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ABSTRACT: Using the cavity equations of Mézard, Parisi, and Zecchina [Science 297 (2002), 812;
Mézard and Zecchina, Phys Rev E 66 (2002), 056126] we derive the various threshold values for
the number of clauses per variable of the random K-satisfiability problem, generalizing the previous
results to K ≥ 4. We also give an analytic solution of the equations, and some closed expressions for
these thresholds, in an expansion around large K . The stability of the solution is also computed. For
any K , the satisfiability threshold is found to be in the stable region of the solution, which adds further
credit to the conjecture that this computation gives the exact satisfiability threshold. © 2005 Wiley
Periodicals, Inc. Random Struct. Alg., 28, 340–373, 2006
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1. INTRODUCTION

The K-satisfiability problem (K-SAT) is easily stated: Given N Boolean variables each of
which can be assigned the value True or False, and M constraints between them taking the
form of clauses, is there a “SAT-assignment,” i.e., an assignment of the Boolean variables
which satisfies all constraints. A clause takes the form of an “OR” function of K variables
in the ensemble (or their negations).

K-SAT plays a central role in computer science, and a lot of efforts have been devoted
to this problem. As soon as there are clauses with K ≥ 3 variables this problem is NP-
complete [7, 13]. In recent years, the interest has focused on the random K-SAT problem:
All the clauses involve the same number K of variables; the variables in each clause are
chosen at random uniformly in the set of all variables, and a variable appears negated with
probability 1/2. This problem displays a very interesting threshold phenomenon when one
takes the large N limit, keeping the ratio of clauses to variable, α = M/N , fixed. Numerical
simulations [16] suggest the existence of a phase transition at a value αc(K) of this ratio: For
α < αc(K) a randomly generated problem is satisfiable (SAT) with probability going to one
in the large N limit; for α > αc(K) a randomly generated problem is not satisfiable (UNSAT)
with probability going to one in the large N limit. This phase transition is particularly
interesting because it turns out that the really difficult instances, from the algorithmic point
of view, are those where α is close to αc. The study of this phase transition is thus one step
in the elaboration of a theory of typical case complexity [19, 33, 35], and it has attracted a
lot of interest [6, 9, 15, 32].

On the analytical side, there exists a proof that the threshold phenomenon exists at large
N [11], although the fact that the corresponding αc has a limit when N → ∞ has not
yet been established rigorously. Upper bounds αUB(K) on αc have been found using first
moment methods [8, 17] and variational interpolation methods [10, 14], and lower bounds
αLB(K) have been found using either explicit analysis of some algorithms [1], or some
second moment methods [2].

Recently, some of the powerful concepts and techniques of statistical physics [21] have
been applied to this problem [9, 23–26], focusing on the case of K = 3. Using a heuristic
method called in physics jargon the “one step replica symmetry breaking” (1RSB) cavity
method, the threshold has been conjectured to be αc(K = 3) � 4.267 [23, 24].

The present paper presents a reformulation of the 1RSB cavity method computation
of [23, 24], in which no physics background is assumed. The method can be understood
as a pure statistical analysis of the properties of survey propagation equations of [4, 24].
These are message passing equations, defined on the factor graph representation of the
satisfiability problem, which provide a kind of generalization of the well known belief
propagation equations. Starting from these equations, we show the various steps of the
statistical analysis which give, for any K , the satisfiability threshold αc(K). The results
are summarized in Table 1 in Section 5.3. For general K these computations involve some
complicated integral equations, which can be solved numerically for K not too large. We
also study in details the large K limit, where we can compute the solution analytically and
work out a series expansion of the satisfiability threshold in powers of 2−K .

A second aspect of the paper is a check of self-consistency of the cavity approach: This
is a heuristic approach which relies on some hypothesis of absence of correlations between
some random variables. While we cannot prove the validity of this hypothesis, it is possible
to check whether it is self-consistent, using a method recently developed by Montanari
and Ricci-Tersenghi [28]. The 1-RSB cavity solution is found to be self-consistent in a
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TABLE 1. Threshold Values for Random K-SAT.

K αd α
(0)

d αs αc α(1)
c α(2)

c α(7)
c

3 3.927 ± 0.004 3.923 4.15 4.267 4.699 4.546 4.307
4 8.297 ± 0.008 8.303 9.08 9.931 10.244 10.104 9.938
5 16.12 ± 0.02 16.117 17.8 21.117 21.334 21.223 21.118
6 30.50 ± 0.03 30.479 33.6 43.37 43.515 43.434 43.372
7 57.22 ± 0.06 57.186 62.5 87.79 87.876 87.821 87.785
8 107.24 ± 0.08 107.191 176.599 176.563 176.543
9 201.35 ± 0.1 201.276 354.045 354.022 354.010

10 379.10 ± 0.1 379.004 708.936 708.922 708.915

Bold numbers are the results of the population dynamics algorithm. α(0)
d is the value predicted by the first moment

expansion of the cavity equations (Section 6.3), α
(r)
c is the result of a series expansion in ε = 2−K of the cavity

equations up to order r (Sections 6.2 and the Appendix). Note that all reported values αc(K) fall between the best
rigorously known upper and lower bounds.

finite window of α below the satisfiability threshold, αs(K) < α ≤ αc(K). For K = 3 we find
αs(3) � 4.15 and results for larger K are also provided in Table 1. For all K, we find that the
cavity 1RSB analysis is self-consistent at αc(K). We can thus conjecture that the values of
αc(K) which we give here are the exact values for the threshold.

The type of approach which we use here is heuristic. The self-consistency of its assump-
tions can be checked, and its predictions can be tested against numerical simulations.
Eventually one may hope to gain enough insight from this approach in order to convert it
into a full proof. It is interesting to notice that in the simpler case of the random K-XORSAT
problem, where the same kind of phase transition has been found [30], the full structure
and the results of the cavity 1RSB solution can be confirmed rigorously [22]. Recently,
the application to random K-SAT of the variational interpolation method of Guerra and
Toninelli [14] has allowed to prove that for even K the cavity result for αc(K) is an upper
bound to the true threshold values [10].

Section 2 summarizes the survey propagation equations which are at the heart of the
cavity method; it also provides a short account of the intuitive interpretation in terms of
clusters of SAT assignements. The statistical analysis of these equations is described in
Section 3. In Section 4 we explain how to compute the stability of this solution. Section 5
contains a numerical analysis of the basic equations using a population dynamics method.
Threshold values are computed for various values of K . Section 6 provides an analytic
study of the basic equations, using a large K expansion. It is used to compute the large K
behavior of the various thresholds, and in particular it derives a series expansion for the
satisfiability threshold, which matches the numerical results of Section 5. Conclusions are
summarized in Section 7: There we have formulated our main results in the form of a series
of explicit conjectures. An appendix contains some details of the large K series expansion
of the satisfiability threshold.

2. BACKGROUND

2.1. Survey Propagation Equations

The “survey-propagation” (SP) heuristic, which has been described in details in [4, 24],
is an iterative message passing algorithm which turns out to be effective in finding SAT
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Fig. 1. Part of a factor graph representing a satisfiability problem. Clauses are denoted by squares;
variables, by circles. A dashed line between a variable and a clause means that the variable appears
negated in the clause; a full line means that it appears unnegated. The clause a is connected to the
variables 1, . . . , K − 1, f . The cavity-bias survey ηa→f sent from clause a to variable f depends on the
set of all cavity-bias surveys like ηb→i which arrive onto variables i ∈ {1, . . . , K − 1} from the other
clauses (distinct from a). Its explicit expression is given in (2).

assignments in the α < αc region, quite close to the threshold. Here we briefly recall the
explicit form of the SP equations which are the basis for the algorithm; a more detailed
(still heuristic) derivation can be found in [4].

An instance of K-SAT can be represented by a bipartite graph, the so called fac-
tor graph [18]. Each clause corresponds to a function node, each variable to a variable
node, and an edge connects a function node and a variable node if and only if the
clause contains the variable. Figure 1 shows part of a factor graph, with clauses (func-
tion nodes) denoted by squares and variable nodes denoted by circles. A dashed edge
between a clause and a variable means that the variable appears negated in the clause, a
full edge means that it appears unnegated. Associated with each edge a − f there is a real
number ηa→f ∈ [0, 1], called cavity-bias survey, which is the message sent from clause
a to variable f . This message is computed from the messages received by the K − 1
“input” variables i which are involved in clause a, but distinct from f . Consider the cor-
responding portion of the factor graph as shown in Fig. 1. For any “input” variable i,
we define

π i
± =

∏
b∈V (i)

±

(1 − ηb→i), (1)

where V (i)
+ denotes the set of all function nodes (except a, the “cavity”) in which variable i

appears unnegated and V (i)
− denotes the corresponding set of clauses where i appears negated.
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Then the “output” cavity-bias survey ηa→f is given by

ηa→f =
K−1∏
i=1

π i
+(1 − π i

−)

π i+ + π i− − π i+π i−
. (2)

In order to keep notations simple, this equation is written for the situation of Fig. 1; if the
edge between a and f were a dashed edge, the roles of π i

+ and π i
− should be inverted in (2).

Equations (1, 2) are the SP equations [4].
These equations have a simple interpretation in terms of “warnings” [4]. A warning

sent from clause a to variable f indicates that f should be assigned the value that satisfies
a, and a will send this warning if and only if all of its other variables are constrained to
non-satisfying values. For instance, in Fig. 1 a warning travels from a to f only if each of the
variables 1, . . . , K − 1 receives an “impeding warning,” that is, a warning which impedes it
to satisfy a. The following reasoning shows that ηa→f can be interpreted as the probability
that the function node sends a warning to the variable node f , assuming that the incoming
warnings arriving on the variables i = 1, . . . , K − 1 are independent random variables.
A variable i can receive either an impeding warning (coming from one of its neighbors in
V (i)

− ), telling it to take the value which does not satisfy a, or a “supporting warning” (coming
from one of its neighbors in V (i)

+ ), telling it to take the value which satisfies a. From (1), it
is clear that π i

+ denotes the probability that variable i receives no supporting warning, and
π i

− denotes the probability that variable i receives no impeding warning. So there are four
possible cases for variable i:

• It receives no warning at all: probability π i
+π i

−.
• It receives at least one impeding warning, but no supporting warning: probability

π i
+(1 − π i

−).
• It receives at least one supporting warning, but no impeding warning: probability

π i
−(1 − π i

+).
• It receives at least one impeding warning and at least one supporting warning:

probability (1 − π i
+)(1 − π i

−).

The last case implies that there is no satisfying assignment. Since we restrict ourselves to
satisfying assignments we have to condition the probabilities on the first three cases only.
Then the probability that i receives at least one impeding warning, given that there are no
contradictions, is π i

+(1 − π i
−)/(π i

+ + π i
− − π i

+π i
−). Clause a will send a warning to f if and

only if all its input neighbours i are in this situation: this gives Eq. (2).
This shows that the SP equations are exact whenever the incoming warnings are inde-

pendent random variables. This is the case in particular if the factor graph is a tree. In
the random K-SAT problem the factor graph is not a tree, but a random bipartite graph,
with fixed degree (equal to K) for function nodes, and Poisson distributed degrees (as
N → ∞) for variable nodes. This graph is locally treelike in the following sense: For
any fixed r, if one picks up one vertex at random and considers its neighborhood up
to distance r, this neighborhood is a tree with probability going to one in the large N
limit. Therefore, one may hope that the survey propagation equations are relevant for the
description of the random K-SAT problem, although there does not exist any proof of this
statement.
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2.2. Physical Interpretation: Clusters of SAT Assignments

As we have seen the cavity-bias surveys have all mathematical properties of probabilities
of warnings. An obvious question is: What is the corresponding probability space? The
statistical physics heuristic “derivation” of SP equations suggests a conjecture for this
probability space, which we now briefly describe. For the physics reasoning that leads to
this conjecture we refer the interested reader to [20, 24].

We focus on satisfiable instances. For each such instance, with N variables, consider
the set of SAT assignments, which is a subset of the unit hypercube. We use the Hamming
distance between two assignments defined as the number of variables in which they differ.
The first assumption concerns the topology of the set of SAT assignments, which is supposed
to break into clusters. We first introduce the definitions of clusters and constrained clusters:

A d-cluster is a subset of SAT-assignments obtained as follows: Build an auxiliary graph
where every SAT-assignment is a vertex, and one puts an edge between two SAT-assignment
if and only they are at distance ≤ d. Every connected component of this auxiliary graph is
a d-cluster of SAT configurations.

If there exists a variable which takes the same value in all the SAT-assignments of a
given d-cluster, this cluster is called a constrained d-cluster.

In the type of cavity solution which has been worked out so far, called “one step replica
symmetry breaking” (1-RSB) in the statistical physics jargon, it is assumed that, in a window
αs < α < αc, there exist, in the large N limit, exponentially many well-separated constrained
d-clusters. Unfortunately, it is not known what value of d should be used in this analysis.
A common belief is that d(N) may grow with N , but with limN→∞ d(N)/N = 0. We shall
loosely use the word “clusters” instead of “d-clusters.” Note that in the analysis developed
in this paper the limit N → ∞ has been taken implicitly and from the very beginning. Hence
we do not need to specify d(N).

2.3. Complexity

An important quantity is the number Nc of constrained clusters. It is assumed that, when
one generates random instances of K-SAT, the distribution of (1/N) ln(Nc) becomes
sharply concentrated in the large N limit, and one defines the complexity as � =
limN→∞(1/N)E(ln Nc). Furthermore, the constrained clusters are supposed to be well
separated at large N in the following sense: Taking two SAT-assignments randomly cho-
sen inside the same constrained cluster, the distribution of 1/N times their distance is
assumed to be sharply concentrated around a value d1 which measures the size of the con-
strained cluster in the sense that d1 is the typical distance between solutions randomly
chosen from the same cluster. For two SAT-assignments randomly chosen inside differ-
ent constrained clusters, this same quantity is peaked around d0, the intercluster distance,
and d0 > d1.

Statistical physics techniques are able to check the self-consistency of these assumptions,
by some kind of circular argument, and within this framework they provide some educated
conjectures concerning the values of αs and αc, as we shall see below. But they cannot prove
the existence of clusters. We thus leave the clustering property of the space of satisfying
assignments as a mathematical conjecture.

Assuming that constrained clusters exist for some α, it is useful to introduce a generalized
space for variables, where each variable can take three values: 0 for a variable constrained to
FALSE, 1 for a variable constrained to TRUE, ∗ for an unconstrained variable. A constrained
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cluster is then characterized by a single point (different from the “all ∗” point) in the
generalized variable space {0, 1, ∗}N . One can associate to the constrained cluster one set
of warnings. The cavity-bias survey ηa→f is interpreted as the probability that a warning
is present on the edge a to f when one picks up a constrained cluster at random. It has
been argued in [4], and shown in [5], that the SP equations can be interpreted as standard
belief propagation (BP) equations in the generalized variable space {0, 1, ∗}N . Because BP
allows to count the number of solutions, it gives an explicit formula to obtain the number of
constrained clusters. The final result for the complexity (1/N)E(ln Nc) for a given instance
with N � 1 is (we refer the reader to [4] for a detailed explanation of this computation):

� = 1

N

[
M∑

a=1

�c
a −

N∑
j=1

(nj − 1)�v
j

]
, (3)

where �c
a is the contribution from clause a and �v

j is the contribution from variable j, nj

being the degree of this variable. Keeping the notations of Fig. 1, and considering f as the
K th neighbour of clause a, the contribution of this clause is

�c
a = ln

[
K∏

i=1

(
π i

+ + π i
− − π i

+π i
−
) −

K∏
i=1

(
π i

+(1 − π i
−)

)]
. (4)

The contribution of site j is

�v
j = ln


 ∏

b∈W
(j)
+

(1 − ηb→j) +
∏

b∈W
(j)
−

(1 − ηb→j) −
∏

b∈W(j)

(1 − ηb→j)


 , (5)

where W (j)
+ is the set of function nodes connected to j by a full edge, W (j)

− is the set of
function nodes connected to j by a dashed edge, and W (j) = W (j)

+ ∪ W (j)
− .

In practice, explicit computations of the complexity performed below show that it is
a decreasing function of α which vanishes at some value. It is then a natural conjecture,
totally unproven so far, that the satisfiability threshold αc(K) is equal the value of α where
the complexity � vanishes. This is the criterion which we shall use in the rest of the paper.

3. STATISTICAL ANALYSIS

In this section we show how the statistical analysis of the SP equations (1), (2), and of
the complexity (3), leads to coupled integral equations from which one can compute the
thresholds. Such equations were first derived for K = 3 in [24]; we provide here a simpler
derivation, restricted to satisfying assignments, but valid for any K .

Picking an instance of random K-SAT, and a random edge in the corresponding fac-
tor graph, the cavity-bias survey η on this edge is a random variable. We would like to
compute the probability distribution of this random variable. Because of the local treelike
structure of the factor graph, the variables π i

± appearing in (2) are assumed independent.
To compute their distribution, we first notice that π i

+ is a product of ki
+ factors 1 − η, where

ki
+ is the number of clauses b ∈ V i

+ (see Fig. 1), conditioned to the fact that there exists an
edge i − a. Let us study its distribution. We first notice that, in the large N limit, the degree
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of a variable is Poisson distributed with mean Kα. Also, the total number of full edges
(resp. of dashed edges) ending on a variable are two iid Poisson distributed variables with
mean Kα/2. As the presence of the edge i − a is an event independent from the presence
of other edges, it turns out that ki

+ and ki
− also are iid variables with a Poisson distribution

of mean Kα/2.
It is useful to change variables, introducing for each survey η and for each factor π the

variables

φ = −ln(1 − η) and x = −ln(π). (6)

We call S(φ) the probability density function (pdf) of φ and B(x) the pdf of x. These are two
positive functions on [0, ∞[ with integral equal to one. Note that both pdf’s are mixtures in
the sense that they are atomic at argument 0 (see Section 5.1).

For each k, the distribution of x is the kth convolution, S⊗k of S. Summing over k, we get

B(x) =
∞∑

k=0

fKα/2(k)S⊗k(x), (7)

where fKα/2(k) = [(Kα/2)k/k!] exp(−Kα/2) is the Poisson probability mass function for
the connectivity. Using the same indices as in Fig. 1 for the new variables, the SP equation (2)
becomes

φa→f = −ln

[
1 −

K−1∏
i=1

exi− − 1

exi+ + exi− − 1

]
. (8)

As the variables xi
± are iid with pdf B, one obtains from this equation the pdf of φa→f .

Identifying it with S shows that this pdf S(φ) satisfies the equation

S(φ) =
∫ K−1∏

i=1

[
B(xi

+) dxi
+ B(xi

−) dxi
−
]
δ

(
φ + ln

[
1 −

K−1∏
i=1

exi− − 1

exi+ + exi− − 1

])
(9)

Equations (7) and (9) provide two coupled equations for the pdfs S(φ) and B(x).
Once these have been determined the complexity � can be computed from (3), (4),

and (5) as follows. We first write (3) as

� = 1

N


 M∑

a=1

�c
a +

N∑
j=1

�v
j −

M∑
a=1

∑
j∈V(a)

�cv
aj


, (10)

where �c
a and �v

j have been defined in (4), (5), and the �cv
aj for a full edge is written as

�cv
aj = ln


(1 − ηa→j)

∏
b∈V

(j)
+ \a

(1 − ηb→j) +
∏

b∈V
(j)
−

(1 − ηb→j)

− (1 − ηa→j)
∏

b∈V (j)\a

(1 − ηb→j)


 , (11)
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the one for a dashed edge being written similarly. One then computes the expectation value
of each term in (10). Using the change of variables (6), one obtains

E
(
�c

a

) = E

(
ln

[
K∏

i=1

(
e−xi + e−yi − e−(xi+yi)

) −
K∏

i=1

(
e−xi − e−(xi+yi)

)])
, (12)

where the expectation value E( ) refers to an average where all the variables xi and yi are
drawn from B(x). This in turn gives E(�c

a) = −2KE(x1) + IK , where we define

Is =
∫ s∏

i=1

dxi dyi B(xi)B(zi) ln

[
s∏

i=1

(exi + ezi − 1) −
s∏

i=1

(exi − 1)

]
. (13)

Similarly, using the fact that

x = −ln


 ∏

b∈V
(j)
+

(1 − ηb→j)


,

z = −ln


 ∏

b∈V
(j)
−

(1 − ηb→j)




(14)

are both distributed with B, one finds E(�v
j ) = −2E(x) + �0, where

�0 =
∫

dx dz B(x)B(z) ln(ex + ez − 1). (15)

Considering �cv
aj , it can be written as

�cv
aj = + ln

[
(1 − ηa→j)e

−xK + e−yK − (1 − ηa→j)e
−(xK +yK )

]
, (16)

where xK and yK are two random variables with pdf B. Using the equations (6), (8), the term
1 − ηa→j can be written in terms of 2(K − 1) random variables, xi, yi, i ∈ {1, . . . , K − 1},
all with pdf B. Substituting this into (16), one gets E(�cv

aj ) = −2E(x) − (K − 1)�0 + IK . A
further simplification can be obtained by noticing that E(x) = (Kα/2)E(�) [Eq. (7)] and
IK−1 = (K − 1)�0 − E(�), which allow us to write

E(x) = Kα

2
[(K − 1)�0 − IK−1]. (17)

Putting all this together, we finally obtain

� = �0 + α[KIK−1 − (K − 1)IK ], (18)

where �0 and Is are defined in (15), (13). Once the distribution B(x) has been determined,
the complexity can be easily computed. The rest of the paper is devoted to the calculation
of S(φ), B(x), and �, but first we discuss the stability of the underlying 1-RSB hypothesis.
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4. STABILITY ANALYSIS

4.1. General Formalism

The above SP equations have been derived within the hypothesis of a “one step RSB”
hypothesis. The stability of a this type of solution with respect to two steps RSB has been
discussed in details by Montanari and Ricci-Tersenghi [28]. We shall apply their method to
K-satisfiability, using the presentation developed in [27, 31], which lends itself to a direct
interpretation in terms of the stability of the message passing procedure. Recently the same
analysis has been done independently for K = 3 and K = 4 in [29].

We first explain this general formalism. The survey propagation equation (2) can be
written in a very general form as

p	
γ = 1

Z

∑
(β1,...,βn)→γ

p1
β1

. . .. . . pn
βn

χ(β1, . . . , βn), (19)

where the indices γ , βi refer to some type of warnings which can be transmitted on a link.
p	

γ is the probability of having a warning of type γ on a link with index 	; it depends on
the warnings β1, . . . , βn being sent on n other links, and χ is a general function of these n
warnings. In the case of the satisfiability problem, on a given link 	 = a → f from a function
node a to a variable node f there are only two possible elementary messages: warning (γ = 1)
or no warning (γ = 0). Referring to Fig. 1, we have thus p	

γ=1 = ηa→f , which depends on the
various ηb→i numbers; χ is the indicator which is equal to zero if there is a contradiction in
the incoming messages, equal to 1 otherwise, and Z is a normalization factor.

The propagation equation (19) can have two types of instabilities [28], which correspond
to the two ways a one-step RSB solution can be unstable with respect to two steps of RSB,
but which also have a direct interpretation.

• A first type of instability, called of type I in the nomenclature of [28], amounts to see
if a small change of one probability propagates. This iteration stability is computed
from the study of the Jacobian

Tγβ = ∂p	
γ

∂p1
β

(20)

of Eq. (19). This matrix describes the propagation of a perturbation after one iteration.
Following the perturbation by iterating d times the SP equations, one gets a product
of d such Jacobian matrices, T 1 · · · T d , each of them being different since the values
of the surveys vary from one link to the next. The global perturbation induced after d
iterations by a change p1

b → p1
b +dp1

b concerns on average (Kα(K −1))d cavity-biases
(Kα is the average connectivity of a variable, K − 1 is the number of branches along
which the perturbation propagates when encountering a function node). The pertur-
bation is monitored by the sum of the squares of the perturbed cavity-biases, which
behaves like

[Kα(K − 1)]d Tr〈[T 1 · · · T d]2〉 ≡ λd , (21)

where 〈 〉 means an average over all possible cavity bias surveys. By taking the squares
of the perturbed cavity in (21) we cover both signs of the perturbation. In general,



350 MERTENS, MÉZARD, AND ZECCHINA

one finds that λd depends exponentially on d. An exponential growth at large distance
means that the iteration is unstable, an exponential decay means that it is stable. An
alternative to this study is to study the SP on a single large sample and see whether it
converges.

• The “instability of the second kind” of [28] amounts to a study of the proliferation of
“bugs.” Indeed, suppose that the input warning along link 1, which was equal to β1

in (19), is turned to another value β0. This is a finite change, a “bug,” but we suppose
that it happens with a small probability p1

β1→β0
. In a linear response, the probability

pf
γ→δ that this will induce a bug γ → δ in the output survey is

p	
γ→δ = 1

Z

∑
(β1,β2,...,βn)→γ

(β0,β2,...,βn)→δ

p1
β1→β0

. . .. . . pn
βn

χ(β0, β2, . . . , βn), (22)

which defines the matrix

Vγ→δ,β1→β0 ≡ ∂p	
γ→δ

∂p1
β1→β0

. (23)

In a general situation where the warnings can have q independent states, this is a square
matrix of dimension q(q − 1). In K-SAT it is simply a 2 × 2 matrix. The instability to
bug proliferation is determined from a product of d such matrices

(Kα(K − 1))dTr〈[V 1 · · · V d]〉 ≡ µd . (24)

Note that now there is no need to average the square of the perturbation since the
perturbation pβ1→β0 is always positive [28, 31]. The bugs proliferate if µd grows
exponentially with d, they remain localized if it decreases exponentially.

4.2. Iteration Stability

Let us apply this general formalism to K-SAT, starting with the iteration instability. In the
survey propagation we need to single out the contribution of a single survey, η1. We follow
the notations of Fig. 2 and write the survey propagation (2) and the Jacobian (which in this
case is a real number) as

η2 =
[
1 − (1 − η1)π

1
+
]
π 1

−
(1 − η1)π

1+ + π 1− − (1 − η1)π
1+π 1−

K−1∏
i=2

π i
−(1 − π i

+)

π i+ + π i− − π i+π i−
, (25)

T = ∂η2

∂η1
= π 1

+π 1
−[

(1 − η1)π
1+ + π 1− − (1 − η1)π

1+π 1−
]2

K−1∏
i=2

π i
−(1 − π i

+)

π i+ + π i− − π i+π i−
(26)

With respect to the general SP equation (2), we have singled out explicitly in the input the
CBS η1 from clause a to variable S1. Therefore, the definition of variable π 1

+ differs from
the general one (1) in that it does not include the factor 1 − η1.

Notice that this analysis has been carried out for the special choice of clause of Fig. 2,
where variable S1 appears negated in clause b and unnegated in clause a (we say that the
links S1 ↔ b and S1 ↔ a are of opposite nature). In the case in which one changes for
instance the edge S1 → b to a full line, meaning that S1 appears unnegated in b as well



THRESHOLD VALUES OF RANDOM K -SAT FROM THE CAVITY METHOD 351

Fig. 2. Notations used in the stability analysis. The dependency of the output cavity-bias-survey
(CBS) η2 on the input CBS η1 allows us to determine the iteration stability. The propagation of a
change of the input warning u1 to a change in the output warning u2 allows us to determine the stability
to bug proliferation.

as in a, the roles of π 1
+ and π 1

− are exchanged, which also changes the Jacobian. One gets
in this case

η2 =
[
1 − π 1

−
]
(1 − η1)π

1
+

(1 − η1)π
1+ + π 1− − (1 − η1)π

1+π 1−

K−1∏
i=2

π i
−(1 − π i

+)

π i+ + π i− − π i+π i−
, (27)

T = ∂η2

∂η1
= − π 1

+π 1
−
[
1 − π 1

−
]

[
(1 − η1)π

1+ + π 1− − (1 − η1)π
1+π 1−

]2

K−1∏
i=2

π i
−(1 − π i

+)

π i+ + π i− − π i+π i−
. (28)

The statistical analysis of the stability proceeds as follows. Suppose one knows the
pdf of the η and π variables, or equivalently, performing the change of variables (6),
one knows S(φ) and B(x), the solutions of the coupled equations (7), (9). If the links
S1 → b and a → S1 are of opposite nature, the iteration equation (25) and the Jacobian (26)
can be expressed as

e−φ2 = 1 − ex1++φ1 − 1

ex1− + eφ1+x1+ − 1

K−1∏
i=2

exi+ − 1

exi+ + exi− − 1
,

T = ex1++x1−+2φ1[
ex1− + eφ1+x1+ − 1

]2

K−1∏
i=2

exi+ − 1

exi+ + exi− − 1
.

(29)
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If they are of the same nature, the iteration equation (27) and the Jacobian (28) can be
expressed as

e−φ2 = 1 − ex1− − 1

ex1− + eφ1+x1+ − 1

K−1∏
i=2

exi+ − 1

exi+ + exi− − 1
,

T = ex1++2φ1
(
ex1− − 1

)
[
ex1− + eφ1+x1+ − 1

]2

K−1∏
i=2

exi+ − 1

exi+ + exi− − 1
.

(30)

Starting from a variable φ1, chosen randomly from the distribution S(φ), and from T0 = 1,
using 2K − 2 variables xi

± chosen randomly and independently from the distribution A(x),
one generates, using either (29) (with probability 1/2), or (30) (with probability 1/2), a
variable φ2 and the Jacobian T1 = T . This process is then iterated: Using φ2 as input, and
2K − 2 new independent random numbers xi

±, one generates through (29) or (30) a new
variable φ3 and the new Jacobian T2. This process is iterated d times, and one computes the
total Jacobian at distance d, Td = T1T2 · · · Td . According to the general iteration stability
rule (21), one needs first to average T 2

d over many realizations of the random variables used
in its computation, and then study the limit

lim
d→∞

1

d
ln

(〈T 2
d 〉) + ln(K(K − 1)α), (31)

If this limit is negative, the system is stable; if it is positive, the system is unstable.

4.3. Stability To Bug Proliferation

We use the general formalism of (22), (23) and apply it to the K-SAT problem. The stability
matrix V defined in (23) is a 2 × 2 matrix.

Let us first compute the matrix element V0→1, 0→1. This corresponds to introduc-
ing the bug u1 = 0 → u1 = 1 and computing the probability that it propagates to a bug
u2 = 0 → u2 = 1. We follow the notations of Fig. 2: u1 is the warning going along the left
link, the probability that this warning is present (u1 = 1) is equal to η1, the probability that
it is absent (u1 = 0) is 1 − η1. The variable U1

+ is the sum of warnings arriving on variable
S1, indicating that it should take the value TRUE (which violates clause b), from function
nodes distinct from a. The other U variables are defined similarly, as the sum of warnings
arriving along a selected subset of bonds indicated on the figure. In order to study V0→1, 0→1,
the general formula (22) says that one should sum over all configurations of warnings {Ui

±}
such that:

• If u1 = 0, the set of warnings {Ui
±} automatically gives u2 = 0.

• If u1 = 1, the set of warnings {Ui
±} automatically gives u2 = 1, and there is no contra-

diction in the messages.

In order to fix the corresponding possible values of {Ui
±}, one can proceed as follows:

1. In the case u1 = 1, we need to send a warning u2 = 1. This implies that all the variables
S2, S3, . . . , SK−1 receive non contradictory messages assigning them to values which
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violate the clause b. Therefore, ∀i ∈ {2, . . . , K − 1} : Ui
+ ≥ 1 and Ui

− = 0. This is the
only constraint applying on these warnings, and the total probability of these warnings
is

∏K−1
i=2 [π i

−(1 − π i
+)].

2. The total cavity-field seen by variable S1 is U1
++u1−U1

−. It should be ≤ 0 when u1 = 0
and ≥ 1 when u1 = 1. Therefore, one needs U1

+ = U1
−. Furthermore, there should be

no contradiction when u1 = 1, this implies that U1
− = 0. So the only possibility left

for U1
± is U1

+ = U1
− = 0. The total probability of such configurations is π 1

−π 1
+.

Using (22), we thus find that the matrix element V0→1,0→1 is

V0→1,0→1 ≡ ṽ = π 1
+π 1

−
(1 − η1)π

1+ + π 1− − (1 − η1)π
1+π 1−

K−1∏
i=2

π i
−(1 − π i

+)

π i+ + π i− − π i+π i−
. (32)

Note that here we have computed this matrix element in the case described in Fig. 2. One
should also study other cases in which the variables appear in the clauses with different
patterns of negations, which amounts to changing some dashed lines into full lines in Fig. 2
and vice versa. If, for instance, variable S2 appears in clause b with a full line, the roles of
U2

+ and U2
− are exchanged. This is irrelevant in the following statistical analysis since π 2

+
and π 2

− have the same distribution. It turns out that there is only one relevant possible change
which alters the previous result: If the link between S1 and b, and the one between a and S1

are of the same nature (for instance, if S1 appears negated both in a and in b), then there is
no way in which the bug u1 = 0 → u1 = 1 can propagates to a bug u2 = 0 → u2 = 1: the
matrix element is V0→1, 0→1 = 0.

We now compute the matrix element V1→0, 1→0. The inspection is very similar to the above
one, and it turns out that the configurations of {Ui

±} which contribute to this matrix element
are exactly the same as the one contributing to V0→1, 0→1. Therefore, V0→1, 0→1 = V1→0, 1→0.

We now compute the matrix element V1→0, 0→1. One should sum over all configurations
of warnings {Ui

±} such that:

• If u1 = 0, the set of warnings {Ui
±} automatically gives u2 = 1.

• If u1 = 1, the set of warnings {Ui
±} automatically gives u2 = 0, and there is no contra-

diction in the messages.

The constraints on {Ui
±} are:

1. If the link between S1 and b, and the one between a and S1 are of opposite nature (as
in Fig. 1), increasing u1 only increases the polarization of S1 in the direction which
violates clause b, and therefore the bug propagation is impossible: V1→0, 0→1 = 0.

2. If the link between S1 and b, and the one between a and S1 are of the same nature
(e.g., if the edge between S1 and b in Fig. 1 becomes a full line): when u1 = 0 we need
U1

+ −U1
− ≤ −1 so that S1 is polarized in the direction violating clause b; when u1 = 1,

we need U1
+ + u1 − U1

− ≥ 0, and the constraint of no-contradiction imposes U1
− = 0.

This contradicts the U1
+ − U1

− ≤ −1 constraint; thus there is no set of warnings
propagating this bug.

In all cases: V1→0, 0→1 = 0.
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The matrix element V0→1, 1→0 turns out to be zero when the link S1 → b, and the link
a → S1 are of opposite natures, and nonzero whenever the link S1 → b, and the link a → S1

are of the same nature. In this last case its value w̃ can easily be computed using the same
tools as before, but we do not need it in the stability analysis, as we now show.

To summarize, the matrix V takes two values, depending on the relative nature of the
links S1 → b, and a → S1:

• If these two links are of opposite nature, then

V =
(

ṽ 0
0 ṽ

)
. (33)

• If these two links have the same nature, then

V =
(

0 0
w̃ 0

)
. (34)

The numbers ṽ, w̃ are random numbers with distributions which can be deduced from the
known distributions of the η and π variables.

The system is stable to bug proliferation whenever µd defined in (24) decreases at large d.
We notice that the product of d matrices appearing in (24) gives a null matrix whenever the
second type of matrix (the off-diagonal one) appears at least twice in the product. Therefore
one can forget about the off-diagonal matrix. Using (32), one generates the sequence of
numbers ṽ1 · · · ṽd , from which one gets

lim
d→∞

1

d
ln µd = ln

(
Kα(K − 1)

2

)
+ lim

d→∞
1

d
ln〈[ṽ1 · · · ṽd]〉, (35)

where the factor 1/2 in the first ln is due to the constraint that the successive links along the
stability chain must be of opposite nature,which happens with probability 1/2. We can just
deal with diagonal matrices, and µd is thus fixed by the average of the product of ṽ terms,
determined in (32).

The statistical analysis of this stability to bug proliferation proceeds as follows. Per-
forming the change of variables (6), we can use φ and x variables taken randomly from the
supposedly known distributions S(φ) and A(x) defined in (7), (9). The iteration equation
(25) and the matrix element (32) can be expressed as

e−φ2 = 1 − ex1++φ1 − 1

ex1++φ1 + ex1− − 1

K−1∏
i=2

exi+ − 1

ex1
i + ex1− − 1

, (36)

ṽ = eφ1[
ex1++φ1 + ex1− − 1

] K−1∏
i=2

exi+ − 1

ex1
i + ex1− − 1

. (37)

Starting from a variable φ1, chosen randomly from the distribution S(φ), and from T0 = 1,
using the 2K−2 variables xi

± chosen randomly and independently from the distribution B(x),
one generates through (37) a variable φ2 and the matrix element ṽ1 = ṽ. This process is then
iterated: using φ2 as input, and 2K −2 new random numbers xi

±, one generates through (37)
a new variable φ3 and the new matrix element ṽ2. This process is iterated d times, and
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one computes ṽ1ṽ2 · · · ṽd . The quantity 〈[ṽ1 · · · ṽd]〉 appearing in (35) is the average of
this product over many realizations of the random variables used in its computation. If
limd→∞(1/d) ln µd is negative the system is stable with respect to bug proliferation, if it is
positive, the system is unstable.

5. NUMERICAL SOLUTION OF THE STATISTICAL EQUATIONS

5.1. Regularization

In order to compute the pdfs S and B, solutions of (7), (9), numerically, it is useful to
first remark that they have a δ function peak at argument equal 0. The weight of this peak
can be computed analytically, and substracting it allows to work with continuous random
variables. We thus write

S(φ) = tδ(φ) + (1 − t)Sr(φ),

B(x) = τδ(x) + (1 − τ)A(x),
(38)

where Sr and A are continuous in 0. From the self-consistency equations (7), (9), one gets

t = 1 − (1 − τ)K−1,

τ = exp

(
−Kα

2
(1 − t)

)
.

(39)

This equation has only one solution, t = τ = 1 for α < αt(K), indicating that all fields
φ and x are zero. For α > αt(K) two nontrivial solutions appear, but only the one with the
smaller value of t is stable. αt(K) is a decreasing function of K and αt(3) � 1.6. For large
K and large α, the relevant solution t goes to zero rapidly, as t ∼ (K − 1)e− 1

2 αK .
The self-consistent set of equations for the pdfs Sr and A and the mixture B reads

Sr(φ) =
∫ K−1∏

i=1

[
dxi dyi A(xi)B(yi)

]
δ

(
φ + ln

[
1 −

K−1∏
i=1

exi − 1

exi + eyi − 1

])
, (40)

A(x) = 1

eγ − 1

∞∑
k=1

γ k

k!
∫ k∏

j=1

[
dφj Sr(φj)

]
δ

(
x −

∑
j

φj

)
, (41)

B(y) = e−γ

∞∑
k=0

γ k

k!
∫ k∏

j=1

[
dφj Sr(φj)

]
δ

(
y −

∑
j

φj

)
, (42)

where γ = (Kα/2)(1 − t) is related to the solution t of (39). Once B(x) is known the
complexity � can be calculated according to (18)–(13).

5.2. Population Dynamics

Sr(φ), A(x), and B(y) are solutions of the set of integral equations (40), (41), and (42).
The numerical solution of these equation proceeds in an iterative manner. Based on a first
approximation of Sr , approximations of A and B are calculated using Eqs. (41) and (42).
These functions are plugged into Eq. (40) to get new approximation of Sr(φ). This process is
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iterated until Sr , A, and B attain their fixpoints. Since Sr(φ), A(x), and B(y) are probability
densities, they can be approximated numerically by a large set of independent variables
drawn from the respective density. This way the iteration of Eqs. (40), (41), and (42)
becomes an iterative update of a “population” of N variables φ1, . . . , φN . For given N , α,
and K the population dynamics algorithm reads:

1. Compute t as the solution of Eq. (39). Set γ = (Kα/2)(1 − t).
2. Initialize the φj as positive i.i.d. random variables with an exponential distribution of

mean 21−K .
3. For j = 1 to K − 1:

a. Generate a random integer k ≥ 1 with distribution ∝ γ k/k!
b. Pick k integers i1, . . . , ik at random from {1, . . . , N}.
c. Calculate the sum xj = φi1 + · · · + φik . xj is a random variable with distri-

bution A(x).
4. For j = 1 to K − 1:

a. Generate Poisson distributed random integer k with mean γ .
b. If k = 0, set yj = 0.
c. If k > 0, pick k integers i1, . . . , ik at random from {1, . . . , N} and set yj = φi1 + · · ·+

φik . yj is a random variable with distribution B(y).
5. Calculate z = ∏K−1

j=1 (1 + eyj/(exj − 1)).
6. Replace a randomly chosen variable φ	 in the population by the new value φ0 =

ln(1 + 1/(z − 1)).

Steps 3–6 have to be repeated until the population of variables φ	 is distributed according
to the stationary distribution Sr(φ). As a criterion of convergence we monitor the first
(empirical) moments of the fields φ: if these change little after N variables φ have been
updated, we might assume convergence.

After convergence has been reached (transient iterations), steps 3–6 are iterated TN
times for some large T . The TN(K − 1) random variables yj calculated in step 4 are used to
estimate the complexity � by approximating the integrals in (18) by sums.

For larger values of K the proper initialization in step 2 is essential. Note that in step 5
quantities exp(x) with x of order (Kα/2)E(�) have to be calculated. Now α scales like 2K ,
so E(�) should better scale like 2−K to avoid numerical overflow. The value E(�) = 21−K

chosen in the initialization step is small enough to prevent overflow and large enough to
stay away from the trivial solution (all � = 0). In addition, initializing with E(�) = 21−K

agrees with the asymptotic behavior of S(�), see Section 6.1.

5.3. Threshold Values

For α < αd the whole population of fields collapses to the value 0. We identify αd as the
first value of α where we find nontrivial stable pdf B(x) and Sr(φ).

The satisfiability threshold αc is studied using the complexity �. Figure 3 shows the
complexity for K = 3 and 3.9 < α < 4.3 obtained with the population dynamics. The overall
shape of �(α) is clearly visible, but the fluctuations are strong, even for N = 106. The
location αd of the jump in the � is easier to pin down accurately than the value αc where
�(αc) = 0.
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Fig. 3. Complexity �(α) for K = 3 obtained from the population dynamics algorithm with T = 1000.
The number of transient iterations is 100N in all cases.

To get αc we run the population dynamics for 50 equidistant values α around the estimated
value of αc and use linear regression to locate the root of �(α); see Fig. 4 for an example
with K = 4.

With large values of T and N and repeated runs, fairly accurate estimates for αc can be
obtained, as well as an estimate of the error bar; see Fig. 5. Note that in a single run with
N = 106 and T = 70,000 more than 1014 random numbers are consumed. This makes high
demands on the pseudo random number generator. We used LCG64, a linear congruential
generator with period 264 − 1 ≈ 1019 from the TRNG-library [3]. The results have been
checked with an explicit inverse generator from the same library.

Table 1 shows the results. Since αc for K = 3 is the most “prominent” threshold we spent
a bit more CPU power to increase its accuracy. Currently our best estimate is

αc(3) = 4.26675 ± 0.00015. (43)

The errorbars in Table 1 and in Eq. (43) are given by ±2σ , where σ is the empirical standard
deviation as measured by different runs of the population dynamics algorithm (see Fig. 5)
with fixed N and T . The quoted values of αc are the empirical averages over different runs.
The simulations show that the averages are not very sensitive to the value of N . The errorbars
on the other hand get smaller with increasing N .
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Fig. 4. Complexity �(α) for K = 4 in the vicinity of αc. Linear regression yields the value αc =
9.9324.

5.4. Stability

Using the population of φ and x variables obtained in the population dynamics, one can
check the stability of this 1-RSB solution. In all cases we find that for α ≤ αc the solution
is stable to iteration. As for the bug proliferation stability, we estimate its location by
considering the value of µd defined in (24). In Fig. 6 we plot ln µd versus d for the case
K = 4, for various values of α. The behavior is well approximated by a linear function.
Using a linear regression, we estimate the slope and plot it as function of α, as shown in
Fig. 7. In this way we estimate the limit of stability of the 1-RSB solution to: αs(4) � 9.08.
The values of αs(K) for K = 3, . . . , 7 are shown in Table 1.

6. LARGE K ANALYSIS

6.1. Introduction

In the large K limit the random K-sat problem simplifies, and one can get more precise
analytic results. One knows from [2,8] that, at first order in the expansion in powers of 2−K ,
the rigorous bounds scale as

2−KαLB(K) � ln(2) − 2−K

(
K + 1

2
ln(2) + 1 + o(1)

)
+ O(2−2K), (44)

2−KαUB(K) � ln(2) − 2−K 1 + ln(2)

2
+ O(2−2K), (45)
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Fig. 5. Values of αc as determined from various runs of the population dynamics. The convergence
for T → ∞ is clearly visible as well as the fluctuations induced by the finiteness of N . Note the
resolution of the αc-axis.

where o(1) is a term which goes to 0 at large K . It is interesting also to note that the best
lower bounds obtained by studying simple algorithms give a scaling 2−KαLB(K) � c/K
where c is a constant [12].

In this section we shall analyse the cavity equations (40)–(42) in the large K limit using
an expansion in the small parameter ε = 2−K , and defining the rescaled parameter

α̂ = 2−Kα. (46)

We shall compute the large K behavior of the satisfiability threshold αc, the dynamic thresh-
old αd and the stability threshold αs. The expansion will be in powers of ε, although one
must be careful that at each order powers of K also appear.

We need to find an expansion of the pdfs Sr , A, and B which satisfy the self-consistent
equations (40)–(42). We first note that, at large K and large α, the solution t of (39) goes
to zero as t ∼ (K − 1) exp(−Kα/2), more rapidly than any power of ε. We can thus take
t = 0 in our large K analysis. Then γ = (K/2)2K α̂ ∼ 1/ε is large.

According to Eq. (42) y is a sum of k fields φ, where k is Poisson distributed with mean γ .
Equation (41) shows that the distribution A(x) is very close to the distribution B(x), up to
corrections of order exp(−γ ), which again can be neglected in an expansion in powers of ε.
Hence we expect that for K � 1 A(x) � B(x) become Gaussians concentrated around γ M1,
where M1 = E(φ). In the same regime, the main contributions to the integral in (40) come
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Fig. 6. Stability of the 1RSB solution to the K = 4 random satisfiability problem. The stability
parameter ln µd of (24) is plotted versus the distance d for various values of α equally spaced between
α = 8.50, 8.55, . . . , 9.20 (from top to bottom). The points with error bars are the results of the
numerical evaluation of µd using the population dynamics algorithm; the lines are the best linear fits.

from the constant term 21−K , hence we expect Sr(2K−1φ) to be concentrated around 1: then
M1 � 21−K and γ M1 � Kα̂. This scenario is confirmed by the analysis of the functions A,
B, and Sr obtained from the population dynamics. We will use it as the starting point for an
asymptotic expansion for αc(K) and for the large K asymptotics of αd and αs.

6.2. Asymptotic Expansion for αc

Our goal is to express α̂c(K) = αc(K) 2−K as a power series in the variable ε = 2−K , with
coefficients which may contain powers of K or of ln K . We know from the bounds (45) that
α̂c = ln(2) + O(ε). To get the next terms of the series we need to expand all moments of
A � B and Sr in powers of ε.

Let Mn = E(φn) = ∫
dφ Sr(φ)φn denote the nth moment of Sr . Concerning the distri-

bution B(y), it is useful to introduce three types of moments. The nth moment of B is
E(yn) = ∫

dy B(y)yn. The nth cumulant of B, b̂n, is defined as usual by the identity between
generating functions:

exp

[ ∞∑
n=1

λn

n! b̂n

]
=

∞∑
n=0

λn

n! E(yn). (47)
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Fig. 7. The slopes of the linear fits to ln µd versus d, obtained in Fig. 6 for the K = 4 random
satisfiability problem, are plotted versus α. Values of α such that the slope is negative are such that
the 1RSB solution is stable.

The nth central moment of B, bn, is defined by bn = E((y − E(y))n). Equation (42) shows
that

b̂n = γ Mn, n ≥ 1. (48)

As motivated in the introduction of this section, we will assume that Mn = O(εn). From

γ = α̂K

2ε

(
1 − O

(
ε2K−1

))
, (49)

we get the scaling of the cumulants b̂n and the central moments bn as

b̂n = O(εn−1), n ≥ 1,

bn = O(ε�n/2�), n ≥ 2,
(50)

where �x� denotes the smallest integer ≥ x. These scalings are the base of our asymptotic
expansion. To calculate the moments bn self-consistently, we rewrite Sr(φ) as

Sr(φ) =
∫ K−1∏

i=1

[dζi D(ζi)] δ

(
φ − ln

[
1

1 − ∏K−1
i=1 ζi

])
(51)
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with

D(ζ ) =
∫

dx dy B(x)B(y)δ

(
ζ − ex − 1

ex + ey − 1

)
. (52)

The moments of D are given by

E(ζ 	) =
∞∑

p,q=0

D(	)
p,q bp bq, (53)

where D(	)
p,q is the Taylor coefficient

D(	)
p,q = 1

p! q!
∂p+q

∂px ∂qy

(
ex − 1

ex + ey − 1

)	
∣∣∣∣∣
x=y=E(y)

. (54)

As we know that b0 = 1, b1 = 0 and bn≥2 = O(ε�n/2�), we find that

E(ζ 	) � D(	)

0,0 + O(ε) =
(

1 − δ

2 − δ

)	

+ O(ε), (55)

where we have introduced δ = exp(−E(y)). Because the leading contribution to γ M1 is
γ M1 � Kα̂, and α̂ is close to ln 2, we expect δ to be a small parameter of order ε. We thus
write

D(	)

0,0 =
(

1 − δ

2 − δ

)	

= 2−	

(
1 − 	

2
δ

)
+ O(ε2), (56)

D(	)

2,0 + D(	)

0,2 = 2−	 	(	 − 1)

4
+ O(ε). (57)

Expanding −ln(1 − x) in the integral in (51) in a Taylor series at x = 0 gives

M1 =
∞∑

	=1

1

	
E(ζ 	)K−1

=
∞∑

	=1

(2ε)	

	

(
1 − 	

2
δ + 	(	 − 1)

4
b2 + O(ε2)

)K−1

= 2ε

(
1 − K − 1

2
δ

)
+ 2ε2 + O(ε3). (58)

and similarly

M2 = 4ε2 + O(ε3). (59)

Since b̂1 = E(y) and b̂2 = b2, we can use Eq. (48) to get the desired series expansion for
the moments bn:

E(y) = α̂K − α̂
K(K − 1)

2
ε + α̂Kε + O(ε2), (60)

b2 = 2α̂Kε + O(ε2). (61)
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Now we are ready to expand the complexity into a series in ε. We use the representation
of the complexity in terms of integrals over B, given in (18)–(13). Again we expand the
logarithms in both integrals in a Taylor series around E(y) to get

�0 = ln(2) + α̂K − α̂
K2

2
ε + 2α̂Kε − δ

2
+ O(ε2) (62)

and

KIK−1 − (K − 1) IK = −(K + 1)ε − 3K + 1

2
ε2 + K(K − 2)

2
ε2 + O(ε3). (63)

From (18) we get �(α) up to order O(ε2), and, solving for α̂c, we finally arrive at

α̂c = ln(2) − ln(2) + 1

2
ε + O(ε2). (64)

Note that this result is identical to the best known rigorous upper bound for αc found
in [8, 17].

In the Appendix we show how to calculate higher order terms of the asymptotic expansion
for αc. Figure 8 and Table 1 show that the 7th-order expansion gets actually very close to
the numerical values. For K = 3 the deviation of the 7th-order asymptotic expansion from

Fig. 8. Statistical transition point α̂c = αc 2−K : Population dynamics solution of the cavity equations
compared to the asymptotic expansions of first, second and seventh order in ε = 2−K ; see the
Appendix.
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the numerical value is less than 1%, and for K ≥ 4 this deviation is even smaller. Already
at 2nd order the cavity 1-RSB result is strictly smaller than the best known upper bound
of [8] (which is itself better than the upper bound of [17]).

6.3. Asymptotics of αd

The distributions S(φ), A(x), and B(y) get more and more concentrated as K gets larger. For
an asymptotic analysis of αd we will treat all pdfs as δ-functions. In terms of the moment
expansion this means to ignore all but the first cumulant of B. We shall first work out the
resulting value that is obtained from such an approximation for any K , and then compute
the large K asymptotics.

If S(φ) is concentrated at M1, then B and A are concentrated at E(y) = γ M1 and E(x) =
γ M1/(1 − e−γ ). Equation (40) gives

M1 = ln

[
1 +

(
eE(x) − 1

)K−1

(eE(x) + eE(y) − 1)K−1 − (eE(x) − 1)K−1

]
. (65)

With z = e−γ M1 this can be written as

z = f (z) =

1 −


 1 − z

1
1−e−γ

1 + z
1

eγ −1 − z
1

1−e−γ


K−1

γ

. (66)

The trivial z = 1 is always a solution of this equation, but for γ > γ
(0)

d (K) non trivial solutions
z < 1 appear. The critical value γ

(0)

d (K) is given by the solution of

z = f (z) and 1 = f ′(z). (67)

These equations can be solved numerically and the resulting value γ
(0)

d is easily translated
into a corresponding α

(0)

d by Eq. (39). The results are the values for α
(0)

d in Table 1. The
values for α

(0)

d agree perfectly with the exact values αd (within the error bars of the latter),
even for K = 3, although the nontrivial distributions A(x) and B(y) that appear right above
αd are not δ-like.

To analyze α0
d in the large K-limit, we simplify f (z) by ignoring the difference between

E(x) and E(y) as discussed in Section 6.2. This leads to

z = f (z) =
[

1 −
(

1 − z

2 − z

)K−1
]γ

. (68)

The nontrivial solution of (68) is a number z ∈ (0, 1); hence (1 − z)/(2 − z) < 1/2, and for
large K we can write

z = f (z) � e−γ
(

1−z
2−z

)K−1

. (69)

This equation should have only the trivial solution z = 1 for γ < γd and a nontrivial solu-
tion z < 1 for γ > γd . From the numerics we know that zK is small and decreasing with
increasing K ; hence we try the ansatz

zK = e−d(K), (70)
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where d is a slowly growing function of K . This ansatz allows us to write(
1 − z

2 − z

)K−1

� 21−K e− e−d
2 , (71)

and together with (69) we get

γ = 2K−1 e
e−d

2 (ln K + d)︸ ︷︷ ︸
=:g(d)

. (72)

The critical value αd = 2γd/K is determined by the minimum of g(d),

αd = 2K

K
(ln K + d�) e

e−d�

2 , (73)

where d� denotes the solution of g′(d) = 0, which is the solution of

exp(d�) = 1

2
(ln K + d�), (74)

d� = ln

(
1

2
ln K + 1

2
d�

)
. (75)

Note that d� = ln( 1
2 ln K)[1 + O(ln ln K/ln K)] in agreement with our ansatz of a slowly

growing d(K), Eq. (70). Figure 9 verifies that (73) indeed gives the correct asymptotic
expansion of α0

d .

Fig. 9. Dynamical threshold αd : asymptotical expansion (73) compared to the numerical solution
of (68).
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6.4. Stability Analysis at Large K

Since we are interested in studying the instability of type II in the region αd < α, let us
parametrize α as

α = 2K

K
(ln K + d) e

e−d
2 , (76)

with d ≥ d�(K).
In the large K limit the stability analysis is greatly simplified with respect to the general

case discussed in Section 4. The iteration equation (36) and the matrix element equation (37)
read

ṽ1 = e−(x1++x1−)

e−x1+−φ1 + e−x1− − e−(x1++x1−+φ1)
e−ξ1 (77)

and

e−φ2 = 1 −
[
1 − e−(x1++φ1)

]
e−x1−

e−x1+−φ1 + e−x1− − e−(x1++x1−+φ1)
e−ξ1 , (78)

where

ξ1 =
K∑

i=2

ζi and ζi = − ln

(
eui − 1

eui + evi − 1

)
. (79)

At large K, the variables ui and vi are random variables distributed according to the law A.
In order to understand the simplification taking place at large K , it is useful to carry one

more step of the iteration: To compute the stability at distance 2, we need to compute

ṽ2
e−(x2++x2−)

e−x2+−φ2 + e−x2− − e−(x2++x2−+φ2)
e−ξ2 (80)

and

e−φ3 = 1 −
[
1 − e−(x2++φ2)

]
e−x2−

e−x2+−φ2 + e−x2− − e−(x2++x2−+φ2)
e−ξ2 , (81)

where ξ2 is iid with ξ1.
In general ṽ1 and ṽ2 are correlated because ṽ2 depends on φ2, which itself depends on

the same random variables as ṽ1. At large K , we notice that a sum like x2
+ + φ2 simplifies,

because < x >= (Kα/2)M1 = O(M12K) and φ = O(M1): neglecting corrections of order
ε, we can write at leading order x2

+ + φ2 = x2
+. Performing this simplification every time

that a sum of the type x + φ appears, we deduce that the correlations between ṽ1 and ṽ2

disappear at large K . The stability condition (35) simplifies to

lim
d→∞

1

d
ln µd = ln

(
Kα(K − 1)

2

)
+ ln E(ṽ1). (82)
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To leading order we approximate B(x) as a δ-function at x = (Kα/2)M1, so that z =
exp(−x) = exp(−(Kα/2)M1) satisfies Eq. (68). We get

E(ṽ1) = z

2 − z

(
1 − z

2 − z

)K−2

. (83)

Using the asymptotic form (76), together with z = exp(−d)/K and (71), in Eq. (82) we
find

e−d(ln(K) + d) = 1. (84)

The solution ds(K) of this equation, when plugged into the definition (76) of α, gives the
stability threshold αs, such that the 1-RSB cavity solution is stable at α > αs. We notice
that (84) is similar to Eq. (74) giving d�(K). In fact a simple change of variables gives

ds(K) = d�(2K) + ln 2. (85)

The asymptotic expression for the instability is thus given by

αs = 2K

K
(ln(2K) + d�(2K))e

1
4 e−d�(2K), (86)

which is close to the dynamical point αd of (73).
For any finite K , there exists a region between αd and αs in which the one step solution is

unstable, while the solution at αs < α ≤ αc is stable. At large K the unstable region is small
and limK→∞[αd(K)/αs(K)] = 1. The relative difference of (αs − αd)/αd is of order 1/ln K .

7. CONCLUSIONS

In this contribution we have studied in details the 1-RSB cavity analysis of the random
K-SAT problem for general K . Starting from the Survey Propagation equations, we have
computed the threshold values αd(K) for the onset of clustering of constrained variables,
αs(K) for the stability of the 1-RSB cavity solution, αc(K) for the SAT/UNSAT transi-
tion. For all studied values of K we find αd(K) < αs(K) < αc(K), which shows that the
SAT/UNSAT threshold αc(K) always lies in the stable region. This provides stronger sup-
port to the conjecture that the 1-RSB cavity values for αc(K) are exact for any K . On the
other hand, the neighborhood of αd(K) should be studied with higher order RSB methods.

We can summarize the main conjectures obtained from the statistical physics approach
as follows:

Conjecture 1. The satisfiability threshold αc(K) for random K-SAT is obtained by the
following procedure:

1. Given α, find the two probability distribution functions S(φ) and B(x) which satisfy
the integral equations (7), (9).

2. Compute the complexity � given in (18)–(13).
3. αc(K) is the value where � vanishes.
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We have developed two different approaches to computing the threshold, a numerical
study of the cavity equation for K ∈ {3, . . . , 7} on the one hand and a large K expansion on
the other hand. The large K expansion can be summarized in:

Conjecture 2. The satisfiability threshold αc(K) for random K-SAT can be obtained from
an asymptotic expansion in ε = 2−K , i.e., for each nonnegative integer M, we have that

2−Kαc(K) = ln(2) +
M∑

i=1

α̂iε
i + o(εM), (87)

where the coefficients α̂i are polynomials in K of degree 2i − 2. Our method provides an
explicit conjecture for these coefficients (see Sect. 7): The first three terms are given in
Eqs. (A.21)–(A.23), coefficients up to α̂7 are available upon request.

As one can see in Fig. 8, the result of the asymptotic expansion up to 7th order nicely
match the direct numerical study of Eqs. (18), (40)–(42) for K ∈ {3, . . . , 7}.

On top of having the threshold value for any K , this analysis is also useful since the
large K limit is a natural candidate for building a complete analytical matching between
the cavity solution and rigorous results. To the leading order the analytical expression for
the threshold value at large K coincides with the best known rigorous upper bounds while
higher orders give a further improvement. We hope that the type of results discussed in this
paper will help in developing a complete rigorous understanding of the cavity approach in
the K-SAT problem and of its algorithmic potentialities.

APPENDIX: SYSTEMATIC MOMENT EXPANSION

The series expansion for αc(K) from Section 6.2 can be worked out systematically. Equa-
tions (41), (42), (51), and (52) define a circular mapping Sr(φ) �→ [A(x), B(y)] �→ D(ζ ) �→
Sr(φ) that we want to express in terms of moments. Equation (48) is the moment version
of S �→ B. As discussed in Section 6.2 we will neglect the difference between A and B and
we set γ = αK/2. In terms of moments the map D �→ Sr reads

Mn =
∞∑

	=1

Cn,	E(ζ 	)K−1, (A.1)

where the Taylor coefficients Cn,	 are defined by lnn(1/(1 − x)) = ∑
	=1Cn,	 x	. They can

be calculated recursively,

C1,	 = 1

	
, Cn,	 =

	−1∑
p=1

Cn−1,	−p

p
. (A.2)

Note that Cn,l = 0 for l < n, Cn,n = 1, and Cn,n+1 = n/2. To close the sequence of mappings,
we need to express B �→ D or rather

E(ζ 	) = E

((
ex − 1

ex + ey − 1

)	
)

(A.3)
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in terms of moments, but we already know how to do this [see Eq. (53)]. Now we have all
pieces to close the chain of mappings, for example, in terms of bn,

b̂n = αK

2

∞∑
	=1

Cn,	

(∑
p,q

D(	)
p,q bp bq

)K−1

. (A.4)

The “hat” on the lhs of (A.4) is easily removed by the usual transformations from cumulants
to central moments [see (47)]. Equation (A.4) can be used to calculate the central moments
of B(y) up to any given order in ε = 2−K . It is useful to introduce another small quantity
Z	 = O(ε) by ∑

p,q

D(	)
p,q bpbq =: 2−l(1 + Zl). (A.5)

This allows us to write Eq. (A.4) as

b̂n = α̂K
r+1∑
	=n

(2ε)	−1Cn,l

r+1−	∑
m=0

(
K − 1

m

)
Zm

	 + O(εr+1). (A.6)

Note that Z	 must be known up to (and including) terms of order εr+1−	 in Eq. (A.6). To find
b̂1 = E(y) up to order ε2, we need

Z1 = − δ

2
− δ2

4
+ O(ε3), Z2 = −δ + α̂Kε + O(ε2) (A.7)

with δ = e−E(y) = O(ε). Inserting this into Eq. (A.6), we get

E(y) = α̂K

(
1 − K − 1

2
δ + ε + (K − 1)(K − 4)

8
δ2 − (K − 1)δε

+ α̂K(K − 1)ε2 + 4

3
ε2

)
+ O(ε3). (A.8)

A series expansion in ε requires δ to be expressed in terms of ε. For that we need to know
α̂ in terms of ε (this is where self-consistency sneaks in); but luckily we need to know α̂

only up to first order in ε, so we can use (64) to get

δ = ε +
(

K(K − 2)

2
ln(2) + K

2

)
ε2 + O(ε3). (A.9)

Note that this expansion strictly holds only at α̂ = α̂c, the condition that underlies (64).
Inserting this into the series for E(y) provides us with

E(y)

α̂K
= 1 + 3 − K

2
ε

+
(

17

6
−

[
11

8
+ 3

2
ln(2)

]
K −

[
1

8
− 7

4
ln(2)

]
K2 − ln 2

4
K3

)
ε2

+ O(ε3). (A.10)



370 MERTENS, MÉZARD, AND ZECCHINA

Similar calculations give

b2

α̂K
= 2ε + (

6 − 2[1 + ln(2)]K + 2 ln(2) K2
)
ε2 + O(ε3) (A.11)

and

b3

α̂K
= 4ε2 + O(ε3). (A.12)

For the series expansion of the complexity we need to consider the �0, Eq. (15), and the
integrals Is, Eq. (13). The Taylor coefficients

Lp,q = 1

p! q!
∂p+q

∂py ∂qz
ln(ey + ez − 1)

∣∣∣∣
y=z=E(y)

, (A.13)

L0,0 = ln(2eE(y) − 1) = ln(2) + E(y) − δ

2
− δ2

8
+ O(ε3), (A.14)

L0,2 + L2,0 = 1 − δ

(2 − δ)2
= 1

4
+ O(ε2), L2,2 = − 2 + δ2

4(2 − δ)4
= − 1

32
+ O(ε), (A.15)

L0,3 + L3,0 = − (1 − δ)δ

3(2 − δ)2
= O(ε), L0,4 + L4,0 = − 1

96
+ O(ε2) (A.16)

allow us to write

�0 =
∑
p,q

Lp,q bp bq = L0,0 + (L0,2 + L2,0)b2 + L2,2b2
2 + (L0,3 + L3,0)b3 + O(ε3)

= ln(2) + E(y) − δ

2
− δ2

8
+ b2

4
− b2

2

32
− b4

96
+ O(ε3). (A.17)

The second contribution to the complexity can be expressed in terms of the small quantities
Z	 defined in (A.5),

α [K IK−1 − (K − 1)IK ] = α̂

∞∑
	=1

ε	−1

	

K∑
m=0

[
(K − 1) − 2	(K − m)

](K

m

)
Zm

	

= α̂

3∑
	=1

ε	−1

	

3−	∑
m=0

[
(K − 1) − 2	(K − m)

](K

m

)
Zm

	 + O(ε3),

(A.18)

and Z1 and Z2 are given in (A.7). Putting together all pieces, we arrive at the series expansion
of the complexity � up to 2nd order in ε,

�(α) = ln(2) − α̂ − 1 + ln(2)

2
ε

+
(

1

8
− ln(2)

12
+ 3 ln(2) − 2

8
K − ln(2)[1 + 2 ln(2)]

8
K2

)
ε2 + O(ε3). (A.19)
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Solving for α̂ gives the expansion for α̂ up to 2nd order. Obviously this approach can be
extended to higher orders, although the computations get more and more involved. We used
a computer algebra package (Maple) to derive the next orders of the series expansion

α̂c(K) = ln(2) + α̂1ε + α̂2ε
2 + α̂3ε

3 + · · · . (A.20)

The α̂i are polynomials in K with coefficients that are rational polynomials in ln(2). The
coefficients α̂1, α̂2, α̂3 are given below. Higher order coefficients up to α̂7 are available upon
request from the authors. The quality of the expansion up to seventh order can be seen in
Fig. 8 and Table 1. Note that there exist also nonanalytic terms in ε, because we dropped
some corrections of order τ which in turn behaves as ε1/(2ε).

α̂1 = −1 + ln(2)

2
, (A.21)

α̂2 = 1

8
− ln(2)

12
+ 3 ln(2) − 2

8
K − ln(2) + 2 ln2(2)

8
K2, (A.22)

α̂3 = 1

16
− ln(2)

24
+

(
3 ln(2) − 2

8

)
K −

(
13 ln2(2) − 3 ln(2) + 1

8

)
K2

+
(

14 ln3(2) + 15 ln2(2) − 4 ln(2)

24

)
K3 −

(
4 ln3(2) + ln2(2)

16

)
K4. (A.23)
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