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Creating ordered structures from chaotic environments is at the core of bio-

logical processes at the subcellular, cellular and organismic level. In this

perspective, we explore the physical as well as biological features of two pro-

minent concepts driving self-organization, namely phase transition and

reaction–diffusion, before closing with a discussion on open questions and

future challenges associated with studying self-organizing systems.

This article is part of the theme issue ‘Self-organization in cell biology’.
1. Introduction
A frequently used definition for self-organization is the dynamic emergence of

order from the collective behaviour of individual agents [1]. As a consequence,

self-organization can occur at various length and time scales. From non-

equilibrium thermodynamics [2], it has been known for a long time that a

system kept off equilibrium can self-organize by forming oscillations, chemical

waves and stationary patterns [3–5]. Intriguingly, a living organism, fuelled by

ATP and GTP hydrolysis, can also be considered a system far from equilibrium

[6–8]. On the following pages, we will separately discuss the principles driving

self-organization in biological systems, focusing mainly on phase transition and

reaction–diffusion. For both concepts, we will first introduce the principles

underlying self-organization from a physical perspective, before discussing bio-

logical examples on the molecular, cellular and organismal level. We will then

reflect on the benefits of such self-organizing structures within a living system,

before closing with open questions and future challenges.
2. Phase transition: from disordered to ordered state
(a) Phase transition from the physical perspective
Phase transition describes the ability of a physical system to switch between

different states, resulting in the change of the overall collective behaviour or

some intrinsic property of the whole system. To introduce the underlying prin-

ciple, we would like to start with a small thought experiment. Let us assume a

system composed of identical elements that diffuse, fuelled by Brownian

motion, freely through the medium. Following the rules of classical statistical

mechanics, in a completely random environment composed of identical elements

the probability for every possible combination is equal. Thus, the probability of

having such a system in state x is

PðxÞ¼ e�bE

Z
,

where Z is the partition function of the system, E is the energy of the system in

state x, and b is the thermodynamic parameter. For simplicity, we rescale the

system so b ¼ 1. To characterize the order of a system, generally an order-

parameter, such as a pattern that emerges due to spatial constraints among

individual elements, is used. Now in terms of the order parameter so, determined
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by the number of ordered micro-states No, we have

PðsoÞ ¼ No
e�Eso

Z
¼ e�Gso

Z
:

Analogously, sdo is determined by the number of disordered

micro-states Ndo

PðsdoÞ ¼ Ndo
e�Esdo

Z
¼ e�Gsdo

Z
:

Considering no changes in temperature and constants rescaled

to 1, we can put

Gso
¼ Gibbs free energy ¼ Eso

� Sso
,

where

Sso¼ entropy ¼ ln No,

and similarly

Ssdo
¼ entropy ¼ ln Ndo:

Intuitively, one would assume that bringing constraints into a

system should lower the probability of occurrence, as the

number of options is restricted by a specific set of rules.

Thus, Ndo .No and ln Ndo . ln No. This, however, means that

if Eso
¼ Esdo

, then Gso
.Gsdo

. Hence, from a statistical perspec-

tive it is more probable to end up with a disorganized state

than an organized state of the system. The apparent question

arising from this line of thought is why self-organization

should emerge in the first place. Theoretically, this could be

achieved by turning Gso .Gsdo
to Gso ,Gsdo

, which can be

achieved by introducing interaction potentials. Alternatively,

one could also change Eso¼ Esdo
to Eso , Esdo

, by defining the

interacting potentials as dominant compared with random

fluctuations and collisions.

(i) Example 1—density and phase transition
In the following, we present one example of how an ordered,

self-organized system may emerge. As above, we consider a

dissipative system composed of an infinite number of

identical elements A. So we have

Ado O Ao,

where Ao refers to an ordered system following a particular

spatio-temporal pattern that can be expressed by an analytical

function. Ado represents the disordered state containing a

random pattern or distribution. At steady state, we thus have

[Ao] ¼ ko

kdo
[Ado],

where ko and kdo represent the rate constants towards their

respective states. Under steady-state condition the system

will fluctuate between the ordered and disordered states,

whereby the overall state at a given point in time will be the

linear combination of all possible states. So we have

PðAoÞ¼
ko

kdo
PðAdoÞ ¼

ko

kdo

e�Gdo

Z
¼ e�Go

Z
,

whereby

Go¼ Gdo � ln
ko

kdo

� �
:

Now let us include a coulombic-type interaction with

enthalpy of reaction VðrÞ ¼ �a=krl and ko/ jVðkrlÞj) and kdo

proportional to thermal noise in the system. For simplicity,

we further assume that thermal noise as well as Gdo, which
represents entropy without internal bonding, remains constant.

Next, we slowly increase the density of elements in the system.

In an initial scenario, no internal interactions exist owing to

super-low density of A (figure 1a, top panel in blue). We thus

have lim
V!0

ko=kdo ¼ 0, Go¼ 1 and PðAoÞ¼ 0. This intuitively

makes sense, since the probability of creating order in a noisy

system in the absence of interaction is very unlikely. Next, let

us assume we slightly increase internal interactions by elevat-

ing the density of A (figure 1a, top panel in green).

Specifically, we decrease krl, thereby increasing the interacting

force to the point that ko¼ kdo. Under these conditions, we

obtain Go¼ Gdo and PðAoÞ¼PðAdoÞ. On first sight, this

appears counterintuitive, as ordered and disordered phase

are equal in energy. However, as the order parameter follows

PðAoÞ¼Noðe�VAo =ZÞ and PðAdoÞ¼Ndoðe�VAdo=ZÞ , the

relation PðAoÞ¼PðAdoÞ is satisfied when VAdo.VAo
since

No ,Ndo. Thus, at steady state the system will fluctuate with

equal probabilities between ordered and disordered phases.

Finally, we strongly increase density, thus maximizing inter-

action potential, so that ko�kdo (figure 1a, top panel in

yellow). This will decrease krl, causing lim
jVj!�1

ko=kdo¼þ1

with Go¼�1 and PðAoÞ�PðAdoÞ. Under these conditions,

the system will arrest itself in the organized state.

(ii) Example 2—phase transition in dissipative systems
As illustrated in Example 1, phase-transition can be achieved

by altering the density of A. However, the energy profiles

are static for a given conditions. How then can a dynamic,

self-organizing system emerge without changing external

parameters? This can be achieved by introducing nonlinearity

into the system. In our second example, we will do so by

including a second agent B (figure 1a, bottom), where

k�o ¼ ko ½B�n, and the positive number n defines the strength

of the feedback loop. We now can write

G�o¼Gdo� ln
ko

kdo

� �
� n ln([B�Þ:

For simplicity, we assume that ½Atot� ¼ constant and

½B� , ½Atot� , while DGdo � 0, which means that the entropy

of the disordered state does not change significantly with intro-

duction of matter into the system. Making it a function of time,

we can rewrite the equation as

G�oðtÞ¼Gdo � ln
ko

kdo

� �
� n ln([BðtÞ�Þ:

As the disorganized system absorbs free agent B (figure 1a,

bottom panel in blue), new B enters the system from the con-

nected reservoir. The resulting increase in [B(t)] leads to

decrease in G�oðtÞ and elevates PðAoÞ, thereby creating a posi-

tive feedback loop. Consequentially, the system transitions

into an organized state (figure 1a, bottom panel in yellow),

thereby recapitulating the phenomena of self-organization of

a dissipative system away from thermodynamic equilibrium.

(b) Phase transition from the biological perspective
Phase transition for proteins in solution was described over 40

years ago [12]. Since then, it has been established that proteins

in solution can form crystals and polymers as well as gels and

dense liquids [13]. Here, the main contributors to the free

energy (i.e. enthalpy) of the phase transition are water structures

at the molecular surface [14] and protein properties such as
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Figure 1. Self-organization across scales via density-dependent phase transitions. (a) Energy profiles depicting phase transition under various densities (top) and upon
introduction of nonlinear interactions (bottom). (b) Density-dependent phase transitions in sliding actin filaments. Tracks (top) and directionality (middle) of rhodamine-
labelled actin filaments plated on immobilized myosin at low concentration (left panels) and high concentration (right panels), respectively. At the bottom, density-
dependent alignment (indicated by Kuiper statistic (KS) score) is plotted as function of actin filament length. (c) Density-dependent phase transitions in collective
migration of keratinocytes. Cells were plated at 1.8 (top, left), 5.3 (top, middle) and 14.7 (top, right) cells/10 000 mm2. Tracing cell migration (middle panels) as
well as analysis of order parameter (bottom) both show a density-dependent transition from random to collective cell migration. (d ) Density-dependent phase
transitions in fish school behaviour. Typical configurations in fish school include swarm state, polarized state and milling. Below, phase transition for individual
fish densities are plotted based on polarization and rotation of individual animals within groups. Images were obtained from (b) [9], (c) [10] and (d ) [11].
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surface charges [15]. Likewise, phase separation is an important

concept for the organization of lipids [16] and proteins [17]

within membranes. Intriguingly, recent work suggests that

phase transitions also occur at the cellular level, where for

instance liquid states have been observed for P-bodies [18],

nucleoli [19] and stress granules [20]. Intriguingly, phase tran-

sition and phase separation were also described to play a

relevant role on the multicellular level, where differences in

the strength of adhesion between various cell types can lead

to pattern formation [21], or collective cell rearrangements
[22,23]. Considering that phase transition of molecules and

cells is the focus of several perspectives in this issue, we refer

readers interested in learning more on this topic to these

essays as well as to other reviews on this exciting subject [14,24].

Phase transitions have also been observed to coordinate

movement of individual agents. Experiments based on self-

propelled particles, where vibration is used to create motion

of macroscopic objects, showed that contact and shape are

sufficient to elicit collective behaviour [25,26]. Likewise,

density-dependent phase transition can also be observed
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with actin filaments in vitro [9]. Using a two-dimensional moti-

lity assay with immobilized myosin, on top of which actin

filaments can move, showed self-organization that manifested

as parallel alignment of actin filaments in a density-dependent

manner (figure 1b). Notably, filament gliding takes up a pre-

ferred orientation at densities found in living cells, while

orientation extends over length scales similar to the size of

mammalian cells. Density-dependent phase transition can

also be observed at the level of collective cell movement. For

instance, transition from disorganized to organized state was

observed for moving fish keratinocytes (figure 1c) [10]. Impor-

tantly, independent theoretical work based on an escape and

capture model argues that density-dependent phase transition

in collective cell migration does not correlate to cell–cell inter-

action strength [27]. Finally, phase transition can also be

observed at the organismic level. Here, phase transitions

occur in response to changes in population size or density

(figure 1d) in fish [11], ants [28] and locusts [29]. Furthermore,

changes in the behaviour of individuals within a swarm are

sufficient to trigger phase transition, for instance during flash

expansion in the case of predator exposure [30]. This is

relevant, as it suggests that swarms transition stimulus-

dependently between various collective states [31], thus

creating complex decentralized input–output relations. How-

ever, determining accurately the physical energy of such

complex systems is not always feasible. Thus, some phenom-

ena, in particular in multicellular systems, may better be

considered as a kind of phase transition using conceptual

energy. For readers interested in this topic, we refer to excellent

reviews published elsewhere [32,33].
3. Reaction – diffusion mechanisms
(a) Reaction – diffusion from the physical perspective
Fuelled by Brownian motion, each chemical reaction is subject

to diffusion. Intriguingly, under particular conditions, reac-

tion–diffusion systems can form complex patterns out of

chaotic initial conditions. In this section, we will develop the

basic idea behind reaction–diffusion systems. The simplest

equation of a reaction–diffusion system is the one-component

system with one single reaction and diffusion term

rtu ¼ Dr2uþ RðuÞ,

where u represents the concentration, D is the diffusion rate

and R(u) is the reaction term. One requirement for creating

spatio-temporal patterns in a one-component system is a

wave-like solution. So looking for the above equation for

travelling wave solutions of the form

uðx, tÞ ¼ uðx� ctÞ

yields

u00 ¼ �c
D

u0 � 1

D
RðuÞ,

where c is the propagation speed of the wave, x represents the

spatial coordinate and t the time. Converting this second-order

differential equation into two first-order differential equations,

we have

u0 ¼ v and v0 ¼ �c
D

v� 1

D
RðuÞ:
Before we further proceed with the theory, let us first

introduce some terms that will be used in the following section.

Phase portrait: Every nonlinear dynamic system can be

represented by the rate of change of its state variables in a

phase portrait. For example, a one-component dynamic

system can be represented as a two-dimensional coordinate

system, where one axis depicts the state variable and the

other axis represents the rate of change of the state variable.

The resulting vector field trajectories of the phase portrait

indicate how a particular system will evolve.

Critical points: These are points in the phase portrait that

represent static positions in a dynamical system. In other

words, these are the equilibrium points of the system,

where the rate of change of the state variables is zero. Critical

points come in three types that differ from each other as fol-

lows. Stable point/attractors are equilibrium points towards

which, upon small perturbation, the dynamic system con-

verges back in the phase portrait. In other words, the rate

vectors around this point are directed towards it. Upon line-

arization, the sign of the rate along the eigendirection is

towards the critical point, which is indicated by a negative

eigenvalue. In contrast to stable points, the system diverges

away from an unstable point in the phase portrait upon

small perturbation. In this case, the rate vectors point away

from that critical point. Similarly, upon linearization, the

eigenvalues are positive. Finally, saddle points are neither

local maxima nor local minima. Upon a small perturbation,

the system will evolve to a particular direction unlike the

case of a stable or unstable point. Importantly, a dynamical

system can be linearized around those critical points.

Having established the basics, let us now return to the

theory. Intuitively, we can think of the two first-order differ-

ential equations described before as a damped system, with c
analogous to the drag coefficient and D analogous to the

mass. Just for convenience, let us say u¼ u
v

� �
, so the

system can be described as

u0 ¼ fðu, vÞ
gðu, vÞ

� �
:

Considering that reaction–diffusion systems are nonlinear in

nature, in the sense that the state variables of the system have

nonlinear dependencies represented by fðu, vÞ and gðu, vÞ, we

need to linearize the above problem around the critical points

u0¼
u0

v0

� �
via Taylor expansion. Taking only the linear term,

we have

u0 ¼ðu� u0Þ
d

du
fðu, vÞ

����
����
u0,v0

þðv� v0Þ
d

dv
fðu, vÞ

����
����
u0,v0

and v0 ¼ðu� u0Þ
d

du
gðu, vÞ

����
����
u0,v0

þðv� v0Þ
d

dv
gðu, vÞ

����
����
u0,v0

:

For convenience, we take

fu0¼
d

du
fðu, vÞ

����
����
u0,v0

, fv0¼
d

dv
fðu, vÞ

����
����
u0,v0

and gu0¼
d

du
gðu, vÞ

����
����
u0,v0

, gv0¼
d

dv
gðu, vÞ

����
����
u0,v0

:

So, near the critical point for small perturbation, we have

u0

v0

� �
¼ fu0 fv0

gu0
gv0

� �
u
v

� �
,
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where J(u0) ¼ fu0 fv0

gu0
gv0

� �
is the Jacobian matrix. The nature

of eigenvalues determines the trajectories of the above

linear system around its critical point. As already mentioned

above, in the case of a stable point the eigenvalues are nega-

tive, for an unstable point the eigenvalues are positive, and

assuming a two-dimensional case, for a saddle one eigen-

value is positive and the other one is negative. Thus, the

sum of eigenvalues is always negative for stable points, posi-

tive for unstable points, and either positive or negative for

saddle points. If we now look into the product of the eigen-

values, then stable and unstable points are both positive,

while saddle points are negative. Importantly, for a linear

system, the sum and the product of eigenvalues are given

by the trace and the determinant of the Jacobian matrix,

respectively. Thus, as we linearized the system, the nature

of the critical points can be determined simply by looking

into the trace and determinant of the Jacobian.
 3:20170113
(i) Example 1—one-component systems
Let us assume a monostable case such as Fisher’s equation [34]

RðuÞ¼�uðu� 1Þ:

Here, the critical points are uþ¼
0
0

� �
and u0¼

1
0

� �
, and

the corresponding Jacobians are
0 1

�1=D �c=D

� �
and

0 1
1=D �c=D

� �
. So looking at the trace and determinant of

the Jacobian at each critical point indicates that uþ is a stable

fixed point with a negative sign, while u0 is a saddle. What

does that mean? To better understand the nature of the

system, let us consider its phase portrait diagram as a land-

scape, wherein the curves depicting the potential represent

the contours of a hill. Now, we can place a ball on that land-

scape, such that its position represents the position of the

wave u(x 2 ct) in u space. Thus, by looking at the potential

landscape, it is intuitive that the ball will for the monostable

case roll towards the stable point where u ¼ 0. Physically,

this means that with time the wave invades space with lower

u (figure 2a).

Next, let us observe the system under bistable conditions

such as

RðuÞ ¼ �uðu� 1Þðu� 2Þ:

Here, the critical points are u�¼
0
0

� �
, u0¼

1
0

� �
, uþ¼

2
0

� �

and the corresponding Jacobians are
0 1

2=D �c=D

� �
,

0 1
�1=D �c=D

� �
and

0 1
2=D �c=D

� �
. Here, trace and

determinant of the Jacobians indicate that u2 and uþ are

saddle fixed points while u0 is the stable fixed point. Again,

employing the ‘rolling ball analogy’, we consider the land-

scape derived from phase portrait. In this case, waves will

propagate from the two saddle points representing two

state values to the minima/stable fixed point u ¼ 1. Phys-

ically, this means that waves with amplitude greater than 1

will move towards regions with offset 1, and waves with

amplitude less than 1 will also move to amplitude 1. Thus,

at infinite time, simple patterns emerge (figure 2a0). However,

it should be noted that the system will not necessarily end up
in two coexisting states, but may under certain initial con-

ditions form only one state.

In summary, reaction–diffusion systems containing only

one component can form either homogeneous or transient

inhomogeneous random patterns. However, formation of dyna-

mical complex patterns in one-component reaction–diffusion

systems is unlikely.
(ii) Example 2—two-component systems
Turing first stated that in the presence of stochastic noise a

two-component reaction–diffusion system may form a

long-lived pattern, a finding that 20 years later was rediscov-

ered by Gierer & Meinhardt [38,39]. In the following, we will

explore the necessary condition for the formation of such

patterns. A two-component reaction–diffusion system in its

simplest form can be written as

rtu ¼ Dur2
xuþ fðu, vÞ

rtv ¼ Dvr2
xvþ gðu, vÞ:

Or, we can also write the equations together as

rtu ¼ Dr2
xuþ RðuÞ,

where u¼ u
v

� �
, D¼ Du 0

0 Dv

� �
and RðuÞ¼ fðu,vÞ

gðu,vÞ

� �
. As

we are interested in the equilibrium points u0, we will solely

look at the linear dependence close to equilibrium. So we can

consider R(u) as Jðu0Þdu. As J(u) is the Jacobian, it can also

be written as the first-order linear dependency matrix

Jðu0Þ¼
df
du

df
dv

dg
du

dg
dv

0
B@

1
CA

u0

¼ fu fv
gu gv

� �
:

Next, let us consider a small plane wave perturbation

such that ~u¼akeikx. Here, diffusion near the static, homo-

geneous equilibrium leads to the new linear dependency

matrix given by

JDðu0Þ¼ fu � k2Du fv
gu gv � k2Dv

� �
:

Considering u0¼
u0

v0

� �
, the instability condition for the onset

of plane wave/front generation is given by

fu þ gv , 0,

fugv � fvgu . 0,

ðfu þ gvÞ � k2(Du þDv) , 0

and DuDvk4 � ðDugv þ DvfuÞk2 þ fugv � fvgu , 0:

Together, the first two conditions explain the stability con-

dition of an equilibrium point in the absence of diffusion terms.

Under the given conditions, the eigenvalues are negative, and

so the sum of eigenvalues is negative and their product is posi-

tive. By contrast, the last condition introduces linear instability

into the system with the help of diffusion. Here, appropriate

selection of diffusion coefficients for u and v will result in the

onset of bifurcation, which will trigger the generation of

fronts/waves required for pattern formation. The instability

brought by the linear diffusion in the locally stable equilibria

can then be used to form a stable limit cycle, which leads

unlike the monostable and bistable case to formation of oscil-

lations in the system and thus to the formation of complex
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corresponding to u ¼ 0, 1 and 2. Using the rolling ball analogy, we can see that the two balls will roll into the potential well u ¼ 1 (red arrow). In the middle,
again the state variable u at time t ¼ 0 is shown. In this case, we have the sum of two waves analogous to the two balls in the left figure. Here, the arrows indicate
the direction of propagation, indicating that the waves invade space with u ¼ 1. To the right, temporal wave evolution is shown. (b) Simulations of reaction – diffusion
systems starting with random noise. From the left to the right, systems were computed containing single-component monostable (R(u) ¼2u(u 2 1)), single-
component bistable (R(u) ¼ 2(u 2 1)(u 2 2)), and two-component activator – inhibitor ( f(u, v) ¼ c1*u2/v 2 c2*u and g(u,v) ¼ c3*u2 2 c4*v). Starting from
random noise, the plots depict the propagation of individual reactions through time. Note that two components are required for the formation of stable organized patterns
in the presence of diffusion (code for simulation is provided in the supplementary material). (c) Arrangement of cilia in hair cells. At the top, scanning electron micrograph
(SEM) of hair bundle (left) and freeze – fracture SEM (right) from the apical surface of a bullfrog hair cell. Below, blue and red lines (left) depict gradient distribution used to
compute hair cell pattern (right). (d ) Growth-dependent rearrangement of stripe pattern in the fish Pomacanthus imperator. Below, stripe pattern of fish (left) and simu-
lation (right) are shown. (e) Emergence of fairy circles in arid grassland based on biomass – water feedback. At the top, aerial view of fairy circles formed by spinifex grass in
Australia. Below, examples of real fairy circles (left) and from simulations (right) are shown. Images were obtained from (c) [35], (d ) [36] and (e) [37].
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spatio-temporal patterns (figure 2b). At the bifurcation or criti-

cal point DuDvk4 � ðDugv þ DvfuÞk2 þ fugv � gufv ¼ 0, we

have the critical wave number, which leads to specific wave

patterns depending on the type of diffusion coefficients satisfy-

ing the conditions below with kc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ðfu=Du þ gv=DvÞ,

q

Dvfu þDugv .0 and
fu
Du
þ gv

Dv

� �2

.
4ðfugv � fvguÞ

DuDv
,

and so the spectrum of plane waves satisfying the instability
condition

DuDvk4 � ðDugv þ DvfuÞk2 þ fugv � fvgu , 0

will lead to the formation of waves or linearcombination of them

and thus complex patterns. The system following the above set

of constraints is often coined an activator–inhibitor system.
(b) Reaction – diffusion from the biological perspective
Components required for self-organization via reaction–

diffusion are ubiquitous in cells. For instance, simple diffusion
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waves and/or gradients have been put forward, for example,

for lipids and calcium in migrating cells [40,41], or Cdc42

during yeast budding [42]. Likewise, basic reaction types,

such as ultrasensitivity [43], bistablity [44] and oscillators [45],

are readily available in nature. Not surprisingly, reaction–diffu-

sion systems, as introduced by Turing and later by Gierer &

Meinhardt [38,39], were proposed to control cellular features

(figure 2c) such as cell shape [46] and cell polarization [47] as

well as cell migration [48]. As on the single cell level, two-

component reaction–diffusion mechanisms were suggested to

contribute to tissue organization (figure 2d), including limb

development [49,50] and digit patterning [51], as well as pig-

mentation of skin [52,53]. Intriguingly, patterns similar to

Turing-type patterns were even discussed on the organismal

level (figure 2e) [37]. However, it should be noted that different

molecular mechanisms can yield surprisingly similar patterns.

For instance, self-organization reminiscent of Turing-type

patterns can be generated by differential adhesion without

resorting to reaction–diffusion processes [21]. Another example

is the Min complex, where a pole-to-pole oscillation is used to

determine spatial information within the cell [54]. Not surpris-

ingly, more recent models have challenged the validity of

previously published reaction–diffusion models (e.g. [55,56]

versus [57]). Collectively, these data argue that a plethora of

mechanisms are employed for self-organization across scales

in space and time. As above, we recommend to the interested

reader excellent reviews on this evolving topic [58,59].
4. Future challenges
Self-organization is a physico-chemical phenomenon of great

importance for the formation of functional units at the

cellular, tissue and organismic level. However, despite sub-

stantial advancements in recent years, we are still far from

a comprehensive view.

In this perspective, we have focused on two distinct con-

cepts driving self-organization—phenomena based on phase

transition and models based on reaction–diffusion. While the

physical principles driving phase transition and reaction–

diffusion were introduced separately, we would like to note
that these reactions are by no means independent from each

other. For instance, considering that phase separation may

alter diffusion rates as well as concentration of individual

molecules, it is plausible to envision that a specific reaction–

diffusion system may differ in different phases within the

same cell. Future experiments will show whether individual

reaction–diffusion systems based on the same components

may coexist within the same cell and/or whether induced tran-

sition of individual molecules between phases may act as a

signal analogous to phosphorylation.

How could a better understanding of the underlying prin-

ciples be harnessed to advance life science? Recent work has

established that misguided self-organization via errors in

phase transition [60,61] or reaction–diffusion [51] are medically

relevant. It would thus be interesting to revisit some disease

models from such a perspective. Furthermore, it would also

be intriguing to explore self-organization in synthetic systems

[62]. Synthetic biology aims at both constructing biological sys-

tems bottom-up and redesigning biological systems to perform

novel tasks [63,64]. As such, it provides the unique possibility to

study the relevance of self-organization uncoupled from co-

occurring events present in biological systems. Indeed, such

studies have already yielded essential insights on the principles

of self-organization (e.g. microtubules [65,66], contractile FtsZ

rings [67]) and self-production (e.g. autopoiesis of micelles

[68,69]) of subcellular structures. Considering the rapid

advancement of synthetic biology, self-organizing principles

emerging from these studies may provide features critical to

structure and stabilize future, increasingly complex artificial

systems.
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