tdes50.2T freeze) and a
poorly designed sequence (Tdes50.8T freeze). (We remind the
reader that a design with Tdes'T freeze yields sequences that are
practically random, except that ! is among their low-energy
states.) Darker regions correspond to more states. We see that
design pulls down the energy of the ground state, but also pulls
down the energy of related states to a degree proportional to
the similarity with the native state; low-energy excitations from
the native state are therefore very similar to the native state.
However, for poorly designed sequences, this is not the case
and low-energy excitations typically have little overlap with
the native state. The zero-point energy is chosen to be the
value of the energy of a typical sequence in a typical confor-
mation, i.e., ^H̄&, and is therefore independent of Tdes.
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Long-range Coulomb interactions are described by
the Hamiltonian (2.5) with f(r)51/r(d22) (in d dimen-
sions) and Bij5Bsisj , where siP$61% is the charge of
monomer i. When one computes the energy correlator
(5.1) for this case, it turns out that k50. Moreover, the
relevant value for judging statistical dependence is not
the standard overlap Qab (2.8), but

Qab
LR5(

IÞJ
f~rI

a2rJ
a!f~rI

b2rJ
b!. (5.4)

This quantity is different indeed from the short-range
case Qab . The main physical difference between the
short-range and long-range cases is the fact that poly-
meric bonds always keep monomers within long-range
interaction distances: one can ‘‘hide’’ monomers in the
short-range case to bring down QSR, by rearrangements
of the conformation. In the long-range case, the pres-
ence of polymeric bonds creates a correlation that can-
not be significantly changed by changes in conformation,
as such changes keep monomers within the long-range
interaction scale. Thus, for two conformations chosen at
random, one would expect that QSR would be negligible,
but perhaps QLR may not be.

A simple scaling argument demonstrates this. First,
we consider the value of maximum overlap, i.e., overlap
with the same conformation. For each of the N mono-
mers, there is a contribution from O(rd21) monomers at
a distance r away. Thus Qmax;*dr Nrd21f22(r). For
short-range interactions, this integral is dominated by
contributions at a microscopic (a single monomer)
length scale and we get Qmax

SR ;N . For long-range inter-
actions, we find that while contributions from monomers
far away are smaller, there are more of them. For Cou-
lomb interactions f(r)51/rd22, Qmax

LR is dominated by a
maximal length scale. Thus, for a polymer packed in a
volume of size R, we get Qmax

LR ;NRd/R2(d22);NR42d.
Next we consider the long-range overlap between two

conformations chosen at random. In this case, Qrand
LR is

still infrared divergent and dominated by the largest
length scale R: we have about N2 of monomer pairs,
each contributing about R22(d22), yielding Qrand

LR

;N2R22(d22).
Interestingly, for densely packed (maximally com-

pact) polymers, when R;N1/d, both Qmax
LR and Qrand

LR ap-
pear to have the same scaling:

Qmax
LR ;Qrand

LR ;N4/d. (5.5)

In particular, the ratio G[Qrand
LR /Qmax

LR does not vanish,
even in the thermodynamic limit. Moreover, this re-
sidual overlap does not appear to be conformation de-
pendent (for typical pairs of conformations) and thus we
expect that P(QLR);d(QLR2Qrand

LR ).
This result is fundamentally different from the short-

range case. The existence of a residual overlap in the
long-range case means that the random-energy model is
not valid, as there is always a residual statistical depen-
dence. Note that G does depend on the fractal dimen-
sionality of the chains. While G is a finite constant when
conformations are globular, it vanishes in the thermody-
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namic limit when at least one of the conformations un-
der comparison is less compact than the other, when the
conformations differ in their scaling R;N1/df, where df
is the fractal dimension of the chain. Thus, for an en-
semble of conformations that consists of compact and
noncompact chains, we must expect a more complicated
distribution P(QLR).

Numerical tests reported by Pande, Grosberg, Kardar,
et al. (1996) fully support the above scaling arguments
and the conclusion (5.5). According to these authors, the
scaling exponents g given by QLR;Ng appear to be the
same within error for random pairs and maximum over-
lap for compact conformations. Furthermore, the fits
agree well with the predictions gmax

LR 5grand
LR 54/3 [to be

compared with the trivially expected gmax
SR 51 and the

numerical result grand
SR '0.75, Eq. (5.3)]. Another test, re-

ported in Fig. 10, is free of these problems. In this figure,
we show both short-range and long-range overlap distri-
butions averaged over 1000 pairs of maximally compact
conformations of 64-mers. The difference is absolutely
clear: while QSR is almost always small, QLR is not.

Yet another demonstration of nonrandom behavior
for a heteropolymer with long-range interactions is
shown in Fig. 11. This figure reports calculations of Cou-
lomb energy for all 84 731 192 compact conformations of
36-mers on the 33334 lattice. In Fig. 11, we plot both
the quenched ^ln Z& and annealed ln^Z& averaged free
energies vs temperature; the average was performed
over 80 random sequences of an equal number of plus
and minus charges. For comparison, the same computa-
tion is reported in the figure for the short-range (antifer-
romagnetic Ising) interactions. The quenched and an-
nealed averages are the same within experimental error
for short-range interactions above T freeze , as it should be
in the random-energy model according to Eq. (2.4). On
the other hand, these quantities are very different for
long-range interactions (except for the extreme of infi-
nite temperature, where the energy, and therefore the
nature of interactions, is irrelevant). Note that the se-

FIG. 10. Short-range (SR) and long-range (LR) probability
distributions P(QLR) and P(QSR), obtained from 64-mers on a
cubic lattice. Due to finite size effects, there is some residual
overlap in the short-range case (here peaked at 0.1). However,
we expect the short-range residual overlap to vanish in the
thermodynamic limit, while the long-range overlap does not.
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quences used in Fig. 11 are the same; the only difference
is what quantity is averaged (^Z& or ^F &) and what type
of interaction is used, long-range or short-range.

F. Is the random-energy model valid?

To summarize the discussion of this section, the
random-energy model is a good approximation only as
long as we are interested in maximally compact three-
dimensional conformations, symmetric short-range in-
teractions, even compositions, and purely thermody-
namic properties. In these cases, correlated
conformations are statistically rare and in the course of
freezing the system ‘‘jumps’’ between complete overlap
and no overlap. However, as soon as we violate any of
the conditions (noncompact conformations; restricted
set of compact conformations, e.g., crumpled; dimension
below three; long-range interactions; uneven composi-
tion; or asymmetric short-range interactions, e.g.,
hydrophobic-polar or Miyazawa-Jernigan), the model
breaks down. Furthermore, even when it holds, there
are conformations close to the native one that are af-
fected by the design; although they are of no significance
in thermodynamics, it is natural to expect that they are
exceptionally important for kinetics.

VI. PROPERTIES OF HETEROPOLYMERS
DUE TO CORRELATIONS IN ENERGY LANDSCAPE

A. Beyond the random-energy approximation

1. The random-energy model as a mean-field approximation

In Sec. IV we described the properties of heteropoly-
mers using the approximation of uncorrelated energies.
There are two reasons for exploring an alternate ap-

FIG. 11. Comparison of the average free energy calculated by
the exact enumeration of all maximally compact 36-mer states
for long-range (LR) Coulomb and short-range (SR) antiferro-
magnetic Ising model interactions. The average is performed
over 80 random sequences and both the quenched and an-
nealed free energies, ^ln Z& and ln^Z&, respectively, are shown.
The quenched and annealed short-range cases agree remark-
ably well, reflecting the validity of the random-energy model,
whereas the long-range cases agree only at high temperature.
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proach. On the one hand, one may want to go beyond
the mean-field approximation, considering fluctuations
around both folded and unfolded states. On the other
hand, it is desirable to relax the (interdependent) condi-
tions of space uniformity and incompressibility of the
globule, allowing for local density fluctuations. Physi-
cally, both these alternate approaches have to do with
fluctuations, which are immensely important for under-
standing related problems, such as folding kinetics. Al-
though this goes beyond the scope of this review, it is
worth mentioning that in order to address kinetics one
has to understand not only small fluctuations and the
neighborhoods (in conformation space) close to native
and unfolded states, but also all the states along the
pathway between native and unfolded phases; in other
words, kinetics involves large fluctuations. In its most
general form, the problem of fluctuations in heteropoly-
mers and proteins remains to be solved.

2. Non-random-energy theory: A work in progress

In the current literature, there are works directed to-
wards a new theory that will deal with energy correla-
tions among different conformations. Some of these
take the phenomenological route, following Bryngelson
and Wolynes (1987). In this case, attempts are made to
formulate some generalization or replacement for the
random-energy model. Other works follow the micro-
scopic route closer to the ideas of Shakhnovich and Gu-
tin (1989a), with the goal of deriving something more
general than the random-energy model. Obviously,
there are intermediate approaches, mixing ideas of dif-
ferent schools and groups. Whatever the route, it is the
general understanding that correlation between energies
of conformations is the key aspect of the emerging
theory. Indeed, we mentioned in Sec. V that energy cor-
relations are inevitable for a variety of reasons. Thus in
this section we discuss how energy correlations may en-
ter the theory and what consequences they may lead to.
As our subject here is not a mature theory, we shall
restrict ourselves to the simplest possible arguments and
considerations.

B. Interpolation expression for non-random free energy

1. Contributions to the free energy

We shall concentrate primarily on energy correlations
due to the lack of compactness of the polymer, because
this factor seems to be most obvious from both theoret-
ical and experimental viewpoints. Experimentally we
can easily reduce the overall hydrophobic compression
of a protein globule by adding some denaturant, such as
urea, to the solution. Theoretically we have to address
the coil phase and coil-globule transition in a het-
eropolymer phase diagram. Thus we continue to con-
sider a model based on the Hamiltonian (2.5) with short-
range pairwise interactions. However, we relax the
condition of maximal compactness and consider all con-
formations, subject only to chain connectivity and
excluded-volume constraints. Such an approach is at-
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tractive because it incorporates density as another order
parameter along with the native overlap q.

We specify the (macro)state of the polymer in terms
of two order parameters, namely, fa , which is the (av-
eraged) volume fraction occupied by monomer links
within the polymer,18 and qa[Qa. /Qmax , which is the
(fractional) overlap of the current conformation a with
the native one !, which in turn is set up by the sequence
design. We note that fa is proportional to the number
density of the polymer; it is also easy to understand that
to a mean-field approximation fa.qaa . Indeed, f is
the fraction of occupied sites averaged over the volume
of the polymer, while qaa is the fraction of occupied
sites among those sites neighboring to monomers. We
shall not attempt to specify the coordinate dependence
of the density f, and this should not be understood as
consideration of a large spatially uniform globule; quite
the opposite, we resort to a Flory-style argument, saying
that the chain is described by a single scale expressed as
either an average density f or the overall size R
;a(N/f)1/3 (e.g., rms gyration radius).

We saw in Sec. IV that the random-energy-model re-
sults of the previous sections could be derived from a
high-temperature expansion. Now, as we do not assume
externally supported compactness any longer, we have
to clarify that this high-temperature expansion is justi-
fied insofar as temperature is high compared to the scale
set by the heterogeneity of interactions dB , not the
mean interactions B̄ (see Sec. III.C for definitions of dB
and B̄). Thus our plan is to write the Hamiltonian (2.5)
as H5H̄1d H, where the H̄ and d H parts are due to B̄
and dB , respectively, and then perform an expansion in
d H. We first of all note that

H̄a.Ehomo~f! (6.1)

is just the homopolymer energy, which to a mean-field
approximation is readily written as a function of poly-
mer density f only, meaning that it is independent of q
as well as of other properties of the conformation a.
This allows us to write (using here h5H/T for brevity)

(
a

~fq !

e2h̄a2dha[(
a

~f!

e2h̄a
(a

~fq !e2h̄a2dha

(a
~f!e2h̄a

.(
a

~f!

e2h̄a
(a

~fq !e2dha

(a
~fq !1

(a
~fq !1

(a
~f!1

, (6.2)

where we use the following notations: (a
(fq) means sum-

mation restricted to conformations of a given density
and native overlap [i.e., (a

(fq)
¯5(a¯d(qa2q)d(fa

2f), and similarly (a
(f)

¯5(a¯d(fa2f)]. Thus the
free energy of a given (quenched) sequence heteropoly-
mer can be written in the form

18It would be more accurate to define fa as the ‘‘fraction of
connected bonds’’—the ratio of the number of neighbors of all
monomers to the maximal possible number of neighbors—see
Eq. (2.7)..
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Fseq~f ,q !52T lnF(
a

~fq !

expF2
H̄a1d Ha

T G G
5Fhomo~f!1dFseq~f ,q !2TS~q ,f!, (6.3)

where

Fhomo~f!52T lnF(
a

~f!

exp~2H̄a /T !G (6.4)

is the free energy of a homopolymer with averaged in-
teractions and a given degree of compactness f;

S~q ,f!5lnF (
a

~fq !

1Y (
a

~f!

1G (6.5)

describes the entropy associated with the selection of
conformations with the given native overlap q out of all
conformations with the given degree of compactness f;
and

dFseq~f ,q !52T ln@e2dH/T#ufq (6.6)

is the purely heteropolymeric part of the free energy.
The fq average is defined as

@A#ufq5 (
a

~fq !

AaY (
a

~fq !

1 (6.7)

for every A. Let us discuss contributions to the free en-
ergy (6.3) one by one.

2. Homopolymer collapse contribution

Historically, homopolymer coil-globule collapse was
the first naive model for protein folding (Ptitsyn and
Eizner, 1965). Indeed, the homopolymer free energy ap-
pears as the first term in the free energy (6.3). Qualita-
tively, this term describes the entropy price associated
with overall chain compaction, the entropy price associ-
ated with approaching high packing density, and the en-
ergy gain due to the overall predominant attraction of
monomers—something typically associated with burst
hydrophobic collapse in the biophysical literature. For
the Fhomo(f), one can use either a simple Flory-type
expression [see, for example, Eqs. (13.2)–(13.4) in Gros-
berg and Khokhlov, 1994] or a more sophisticated Lif-
shitz theory. Since we want to consider a very dense
globule, the usual approximation neglecting all but lead-
ing virial terms is not accurate enough here. Perhaps the
simplest expression providing a reasonable interpolation
between low-density (virial) and high-density (almost in-
compressible) regions is

Fhomo~f!.NTF12xf1
12f

f
ln~12f!G , (6.8)

where the Flory-Huggins constant is roughly x'

2(z/2)B̄/T and z5Qmax /N is the coordination number.
We omit both the polymer elongation entropy term
(which is relevant for chain swelling, not collapse) and
the polymer compression entropy term [which is always
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outweighed by the excluded-volume repulsion hidden in
the logarithmic term; see Witelski et al. (1998) for fur-
ther details].

One may ask what happens to our Eq. (6.3) if we
consider a homopolymer. It is clear from the definition
(6.6) that dFseq(f ,q)50 vanishes for a homopolymer,
and since q has no meaning for a homopolymer, one has
to average over q (by summing exp@2Fseq(f ,q)/T# over
q). According to Eq. (6.5), this kills the entropy reduc-
tion term and leaves us with only the homopolymer con-
tribution, as it must.

3. Heteropolymer interaction part of free energy

The truly heteropolymeric dependence on the
quenched sequence is in the dFseq(f ,q) term. Following
our plan, we resort to the high-temperature expansion
yielding

dFseq~f ,q !.1@dH#ufq2
1

2T
@dH2#ufq

1
1

2T
@dH#ufq

2 . (6.9)

Now we have to average this free energy over se-
quences. We use the design probability distribution Pseq

.

(2.14). We note that the homopolymeric part H̄ does not
show up in Pseq

. [formally, it cancels out in Eq. (2.14)
because H̄ is sequence independent], and thus

Pseq
. .F12

dHdes~! !

Tdes G)
I51

N

psI
. (6.10)

Performing the average over sequences dF(f ,q)
5(seqPseq

. dFseq(f ,q), we immediately encounter en-
ergy correlators similar to what we examined in the pre-
vious section; see Eq. (5.1). We shall restrict ourselves
here to the case in which ( ipi dBij50; this corresponds
to the symmetric Ising model u5p/2 for the model with
just two monomer species, Eq. (3.46). We also shall not
fix the overall composition of the polymer, so that the
two last terms vanish in the energy correlator Eq. (5.1).
For this case, we arrive at

dF~f ,q !.2QmaxFq
dBdes dBg

2Tdes 1~f2@qab#ufq!
dB2

4T G ,

(6.11)
where the fractional overlap qab5Qab /Qmax is averaged
similarly to Eq. (6.7) with both conformations a and b
bound to have the same numbers of contacts (f) and of
native contacts q.

To proceed, we must estimate the typical overlap be-
tween conformations @qab#ufq . For large q, there are
several possible ways of choosing q native contacts, and
thus we would expect that

@qab#ufq'q . (6.12)

Although this is a poor approximation for conforma-
tions with low q, in the region where q is small we do not
expect the error in the approximation above to have
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significant effects. Furthermore, we stress that the role
of this term is subordinate to that of the polymer en-
tropy S(q ,f), which we estimate below. Thus we can
write

dF~f ,q !.2QmaxFq
dBdes dBg

2Tdes 1~f2q !
dB2

4T G . (6.13)

Our result (6.13) has a simple physical interpretation.
There are qQmax native contacts, and each of them con-
tributes an energy e52dBdes dBg/2Tdes, which is gov-
erned by how the sequence is designed, or how the na-
tive state is optimized; e gets smaller for lower
preparation temperature Tdes and for better alignment g
[see Eq. (3.44)] between preparation and folding inter-
action matrices. On the other hand, all other non-native
contacts contribute energies that are governed solely by
2dB2/T and are independent of the design. This is also
a natural result of our formulae, as f2q may be inter-
preted as the number of non-native contacts. Thus Eq.
(6.13) represents just a reformulation of the Go model.

4. Conformational entropy

We now turn to the last term in Eq. (6.3), which is the
conformational entropy S(q ,f). We gave a qualitative
discussion of this quantity in Sec. III.A.2. Computing
S(q ,f) is the major unsolved part of the problem, and
we shall discuss the expected properties of the S(q ,f)
entropy and deduce the implications for the phases and
properties of a heteropolymer.

To begin with, let us note that exp@S(q,f)#, considered
as a function of q at a fixed f, satisfies an obvious nor-
malization condition,

E
0

f

exp@S~q ,f!#dq51, (6.14)

and represents the probability distribution of all confor-
mations with the given degree of compactness f over
their respective numbers of native contacts q. For maxi-
mally compact conformations, when f51, we discussed
the exp@S(q,f)# distribution and gave computational ar-
guments suggesting that it has two distinct peaks. One of
the peaks is at q51, which is the native state itself, with
zero entropy. The other peak is at small q (see Fig. 8)
and is expected to approach a d function at q50 when
N→` [see also Eq. (5.3) as to where this peak is located
for finite N]. The entropy of this state is sQ. When f
gets smaller, the native state itself, which is assumed to
be maximally compact, does not contribute, but still
there should be a peak at very large q because the some-
what softened packing constraint allows for some local
wigglings of the chain around its native conformation
(see also Fig. 7). To determine how much the q peak
broadens and grows requires understanding the geom-
etry of relatively dense (though not maximally dense)
nativelike conformations. Clearly this should be sensi-
tive to the local geometry of both polymeric connections
between monomers and monomers themselves, includ-
ing their side groups (if any; see also the very recent
work of Klimov and Thirumalai, 1998). In experimental
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terms, these conformations comprise the molten globule
state (Kuwajima, 1989; Haynie and Freire, 1993; Ptitsyn
and Uversky, 1994; Ptitsyn, 1995; see below for some
further discussion). Apart from these conformations, the
problem has not been solved so far even for the simplest
chain on a cubic lattice.

To gain better insight, it is advantageous to rewrite
the definition (6.5) in the form

exp@S~q ,f!#5 (
Choices of q

F(a
~f , particular q !1

(a
f1 G . (6.15)

Here the internal sum runs over conformations with a
fixed particular set of q native contacts, while the exter-
nal sum runs over all possible ways of choosing those q.
Thus the internal sum corresponds to what can be called
loop and bond entropy, as the former corresponds to the
number of ways to place the chain loops between fixed
native contacts, while the latter corresponds to the num-
ber of ways to position the native contacting pairs them-
selves. As the latter quantity is proportional to q, we can
write

exp@S~q ,f!#

5 (
Choices of q

exp@S loop~f ,particular q !1Nsq# .

(6.16)

Replacing the remaining sum by the number of ways to
choose a set of Nq native contacts times the properly
averaged value, we obtain

S~q ,f!5Smix~q ,f!1^S loop~f ,particular q !&ann

1Nsq , (6.17)

where, as follows from Eq. (6.16), ^¯&ann means an an-
nealed average (in the sense that the number of states,
not the entropy, has to be averaged). Thus we recover
Eq. (3.5), derived earlier (see Sec. III.A.2) from simplis-
tic considerations. While Eq. (6.17) is exact, we see now
that the simple expressions (3.2) and (3.4) are not always
valid. Indeed, there are a couple of complications:

• First of all, how much freedom is there to choose
native contacts given the numbers of native (q) and
non-native contacts? If the density is high, and the
number of native contacts to be made is also high,
then the choice is likely to be very much restricted.
Indeed, if the globule is very compact (f is close to
unity), and almost all of the native contacts are
present (q also close to unity), then there are few
possibilities for local rearrangements of the confor-
mation. On the other hand, if the globule is very
loose (f is small), the few native contacts it can
have (q<f) can be chosen arbitrarily. Thus we ex-
pect mixing entropy to be suppressed compared to
the naive combinatoric expression 2(q/f)ln(q/f)
2@12(q/f)#ln@12(q/f)#.

• The fact that loop entropy must be an annealed av-
erage means that the main contribution may not be
due to configurations with all loops of comparable
lengths 1/q , as we assumed in Eq. (3.2). For in-
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stance, if we consider an artificial model in which all
monomers forming native contacts are allowed (and
required) to be at one point in space (in violation of
the excluded-volume restriction), we can compute
the annealed average loop entropy. It turns out that
when q is large (more specifically, close to f), then
the main contribution comes from configurations in
which the few missing contacts cluster together
along the polymer, and this yields
(d/2)ln 2(q/f)ln(q/f) instead of our naive result
(d/2)(q/f)ln(q/f). Note that 2/ ln 2'2.89'3. Thus
already at d53 we come close to what happens
only in d52 in the simplified model (Sec. III.A.2),
namely, q ln q terms from mixing and loop entro-
pies may cancel each other, thus washing out the
entropic barrier between states with low q and
those with high q.

One could write an interpolation expression for the
entropy S(q ,f) accounting for the qualitative discussion
above. We shall not do this because such an expression
would include a number of rather restrictive and crude
approximations. Nevertheless, the qualitative picture
that arises is robust. What is important about our discus-
sion here is the steps beyond the random-energy ap-
proximation: states with partial overlaps to the native
state are explicitly included. A somewhat different ver-
sion of a theory that violates the random-energy model
has been developed by Plotkin et al. for nondesigned
(1996) and designed (Plotkin et al., 1997) sequences. Al-
though their formulae are somewhat different from what
we have just described, they incorporate the same physi-
cal factors, such as a relaxed compactness constraint,
and quenched and annealed constraints on configura-
tions of loops. Therefore the next step is to examine the
physical consequences of these factors.

C. Phase diagram of a nonrandom heteropolymer

To describe the phase diagram of this system, we have
to optimize the free energy, Eq. (6.3), with its contribu-
tions (6.8), (6.13), and (6.17) with respect to both the
fraction of native contacts q and the overall compactness
f, subject to the constraint q<f . We first note that the
coefficient of the term linear in q in Eq. (6.13) may flip
its sign (depending, for instance, on Tdes); this is where
the folding phase transition occurs in a random-energy
theory [see Eq. (3.39)]. However, as we now have en-
tropy terms with a nontrivial q dependence, the folding
transition point gets somewhat shifted from its location
in random-energy theory; most important, this transition
is generally not from q50 to q51 but from some small
yet positive q to some q less than unity and close to q
5f .

On the other hand, for the q50 case, we recover the
homopolymer free energy, yielding a coil-globule transi-
tion between phases with f'0 (coil) and some nonzero
positive f (globule). If q50, the transition point is given
by B̄2dB2/T11/z50. To the accuracy of the present
theory, this transition is second order (as f itself is con-
tinuous), and it goes from the coil (q'0, f'0) to the
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random globule (q'0, fÞ0). However, if, for instance,
Tdes is low enough, then the phase that competes with
the coil is not the random globule, but the folded glob-
ule (q'fÞ0). The transition from the coil to the
folded globule is first order.

Thus we identify the following states:
Coil: q'0, f'0. An extreme denaturant, such as the

6M GuCl that Tanford first used in 1968 (Tanford,
1968), corresponds to a very good solvent for all mono-
mers in a protein. In fact, the T/2 factor of the repulsive
homopolymeric term is not only stronger than B̄ , but is
even stronger than the effective attraction due to het-
eropolymeric effects B̄2dB2/T . In this case, the protein
is effectively a homopolymer and conformational en-
tropy dominates: the chain swells and looks roughly like
a self-avoiding random walk. The number of native con-
tacts is negligible. This coil regime is also what one
would expect from a random-energy theory.

Unfolded state: q!1, f!1. However, as the overall
solvent quality becomes just a little worse, some native
contacts appear, although the particular choice of native
contacts fluctuates greatly (which is more favorable en-
tropically), i.e., loops are of the annealed type. The
random-energy model predicts that the unfolded state
will have no native contacts and will be either a coil or a
random globule (depending on whether monomers on
average attract each other). An unfolded state with na-
tive contacts results from the crossover from annealed to
quenched loops; without this effect, there would simply
be a first-order transition from coil to molten globule.

Folded globule: q.f.1. Essentially all native con-
tacts are present and there are only minor conforma-
tional fluctuations. There is virtually no conformational
entropy and instead all of the contact energy is present.
However, unlike the pure random-energy model, which
formally predicts exactly zero entropy, nonrandom
theory yields that even the folded phase consists of sev-
eral states structurally very close to the native one
(Frauenfelder and Wolynes, 1994). This corresponds to
the protein native state.

Molten globule: q is large, but q,1. Unlike the un-
folded regime, there are many native contacts and there
is a nonvanishing overlap between conformations found
in equilibrium. Thus the molten globule has a much
lower energy (many more native contacts) and entropy
than the unfolded state; loop entropy is negligible and
the mixing entropy is responsible for stabilizing the mol-
ten globule. Although this is consistent with the molten
globule seen experimentally in many proteins (see
Ptitsyn, 1995 and Uversky and Ptitsyn, 1996), we stress
that in the analytic model outlined here the molten glob-
ule does not represent a separate phase, while experi-
mentally it does. This can be directly explained by the
inclusion of the non-random-energy theory presented
above, while taking account of the small-
scale fluctuations of nonpointlike monomers (Shakhnov-
ich and Finkelstein, 1982). The effect of side chains and
the existence of the molten globule phase will be dis-
cussed in greater detail in the next section.
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All these results are summarized on the schematic
phase diagram shown in Fig. 12. In our model, there is
only a single phase transition, from coil to folded glob-
ule; however, as we distinguish unfolded and molten
globule states, we can say that the transition occurs be-
tween the unfolded and the molten globule states. This
transition is a true phase transition, driven by loop en-
tropy: one cannot continuously collapse a heteropoly-
mer loop into the nucleus of the globule. This transition
has been seen experimentally in proteins but was not
previously physically understood (Ptitsyn, 1995).

D. Simulations

The regimes discussed in the previous section—
unfolded (UF), molten globule (MG), and native state
(NS)—have been found as distinct thermodynamic
phases in recent lattice-model simulations (Pande and
Rokhsar, 1997). The lattice model discussed here is a
36-mer on a cubic lattice with independent-interaction
model interactions. In the past, the ground state of the
lattice model was often associated with the molten glob-
ule, as one assumed that the lattice model represented a
coarse-grained model of proteins and thus could not dis-
tinguish between molten globule and the native state,
which differ in the nature of side-chain packing; thus
one might think that the native state and molten globule
could both be represented by the ground-state confor-
mation in the lattice model. However, while the lattice
model does not explicitly have side chains, it does have a
sense of packing. Off-lattice models (see, for example,
Pande and Rokhsar, 1997) without side chains can con-
tinuously ‘‘breathe,’’ i.e., gradually swell, when placed in
any compact conformation. Side-chain packing prevents
this type of uniform motion. In the lattice model, the
packing of the monomers performs the same function.
Thus packing in the lattice model reduces the number of
almost-native states, just as side chains do.

As the lattice model has a packing character, one
would expect from the Shakhnovich-Finkelstein theory
that there would be a first-order molten-globule/native-
state transition in addition to a first-order unfolded/
molten-globule transition, as predicted in the previous
section. This is precisely what was found. The free en-
ergy shown in Fig. 13 clearly has three free-energy
minima, indicating the unique phases. The number of
native contacts is a good order parameter and delineates
the unfolded (small Q), molten globule (intermediate
Q), and native-state (maximal Q) phases. Note that the
unfolded minima are not at Q50, but rather have many
native contacts.

Experimentally, one must add denaturant to stabilize
the molten globule phase. This destabilizes the native
state by making native contacts less favored, but not to
the extent that the unfolded state dominates. In simula-
tions, the molten globule phase was stabilized in a simi-
lar manner by adding noise to the interaction matrix,
i.e., B fold5A12g2Bdes1g2Bnoise, where Bnoise is a
Gaussian random, symmetric matrix with unit variance
and vanishing mean and g is the degree of destabiliza-
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tion we wish to perform. Thus g is related to the dena-
turant concentration. The phase diagram for this system
as a function of temperature T and denaturant g is
shown in Fig. 14.

Finally, the loop and mixing entropy arguments em-
ployed in previous sections can be directly tested com-
putationally. In particular, we have argued that entropy
causes the first-order unfolded/molten-globule and
unfolded/native-state transitions. Moreover, this entropy
is the result of a delicate cancellation of the loop and
mixing entropy terms. To test this computationally, we
have calculated the mixing entropy by recording the
probability pi that a particular set of contacts i are found
in our Monte Carlo simulation. The mixing entropy is

FIG. 12. Phase diagram based on a nonrandom theory. This
phase diagram uses the same control variables in Fig. 1(a), but
incorporates several features resulting from energy correla-
tions that could not be present in a random-energy-model
phase diagram [Fig. 1(a)]. Most notable is the coil phase and
the transitions to coil from both folded and random globule
states. The coil-random globule transition occurs close to the
averaged u point, is relatively smooth, and is generally similar
to the coil-globule transition in an ‘‘averaged’’ homopolymer,
i.e., a homopolymer with the effective attraction B̄2dB2/4T .
Accordingly, the random globule-frozen globule phase transi-
tion occurs generally when solvent is poor. By contrast, the
coil-folded globule transition is a purely heteropolymeric ef-
fect: it is first order and occurs in a moderately good solvent;
strong attractive contacts between monomers designed to be
coupled in the native state outweigh the modest overall repul-
sion in a good solvent. Furthermore, for well-designed (low-
Tdes) sequences, there are some native contacts even in the coil
phase close to the transition, giving rise to the experimentally
observed unfolded state (even though it is not a separate
phase). Similarly, the folded globule close to the transition has
some conformational mobility and represents a mixture of
states structurally similar to the native one. The appearance of
these states similar to the native state is precisely due to en-
ergy correlations. While molten, this globule state is not a
separate phase in our model; it is expected to be a phase in a
more sophisticated model that allows for small-scale rotations
for, say, side atomic groups of the monomers (i.e., side-chain
packing; Shakhnovich and Finkelstein, 1982). There is evi-
dence that the molten globule state is a separate phase for
some proteins (Ptitsyn, 1995), although this is not universally
accepted. Our simple nonrandom theory is not applicable for
poorly designed sequences, with Tdes.T freeze , and this is why
it does not yield a glassy phase; phase transitions in that region
are shown by dotted lines.
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therefore Smix(Q)5S id(Qi2Q)pi ln pi . One can also
calculate the total entropy S total(Q) by calculating the
probability that the system will reach a conformation
with Q contacts (in comparison to a particular set of Q
contacts i used in the mixing entropy calculation). As
Sbond(Q) is the linear term in S total(Q), i.e., Sbond(Q)5
2Q„S total(Qmax)2Stotal(0)…/Qmax , we can calculate the
loop entropy: S loop(Q)5S total(Q)2Sbond(Q)2Smix(Q).

The loop, mixing, and sum of the loop and mixing
entropies are shown in Fig. 15. We see that the sum of
the mixing and loop entropies leads to an entropy maxi-
mum (free-energy minimum) at small Q and an entropic
minimum (free-energy maximum) at intermediate Q. As
the energy is linear in Q, energetics cannot lead to a
barrier in F(Q) and thus this entropic cancellation,
shown here computationally and discussed and derived
analytically in previous sections, is the cause of the first-
order phase transition in this system.

E. Nonrandom properties of compact polyampholytes

In this section we consider another example of effects
due to correlations of energies between states. We have

FIG. 13. Free energy vs the number of native contacts (Q) and
the total number of contacts (K) of a 36-mer lattice model
designed heteropolymer near the three-phase coexistence tem-
perature and denaturant value. Note that the number of con-
tacts K is directly related to the averaged volume fraction f in
the theory.

FIG. 14. Phase diagram for a 36-mer under denaturation. We
see three phases: unfolded, molten globule, and native state.
The boundaries of these phases were calculated by the exami-
nation of the free energy as a function of the number of native
contacts and the total number of contacts (Fig. 13).
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already seen that such correlations exist for the case in
which interactions are long range (see Sec. V.E). These
correlations lead to the non-self-averaging behavior of
even the mean of energy spectra for polyampholytes. To
show this, we compare the widths of the energy spectra
for both quenched and annealed polyampholytes (we as-
sume that the polymer, whether quenched or annealed,
is externally maintained in a maximally compact state).
These two quantities are given by

sann
2 [^~E2!&2^Ē&^Ē&

squen
2 [^~E2!&2^~Ē !2&, (6.18)

where .. .̄ and ^¯& denote averaging over conformations
and sequences, respectively. The difference between
these two quantities,

G[sann
2 2squen

2 5^~Ē !2&2^Ē&^Ē& (6.19)

characterizes the variation of the energies from one se-
quence to the other. In the random-energy model, G
50; in fact, G50 can serve as another definition of the
random-energy model.

In the annealed case, the energy variance is given by
sann

2 5B2Qmax ; this result is directly seen from Eqs. (5.1)
and (5.4), or by the physical argument that the annealed
case can access all possible states (both conformations
and sequences), and thus the width of the energy states
must be maximal. On the other hand, as G can be inter-
preted as a correlator between typical states, we get G
5B2Qrand . Thus squen

2 5B2(Qmax2Qrand). This makes
sense physically as correlation in the energies should
narrow the width of the energy spectra, while anticorre-
lation should broaden it. We also see that when there is
no correlation (G50), sann5squen , as in the random-
energy model for T.T freeze . We summarize these re-
sults (in units of B2) as follows:

FIG. 15. Polymer entropies Smix , S loop , and Smix1S loop for a
36-mer. There is an entropic minimum (which corresponds to a
free-energy maximum) at intermediate Q, due to the cancella-
tion of loop and mixing entropies. It is this free-energy maxi-
mum that makes the transition first order.
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sann
2 5Qmax ,

squen
2 5Qmax2Qrand ,

G5Qrand . (6.20)

Therefore we can put all of these ideas together to
form the following picture. For the short-range case
above the freezing temperature, Qrand

SR 50. Thus G50
and we expect the mean of the energy spectra for a
given sequence not to vary between sequences. Also, the
width of the energy spectra for a given sequence should
be large (as large as the annealed case, which is the
maximum possible). As the variation of the mean of the
energy spectra between sequences G is much smaller
than the typical width of the energy spectra squen

2 , we
see that disorder is not important. It is only for T
<T freeze that this argument breaks down as the system
becomes correlated, i.e., G approaches Qmax

SR due to
freezing and we see that disorder is important.

For the long-range case, Qrand
LR does not vanish and is

significant. We expect the width of the energy spectra to
be small and the means to vary widely from sequence to
sequence. Thus in the long-range case disorder is always
relevant.

In Fig. 16, this is tested computationally using the re-
sults from our exact enumeration of all globular states of
cubic lattice 36-mers in d53. We see that for short-
range interactions, the mean of the spectra is indeed
well defined and the width of the spectra (gray region) is
large. For long-range interactions, the mean is poorly
defined and indeed the variance of the mean of the spec-
tra between sequences is greater than the width of the
spectra (error bars). Quantitatively, the simulation
yields G as measured by the variance of the mean to be
Gmean541 and the averaged spectra width to be squen

2

514. Thus we computationally calculate that for the
maximally compact 36-mers Qrand

LR /Qmax
LR '0.8. The same

value as found by directly calculating the overlaps Q is

FIG. 16. Mean and width of the energy spectra for 80 se-
quences of 36-mers, determined by full enumeration over all
maximally compact conformations (see text for details).
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0.62. Thus quantitative predictions with the above for-
mulae and physical picture are also reasonably accurate.

However, the behavior in the thermodynamic limit
may be different. For freezing involving a Gaussian den-
sity of states, the important scale to consider is the width
of the Gaussian squen

2 /B25Qmax2Qrand . For short-range
interactions, Qrand50 and Qmax;N; thus the width scales
as squen;N1/2. While this width yields the scaling from
the ground state to the peak of the distribution, it also
gives the scaling of other energy-spectrum-related quan-
tities such as the typical energy gap. For long-range in-
teractions, Qrand does not vanish, but note that both
Qrand and Qmax scale like N222/d. We expect that squen
;N121/d and the energy spectra for a given sequence
should be wider (in the thermodynamic limit) for the
long-range case than for the short-range case. However,
we see from the computational results for short chains
that since (Qmax

LR 2Qrand
LR )/Qmax

LR is small compared to
unity, the width is smaller. Thus, for some N, there
should be crossover between these two regimes.

VII. APPLYING HETEROPOLYMER THEORY TO PROTEINS

The subject matter of the present review—the statis-
tical theory of a single heteropolymer molecule—can
potentially have many different applications, ranging
from synthetic copolymers (especially those made to
simulate proteins) to ‘‘nontraditional’’ polymers, such as
flux lines. However, since the primary application is pro-
teins, we devote this section to a discussion of insights
into proteins gained from the theory of heteropolymers.

A. Is heteropolymer theory applicable for proteins?

Our models capture the physics of designed het-
eropolymers, with quenched sequences that fold to a
globular native state. One may question whether the in-
corporation of these features is sufficient or whether
other protein-specific details are important for folding.
We think that quenched designed heterosequence and
globular state do indeed capture the most fundamental
aspects of folding. This notwithstanding, there are some
other aspects which are certainly missing in the models
presented in this review. We summarize some of these
below.

1. Secondary structure

Potentially the most important drawback of the mod-
els discussed in this review is the omission of protein
secondary structure, such as a helices and b sheets,
which fit poorly in the current theoretical scheme. In
particular, if we consider a protein as a large polymer
globule, then we expect the Flory theorem to apply. This
stipulates that pieces of the chain inside the globule
should obey Gaussian statistics. Gaussian statistics of
polymer loops play an important role in the theories
discussed in the previous sections. On the other hand,
there is substantial experimental evidence that elements
of secondary structure play an important role in many
aspects of folding. While one can assert that the mono-
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mers in our models are not the bare amino acids, but
some renormalized entities such as elements of the sec-
ondary structure, these renormalizations have not yet
been rigorously performed. Some important steps in this
direction have been reported by Doniach et al. (1996;
see also the review article of Garel et al., 1996), who
examined geometrical competition between secondary
structure (simplified to chain preference to go straight)
and overall compactness. When both factors are present,
there exist two distinct globular phases, of which one
lacks secondary structure and is liquid-like, while the
other is highly ordered and crystallike. (Similar albeit
less sophisticated models have also been considered by
Grosberg, 1984; Zhou et al., 1996; and Sear, 1997.)

2. Designability of conformations

On the topic of conformational restrictions mani-
fested in secondary structure, we mention the following
computer experiment: using 27-mers with a certain 232
interaction matrix [which corresponds to u50.09; see
Eq. (3.46)], Li et al. (1996) were able to perform a com-
plete enumeration and energy calculation of all 103 346
maximally compact conformations for all 227 possible se-
quences. The authors then defined the designability of
each conformation !, N! , as the number of sequences
for which this conformation serves as the ground state.
The designability varied widely for different conforma-
tions. In general, the idea that some of the conforma-
tions may better fit the needs of proteins than others was
suggested and studied earlier (Finkelstein et al., 1993).
While it is tempting to naively associate features of 27-
mer conformations (or even some two-dimensional con-
formations) directly with some properties of secondary
structure, such an approach is at best speculative and
appears to have no physical or biological foundations.
However, we admit that the very fact of a broad distri-
bution of designabilities remains largely unexplained.
We stress that this effect has its origin in the finite size of
the globule and in the role of its shape and surface. In-
deed, as we have seen several times in this review, all
compact native conformations ! have the same ground-
state energy (4.17), stability gap or folding temperature
(4.8), and designability (4.22) as long as volume approxi-
mation (or linear in N terms in energy and entropy) is
considered. Of course, given the modest size of real pro-
teins, the inclusion of their surface (and, in general, sub-
linear in N) properties is an important unsolved prob-
lem.

3. Monomers are not pointlike

In a more realistic model of proteins, monomers
(taken either as bare amino acid residues or pieces of
secondary structure) would not be pointlike: their orien-
tations affect both the polymer connections of each
monomer to its neighbors along the chain and contacts
and interactions with other monomers in space. Further-
more, these monomers have internal degrees of free-
dom, allowing for oscillations, fluctuations, and even
conformational isomerizations.
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
None of these factors is currently considered in the
simplified models discussed here. All-atom models con-
tain these properties, but they are often computationally
too intractable to simulate folding trajectories. Ideally
one could add these properties from simpler models to
examine these effects in a tractable model. Some impor-
tant steps in this direction have been reported by
Micheletti, Seno, et al. (1998), who simulated the poly-
mer with different monomers having different excluded
volumes, and by Klimov and Thirumalai (1998), who
suggested a lattice model for the chain with side groups,
yielding a remarkable increase in the cooperativity of
folding.

These additional degrees of freedom are relevant in
order to address the question of the entropy of proteins
at zero temperature (Frauenfelder and Wolynes, 1994;
Goldanskii, 1989). Does it vanish, as required by the
Nernst theorem for each equilibrium system, or is there
some residual positive entropy, as is the case for disor-
dered systems such as glasses? Or are proteins a crystal-
like or glass-like system? Apart from terminology, we
remark that in the framework of the simple models con-
sidered above, such as lattice models, the answer is
strict: the entropy vanishes, not only at zero tempera-
ture, but everywhere below freezing temperature
T freeze . Although nobody has been able to show the na-
ture of the low-temperature entropy experimentally,
there is little doubt that a more sophisticated model,
which would incorporate internal degrees of freedom,
allowing for small-scale rotations and/or oscillations of
the monomers, would exhibit a freezing transition simi-
lar to that examined above (with a residual entropy
present at T,T freeze and related to the aforementioned
small-scale fluctuations).

Theoretically one could imagine two distinct kinds of
such models: those with vanishing zero-temperature en-
tropy, in which small-scale degrees of freedom equili-
brate at each temperature, or one with a nonzero en-
tropy and a glasslike behavior of small-scale
fluctuations. Judging from the experimental data, as far
as we know, it looks more plausible that the latter sce-
nario is more applicable to proteins (Frauenfelder and
Wolynes, 1994). However, whichever of these alterna-
tives is closer to the truth has little bearing on the prob-
lem of folding. Folding occurs at a vastly larger scale
and, from that point of view, it seems almost certain that
the main features of folding, such as evolutionary re-
quirements for foldable sequences, are correctly cap-
tured by some coarse-grained models and at best weakly
depend on the small-scale features of monomers impor-
tant in low-temperature experiments.

4. Molten globule state as a distinct phase

The most obvious drawback of a model that disre-
gards the local freedom and chemical specifics of amino
acids is the fact that the molten globule state does not
appear as a distinct phase in the phase diagram (Fig. 12).
For proteins, the molten globule state is defined
(Ptitsyn, 1995) as a state with a nativelike backbone con-
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formation, but a high degree of fluctuation (hence the
name ‘‘molten’’). In terms of more familiar quantities,
such as the fraction of native contacts q, the molten
globule state has q close to, but less than, unity. Molten
globule-stateshave been seen experimentally in many
proteins (Ptitsyn, 1995), and the phase transitions be-
tween molten globule, unfolded, and native states have
been observed (Uversky and Ptitsyn, 1996). Recently
the molten globule state has been observed to be a dis-
tinct phase in proteinlike lattice heteropolymer simula-
tions (Pande and Rokhsar, 1997). Recent simulations of
off-lattice Monte Carlo and molecular dynamics simula-
tions of a small protein (fragment B of protein A) have
also shown a molten-globule-like state (Boczko and
Brooks, 1995; Olszewski et al., 1996; Pande and Rokh-
sar, 1997). The molten globule state is believed to be
stabilized by the entropy of local fluctuations of the
monomers (Shakhnovich and Finkelstein, 1982) and the
mixing entropy of choosing native contacts (see Sec.
VI.B).

The unfolded state is also poorly understood. Al-
though there is growing experimental evidence (Shortle,
1996) that the denatured phase of proteins corresponds
to the unfolded regime described above, and an un-
folded state with a nonvanishing fraction of native con-
tacts has been seen in recent simulations of both pro-
teinlike lattice-model heteropolymers and an off-lattice
simulation of fragment B of protein A, a small three-
helix bundle (Pande and Rokhsar, 1997), experimental
understanding of these states is still incomplete.

Our models do not consider protein-specific chemical
aspects; they exclude the effect of side-chain packing
and thus cannot produce a first-order molten-globule-to-
folded-phase transition. We do, however, consider the
forces that stabilize the molten globule—competition
between mixing entropy and native contact energy—to
be a general property of heteropolymers, and therefore
we expect that analogous regimes may be found in
synthetic heteropolymers without side chains
(Chakraborty et al., 1997).

Finally, interactions in proteins are neither pairwise
nor purely short range. Although we discussed briefly
the role of long-range interactions, we did not consider
the mixed case in which both long- and short-range in-
teractions act simultaneously, in a potential conflict.

B. What does the theory of designed heteropolymers tell
us about proteins?

With all the aforementioned complications consid-
ered, the heteropolymer theory described here undoubt-
edly captures many of the key properties of proteins,
including the fact that they are polymers, that they are in
the compact globular form, and that they have quenched
sequences of different monomers. Potentially the best
argument to support these claims is that proteins exhibit
correlations in their sequences that are fully consistent
with the ideas of design and energy optimization (see
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Sec. I.C.3.b above). It is therefore perfectly justified to
look at proteins in light of what we have learned about
model heteropolymers.

1. Where in the heteropolymer phase diagram are proteins?
The stability gap

If we forget about secondary structure and other com-
plications and consider proteins to be designed het-
eropolymers, then from our discussions of the previous
sections we argue that proteins should function (and
should therefore typically be found in vivo) at T
.T freeze . Indeed, for T,T freeze , polymer kinetics will
be drastically slowed down due to trapping into low-
energy conformations unrelated to the native-state con-
formation. Obviously, proteins must also be in the
folded globule state, and thus it is only the gap region
T fold.T.T freeze that is appropriate for proteins.

We have also mentioned many times that sequence
selection at lower Tdes provides numerous advantages
due to better optimization and elimination of frustration
in the ground state. As the gap width T fold2T freeze in-
creases monotonically when Tdes gets smaller [see Eq.
(4.8)], we can equivalently say that this wide T fold
2T freeze gap is advantageous in terms of minimal frus-
tration or optimal ground state. This seemingly trivial
reformulation is useful. Indeed, we should keep in mind
that real proteins have not been prepared following the
design prescription based on Eq. (2.14); on the contrary,
the design approach, assuming it is correct, pretends
only to mimic the results of a complex kinetic evolution
process. If we are given a protein, or even a set of sev-
eral different proteins, there is no obvious way to attach
a certain value of Tdes to them. On the other hand, both
T fold and T freeze can be measured—the former directly
by observing the folding transition, and the latter by ex-
amining randomized sequences of the same composi-
tion. Thus the dimensionless gap width

D5~T fold2T freeze!/T freeze (7.1)

is believed to be the important characteristic of proteins.
While our derivation proceeds from the idea of pro-

teins as designed heteropolymers, similar conclusions
have been made using physical arguments considering
the nature of the random-energy model [see, in particu-
lar, Goldstein et al. (1992) and Wolynes (1994), and ref-
erences therein].

Let us now summarize which properties of proteins
can be explained by treating them as large-D heteropoly-
mers:

• A broad gap provides stability against folding mis-
takes of various kinds.

• A broad gap provides stability against mutations.
To see this, we can reinterpret Eq. (4.7), resolving it
with respect to g and saying that it yields the mini-
mal value of g or maximal value of mutation angle u
(cos u5g) for which the system remains in the
folded phase. Replacing Tdes with D using that same
Eq. (4.7), but with g51 and T5T fold , and assuming
also for simplicity that u is small, we arrive at the
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conclusion that a protein remains correctly folded
until mutations are weaker than

u,u*.D. (7.2)

With greater optimization, a greater number of mu-
tations will be necessary to destabilize the native
state to the point at which renaturation is not pos-
sible.

• A broad gap provides for a highly cooperative fold-
ing transition, as observed in proteins. Poorly de-
signed narrow-gap heteropolymers (best exempli-
fied by heteropolymers with random sequences)
have noncooperative, almost second-order transi-
tions, whereas well-designed sequences have ex-
tremely cooperative, first-order folding transitions
(Nymeyer and Onuchic, 1997; Pande and Rokhsar,
1997). In poorly designed chains, the energy of non-
native contacts is essentially the same as that of na-
tive contacts. Thus there is no strong energetic pref-
erence toward native contacts and the system
samples many non-native contacts, which leads to
broadening and smoothing of the transition. For
well-designed sequences, typically only native con-
tacts are found, which leads to a sharp first-order
transition.

• It has been argued in the literature that the same
logic applies to kinetic properties: sequences with a
broader gap are better solvers of the Levinthal
paradox (see, in particular, Klimov and Thirumalai,
1996 and Shakhnovich, 1997).

The idea of the gap as the necessary condition for
good folding has been suggested by Goldstein et al.
(1992) and Shakhnovich and Gutin (1993) and has re-
cently been reviewed by Shakhnovich (1997). There
have also been numerous works in which authors have
naively interpreted the gap mechanically, as the gap be-
tween the lowest and second-lowest energy states (con-
formations). This interpretation would indeed be correct
in a pure, narrowly defined random-energy model in
which design affects only the native state ! and even the
second-lowest energy level is completely unaffected.
However, as we know, nonrandom effects are inevitable,
and thus in reality—in vivo, in vitro, and in silico—there
are always energy levels not very far from the lowest
one; they correspond to states that are structurally
closely related to the native, and thus low-energy exci-
tations correspond to structurally modest fluctuations.
This is why a real understanding of the stability gap re-
quires a statistical rather than a mechanical approach,
i.e., consideration of the gap between temperatures T fold
and T freeze . Not surprisingly, the mechanical approach
leads to confusion, because the energy gap between the
two lowest levels is in general neither necessary nor suf-
ficient for anything useful with respect to folding.

2. Determining parameters for proteins

Although enormous effort is being devoted to experi-
mental studies of proteins, there is a fundamental diffi-
culty in determining dB , s, and other heteropolymer pa-
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
rameters based on experimental information. The
problem is that monomers of the theory are not to be
identified with amino acid residues, but with some
renormalized entities; as we do not know how to per-
form the renormalization, the only way out is to treat
heteropolymer parameters phenomenologically.

a. Conformational entropy s

We remind the reader that the value of s was intro-
duced in Eq. (3.34), as the entropy reduction per bond
due to the placing of one replica exactly in the confor-
mation of the other. Equivalently, this parameter also
appeared in Eq. (4.9), as the entropy per contact for a
dense globular conformation, where exp Qs is the num-
ber of such conformations. In reality, conformations of
replicas coincide down to a microscopic but finite
scale—the d function in Qab(R1 ,R2);d(R12R2) (3.33)
is concentrated on neighboring points R1 and R2 .
Equivalently, the conformation itself is defined only up
to fluctuations on a microscopic scale. If this scale cor-
responds to a monomer volume v , and if the chain con-
nection between monomers is associated with a length
scale a then we can estimate s.ln(a3/v). The v/a3 pa-
rameter is well known in polymer theory (Grosberg and
Khokhlov, 1994), and it also involves chain flexibility.
For a moderately flexible polypeptide chain of a protein,
it is believed that v/a3'0.2 (Creighton, 1992). Thus

s'1.6 for a flexible polymer. (7.3)

This estimate completely neglects the role of secondary
structure.

Another estimate can be obtained using lattice mod-
els. As maximally compact conformations have been
enumerated for 18-, 27-, 36-, and 48-mers (Pande, Joerg
et al., 1994), we can easily calculate s for those models,
and it turns out to be 0.39, 0.41, 0.45, and 0.46, respec-
tively. It has been argued (Leopold et al., 1992; Luthey-
Schulten et al., 1995) that the conformational space of
the cubic lattice 27-mer is similar to that of a protein
with 60 to 80 residues, as it has a similar number of
contacts in the compact state, around 30, and the num-
ber of conformations is also believed to be similar be-
cause it is suppressed for proteins due to secondary
structure. With this reasoning, we can estimate

s'0.4 with secondary structure. (7.4)

b. Protein interactions

The determination of the 20320 B̂ matrix of interac-
tion energies for amino acids is a difficult task and lies
beyond the scope of the present review. We mention
only that the most advanced methods are ‘‘knowledge
based,’’ that is, they employ the statistics of the protein
structures (conformations) taken from the data bank
(Abola et al., 1987), rather than quantum chemistry or
other microscopic theoretical computations or experi-
mental measurements. We mention four studies devoted
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to the determination of B̂ using various knowledge-
based approaches: (Miyazawa and Jernigan, 1985; Kolin-
ski et al., 1993; Hinds and Levitt, 1994; Mirny and Sha-
khnovich, 1996). For example, Miyazawa and Jernigan
(1985) counted all the contacts between monomer spe-
cies i and j throughout all proteins from the data bank
and then related Bij to the logarithm of that number.
This makes the assumption that the contacts in different
proteins are governed by a Gibbs distribution, an as-
sumption that may seem unfounded, as the set of pro-
teins in the database has really nothing to do with a
thermodynamic Gibbs ensemble. However, as long as
the random-energy model is valid, these two ensembles
have the same distributions, as we have mentioned pre-
viously in this review. Moreover, as long as we believe
that proteins are designed heteropolymers, we can argue
that the ensemble of proteins is actually a Gibbs en-
semble corresponding to the temperature Tdes. Thus
what has been determined by Miyazawa and Jernigan
(1985) approximates the quantity Bij /Tdes (see also
Finkelstein et al., 1993 and the Appendix in Pande,
Grosberg, and Tanaka, 1995c). Unfortunately, the
Miyazawa and Jernigan (1985) approach to potential de-
termination relies heavily on the validity of the random-
energy model and also assumes a direct relation be-
tween contacts (pair correlation function) and energies
(Bij), which is problematic for a condensed system such
as a globule.

The different estimates of interaction matrices have
recently been compared by Du et al. (1998) using the
idea that correlation between interaction matrices
should be defined according to Eq. (3.44). This analysis
yielded the conclusion that all known matrices agree
poorly with each other. The very existence of different
poorly correlated estimates raises the question, How ac-
curate must potentials be for simulations of protein fold-
ing? This question is addressed in the next section.

c. Potentials for simulations of protein folding

Consider that proteins have been indeed designed ac-
cording to our theoretical model. This means that they
were prepared with interactions B̂des at some tempera-
ture Tdes,T freeze

des , and now they ‘‘work’’ at some other
temperature T, such that T freeze

des ,T,T fold . Their work
is governed by their natural interactions, that is, by the
same matrix B̂des as was supposedly used for design. We
now take some other artificial matrix B̂ and try (for ex-
ample, by means of computer simulation) to recover the
correct renaturation. In terms of our phase diagram, cor-
rect renaturation occurs when and only when the system
remains in the folded phase. As a greater degree of error
in the potentials pushes the phase boundary to the left,
determined by the value of the factor g (3.44), we con-
clude that correct renaturation at temperature T is pos-
sible for a chain designed at Tdes if and only if the degree
of correlation is sufficient (or the angle is small enough)
between B̂des and B̂ , namely, when
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g.g* 5
Tdes

T freeze
des

11~T/T freeze!
2

2T/T freeze
, (7.5)

where g* is defined from the condition that the phase
boundary T fold , given by Eq. (4.7), goes through the
given point (Tdes,T). The purely theoretical value of
Tdes can be replaced with the measurable value of the
gap D (7.1), as we did before. This yields the result,
which we write for simplicity in terms of the angle u
defined as cos u5g and assuming also that u is small,

u,u* 5FD22S T2T freeze

T freeze
D 2G1/2

<D . (7.6)

We conclude from this equation that minimal ‘‘correct-
ness’’ of the interaction matrix g* or u* is defined by the
degree of optimization of the ground state that we
would like to renature, and this is quantified in terms of
the gap D, as well as several other properties discussed
above. A similar but more general estimate can also be
obtained from the non-random-energy-model free en-
ergy, by the condition that the system remain inside the
folded phase, whether below the transition to the ran-
dom globule or to the coil (or unfolded state).

We stress that this error limit is independent of the
length of the polymer. This is to be compared with the
error limit of about 1/AN found by Bryngelson (1994)
for the possibility of reconstructing a randomly chosen
conformation of the glassy (frozen) globule phase. In the
ensemble of random sequences, sequences with very
stable ground states are very rare (exponentially so);
thus these ground states are typically very unstable with
respect to error-based renaturation, especially for long
chains. In contrast, our treatment is a comparison be-
tween the types of freezing (to the native or some ran-
dom conformation). This treatment is therefore inde-
pendent of the length of the polymer chain and is
essentially of a different nature than the pure random-
energy-model effect examined by Bryngelson (1994).

Pande, Grosberg, and Tanaka (1995c) have addressed
the question of which types and values of errors in the
determination of interactions lead to a particular value
of g factor. None of the linear (Bij5bBij

p 1B0) system-
atic errors contribute at all, yielding g51 (because these
kinds of errors contribute to homopolymer terms only
and do not affect the selectivity of monomer interactions
to one another). To get an idea of random mistakes, we
examine the case in which each matrix element of the
renaturation matrix is that of the design matrix plus
some noise, which is normally (and independently for
different entries) distributed with a variance s. This
gives s'10% for g* '0.95. Thus even conservative es-
timates leave room for about 10% error in potentials.

d. Composition

There are 20 different types of amino acids used as
monomer species in proteins. Their occurrence pi is not
even, differing from 0.05 and ranging from 0.015 to
0.087. Thus the effective number of species (4.20) is
qeff'18.
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C. How optimal are present-day proteins?

1. Quantitative aspects of evolutionary optimization

While our discussion directly considers the tempera-
tures T, T freeze , T fold , and Tdes, our theory should be
understood in a broader way. The strength of interac-
tions can be controlled by temperature and also by a
variety of other factors, such as solvent composition and
mutations from a wild-type sequence. This is particularly
important for the interpretation of Tdes. Indeed, pro-
teins are believed to have been ‘‘designed’’ by evolution,
at both the prebiological and biological stages. Our Tdes

based description envelops many different factors. From
that point of view, although our theory is microscopic in
nature, it operates with parameters that should be un-
derstood as purely phenomenological; in particular, Tdes

is just a phenomenological descriptor of the degree of
optimization of the native conformation. Moreover, as
the natural scale for Tdes is T freeze , we conclude that a
quantitative measure of the quality of sequence design is
the ratio Tdes/T freeze : the smaller Tdes/T freeze yields a
broader gap region and thus better folders. Alterna-
tively and even more phenomenologically one can judge
the quality of design based on the value D of the gap
itself.

One can ask what the numerical values of Tdes/T freeze
or of D are for proteins found in modern living organ-
isms. The information available at present is insufficient
to make any solid statement on that matter. To get some
rough idea, we can use the Miyazawa and Jernigan
(1985) interaction matrix for amino acid residues. As we
explained earlier, it represents the quantity Bij

MJ

5Bij /Tdes. On the other hand, according to Eq.
(4.3) we have dB52s1/2T freeze . Thus the variance
of the Miyazawa-Jernigan matrix yields dBMJ

52s1/2T freeze /Tdes. This variance is easy to compute di-
rectly (dBMJ'1.5). If we adopt the estimate (7.4) for s,
we arrive at

Tdes/T freeze'0.85 (7.7)
Given the uncertainties in determination of both s and
dB , this value should not be considered solidly deter-
mined, but rather as an illustrative example. However,
according to Eq. (4.7), it translates into the ‘‘gap’’

D5~T fold2T freeze!/T freeze'0.6, (7.8)

which is consistent with the value independently calcu-
lated by Onuchic et al. (1995).

2. How far has evolution progressed?

What we want to stress is not so much the numerical
values of either Tdes/T freeze or D, but the very possibility
of quantifying the evolutionary optimization of proteins
to perfect their functions, and of quantifying it in terms
of measurable quantities.

This should be viewed in the broader context of evo-
lution theory. People used to think that everything in
biology is optimized to absolute perfection (and it is
hard to avoid thinking this way when looking at the
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amazing performance of living organisms). In sharp and
dramatic contradiction, the selection of the ‘‘best’’ out of
the sea of possibilities is prohibitively consuming both of
time and of materials (Monod, 1971; Volkenstein, 1994).
In the last decades, the so-called neutral theory of evo-
lution (Kimura, 1983) has been proven broadly appli-
cable. This theory stipulates that the lion’s share of all
mutations are neutral, carrying neither functional nor
structural advantages/disadvantages. In line with this
way of thinking, proteins are no longer viewed as abso-
lutely optimal (Ptitsyn and Volkenstein, 1986), implying
that the degree of optimization may have been improv-
ing over the course of evolution and may even keep
improving slowly at the present stage of evolution. It is
exciting to think about evolution in terms of Tdes/T freeze
or D considered as a time-dependent (on an evolution-
ary scale) dynamic variable.

From that point of view, one may ask how far the
optimization can go. One answer to this lies in Eq.
(4.24), which says that the sequences are not yet the best
as long as Tdes/T freeze>s/ln qeff'0.2, or D,1.2. Of
course, progressive optimization poses increasingly diffi-
cult selection problems, and it seems safe to assume that
evolution can never approach anywhere near the limit
set by Eq. (4.24). It is also undoubtedly true that there
are other factors affecting the ‘‘quality’’ of proteins be-
sides Tdes/T freeze or D; in particular, reliability and the
rate of folding kinetics can be improved dramatically,
even with constrained Tdes/T freeze or D, provided that
ground-state energy optimization, described by
Tdes/T freeze or D, is already good enough; see Mirny et al.
(1998). Nevertheless, our estimates indicate that there is
still plenty of room left for further evolutionary im-
provements of proteins. Indeed, this has been seen in
experiments, as de novo designed proteins are typically
unfolded at higher temperatures, reflecting greater ener-
getic stabilization and thus lower Tdes (Dahiyat and
Mayo, 1996).

VIII. CONCLUSIONS

We have been pursuing a statistical approach to pro-
teins, which means that we did not examine any specific
example of a protein, but rather general properties of
some broad ensembles of them. Conceptually, this ap-
proach can be viewed as the examination of what could
have happened during evolution, rather than what has
happened in the only example that we know, i.e., pro-
teins. Technically, this approach implies the consider-
ation of certain averages over the ensemble of random
or designed sequences.

We stress that, although averaging over the realiza-
tions of disorder might seem to be the only sensible ap-
proach for a physicist, it is actually not so in biology.
Indeed, the synthetic apparatus of the living cell (when
considered as a piece of equipment for physical experi-
ments) is able to produce macroscopic amounts of iden-
tical copies of a disordered system (protein molecules).
This is to be compared with the unimaginable method of
preparing two samples of, for example, a spin glass with



305Pande, Grosberg, and Tanaka: Heteropolymer freezing and design
microscopically identical structures. Until recently, only
the opposite approach was possible in biology, where
one routinely examines a particular protein. These two
approaches are complementary [see also the famous talk
by Bohr (1935)]: by examining a particular protein, one
can learn little regarding ensemble properties (including
those members of the ensemble that never existed, but
presumably could have appeared if evolution had cho-
sen another path); on the other hand, by examining an
ensemble, one can learn almost nothing about the spe-
cifics of any particular protein. Recently, due to biotech-
nological experimental methods, the examination of
‘‘general properties’’ of proteins has been gathering mo-
mentum: there are works on random-sequence polypep-
tides, with further selection performed based on their
folding properties (Ptitsyn, 1995; Sauer, 1996; Dahiyat
and Mayo, 1997); completely artificial sequence
polypeptides, constructed according to certain a priori
considerations (Hecht et al., 1990); and artificially cre-
ated mutations of natural protein sequences (Fersht,
1995). In this review we have been considering theoret-
ical aspects of such an approach. What were the results?

First, under certain circumstances, there is a freezing
phase transition for a heteropolymer with a random se-
quence. In the simplest case—when (i) the polymer is
externally supported in a dense globular state (e.g., in a
box or poor solvent overall), but conformations are not
restricted otherwise, and (ii) interactions between
monomers are short range—the freezing temperature
T freeze is governed by the diversity of heteropolymeric
interactions (e.g., variance of the interaction matrix). A
freezing transition occurs from a state with typically no
overlap with the ground state to a state with complete
overlap, that is, to the ground state itself. This disconti-
nuity is largely due to the nature of conformational
space, as relatively few local rearrangements of the con-
formations exist in a dense globule because of the
excluded-volume constraint. Thus small correlations ex-
ist between most relevant states (giving a dominant con-
tribution to the partition function). This in turn gives
rise to an approximation in which one assumes no cor-
relations between any states; this approximation is
equivalent to the random-energy model.

Thus even a heteropolymer with a random sequence
can have a unique ground-state conformation. Neverthe-
less, the ground state of a random sequence is not pro-
teinlike. Indeed, while formally there is one ground-
state conformation, random-energy-model low-energy
states are only ;AN from each other. These states are
typically structurally unrelated to the native state. This
leads to nonproteinlike behavior, including a complete
alteration of the ground-state conformation due to de-
stabilization of the original ground state caused by, for
example, only a minute change of solvent composition.

However, the random-energy view of an uncorrelated
energy landscape invokes a simple way to select, or de-
sign, sequences whose energy minimum is well pro-
nounced. Sequences with these properties are very
atypical (exponentially rare) in the ensemble of all (ran-
dom) sequences. However, as soon as sequence
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selection is weighted with the Boltzmann factor
exp@2E! /Tdes# , the energy E! of the desired native con-
formation ! is about N below most of the other states,
which remain statistically unaffected as long as the
random-energy-model is valid and there are no correla-
tions between states. A lower design (or selection) tem-
perature Tdes leads to stronger pulling down of the
ground-state energy E! or, in other words, better energy
optimization of the native state or less frustration in the
native state.

Sequence design appears to be a highly successful
paradigm for understanding many aspects of proteins.
First, it is consistent with the fact that protein sequences
have indeed been affected by evolutionary selection.
Second, design predicts nonrandomness of protein se-
quences; moreover, the character of correlations along
the chain, based on the interactions of monomers in
other directions, is at least qualitatively consistent with
design. Third, design explains why and how the native
state could be thermodynamically stable while all unre-
lated states are not stable and thus do not serve as traps.
This suggests that design must be viewed as performed
somewhat below T freeze while proteins have to work
somewhat above T freeze (Tdes,T freeze , but T.T freeze ;
see phase diagram, Fig. 2). Fourth, design explains the
remarkable stability of the native state to a variety of
perturbations, including solvent composition, mutations,
etc. (which is clearly demonstrated by the examination
of folding and design governed by somewhat different
interactions). Finally, the idea of sequence design is a
strong stimulus for experiments, both with polypeptide
chains and with synthetic polymers and gels.

This also suggests that one should view the design
temperature (or rather the ratio Tdes/T freeze) as a phe-
nomenological parameter defining the degree of selec-
tion. Lower values of Tdes/T freeze mean better energy op-
timization and thus better resolution of the Levinthal
paradox. However, there are far fewer sequences with a
smaller value of Tdes/T freeze , and thus it is more difficult
to select them—they are worse at resolving the evolu-
tion paradox. One might expect that the current state of
evolution represents a compromise between these two
opposing factors.

Although the random-energy view of an uncorrelated
energy landscape, when complemented with the idea of
design, explains several aspects of proteins, it is not suc-
cessful in other respects. First and foremost, a pure
random-energy model would leave the Levinthal para-
dox unresolvable. Indeed, in a pure random-energy
model, the system, even when it is conformationally very
close to the native state, still does not have any hint of
the location of the ‘‘goal’’ and keeps walking randomly
in highly dimensional conformation space; in other
words, a pure random-energy model does not provide
any bias towards the native state (or anywhere else).
Thus to understand the kinetics of folding and to finally
resolve the Levinthal paradox one must consider devia-
tions from the random-energy model, with a correlated
energy landscape. To this end, the terminology of a
‘‘protein folding funnel’’ has been introduced (Leopold
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et al., 1992). The original use (Leopold et al., 1992)
painted a physical picture in which correlations between
energies of different states provide the bias for the sys-
tem to fold to its native state, although it has come to
have a broader application (Bryngelson et al., 1995; Dill
and Chan, 1997).

However, to understand how this physical picture is
connected with proteins, the first step is to understand
the nature of the preferred kinetic path (or reaction co-
ordinate) for protein folding kinetics. The elucidation of
the correct reaction coordinate remains unsolved. More-
over, to build a theory that would be able to exploit the
attractive phenomenological idea of a correlated land-
scape biasing kinetics, one has to determine the physical
and geometric meaning of the reaction coordinate, in-
cluding why the system travels along this path, what
happens to the directions perpendicular to the path, why
states are correlated along the path, and why this corre-
lation drives the system toward the native state along
this path. These questions lie at the heart of a non-
random-energy theory of heteropolymers.

We must admit that this picture of heteropolymers is
much less developed, and the problems are poorly un-
derstood at present. We know several factors that drive
the system away from the random-energy model and
provide energy correlations, including a long-range com-
ponent in the interactions, some conformational restric-
tions (e.g., excess of local crumples), overall swelling of
the globule, density fluctuations, the surface of the glob-
ule, and local fluctuations due to small-scale internal de-
grees of freedom of monomers. We understand that
these factors bring about new phases, or distinct (mac-
ro)states, of the polymer, such as the unfolded state
(which is not simply a self-avoiding random walk) and
the molten globule state. We also understand that these
correlations have an important effect on sequence de-
sign, since they lower the energies of several conforma-
tions even though selection is aimed at lowering specifi-
cally a target state. These ‘‘accompanying’’
conformations are structurally related to the native one;
geometrically, they form a kind of braid of conforma-
tions intertwined around the native conformation. Fur-
thermore, the closer the conformation in this braid is to
the native conformation, the more strongly it is affected
by the design. Thus it is natural to expect that such con-
formations can indeed provide an energetically biased
path toward the native state.

This paper has reviewed the theory of heteropolymer
freezing and design up to the limits of our current un-
derstanding. In the introduction to this review, we
quoted the final sentences of the Reviews of Modern
Physics article by Lifshitz et al. (1978) on homopolymer
globules, and we mentioned that our present review be-
gins precisely where Lifshitz et al. (1978) left off 20 years
ago. It is hard to resist guessing what will be discussed in
yet another RMP review in another 20 years. We feel
that the concepts of heteropolymer freezing and design
are solidly established. Although we have been able to
discuss them for simple models only, the ideas discussed
seem to be useful as a first step toward better approxi-
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mations. In particular, it appears almost certain that fac-
tors such as secondary structure, rotations and deforma-
tions of monomers (as they are not points), and density
fluctuations and surface of the globule should and could
be taken into account, even though that would require
generalizations of the model based on Hamiltonian
(2.5). Finally, the elucidation of the mechanism of fold-
ing kinetics, including the nonrandom nature of design
and the geometry of folding pathways, remains an excit-
ing and challenging unsolved problem.

APPENDIX A: GLOSSARY OF PHASES

Since the terminology involved is often vague and
confusing, we present a glossary with short explanations
of some terms as we have used them in the present re-
view.

Coil completely open phase of a polymer, either a
Gaussian or swollen (self-avoiding) random-walk state.
A coil is a strongly fluctuating state in which long-range
correlations enforced by the chain involve the entire
polymer.

Denaturation abrupt transition of a protein from its
native state to a denatured state.

Denatured state of a protein the state at which a pro-
tein function is completely lost, although chemically the
protein remains completely intact. Commonly attributed
to the loss of native three-dimensional fold.

Freezing phase transition of a heteropolymer between
a ‘‘normal’’ state with exponentially many @O(eN)# con-
formations and a frozen or folded state in which only
one or very few conformations @O(1)# dominate equi-
librium.

Frozen state same as the glassy state.
Folded state the globular state dominated by the cor-

rect native conformation or by a priori chosen target
conformation; similar to target state.

Folding of a protein experimentally observed phe-
nomenon in which a protein macromolecule under ap-
propriate solvent conditions goes spontaneously from an
open (or at least denatured) state to the native one.

Glassy state phase state of a heteropolymer globule
that is dominated by one or very few conformations.

Globule or globular phase condensed phase of a poly-
mer chain. As opposed to the coil, correlations are sup-
pressed in a globule, such that density fluctuations are
mild.

Misfolded state glassy state of a chain whose sequence
has been designed under ‘‘distorted’’ interactions, differ-
ent from folding ones.

Molten globule a phase of protein globules, which is
usually close to the native globule as regards the amount
of secondary structure and overall character of the chain
fold; it is, however, somewhat less compact than native.
Transitions from the molten globule state to coil and to
native globule are accompanied by considerable latent
heat and are believed to be first order.

Random globule globular phase of a heteropolymer
that is dominated by many @O(eN)# conformations and
in this sense is similar to a homopolymer globule.
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Target state globular phase of a designed heteropoly-
mer that is dominated by the conformation ! chosen by
the design.

Unfolded state state in which there are some native
contacts between monomers, i.e., nonzero overlap to the
native state, but the degree of openness is closer to the
coil, though denser. It remains unclear whether there is
a phase transition between this state and the coil.

APPENDIX B: PROPERTIES OF THE
RANDOM-ENERGY MODEL

1. Density of states for the random-energy model

We first examine the energy spectrum of a typical
random-energy-model realization of disorder. It is easy
to generate realizations of this spectrum computation-
ally; a few are shown as examples in Fig. 1. Here typical
spectra consist of a very dense region, with many states
at high and relatively modest energies, and a low-energy
part of the spectrum, which is discrete and composed of
only a few levels. Formally speaking, the spectrum is
discrete everywhere, as there is a finite number of states
(and levels). However, this number is huge, and thus the
difference between continuous and discrete (large and
small density of states) is indeed defined to logarithmic
accuracy. By inspection of Fig. 1, one sees that the con-
tinuous part of the spectrum looks identical for all real-
izations of the disorder, while the discrete part is very
individual and looks completely different for different
realizations.

We can gain insight into these properties of the
random-energy-model spectrum by examining the den-
sity of states n(E): n(E)DE is the number of states
with energies between E and E1DE . It is very easy to
find the expectation value for n(E):

^n~E !&5MP~E !. (B1)

This value is huge (due to M) whenever E is not far
from the central part of the spectrum; this is why an
astronomically large set of states forms an almost con-
tinuous spectrum at all energies where the probability
(2.3) is not very small. When the density of states is so
large, it is about the same in all particular realizations,
so that n(E).^n(E)&. This argument, however, is valid
only as long as MP(E).1, or E.Ebottom, where

MP~Ebottom!;1⇒Ebottom.2NEA2v . (B2)

If we go to low energies E,Ebottom where this breaks
down, then the expected number of energy levels in an
interval DE becomes so low that there is not a single
level in the interval of interest:

n~E !5HMP~E ! when E.Ebottom

random peaks when E,Ebottom.
(B3)
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2. Typical and atypical realizations
in the random-energy model

To gain deeper insight into the properties of the
random-energy model, let us look at the energy differ-
ences between low-energy states. First of all, one can
easily write the probability distribution for the ground-
state energy. Indeed, for some state with energy E to be
the ground state, all other states must be of higher en-
ergy; for each state, the corresponding probability is
*E

1`P(E)dE and, most important, as all other M21
states are independent, we get

`ground~E !5P~E !F E
E

1`

P~E !dEGM21

. (B4)

Given that M is so astronomically large, this amounts
to19

`ground~E !.H P~E ! when E,Ebottom

0 when E.Ebottom.
(B5)

Thus, for the overwhelming majority of the realizations,
the ground-state energy is about EAN below the bound-
ary of the continuous spectrum, Ebottom. Note that this
boundary itself is about EN below the mean energy [see
Eq. (B2) above]. In this sense, both Ebottom and the
ground-state energy are the same to thermodynamic ac-
curacy, and to that accuracy they are self-averaging, in-
dependent of the disorder.

Similarly, we can easily compute the probability dis-
tribution for the energy difference between the lowest
and the second-lowest states. For the two lowest states

`~E1 ,E2!5P~E1!P~E2!F E
E

1`

P~E !dEGM22

.H P~E1!P~E2! when E,Ebottom

0 when E.Ebottom,
(B6)

where E5max$E1 ,E2%, and finally for the gap DE5uE1
2E2u we have

`~DE !5E `~E1 ,E2!d~DE2uE12E2u!dE1 dE2 .

(B7)

Simple analysis indicates that `(DE) is peaked at DE
;EAN .

19The following is a more accurate estimate. As long as
N@1, we can use the saddle-point approximation to
get *Ebottom

1` P(E)dE.12k exp@2(Ebottom)2/2NE2#.12kexp
@2Nv# where k is a numerical constant. This value is very close
to unity, but its deviation from unity is just about 1/M. There-
fore just immediately above Ebottom the value *Ebottom

1` P(E)dE
becomes small enough that its M th power practically van-
ishes.
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Thus, for a typical realization of the random-energy-
model system, all discrete energy levels are just a little
bit below the lower threshold of the continuous spec-
trum and they are very close to each other. Note that the
differences between them, which scale as AN , are negli-
gible in the thermodynamic limit.

It is vitally important for protein applications that, be-
sides the typical realizations of disorder, there are some
rare atypical realizations for which the spectrum looks
quite different. In particular, there are some, albeit ex-
ponentially rare, realizations for which the ground-state
energy is order N below the threshold Ebottom, to select
them is actually the main purpose of sequence design.

3. Thermodynamics of the random-energy model

Consider now the thermodynamics of the random-
energy model. While, in principle, one may wish to com-
pute the partition function and the free energy for each
particular realization of the disorder, this is clearly im-
practical for most applications, and what one does in-
stead is to note that the averaged free energy is domi-
nated by the typical realizations of the disorder. Thus we
are first of all interested in an average of the form

F~T !5^Fseq~T !&52T^ln Zseq~T !&. (B8)

To average the logarithmic function is a tedious math-
ematical task, and this is precisely why disordered sys-
tems are so difficult to examine theoretically. This is the
place where the famous replica trick (Mezard et al.,
1987) enters. The main good news about the random-
energy model is that one does not need to resort to this
trick.

Indeed, Zseq(T), the partition function for a given re-
alization of the disorder, is just the sum over all states
i51,2, . . . ,M, and it can always be rewritten in terms of
the density of states:

Zseq~T !5(
i51

M
exp@2Ei /T#5E

2`

`

n~E !e2E/T dE .

(B9)

At high enough temperature, this sum is dominated by
the states of high entropy [large n(E)], where the spec-
trum is continuous and independent of sequence. This
means that complications arising from differences be-
tween individual realizations of the disorder do not oc-
cur in this temperature region and disorder is, in a way,
irrelevant. Indeed, as long as the saddle point of the
integral

Z5E
2`

`

MP~E !e2E/T dE.MP~Esaddle!e2Esaddle /T,

(B10)

belongs to the continuous-spectrum region E.Ebottom,
the first line of Eq. (B3) is valid, and thus we get a
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partition function that is independent of the disorder.20

For the Gaussian distribution (2.3), Esaddle52NE2/T ,
we get that Esaddle.Ebottom is valid at T.T freeze
5E/A2v . Thus at T.T freeze we can safely average the
partition function over disorder (as it does not depend
on disorder!) and arrive at a free energy that is also
independent of the disorder.

This is not valid at lower temperatures. What happens
there is that just one or few low-energy states dominate
the partition function. In principle, one could expect
that at this low temperature, the thermodynamics of a
particular sample would strongly depend on the disor-
der. Note, however, that typical differences between
low-energy states are only about AN and they are neg-
ligible in thermodynamic limit. As the free energy is a
continuous function of the temperature, we arrive at Eq.
(2.4), the powerful conclusion (see also Koukiou, 1993)
that disorder is irrelevant above the freezing point for
the random-energy model.

APPENDIX C: ROTATION OF REPLICA SPACE

Our main goal here is to simplify Eq. (3.25).

1. Three auxiliary lemmas

Lemma 1. Consider an auxiliary problem of the ma-
trix

20The fact that the partition function in the random-energy
model is independent of disorder is very different from what
one would expect in a typical disordered system. In extensive
quantities (linear in the number of particles N), differences in
contributions from each particle get averaged out when we
sum up N of them and take the thermodynamic limit (because
of the central-limit theorem). Due to this property, extensive
quantities are called ‘‘self-averaging’’ and are in this sense in-
dependent of disorder. Quantities such as the partition func-
tion (which scales exponentially in N) typically do not average
in this form (for the partition function, terms with lower free
energy dominate the average due to the exponential). Thus the
fact that the random-energy-model partition function is self-
averaging is very unusual and results from the assumption of
the statistical independence of states.
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This is a block matrix, where ĝ is a q3q matrix and Î
is an identity matrix of the same size q3q . The question
is how to find the determinant of this matrix.

It can be shown by expansion over the elements of the
first column, then over the elements of the first column
of the remaining minor, and by repeating this operation
q times, that

det@Ûĝ
~z !#5det ĝ (C1)

independently of the blocks placed in the upper right
triangle (shown conventionally with question marks).

Lemma 2. Consider another auxiliary problem of the
following block matrix:

Here ĝ and ĥ are matrices q3q ; they generally do not
commute to each other. Î is an identity matrix of the
same size q3q . The total size of the block matrix V̂

ĝ ,ĥ
(z)

is
therefore zq3zq . The question is to find the inverse of
the matrix V̂

ĝ ,ĥ
(z)

.
It turns out that this inverse is in fact the matrix of the

same structure, namely,

~V̂
ĝ ,ĥ
~z !

!215V̂
ê , f̂
~z ! ,

where ê52~ Î1~z21 !ĥ1 ĝ !21ĝ

and f̂52~ Î1„z21 !ĥ1 ĝ…21ĥ . (C2)

The result can be easily proved using the block matrix
multiplication rule.

Lemma 3. Consider an auxiliary problem of the scalar
product

^rW ~qz !uŴ ~qz !urW ~qz !&,

where rW (qz)5pW (q)
^ iW(z)5pi (does not depend on replica

indices a), and Ŵ(qz) is a block matrix comprised of
blocks Ŵab

(q) . Obviously this scalar product is reduced to
the scalar products of smaller dimensionality q, that is,
purely in species space, summed over all the blocks of
the matrix:
Rev. Mod. Phys., Vol. 72, No. 1, January 2000
^rW ~qz !uŴ ~qz !urW ~qz !&5K pW ~q !US (
ab

Ŵab
~q !D UpW ~q !L . (C3)

2. Some general properties of the ‘‘direct-product’’ operation
for matrices

We repeat the definition: for two (not necessarily
square) matrices Â(r3r8)

^ B̂(s3s8) is the rs3r8s8 matrix,
built up by substitution of the s3s8 block AuvB̂(s3s8) for
each matrix element of Â(r3r8). For example, urW (nq)&
5rW (n)

^ pW (q).
(1) By matrix row and column operations, it is easy to

show that the rule is commutative, i.e.,

Â ~r !
^ B̂ ~s !5B̂ ~s !

^ Â ~r !. (C4)

(2) Block matrix multiplication rule: It is well known
that the operation of block matrix multiplication is car-
ried out in the same scheme as normal matrix multipli-
cation, except that the multiplication of elements is re-
placed by the matrix multiplication of blocks. This can
be written as

~Â ~r !
^ B̂ ~s !!•~Â8~r !

^ B̂8~s !!

5~Â ~r !Â8~r !! ^ ~B̂ ~s !B̂8~s !!. (C5)

(3) Commutation of Â(r)
^ B̂(s) and Â8(r)

^ B̂8(s) de-
pends on commutation of both pairs A(r)&Â8(r) and
B̂(s)&B̂8(s) (this directly follows from the previous prop-
erty).

(4) The determinant of a block-diagonal matrix equals
the product of the determinants of the diagonal blocks.
In particular,

det~Â ~r !
^ Î ~s !!5~det Â ~r !!s. (C6)

(5) Matrix operation with a vector:

Â ~r !
^ B̂ ~s !uaW ~r !

^ bW ~s !&5Â ~r !uaW ~r !& ^ B̂ ~s !ubW ~s !&. (C7)

(6) Scalar product of vectors:

^aW ~r !
^ bW ~s !uaW 8~r !

^ bW 8~s !&5^aW ~r !uaW 8~r !&^bW ~s !ubW 8~s !&. (C8)

The proof of all these properties is straightforward.

a. Elimination of real-space coordinates

We have to simplify the expression for the operator
B̂eff (3.25) given that the Q̂ matrix is of the form (3.33).
The real-space integration is performed trivially due to
the d functions everywhere, thus producing the factor
N/r (which is the overall volume of the globule):

Heff5
N

r F ^rW uB̂effurW &1
1
2

ln det B̂effG ,

B̂eff5
1
2

~B̂1/2!„q~n11 !…@ Î „q~n11 !…1r~ q̂ ~n11 !
^ D̂~q !!

3B̂„q~n11 !…#21~B̂1/2!„q~n11 !…. (C9)
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b. Elimination of replica variables

As to the elimination of replicas, we perform it
through several steps:

(1) As the matrix q̂ is of one-step replica symmetry-
breaking shape, as explained above, with one distinct
group of y11 replicas and (n2y)/x groups of x replicas
each, we can view the matrix M̂5 Î1rq̂ ^ D̂B̂ as an (n
11)3(n11) block matrix in replica space, where each
matrix element is a q3q matrix in species space. This
block matrix is of the same structure as q̂ , with one (y
11)3(y11) superblock and (n2y)/x of x3x super-
blocks.

(2) The determinant in the first term in the free en-
ergy is decomposed into the product of determinants of
superblocks.

(3) Vector rW is composed of n11 blocks pi , thus
making the second term in the free energy the sum of
independent contributions from the groups of replicas.
Along with the previous step, this means that different
groups of replicas do not interact, and this is why they
contribute independently to the free energy.

(4) The effective replica energy E is now presented in
the form

E~x ,y !

N
5ey1

n2y

x
ex , (C10)

where ey and ex are the (independent) contributions
from the corresponding groups of replicas. (Note that
the replica entropy is also of the same form.)

(5) Both ey and ex have almost the same form as Heff

(3.25), except that a simpler matrix q̂̃ , with all matrix
elements 1, appears instead of q̂ :

ez5
1
2

ln det@ Î ~zq !1r q̂̃ ~z !
^ D̂~q !B̂ ~zq !#

1
1

2r
^rW uB̂ ~zq !@ Î ~zq !1r q̂̃ ~z !

^ D̂~q !B̂ ~zq !#21urW &,

(C11)

where z is either x or y11, i.e., the number of replicas in
the group.

(6) To simplify the first term (with determinant), we
define a rotation unitary operator

R̂ab
~z !5

1

Az
expF2pi

z
~a21 !~b21 !G , 1<a ,b<z . (C12)

It is easy to check that this operator transforms q̂̃(z) into
diagonal form, where one diagonal matrix element is 1,
while all others are 0:

R̂~z !q̂̃ ~z !~R̂~z !!215l̂~z !, where l̂ab5zda1d1b .
(C13)

We also define R̂(zq)5 Î(q)
^ R̂(z) and note that the

determinant is not changed upon rotation. We write

det@ Î ~zq !1r q̂̃ ~z !
^ D̂~q !B̂ ~zq !#

5det@R̂~zq !#det@ Î ~zq !1r q̂̃ ~z !

^ D̂~q !B̂ ~zq !#det@R̂~zq !#21
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5det@ Î ~zq !1r~R̂~zq !! q̂̃ ~z !
^ D̂~q !B̂ ~zq !~R̂~zq !!21#

5det@ Î ~zq !1r~R̂~z !! q̂̃ ~z !~R̂~z !!21

^ D̂~q !~R̂~zq !!B̂ ~zq !~R̂~zq !!21#

5det@ Î ~zq !1rl̂~z !
^ D̂~q !~R̂~zq !!B̂ ~zq !~R̂~zq !!21# .

(C14)

As B̂(zq) is diagonal in replica space, B̂(zq)5B̂a
(q)dab ,

we have

„~R̂~zq !!B̂ ~zq !~R̂~zq !!21
…ab

5(
gd

R̂agB̂g
~q !dgd~R̂~zq !!db

21

5
1
z (

g
expF2pi

z
~a2b!~g21 !GB̂g

~q ! . (C15)

Taking into account the simple structure of l̂ (C13), we
arrive at

l̂~z !
^ D̂~q !~R̂~zq !!B̂ ~zq !~R̂~zq !!21

5da1(
g

expF2pi

z
~12b!~g21 !G D̂~q !B̂g

~q ! .

(C16)

(7) First consider a nontarget group of z5x replicas.
In this group, all the replicas are identical, meaning that
B̂g

(q)5B̂(q) does not depend on the replica index g. This
yields

l̂~z !
^ D̂~q !~R̂~zq !!B̂ ~zq !~R̂~zq !!215xda1d1bD̂~q !B̂ ~q !

(C17)

and thus

det@ Î ~xq !1r q̂̃ ~x !
^ D̂~q !B̂ ~xq !#5det@ Î ~q !1rxD̂~q !B̂ ~q !# .

(C18)

(8) Consider now a target group of z5y11 replicas.
In this case, B̂g

(q)5B̂des
(q) for g51 and B̂g

(q)5B̂(q) other-
wise. We write, therefore,

Î ~zq !1l̂~z !
^ D̂~q !~R̂~zq !!B̂ ~zq !~R̂~zq !!21

5 Î ~q !dab1da1D̂~q !~B̂des
~q !2B̂ ~q !!

1~y11 !da1d1bD̂~q !B̂ ~q !. (C19)

This is a block matrix of a peculiar form such that only
the upper block is nonzero in the first column; for that
reason, its determinant is equal to the product of deter-
minants of diagonal blocks (see Lemma 1). Thus

det@ Î „~y11 !q…1r q̂̃ ~y11 !
^ D̂~q !B̂ „~y11 !q…#

5det@ Î ~q !1rD̂~q !~yB̂ ~q !1B̂des
~q !!# . (C20)

(9) As to the second term in ez (C11), it is easily com-
puted using Lemma 2. Indeed, B̂ „(y11)q… is a block-
diagonal matrix with one block B̂des

(q) and y others B̂(q).
On the other hand, q̂̃(y11)

^ D̂(q) is a block matrix with
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every block the same D̂(q). Therefore the matrix in ques-
tion, @ Î(zq)1r q̂̃(z)

^ D̂(q)B̂(zq)# , is exactly of the form
V̂

ĝ ,ĥ
(z)

, where ĝ5D̂(q)B̂des
(q) and ĥ5D̂(q)B̂(q). Using the

block matrix multiplication rule, it is easy to compute
B̂ „(y11)q…V̂

ê , f̂
(y11)

(see Lemma 2) and then to use the re-
sult of Lemma 3. This finally gives

1
2r

^rW uB̂ ~zq !@ Î ~zq !1r q̂̃ ~z !
^ D̂~q !B̂ ~zq !#21urW &

5
r

2 ^pW u~B̂des
~q !1yB̂ ~q !!@ Î ~q !1ryD̂~q !B̂ ~q !

1rD̂~q !B̂des
~q !#21upW &. (C21)

(10) A similar expression for a nontarget group of x
replicas can be derived from here by formally putting
B̂des

(q)→B̂(q) and y11→x ; this gives

1
2r

^rW uB̂ ~zq !@ Î ~zq !1r q̂̃ ~z !
^ D̂~q !B̂ ~zq !#21urW &

5
r

2 ^pW uxB̂ ~q !@ Î ~q !1rxD̂~q !B̂ ~q !#21upW &. (C22)

Further details regarding this calculation can be found
in the appendices for the papers by Pande et al. (1995a,
1995b).
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