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Recently, Bak and Sneppen proposed a simple model, the Bak-Sneppen (BS) model, as
a coarse-grained description of biological evolution. It has attracted a lot of attention
from interdisciplinary statistical physics community, for its simple model definition but
extremely rich properties to be explored. The aim of this paper is to give a pedagogical
and update review of this fast-developing topic. The emphasis is on the mechanism
by which the BS model approaches the self-organized critical state, the universal prop-
erties of the system at criticality, and the relation with other topics, such as directed
percolation, random walk, and a few self-organized critical models.

1. Introduction

Since Bak and Sneppen!! proposed a self-organized critical (SOC) model, known
as the “Bak-Sneppen Model”, to account for the characteristic intermittency of ac-
tual evolution and the scale invariance of extinction events,*° it has attracted much
attention from the statistical community,?? not only because of the simplicity in
the model definition but also the rich statistical behaviors in which it contains.*?
Although this model is definitely oversimplified for describing the real biological
evolution, it has the merit of developing complexity out of simplicity, as pointed
out in Ref. 55. Looking back at the history about the applications of directed per-
colation, Grassberger!® has commented that the Bak-Sneppen model, sufficiently
simple to be paradigmatic, will sooner or later find its wide applications.

The aim of this paper is to give a pedagogical and current review of this fast-
developing topic. Instead of digging out the details form the biological aspect (see,
for example, Refs. 4 and 50), I shall concentrate on the mechanism by which the BS
model approaches the self-organized critical state, the universal properties of the
system at criticality, and the relation with other topics. This article is organized as
follows. In Sec. 1, I begin with a brief review on the link between the Bak-Sneppen
evolution model and the fossil record. I then explore, in Sec. 2, the mechanism by
which the Bak—-Sneppen evolution model approaches the self-organized critical state.
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Then, in Sec. 3, the focus is on the universal properties of the system at criticality,
in particular, the geometric properties of avalanches, the spatial-temporal corre-
lations between successive events, and fractal pattern in the space-time plot. In
Sec. 4, the random neighbor variant of the BS model is reviewed. The exact treat-
ment of the random neighbor variant gives a very good example for pedagogical
purpose. Section 5 discusses the relation of the BS model to other topics, such as
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Fig. 1.1. (a) Temporal evolution of extinctions recorded over the last 600 million years, as given by
J. Sepkoski.*? The ordinate shows estimates of the percentage of species that went extinct within
intervals of 5 million years. (b) Temporal evolution of the “mutation” activity of species for the
model with 200 “species” and a mutation rate parameter T = 0.01, as given by Sneppen et al.5°
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directed percolation, random walk, and a few self-organized critical models, and the
subtle differences between them. Section 6 concludes with comments and discussions
of some open questions and possible directions for future investigation.

140 T T
€
2
£
© B -
= 120
)
(&)
o
2
= 100 7
=
[3=]
=< 90 N
85 ¢ Gilbert Gauss Matuyama
W W]
1,800 ' 1,400 |1,000[

433Myr | 243 Myr 186 Myr
3.32 Myr

Depth In Core (cm)

(a)

lIlTlll!lll"l'lIFlllllllll]l"
1g .
O -

-om-
o F ' 4
C - L
£8r l .
GR . g
'o e -l
8 4
oF .
O o .
:v-l- -
g F ]
3 ]
o"' -
&nf -
-Illlllllli] l']l'lllllll‘ll'llll-

6.01 e.e2 2.83 Q.04 8.95
Time

(b)

Fig. 1.2. (a) Time series for the variation of the morphology of a single species. The figure
shows the increase in thoracic width of the Antarctic radiolarian Pseudocubus vema during 2.5
million years, as given by Kellog.2® (b) Model prediction of time series for change of single species
morphology, estimated as its accumulated mutation activity, as given by Sneppen et al.59
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1.1. The biological motivation

Since the theory of gradualism, which expects biological evolution takes place
in a smooth and gradual manner, was proposed in the early twentieth century,
this concept has dominated the realm of paleontology.* Not until recent years,
by studying the stratigraphic records of 19897 fossil genera, Raup, Sepkoski, and
Boyanian**4%18:4% revolutionarily gave strong evidence that biological evolution
takes place in terms of intermittent bursts of activity with long periods of stasis. The
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Fig. 1.3. (a) Lifetime distribution for species, as recorded by Raup.? The distribution can be well
fit by a power law N(t) ~ 1/t2. (b) Distribution of lifetime for the model with a mutation rate
parameter T = 0.001, as given by Sneppen et al.50
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Fig. 1.4. (a) Histogram of extinction events from Fig. 1.1(a), as shown by Raup.*! The data are
binned in intervals of 5 million years over the last 600 million years. (b) Histogram of mutation
activity predicted by the random neighbor variant (see Sec. 4 for definition) of the BS model, as
given by Sneppen et al.50
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magnitudes of the bursts may extend over a wide range. This intermittent behavior
has been coined in the phrase punctuated equilibrium by Gould and Eldredge.!? It
has been conjectured that this intermittent behavior indicates biological evolution to
a self-organized critical (SOC) state.®?” Self-organized critical behaviors!?:13 refer
to the tendency of large dynamical systems to organize themselves into a critical
nonequilibrium state with avalanches of activity of all sizes.

Some pertinent data from the fossil record are listed as follows. Figure 1.1(a)
shows the percentage of species becoming extinct within intervals of 5 million years
over the last 600 million years, as presented by Sepkoski.?® There are long periods
of relatively little extinction interrupted by sudden bursts of large peaks represent-
ing mass extinction: the data exhibit punctuated equilibrium. Figure 1.2(a) is the
increase in thoracic width of the Antarctic radiolarian Pseudocubus vema during
2.5 million years, as given by Kellog.?® This figure shows the time series for the
variation of single species morphology. We observe that a series of three plateaus
are separated by periods of rapid change. Figure 1.3(a) is the histogram of lifetime
distribution for species, as given by Raup.** The distribution of life-span can be fit
quite well by a power law. Figure 1.4(a) is the histogram of extinction distribu-
tion. The data are binned in intervals of 5 million years over the last 600 million
years. The distribution is highly skewed, showing a smooth variation from many
periods having little extinction to a few periods with large extinction percentages.
Figures 1.3(a) and 1.4(a) indicate the self-organized critical behavior.

‘There have been several attempts to explain the above observation theoretically
by constructing mathematical models, e.g., the model “Game of Life” by Bak, Chen,
and Creutz,® and the “NKC models” by Kauffman and Johnsen.2” However, in these
models, some external tuning of parameters is always needed in order to bring the
system to the critical state. They are not robust against small changes, as they
should be in order to represent real evolution. In 1993, Bak and Sneppen!! pre-
sented for the first time a self-organized critical model of biological evolution, known
as the “Bak—Sneppen Model”. This model demonstrates that large catastrophic ex-
tinctions, not necessarily by external intervention (such as meteorites), can occur
as the natural consequence of intrinsically statistical biological mechanisms.

1.2. The model definition

The BS model! is a coarse-grained description of biological evolution, i.e. a de-
scription on a large time scale. An entire species is represented by a single fitness
parameter, which can be regarded as a complex combination of factors such as
genetic materials and forces of natural habitat. The stability of each species is
characterized by a barrier height. The barriers are the measure of stability. A
jump across a barrier can be thought of as either a mutation of a species or the
substitution of one species by a better one in an ecological niche. Since the smallest
barriers are related to the lowest fitness and the highest barriers correspond to the
highest fitness, the barriers are also a measure of fitness. In addition, the fitness
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of each species is affected by other species to which it is coupled in the ecosystem.
Therefore, when a species makes an adaptive move, it changes the fitness landscapes
of its neighbors.

In order to capture the above salient features, the model is specified by the
following dynamical rules'!: (1) N species are arranged on a one-dimensional line
with periodic boundary conditions; (2) a random barrier B;, equally distributed
between 0 and 1, is assigned to each species; (3) at each time step, the ecology is
updated by locating the site with the lowest barrier Buin, mutating it by assigning
a new random number to that site, and changing the landscapes of the two nearest
neighbors by assigning new random numbers to those sites too.

Due to the principal characteristic in the updating rule, i.e. the global search
of the minimals, the system, started with arbitrary initial configurations, after the
extensive transient period will reach the critical stationary state.!! Although this
model is definitely oversimplified as a description of true biological evolution, it
does provide a possible explanation for the characteristic intermittency of actual

evolution and the scale invariance of extinction events in the fossil record, studied
by Raup et al.44:45:48,49

1.3. Comparison with the fossil record

The time unit in the BS model is identified with an evolutionary step. It does
not correspond to real physical time. So far, there are two ways of introducing a
real time scale into the BS model in the literature (Refs. 52 and 50). Schmoltzi
and Schuster® construct at each time step a local stochastic updating rule by
introducing a new random variable 7;, which models all not explicitly known degrees
of freedom of the system. If the random barrier B; is smaller that n;, then the
site 7 and its two nearest neighbors are updated. By Contrast, Sneppen et al.3°
conjectured the time scale for trasversing a barrier of the height B; is exponentially
proportional to the barrier height, i.e. At; ~ exp(B;/T), based on the rugged fitness
landscape picture.?®1%8 Here T represents an effective mutation rate parameter
defining the time scale of mutations. Hence, the local probability of jumping over a
barrier is exp(—B;/T). By either one of these two methods, it is possible to observe
time steps in which no evolution occurs and its duration does obey a power law
distribution.

To demonstrate that the BS model does provide a possible explanation for the
characteristic intermittency of actual evolution and the scale invariance of extinc-
tion events, the corresponding plots [Figs. 1.1(b), 1.2(b), 1.3(b) and 1.4(b)] from
numerical simulation of the BS model®® are exhibited in the following, compared
to the data of fossil records [Figs. 1.1(a), 1.2(a), 1.3(a) and 1.4(a)], respectively.
Figure 1.1(b) shows temporal evolution of the “mutation” activity of species for
the model with 200 “species” and a mutation rate parameter T = 0.01. The figure
shows the intermittency of evolutionary activities with a few large peaks represent-
ing mass extinction and many small peaks representing relatively milder extinction
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events. Figure 1.2(b) is the time series from the change of a single species mor-
phology, estimated as its accumulated number of mutations. It shows the behavior
of punctuated equilibrium. Figure 1.3(b) is the measure of lifetime as the interval
between successive mutational events of a given species. Figure 1.4(b) is the his-
togram of global distribution of the number of mutations of species occuring. Both
Figs. 1.3(b) and 1.4(b) obey power law distributions. These plots [Figs. 1.1(b),
1.2(b), 1.3(b) and 1.4(b)] all have the behaviors qualitatively similar to the data
from fossil records [Figs. 1.1(a), 1.2(a), 1.3(a) and 1.4(a)], respectively.

Since the BS model is a coarse-grained description of biological evolution, i.e.
a description on a large time scale and one single fitness parameter representing
a combination of all factors of genetic materials and influences of natural habitat,
therefore, this model cannot be asked to reproduce any specific event that is actually
observed in nature. It must be considered only on a statistical level. In the following
sections, I will move on to the aspect of self-organized criticality inherent in the BS
model.

2. The Mechanism of Self-Organized Processes
2.1. Avalanches

The evolution of self-organized criticality usually takes places through bursts of
avalanches.® An avalanche®! is defined by a sequence of evolution events started
at any integer time s = s¢ where the minimum random barrier Byn(s = 8¢) is
denoted by p. This avalanche is terminated at the first time s’ where the minimum
random barrier Byin(s') is larger than p; i.e. for all times s with s < s < &,
the evolution events have B,(s) < p. Assume that at a certain time, p is the
minimal barrier and all other barriers are larger than p. An avalanche (defined by
p) starts at this site, and new random numbers are given to this site and the nearest
neighbors. If one or more of the new random numbers is less than p, then those
sites which were activated by the initial minimal site must be the next activated.
The avalanche terminates when all the sites activated with barriers less than p are
eliminated. Then, at the next step, the minimal site must have a barrier larger
than p.

We see that all activated sites are connected, and an avalanche is independent of
the random environment at and before the time when the avalanche started. Note
that at every time an avalanche is started, and big avalanches contain smaller ones.
Therefore, there is a hierarchy of avalanches, defined by their respective thresholds.
Figure 2.1 is the plot of Byi,(s) versus time s with system size N = 4096 in a small
time zone. It illustrates the hierarchical feature of avalanches, i.e., the structure of
subavalanches within the avalanches.

An avalanche is characterized by two principal numbers s and ncov,>> the
avalanche size and the number of activated sites, respectively. By definition, the
avalanche size equals its temporal duration. Because of the connected nature of the
set of activated sites, n,, equals the avalanche spatial extent . When an avalanche
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Fig. 2.1. The minimum barrier By, (s) versus time s in the BS model with system size N = 4096
in a small time zone. Note the structure of subavalanches within the avalanches.

(defined by p) is terminated, the barriers B; on the set of activated sites are uncorre-
lated and uniformly distributed between p and 1. In addition, it is important to note
that the events within the same avalanche are spatially and temporally correlated
but two subsequent avalanches are mutually uncorrelated. The spatial-temporal
correlation between events will be further discussed in the next section.

2.2, The “gap” function

Paczuski et al.*? have proposed a “gap” equation to describe how the system self-

organizes itself into the critical state. The gap, pmin(s), is defined*? as the largest
of the minimal Bp,i, which have been selected up to time s. It is an increasing
function of time, with flat plateaus that become larger and larger. pmin(s) can
not increase until all sites activated with B; < pmin(s) are eliminated through
subsequent selection and update. Figure 2.2 shows the gap pmin(s) as an envelope
function that tracks the increasing peaks in Buin.*® On the average, the gap jumps
by an amount (1 — py;,)/N, where IV is the system size. The number of time steps
separating events when the gap jumps to its next higher value, i.e. the width of
a plateau, is the size of an avalanche, defined by pyin(s). Thus, the mechanism of
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Fig. 2.2. This figure illustrates the gap pmin($) being the largest of the minimal B,,;, which have
been selected up to time s.

self-organization can be described by the “gap” equation®?:

d’<pmin> _ 1- (pmin)
ds ~ N{s) ’ (2.1)

Pmin

where the angular brackets denote the average over randomness and (s), is the
average size of an avalanche defined by p.

Here, I will digress a little bit in order to show the importance of the interaction
between neighbors in the updating rules for the BS model to reach the critical state.
Let us define the noninteractive variant by the same updating rules of the BS model
except that there is no coupling between the nearest neighbors. That is, when the
minimal site is located, the updating is done by assigning a new random number
to this site without changing the barriers of the two nearest neighbors. For the
noninteractive variant, we can easily obtain

Z Spfnin
: Prin (2.2)

(S) min = =
’ Z pﬁnin 1- Prmin
8
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Fig. 2.3. The data collapse of the gap pmin versus s/N with system size N = 1024, 2048, and 4096
in the time durations s = 16000, 32000 and 64000, respectively, in the BS model.%?

The average avalanche size (s), . of the noninteractive variant increases as the
8aP Pmin increases. When pnin, — 1, (s)p,,, eventually diverges and, therefore,
dpmin/ds = 0. Henceforth, the noninteractive variant will reach a “dead” state with
all barriers equal to 1.

For the Bak-Sneppen Model, in contrast, the inclusion of the nearest neighbor
interaction in the updating rules enables the reduction of the high barriers and,
therefore, suppresses the increase of the gap pmin(s). Numerical studies*? show that
the average avalanche size (s), diverges as p — p., where p. = 0.667 £ 0.001. That
is, after an extensive transient period, the system reaches the stationary state. All
mutations turn out to take place through barriers which are less than p.. Near p.,
the average avalanche size behaves as (s}, ~ (p. —p)~7,*? in the range of avalanche
spatial extent (b), much less than system size N. Then, Eq. (2.1) can be integrated
to give

s

N~ [ (= (Pmin))77(1 - (Pmin)) " d{Prmin} -

Consequently,

(Pe = {Pmin)) ~ (%)—p, p=—. (2.3)
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Fig. 2.4. The log-log plot of (pc — Pmin) versus s/N with system sizes N = 1024, 2048, and 4096 in
the time durations s = 16000, 32000, and 64000, respectively, in the BS model.#0 The straight line
fit by least squares to the data gives p = 0.56 & 0.02, in agreement with the theoretical prediction
p = 0.59 + 0.03 based on the exponent v = 2.7 & 0.1 in Ref. 23.

The numerical studies*® have confirmed the above prediction*? about the scaling
behaviors of the gap pmin(3) near the critical point p.. Figure 2.3 gives excellent data
collapse of the gap puin versus s/N.40 Figure 2.4 is the log-log plot of (pc — (Pmin))
versus s/N.%0 The straight line fit by least squares to the data gives p = 0.56 £0.02,
in agreement with the theoretical prediction p = 0.59 £ 0.03 based on the exponent
v =2.7£0.1 in Ref. 23.

Next, consider the distributions of the barriers P(B;) and minimum barriers
P(Bqin) as functions of barrier heights B; and By, respectively. The system starts
from an initial state where the distribution of barriers P({B;) is uniformly distributed
over [0,1). Since the minimal site is always updated at each time step, the sites
with low barrier heights become rare. In addition, because new random barriers are
always drawn from a uniform distribution, the distribution P(B;) should resemble a
step function. Thus, as the gap puin($) increases with time s, the distribution P(B;)
vanishes for B; < pmin(8) and is a constant over the range [ pmin(s),1). After an
extensive transient period, the system reaches the critical state and the distribution
P(B;) becomes stationary, uniformly distributed between p, and 1. The distribution
of minimum barriers P(By;y,) in the critical state can be obtained by the concept
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curve) in the critical state with N = 4096. The density of sites with random barriers B; less than
a threshold p. vanishes, while the density above pc is uniform. All mutations turn out to take
place through barriers which are less than pe.

of avalanche dynamics.*® For any avalanche threshold p < p,, the collection of times
8, when the minimum barriers Bp,;,(8) > p, cut the temporal axis into a successive
series of avalanches (defined by p). Therefore, on the average,

1
P(Buin > p) ~ oL (p —p)?, when p— p.. (2.4)
P
Consequently,
P(Bmin =p) ~ (p. —p)""', when p— p.. (2.5)

Figure 2.5 shows the distributions of the barriers and minimum barriers in the
critical state with the system size N = 4096. The density of sites with random
barriers B; less than a threshold p. vanishes, while the density above p. is uniform.
All mutations turn out to take place through barriers which are less than p..

It had been conjectured that the critical point p. equals 2/3. However, by
extensive numerical studies,'® it is important to note that p. = 0.66702 % 0.00008.
This finding that p. is not equal to 2/3 suggests that a simple analytical derivation
of p. is implausible!



is a snapshot of the space-time map of activities of the BS model, in which the site
with minimum barrier value at each time step is represented by a black dot. The

figure indicates the space-time activity pattern of the BS model as a self-affine
fractal in 1 + 1 dimensions. Jovanovié et al.?® have further mapped the BS model

Next, we study the statistical properties of the BS model near criticality. Figure 3.1

3.1. Fractal pattern and critical exponents

3. The Critical Properties

1424 N.-N. Pang

o S
T — T T N
°
@ °
- oo
a oo
Y 0o
o om o o o
0 0w o o ™ o
o om o o - o
@ om o o ™ ™
e o® ® o o ° o= . .-0...
eoo om o e@o o ao
o ©om o wo o @0 oo
o oom o ® ®o o oo 00 @0 ©0
o om ° @ a® wo o oo 0000 00 00D 000
° emo w© @ omo awo © o 0 © aDE 0GR 000
© cem ™ a ow o OO @ oo @o 0 O GEEDOQOGNOD TOO
o o omwm @ @ © cnoomD W owm amo © ENEOCDmOD WO
© oo ac - oo omoOSE W O ®m o amo &0 NGRS 0 O WmE
o ocomm - D CEOODODeGED @ OO o - o omo e oo 0 O
lo  comms ® D EROOOOUISGENID ®C O O cam o camsc -0 NoEaco an o L)
0o @wmn con © N> SEEEECENO SMEROCO OGD @ O O omD » c mmo - GEDEN0 T O
0  CEAEO® &0 0 OECDSEENCEND GMBOCOOED ® O om o OO0 O CEXNENOND SO0 O
o oeamom o -D 0 EECO) GEDES GEEsh @ ROODO D OO O e D0 CODOEMNE OED CEHCOENDE D000
™ 00 o GHO0 G ©® N CEED @ OO0 @) W oSG OF COWGMD0 O ) JPANE O OO0 00
® % o ANCO0 0 @D GO G0 CEED O qUIDD MDD 4K opa O8 OGGECOCIRD O D 00COE O GO® O
o om GXCOGDONO @D @0 O0NE 00N & WO LoD &b NS OB S OSDOCHD OB O O O&DO O
o OO ODO MIDE KD OO0 OO GEEOO SC G GOWND CONS OB @ ®O00 00RO O
o =0 00 O WD® D ™ o 0 UMD OBODD CRO BAD NEDER OWC MO © O OXKDO
o ENe ©C 0 @Ero aED © o 0 ®UmD CEocne 0 0EGMO GWOO GOES D O O o om )
- G ®0 CEENO0 (B o © 00 GPrAGBEED O © OGS @00 CEND® OO ° omw - ™~
- w0 oo aB o o o GO GEOB® O GF OGD EIEO GEESW® OO G o 1
- @O cemm ® O o O DOGEENC & @B 00 G OGEES OOWAED om
mosy © omemo @ CO @ OBGNO @ G GO & GEBEIDO OCOGE oan
CONO ® @mOO 00 00 M CPOED © W00 WO © O EW O cooam oo
oo @ 0 b omD BB GO GRO OB O GEB O 00 o
com® e ® MoMOMOo G 00 e o
cam® @ muecomec @@ o o o
come o COOMODWNO G O OB o
o ome : e OEWOD @O $O© 2o oo S
ol 1 alan como0-me o 1 -— N
2 3 S 8 S
S S =) o
) 0 - ~N
A

"Auo asn [eucsied 104 'GT/E0/TO U0 ALISHIAINN INNA A9
LI0D"D1}11US 10SP LIOM MMM LLIO.J pepeo umod v T-TTHT-TT 66T 9 SAUd POIN T U]

R

Fig. 3.1. The space-time fractal activity pattern for the BS model. Time is measured as the total

number of updating.*3
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onto a “history-dependent” invasion percolation®® type model. The scaling forms
of the following properties of avalanches are in analogy with percolation.2?3

(1) The number of avalanches with size s behaves as

n(s8) ~ 577 f(s|pe — p|1/"), when p — p.. (3.1)

(2) The average avalanche size is

(s)p = ]n(s)sds ~|p. —p|77, with 4= 2 ; . (3.2)
(3) The number of avalanches with spatial extent b is
n(b) ~ b=+ f(blp. — p|"*), when p— p.. (3.3)
(4) The average avalanche spatial extent is
) = [n@)bds~lpe—pI, with qL=vi@-r) (34
From n(s)ds = n(b)db, we get
r—t="21 (3.5)
v o
(5) A typical avalanche of size s scales with the spatial extent b as
s~ bP. (3.6)

Since the avalanche size s is exactly equal to the number of time steps during
which the avalanche lasts, so the temporal duration

T(=s) ~ bP.

Therefore, the exponent D is not only the mass dimension relating the total amount
of activities to the spatial extent, but also the dynamic exponent relating time to
space. From n(s) and n(b), we get

D=-—. (3.7)

There are seven exponents (7, o, v, 7., 01, Y1, D) and four relations between
exponents, so there are only three independent exponents. We can choose them to
be 7, 71, and D.

By the following argument, proposed by Paczuski et al.,*! the value of v, can be
determined. Let us define P(p) as the probability of having a p-avalanche separating
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consecutive points in time where the minimum random barrier chosen is greater
than p. From the definition of avalanches, we can easily get

1 ,
P(p) ~ 75— ~(pc ~p)"," when p— pc. (3.8)

(8)p
An avalanche with spatial extent (b}, leaves, on the average, (b), sites with new
uncorrelated random barriers between p and 1. If p is increased by an infinitesimal
amount dp, the number of sites with random barriers, generated by the avalanche,
falling within dp of p is (b),dp/(1 — p). Thus, the differential probability that a
p-avalanche will end is derived:

dp
dP(p) = T:—p(b)pp(l?)- (3.9)
Substituting Eq. (3.8) into Eq. (3.9), we obtain

{0)p
1-p

v = (p. —p) when p— p.. (3.10)
Equation (3.10) is named the “Gamma Equation” by Paczuski et al*' It gives a
convenient way to measure vy and p, numerically. In plots of (1 — p)/(b}, versus p,
the slope is —1/+v and the z-axis intercept is p.

We can rewrite Eq. (3.10) as

(1=p) _ (A—p)+(pc—p)
(pc — p) (P — p) .

(B)p =

Then,
(B)p ~ (pc —p)~', when p— pe.

Therefore, the value of v, is obtained as
v =1 (3.11)

Consequently, there remain only two independent exponents D and 7, the fractal
exponent of the avalanches and the avalanche size distribution exponent,
respectively.

There have been a few numerical attempts not only for pinning down
the values of exponents 7 and D, but also for verifying the dynamical scaling hy-
pothesis on the geometrical properties of avalanches. For computational efficiency,
the “BS branching process”, proposed by Paczuski et al.,*? is simulated to obtain
the information regarding the critical properties of avalanches. The algorithm of the
“BS branching process” is as follows. It starts with a single site with barrier value p,
which defines the avalanche threshold. Then random numbers are given to this site
and its nearest neighbors. Only the random numbers smaller than the avalanche
threshold p are stored along with their positions. At next time step, the one with

18,23,42,43
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the minimal number is selected and the new random numbers are given to it and
its nearest neighbors. The process continues until there are no more stored random
numbers. When p is very close to p., the mean avalanche size becomes extremely
large. Therefore, it is essential to cut the process off at some maximal time T. This
algorithm leads to exactly the same distribution of avalanches as the original BS
model. The control parameter p plays the role of the avalanche threshold. From
the computational point of view, the “BS branching process” is most rapid and it
excludes the finite site effect.

Table 1 gives the values of critical exponents of avalanches measured by several
groups.?®18:43 The reader can check that all these exponents are consistent, within

Table 1. The numerically measured values of critical exponents and their
associated uncertainties in the BS model. ( } indicates uncertainty in the last
digit. The data, from top to bottom, are taken from Refs. 18, 23 and 43,

respectively.

D T ¥ gan o Vi
2.33(5) 1.08(5) 2.7(1) 0.98(3) 0.35(2) 1.23(8)
2.43(1) 1.073(3) 2.70(2) — 0.346(5) —
2.43(1) 1.07(1) 2.70(1) — — -

10* . : .
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Fig. 3.2. The distribution of avalanches n(s) as a function of s, on the logarithmic scale, for
different values of avalanche threshold p < p¢.23
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Fig. 3.3. The scaling plot of n(s), i.e. n(s)s™ versus s|p. — p|*/? on a logarithmic scale, using

7 =1.08 +0.05 and ¢ = 0.35 £ 0.02.23

the uncertainties of numerical measurement, with the exponent relations [Egs. (3.2),
(3.4), (3.5), (3.7) and (3.11)] based on the dynamic scaling hypothesis. Figure 3.2
shows the distribution of avalanches n(s) as a function of s, on the logarithmic scale,
for different values of avalanche threshold p < p..2® Figure 3.3 is the scaling plot of
n(s), i.e. n(s)s™ versus s{p. — p|'/? on a logarithmic scale, using 7 = 1.08 £ 0.05
and ¢ = 0.35 £ 0.02.23 The excellent data collapse strongly affirms the dynamic
scaling assumption regarding the geometric properties of avalanches near the critical
point pc.

3.2. Spatial-temporal correlation

In this section, we focus on the spatial-temporal correlation between successive
evolution events. It is straightforward to see that, in the beginning, subsequent
activities in the system are quite uncorrelated in space. But the correlation between
activities is gradually developed as the gap pmin(s) increases, since it becomes more
likely that near neighbors of the previous minimal site are next to be activated. After
an extensive transient period, the distribution of correlation becomes stationary.
P(z,As) is defined as the probability distribution of distance x between sites of
subsequent activity which occurs after a time As. During an avalanche all By, (s) <
p are taken from these newly appeared barriers. Thus, the By, (s) are randomly
distributed in space; i.e. the distance between successive activities is also equally
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distributed as long as the distance z is less than the avalanche spatial extent (b),.
In addition, the normalization condition requires [ P(x,As)dz = 1. Thus, we can
write P(z,As) in the following scaling form

1 x
Plz, As) = Asl/Df(Asl/D),
where
constant y <1
fy=49 __ (3.12)
y y> 1

By scaling analysis,31:33:40 the exponent 7 can be expressed as
T=1+4+(2-7)D. (3.13)

Numerical studies® have affirmed explicitly the prediction®! of the dynamic
scaling form of the spatial-temporal correlation between successive evolution events.
Figure 3.4 is the log-log plot of P(z,As) versus £.4° Curves with a larger As have

Spatial-Temporal Correlations
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Fig. 3.4. Logarithmically binned distribution of distances = between subsequent activities which
occur after a time interval As = 1,2,4,...,128. P(x, As) is the density of « in the range [z, 2z).
Curves with a larger As have a wider plateau.*®
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Fig. 3.5. The scaling plot of the distribution P(z, As), i.e. As!/P P(x, As) versus z/(As'/P) on
a logarithmic scale,?® using D = 2.43 4 0.01. By extrapolating the local slopes to the power-law
decay of P{x, As} (see the insert), the exponent = is obtained as 3.24 +:0.02, in agreement with the
scaling relation # = 1 + (2 — 7)D, based on the exponents D = 2.43 £+ 0.01 and 7 = 1.073 + 0.003
in Refs. 18 and 43.

a wider plateau. Figure 3.5 is the scaling plot of P(x,As), i.e. As'/PP(z,As)
versus z/(As'/P) on a logarithmic scale,*® using D = 2.43+0.01. By extrapolating
the local slopes to the power-law decay of P(z,As) (see the insert of Fig. 3.5),
the exponent 7 is obtained as 3.24 + 0.02, in agreement with the scaling relation
m =1+ D(2 — 1), based on the exponents D = 2.43 + 0.01 and 7 = 1.073 £ 0.003
in Refs. 18 and 43.

Subsequently, the spatial correlation function P,(z), the probability that the
minimal sites at two successive updates are separated by x sites, is by definition
equal to P(x, As = 1) and, therefore,

Po(z)=P(z,As=1) ~2~", with = =3.24%0.02. (3.14)

We see that the spatial correlation function P, (z) is somewhat similar to the usual
one-dimensional Lévy flight random walk,33 where at each time step the walker
jumps by a distance drawn from a power-law distribution. However, the activi-
ties in the BS model are also temporally correlated, in contrast to the temporally
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uncorrelated nature of the Lévy flight random walk.>® The temporal correlation
function P;(As) is defined as the probability that a given site, being the minimal
site at time sg, will again be the minimal site at time sy + As regardless of what
happens at intermediate times. By definition,

P(As)=P(z =0,As) ~ As™VP, with D =2.43+0.01. (3.15)

The numerical confirmation of the scaling forms of P,(z) and P,(As) is given in
Refs. 9 and 43. It is important to note that the spatial and temporal correlation
functions, P,(z) and F;(As), are two of the main qualitative differences between
the BS model and its random neighbor variant, which will be discussed in the next
section.

Maslov et al.3® have pointed out that the power spectrum of the system is simply

S(f) = / d(As)Py(As) exp(2mifAs) ~ fl_;lw (3.16)

Therefore, 1/f type noise emerges naturally as a result of avalanche dynamics. We
see that the exponent d that characterizes 1 /f type noise is equal to 1 — 1/D and,
consequently, a formal relation between 1/f type noise and fractal spatial behav-
ior is established®® through the fractal exponent D of avalanches. The numerical
confirmation is shown in Fig. 3.6, which is the log-log plot of power spectrum S(f)

Fig. 3.6. The log-log plot of power spectrum S(f) versus frequency f .43 The straight line, obtained
from the least squares fit to the data, gives the exponent d equal to 0.58, in agreement with the
scaling relation d = 1 — 1/D, based on the exponent D = 2.43 & 0.01 in Refs. 18 and 43.
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versus frequency f.*® The straight line, obtained from the least squares fit to the
data, gives the exponent d equal to 0.58, in agreement with the scaling relation
d=1- 1/D, based on the exponent D = 2.43 + 0.01 in Refs. 18 and 43.

Note that, at any given site, the activity is recurrent in time as a “fractal renewal
process” .#32% The first return probability Pa.st(As) is defined as the probability that
a given site, being the minimal site at time sq, will again be the minimal site for the
first time at time sp+ As. The time interval As separating subsequent recurrence of
activities at any given site could be viewed as an analogy of the stochastic waiting
time in the surface growth models.>* Maslov et al.3? have obtained the first return

probability distribution as
Pirst(As) ~ AsP2 0 for As > 1, (3.17)

and numerically confirmed their prediction. The power-law behavior of the first
return probability distribution is also a manifestation of the existence of 1/f type
noise.?® Consequently, all the exponents characterize the spatial-temporal correla-
tion of the system can be expressed in terms of D and 7, the fractal exponent of
the avalanches and the avalanche size distribution exponent, respectively.

4. The Random Neighbor Variant
4.1. The mean field approach

Since most results in the BS model can only be obtained by either scaling analysis
or numerical simulation, it behooves us to look at the random neighbor variant,'?
which is the first step towards a solvable mean field treatment.!”*” In addition,
exact or rigorous results of the random neighbor variant can be obtained in the
thermodynamic limit, i.e. the system size N — oo0.”?

The random neighbor variant is defined as follows. Initially, the random numbers
B;, drawn independently from a uniform distribution [0, 1], are assigned to each site
1 of a one-dimensional line, i = 1,..., N, with periodic boundary conditions. Then,
the updating rule is that, at each time step, new barriers are assigned to the minimal
site and two additional sites chosen at random . These new random numbers are
also drawn independently from a uniform distribution [0, 1]. In the following, I will
first give some intuitive arguments. Then, the main scheme and simple derivations
of the mean field treatment will be reviewed.

It has been mentioned in the previous sections that the gap pmin(s), defined
as the largest of the minimal By, which have been selected up to time s, is an
increasing function of time. Suppose, at time sy, the gap Pmin(80) reaches the value
1/3, thus the smallest barrier is equal to 1/3 and the other N — 1 barrier values
are larger than 1/3. The updating process, assigning new random numbers to the
minimal site and two additional sites chosen at random, results in again one barrier
value below 1/3 and the other N — 1 barriers larger than 1/3, on the average.
Consequently, we see that the gap pmin(s) reaches its stationary state at time sy.
It is obvious to tell that the critical threshold p. is 1/3 and, on the average, there is
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only one site with the random number below the threshold p. in the thermodynamic
limit. Thus, we expect that the distribution of barrier values vanishes below p, and
is a constant above p., while the distribution of minimum barrier vanishes above p,
and is a constant below p..

As usual, the mean field theory'”? can be constructed by neglecting correlations
between barrier values. Namely, the joint probability distribution P(By,...,By;s)
of barrier heights is replaced by the average distribution PV (B, s), where N is the
system size. With the definition Q(B,s) = fbl P(B, s)dB, it is evidently

dQ(B, s)
=" 4.
and
dQV (B, s
P(Baia, 5) = ~ 22 0:) (42)
The master equation for P(B, s) is simply
P(B,s+1) =P(B,5) ~ 7-P(Buin,s)
2 1 3
- N —_1 (P(B,S) - j_V—P(Bmi“’S)) + "]'\F (43)

On the right-hand side of Eq. (4.3), the last three terms represent the removal of the
minimum barrier, the removal of two barriers from the other N —1 barriers, and the
addition of three new equidistributed barrier values, respectively. By demanding
P(B,s+1) = P(B, s) for the stationary state, a simple relation for the equilibrium
distribution Q(B) is obtained

(N -3)QY(B) + 2NQ(B) + 3(N - 1)(B - 1) = 0. (4.4)
By numerically solving Eq. (4.3) and applying Egs. (4.1) and (4.2), the numerical

values for P(B) and P(Bmin) for all values of barrier heights can be obtained.!?®
In the limit N — oo, the average equilibrium distribution of barrier heights is

0, B«1/3
P(B) ~ (4.5)
3/2, B>»1/3
and the equilibrium distribution of minimum barrier is
3, B<1/3
P(Bmin) ~ (4.6)
0, B>»1/3.

This result is consistent with the intuitive expectation.
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Flyvbjerg et al.l” have pointed out that, in the mean field approximation, an
avalanche in the random neighbor variant can be identified as a critical branching
process with branching ratio 3.2% Therefore, the distribution of avalanche size is

n(s) ~ s73/2,
as that in the critical branching process. This prediction has been numerically
confirmed.”

However, note that the usual assumption of mean field theory is that fluctuations
of quantities are small compared to their average value in the thermodynamic limit.
When the fluctuation of a quantity is of the same order as its average value, the mean
field theory is not suitable for describing such a quantity. Therefore, as pointed out
in Ref. 9, mean field theory fails to describe the distribution of active sites, i.e. the
sites with barrier values less than p., the distribution of minimum barriers near
criticality, etc. This point will be discussed further in the following.

4.2. Exact results beyond mean field

The mapping of self-organized critical models to a one-dimensional random walk
problem?%27 has been a useful tool in obtaining information related to the avalanche
dynamics of the system. An avalanche can be thought as a directed random walk on
the non-negative integers, starting from zero and terminating when it returns to zero
again for the first time. The main merit of this formalism is to give the insight on the
generation of power-law distribution and other properties of one given avalanche;
however, it is not suitable for describing correlations between different avalanches,
unless a more complicated interacting random walk formalism is introduced.?* Note
that through the use of random walk techniques, exact or rigorous results of the
random neighbor variant can be obtained in the thermodynamic limit, i.e. the
system size N — 00.7? In the following, I will give a brief review about its main
scheme, which is applicable to other self-organized critical models.

First, N,.t(s) is defined as the number of active sites at any given time s. An
active site is any site of which the barrier height is less than the avalanche threshold
p- An avalanche of size 3 starts when the number of active sites N,.(s) changes
from zero to a positive integer at time sy and ends when N, (s) is again zero for
the first time at time step sp+ 3. The update rule for changing the number of active
sites can be viewed as the random walk rule specifying the random walk of N,.¢(s).
Since, besides the minimal site, the location of two additional sites for updating is
chosen at random, there is no spatial correlation between different sites. Thus, it
is easy to write down the updating rule for the random walk of N, (s) as follows.”
The probability of reducing the number of active site by r, through the removal of
the minimal site and two other additional sites chosen at random, is given as

Nact—1 7 N—Ngct
_ Cr-—a(l:t C3—'T ¢

PdeC(T) — (47)

Noci—1
02 ac
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The probability of increasing the number of active sites by m, through assigning
new random numbers to these sites is given as

Pine(m) = CRp™ (1 — p)*~™. (4.8)

Note that the knowledge of Py and P, enables us to obtain almost all the prop-
erties regarding avalanches. In contrast, for the original BS model, it is difficult to
write down Py, due to the strong spatial correlation of the system and, therefore,
indicates why the BS model is more stubborn analytically.

As mentioned in the previous section, the mean field theory is suitable to de-
scribe the quantities of which the fluctuations are small compared to their averages.
Indeed, we see that the exact result of the distribution of avalanche size in the

thermodynamic limit is
n(s) = \/‘i s732 L O(s78/?),
47

which is consistent with the mean field approach. It is interesting to note that the
same-site first return probability Pget(As), i.e. the minimal site being again the
minimal for the first time at time As later, can be obtained exactly, through the
use of the active site formalism,?

Pirst (As) = As™32 L O(As™3/?), (4.9)

2
3w
This result is consistent with the intuitive picture of the random neighbor variant:
the minimal site performs a modified directed random walk in the space-time plot!

However, if the fluctuation of a quantity is of the same order as its average
value, the mean field theory fails to describe such a quantity. For example, the

exact result, by using the random walk techniques,® of the average number of active
sites in the equilibrium state is

3p(1 — 2p
(Nact) = ZP(Nact)Nact = '—(_}(-Tp)l (4'10)
and its standard deviation is
V3p 38 1/2
5Nact = 1 — gp (1 - 6p+ -3—]92 - 8p3) . (411)

Clearly, we see that

ONpet > (Naey) for all p < p

and
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N2t = (Naet) for p=p..

In contrast, the mean field result is
(Nact) = - lOg(l - 3p)v (4'12)

which deviates from the exact result for all p < p..

Moreover, the rigorous result, through the use of the active site formalism, of
the distribution of minimum barrier P(By,,) near criticality is also different from
the mean field result. Since the region near criticality is most relevant to the
avalanche dynamics, this discrepancy of the mean field result from the rigorous
result is a significant evidence for the shortcomings of the mean field treatment.
Ref. 9 gives a very thorough table of P(B;,), for the comparison between the
numerical simulation of the random neighbor variant, the mean field result, and the
rigorous result derived from the active site formalism.

4.3. Important differences from the BS model

The random neighbor variant does possess some properties qualitatively identical
to those of the BS model. For example, it also has nontrivial distributions of barrier
heights and minimum barriers, and a power-law avalanche size distribution.!”® The
original motivation for the random neighbor variant is that it is easy to solve and
allows for the straightforward mean field approach. However, this simplification
process has sort of dangerous potential to wash out some important and salient
features of the original model. The key differences between these two models are
listed as follows.

First of all, de Boer et al.” have pointed out that the spatial correlations of the
random neighbor variant are significantly different from those in the original BS
model. From the definition of the random neighbor variant, we see that there is
no spatial correlation except the same-site correlation of the minimal site. That
is, spatial correlations have been degraded from power laws to a 6-function. Thus,
in contrast to the original BS model, where sites with barrier values larger than
Pc can be reactivated again and again through long-range spatial correlation, any
given site in the random neighbor variant can be active only for a finite number of
times. Moreover, the same-site temporal correlation function, i.e., the minimal site
being again the minimal at time As later, PRN(As) in the random neighbor variant
behaves as '

PRN(As) ~ As™3/2, (4.13)

Consequently, PEN(As) is normalizable; namely, the sum over PRN(As) converges.
Remember that, in Sec. 3, the original BS model has

PB3(As) ~ As™ P, with D =2.43+0.01,
t

so that the sum over PBS5(As) diverges!
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In addition to the differences listed above, in the original Bak—Sneppen model,
the sites with small values of B; have the tendency to be clustered together. Fly-
vbjerg et al.l” have shown numerically that the BS model is better approximated
by updating the two sites with the smallest and the second smallest values plus one
randomly selected site. Consequently, the critical threshold p. is close to 2/3 in-
stead of 1/3, the value of p. in the random neighbor variant, and the distribution
of minimum barrier has power-law behavior below p, in contrast to being almost
step function in the random neighbor variant.

Because of the connected nature of the set of active sites, any given avalanche
in the original BS model is characterized by its size s and spatial extent b. The
fractal nature of avalanches is manifest through the relation

s~bY with D =2.43+0.01.

Clearly, by virtue of the definition of the model, the possibility of a connected nature
of avalanches is simply absent in the random neighbor variant. Therefore, any
exponent related to the spatial extent of avalanches, such as ., v, v, and D,
has no physical meaning in the random neighbor variant.

5. Relation with Qther Problems

5.1. Directed percolation

Recall that the definition of directed percolation is the same as that of ordinary
percolation but assigning directions to each bond?! (see Fig. 5.1 for illustration).
In Fig. 5.1, the direction of the arrow on each bond gives the passage direction.
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Fig. 5.1. The illustration of 1 + 1-dimensional bond directed percolation on a square lattice.?! The
direction of the arrow on each bond gives the passage direction. We see that vertical bonds point
in the positive y direction and horizontal bonds point in the positive x direction. Therefore, the
vector (¢ = 1,4 = 1) can be labeled as the direction of time. Percolation is only allowed in the
direction of increasing time.
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We see that vertical bonds point in the positive y direction and horizontal bonds
point in the positive z direction. Therefore, the vector (z = 1,y = 1) can be labeled
as the direction of time. Percolation is only allowed in the direction of increasing
time. Due to the similarity in model definition to some extent, Ray and Jan*”
first proposed the conjecture that the BS model is in the directed percolation (DP)
universality class. Since then, there has been much debate!®23:42:47 regarding this
conjecture.

By redefining the time variable in the BS model as t — ¢ + 1/N,(s) for each
sequential update of the system, Paczuski et al.*? argued that BS model is in the
same universality class of directed percolation (DP), described by Reggeon Field
Theory (RFT). The scheme of their argument is as follows: (1) Assume that the
random numbers of active sites (inside an avalanche) are annealed at each time
step. In contrast, in the BS model, these random numbers are quenched. (2) The
annealed case belongs to the university class of RFT. (3) They argued that the
updating order is not important. Therefore, the quenched case (BS) also belongs
to the same university class.

Intuitively, the above argument seems plausible at the first glance. However, as
mentioned in the previous section, the sites with small values of B; in the BS model
have the tendency to be clustered together. The annealed case certainly loses this
property. Thus, the spatial extext of the annealed case is wider than that of the
original BS model, because the sites in the edge have the equal opportunity to be
updated. The question is then whether this difference will influence the values of
the exponents or just the prefactors.

Jovanovié et al?® checked the validity of the above claim by numerical simu-
lation. In their paper Model 1, in which the column with the smallest barrier is
selected, corresponds to the BS model. Model 3, in which the column for updating
is selected randomly among those with barriers smaller than p, corresponds to the
annealed case. Their simulation result shows that the updating order is important.
Model 3 has the same behavior as DP (directed percolation), i.e., the same scal-
ing indices. The numerically measured values of critical exponents in Model 3 and
those in DP are listed in Table 2. In contrast, the exponents which characterize
the scaling of the variables with |p. — p| are different for Model 1 and for DP. The
numerically measured values of critical exponents in Model 1 are listed in Table 1.

Table 2. The numerically measured values of critical exponents and their
associated uncertainties in Model 3 of Ref. 23 and 1 4 1 dimensional directed
percolation (DP), also taken from Ref. 23. ( ) indicates uncertainty in the

last digit.
D T ¥ o c vy
Model 3 2.33(5) 1.08(5) 2.3(1) 0.83(2) 0.40(2) 1.11{8)
DP 2.33 1.12 2.28 0.82 0.39 1.097
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Finally, by extensive simulation, Grassberger'® gives v = 2.70 & 0.02, reconfirming
the measurement of Jovanovi¢ et al.?® Moreover, Grassberger’s'® measurement, D =
2.43 £+ 0.01, even ruled out the possibility that the exponents characterizing the
relation between the geometric variables of avalanches are the same for the BS
model and DP.

However, the discrepancy between the numerical values of the critical exponents
in the BS model and those of DP is somewhat moderate. People might argue that
this is due to the statistical deviation, finite size effects, or slow crossover behavior,
etc. Therefore, a rigorous argument proving (or disproving) this conjecture is very
much needed for resolving this controversy.

5.2. Related models of self-organized criticality

The concept of self-organized criticality was introduced by Bak, Tang, and Wiesen-
feld'®13 to describe certain large dynamical systems in which criticality arises
without fine tuning of any external parameter. The paradigmatic example of a self-
organized critical system is the abelian sandpile model.}?13 By studying avalanche
dynamics in piles of rice, Frette et al'* recently have given some experimental
verification for the theoretical prediction of the sandpile model.

Unlike the sandpile model consisting of the local conservation law, the BS model
is characterized by the globally extremal dynamics. It shares some similarity with
self-organized interface depinning (SOID) models.!30:38:39:51 Egpecially, it can be
regarded as the baby version of the invasion percolation model.5¢ A very thorough
and pedagogical review is given in Ref. 43. Here, I will briefly mention the most
salient features shared by these models and the subtle differences between them.

‘The updating rules of these SOID models all involve the globally searching for
the minimal site. The differences between them are the surface relaxation rules
after picking up the minimal site. One of the most well-known SOID models is
the Sneppen model, which represents the advance of a fluid through a piece of
paper.>® In the Sneppen model, the surface relaxation rule is to advance all the
neighboring sites until the interface satisfies the restricted solid-on-solid (RSOS)
condition, i.e., the local slopes of the interface being 1, 0, or —1. This model
is equivalent to the KPZ (Kardar-Parisi-Zhang) model?® with quenched noise, of
which the scaling exponents can be obtained!:3%:3? by mapping the interface to the
directed percolating path.

As pointed out in Ref. 39, there are two main features in these SOID models:
(i) the blocking surfaces and (ii) the avalanche dynamics. The blocking surfaces refer
to the tendency of any interface segment remaining stationary for a long period at
some metastable state until failing to adapt to the changing neighboring landscape,
and then moving forward rapidly until being pinned at some metastable state again.
The scaling forms of the avalanche dynamics are similar to those defined in the BS
model. Based on the geometric compactness of the avalanches and the nonexistence
of multifractal scaling in the system, we can easily write
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where s is the avalanche size, r| is the avalanche width parallel to the substrate,
and r; is the avalanche width perpendicular to the substrate. Thus, the usual
interfacial saturated roughness exponent y, which characterizes the critical growing
interface, is related to the fractal exponent of the avalanches D via

D=1+y. (5.1)

Through the formalism in Ref. 23, the BS model, being coined the term “history-
dependent invasion percolation type model” 2% can be viewed as the advance of

interface in spatial-time plot without any kind of surface relaxation.

The invasion percolation®® model has exactly the same updating rule as the

BS model except it is a quasi-2-dimensional, instead of 1 + 1-dimensional, model.
This model is defined as follows. Random numbers, drawn independently from the
uniform distribution, are assigned to each site on a 2-dimensional lattice of linear
size N. Initially, the “invading fluid” occupies the left edge of the lattice, with
periodic boundary conditions on the top and bottom edges. At each update, the site
with the smallest random number among all the perimeter sites is occupied by the
“invading fluid”. The process continues until the “invading fluid” reaches the right
edge of the lattice. Note that the universality class of this model is very sensitive
to the definition of perimeter sites.®® In Ref. 15, the authors have observed the
intermittent behavior of the advance of the interface (see Fig. 5.2 for illustration).
Figure 5.2 shows that the pattern of activity in invasion percolation looks like a
fractal, which has been numerically verified.?®

Fig. 5.2. The illustration of site invasion percolation on a square lattice with trapping.!®
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Roux and Guyon*® first used the language of avalanche dynamics to study this
model. The system does show the characteristic of the self-organized critical be-
havior, e.g. the existence of some critical threshold p., the power-law behavior of
spatial-temporal correlation, the fractal pattern of activities, etc. Note that, in
all the analytical and numerical treatments,!®43:46:56 the system is assumed to be
isotropic, based on the updating rule being without directional preference. How-
ever, this assumption is questionable, since the initial condition of the system does
introduce an anisotropy. Its influence, however, on the dynamical properties of the
system is still not well-understood. Thus, the BS model, being without this ambi-
guity about isotropicity and the sensitivity to the definition of the perimeter sites,
can be regarded as the baby version of the invasion percolation model,?® just as the
directed polymer model*? to the much more complicated spin glass model.3®

6. Conclusion and Unsettled Problems

Finally, let us summarize the main points in the previous sections and give some
possible directions for further study in the future. The data from the numerical
studies of the BS evolutional model with the data from the fossil record are explicitly
compared. Then, I focus on the mechanism by which the BS evolution model
approaches the SOC state and the universal properties of the system at criticality, in
particular, the geometric properties of avalanches, the spatial-temporal correlations
between successive events and fractal pattern in the space-time plot. We see that all
the exponents can be expressed in terms of D and 7, i.e. the fractal exponent of the
avalanches and the avalanche size distribution exponent, respectively. The random
neighbor variant offers a good pedagogical example how the mean field approach is
applied and the potential danger of losing some critical properties of the original
system by this approximation. Finally, I discuss the relation of the BS model to
other topics, such as directed percolation, random walk, and a few self-organized
critical models, and the subtle differences between them.

Some unsolved problems of this topic for further research are given in the
following:

(1) As pointed out by Vandewalle and Ausloos,?® there are some important draw-
backs on the BS model definition for describing biological evolution. First, the
number N of species is always kept constant. It does not allow for speciation
where one species branches into two species. Secondly, an extinction is identified
with the mutation. In fact, the extinction of a species may arise for reasons un-
related to a mutation event. Thirdly, the BS model does not take into account
the possibility of one species competing with its own mutated species. There
have been a few attempts®5:103437 {0 modify the BS model in order to give a
better description for the biological evolution. However, each of them has its
own limitations. It still requires a lot of work from the statistical community
to invent more realistic models.
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(2) As mensioned in the context, most results in the BS model can currently only be
obtained by either scaling analysis or numerical studies. Rigorous treatments
on the model will be most welcomed, especially for the determination of the
critical point p. and the values of two independent critical exponents of the
system, D and 7.

(3) Since it was conjectured*’*? that the BS model is in the same universality
class of directed percolation (DP), there have been a few numerical studies?3:13
casting doubt upon this conjecture. However, the discrepancy between the
numerical values of the critical exponents in the BS model and those of DP is
somewhat small. People might argue that this is due to the statistical deviation,
finite size effects, or slow crossover behavior, etc. Therefore, a rigorous argument
proving (or disproving) this conjecture is very much needed for resolving this
controversy.

(4) As mentioned before, the BS model shares some similarity with self-organized
interface depinning models. Especially, it can be regarded as the baby version
of the invasion percolation model.’® The extension of the BS model to higher
dimensionality will not only give information regarding the model itself but also
shed some lights upon these related models. The most interesting properties to
be studied include the robustness of self-organized criticality, the existence of
upper critical dimensionality, and the values of the critical point and the critical
exponents, etc.

(5) One of the most important merits of the BS model is that it contains very rich
statistical properties despite a very simple model definition. From the theoret-
ical point of view, it will be very interesting to extend the model by varying
the model definition slightly, e.g. including the next-to-nearest neighbor inter-
action, redefinition of the time scale, or introducing correlation to the random
barriers, and then study the statistical properties of these variants, such as the
robustness of self-organized criticality, the intermittent behavior, the behavior
of spatial-temporal correlation, etc.
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