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Determining the density of states for classical statistical models:
A random walk algorithm to produce a flat histogram
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We describe an efficient Monte Carlo algorithm using a random walk in energy space to obtain a very
accurate estimate of the density of states for classical statistical models. The density of states is modified at
each step when the energy level is visited to produce a flat histogram. By carefully controlling the modification
factor, we allow the density of states to converge to the true value very quickly, even for large systems. From
the density of states at the end of the random walk, we can estimate thermodynamic quantities such as internal
energy and specific heat capacity by calculating canonical averages at any temperature. Using this method, we
not only can avoid repeating simulations at multiple temperatures, but we can also estimate the free energy and
entropy, quantities that are not directly accessible by conventional Monte Carlo simulations. This algorithm is
especially useful for complex systems with a rough landscape since all possible energy levels are visited with
the same probability. As with the multicanonical Monte Carlo technique, our method overcomes the tunneling
barrier between coexisting phases at first-order phase transitions. In this paper, we apply our algorithm to both
first- and second-order phase transitions to demonstrate its efficiency and accuracy. We obtained direct simu-
lational estimates for the density of states for two-dimensional ten-state Potts models on lattices up to
2003200 and Ising models on lattices up to 2563256. Our simulational results are compared to both exact
solutions and existing numerical data obtained using other methods. Applying this approach to a three-
dimensional6J spin-glass model, we estimate the internal energy and entropy at zero temperature; and, using
a two-dimensional random walk in energy and order-parameter space, we obtain the~rough! canonical distri-
bution and energy landscape in order-parameter space. Preliminary data suggest that the glass transition
temperature is about 1.2 and that better estimates can be obtained with more extensive application of the
method. This simulational method is not restricted to energy space and can be used to calculate the density of
states for any parameter by a random walk in the corresponding space.

DOI: 10.1103/PhysRevE.64.0461XX PACS number~s!: 05.50.1q, 64.60.Cn, 02.70.Rr
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I. INTRODUCTION

Computer simulation now plays a major role in statistic
physics@1#, particularly for the study of phase transitions a
critical phenomena. One of the most important quantities
statistical physics is the density of statesg(E), i.e., the num-
ber of all possible states~or configurations! for an energy
level E of the system, but direct estimation of this quant
has not been the goal of simulations. Instead, most con
tional Monte Carlo algorithms@1# such as Metropolis impor
tance sampling@2#, Swendsen-Wang cluster flipping@3,4#,
etc., generate a canonical distributiong(E)e2E/kBT at a given
temperature. Such distributions are so narrow that, with c
ventional Monte Carlo simulations, multiple runs are r
quired if we want to know thermodynamic quantities ove
significant range of temperatures. In the canonical distri
tion, the density of states does not depend on the tempera
at all. If we can estimate the density of statesg(E) with high
accuracy for all energies, we can then construct canon
distributions at any temperature. For a given model in sta
tical physics, once the density of states is known, we
calculate the partition function asZ5(Eg(E)e2bE, and the
model is essentially ‘‘solved’’ since most thermodynam
quantities can be calculated from it. Though computer sim
lation is already a very powerful method in statistical phys
@1#, it seems that there is no efficient algorithm to calcul
the density of states very accurately for large systems. E
1063-651X/2001/64~5!/056101~16!/$20.00 64 0561
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for exactly solvable models such as the two-dimensio
~2D! Ising model,g(E) is impossible to calculate exactly fo
a large system@5#.

The multicanonical ensemble method@6–9# proposed by
Berg et al. has been proved to be very efficient in studyi
first-order phase transitions where simple canonical sim
tions have difficulty overcoming the tunneling barrier b
tween coexisting phases at the transition temperature@6,9–
16#. In the multicanonical method, we have to estimate
density of statesg(E) first, then perform a random walk with
a flat histogram in the desired region in the phase space,
as between two peaks of the canonical distribution at
first-order transition temperature. In a multicanonical sim
lation, the density of states need not necessarily be very
curate, as long as the simulation generates a relatively
histogram and overcomes the tunneling barrier in ene
space. This is because the subsequent re-weighting@6,8#,
does not depend on the accuracy of the density of the st
as long as the histogram can cover all important energy
els with sufficient statistics.~If the density of states could b
calculated very accurately, then the problem would ha
been solved in the first place and we need not perform
further simulation such as with the multicanonical simu
tional method.!

Lee @17# independently proposed the entropic sampli
method, which is basically equivalent to multicanonical e
semble sampling. He used an iteration process to calcu
the microcanonical entropy atE which is defined byS(E)
©2001 The American Physical Society01-1
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FUGAO WANG AND D. P. LANDAU PHYSICAL REVIEW E64 056101
5ln@g(E)# whereg(E) is the density of states. He also a
plied his method to the 2D ten-state (Q510) Potts model
and the 3D Ising model; however, just as for other sim
iteration methods, it works well only for small systems. H
obtained a good result with his method for the 24324 2D
Q510 Potts model and the 43434 3D Ising model.

de Oliveiraet al. @18–20# proposed the broad histogra
method with which they calculated the density of states
estimating the probabilities of possible transitions betwe
all possible states of a random walk in energy space. Us
simple canonical average formulas in statistical physics, t
then calculated thermodynamic quantities for any tempe
ture. Though the authors believed that the broad histog
relation is exact, their simulational results have system
errors even for the Ising model on a 32332 lattice in refer-
ences@18,21#. They believed that the error was due to t
particular dynamics adopted within the broad histogr
method@22#. Very recently, they have reduced the error ne
Tc to a small value forL532 @23#.

It is thus an extremely difficult task to calculate density
states directly with high accuracy for large systems.
methods based on accumulation of histogram entries, suc
the histogram method of Ferrenberg and Swendsen@24#,
Lee’s version of multicanonical method~entropic sampling!
@17#, broad histogram method@18,21,25#, and flat histogram
method@21# have the problem of scalability for large sy
tems. These methods suffer from systematic errors when
tems are large, so we need a superior algorithm to calcu
the density of states for large systems.

Very recently, we introduced a new, general, efficie
Monte Carlo algorithm that offers substantial advanta
over existing approaches@26#. In this paper, we will explain
the algorithm in detail, including our implementation, a
describe its application not only to first- and Second-or
phase transitions, but also to a 3D spin glass model that
a rough energy landscape.

The remainder of this paper is arranged as follows. In S
II, we present our general algorithm in detail. In Sec. III, w
apply our method to the 2DQ510 Potts model that has
first-order phase transition. In Sec. IV, we apply our meth
to a model with a second-order phase transition to test
accuracy of the algorithm. In Sec. V, we consider the 3D6J
spin glass model, a system with rough landscapes. Dis
sion and the conclusion are presented in Sec. VI.

II. A GENERAL AND EFFICIENT ALGORITHM TO
ESTIMATE THE DENSITY OF STATES

WITH A FLAT HISTOGRAM

Our algorithm is based on the observation that if we p
form a random walk in energy space by flipping spins ra
domly for a spin system, and the probability to visit a giv
energy levelE is proportional to the reciprocal of the densi
of states 1/g(E), then a flat histogram is generated for t
energy distribution. This is accomplished by modifying t
estimated density of states in a systematic way to produ
‘‘flat’’ histogram over the allowed range of energy and s
multaneously making the density of states converge to
true value. We modify the density of states constantly dur
05610
e

y
n
g
y

a-
m
ic

r

f
l
as

s-
te

t
s

r
as

c.

d
e

s-

-
-

a

e
g

each step of the random walk and use the updated densi
states to perform a further random walk in energy space.
modification factor of the density of states is controlled ca
fully, and at the end of simulation the modification fact
should be very close to one which is the ideal case of
random walk with the true density of states.

At the very beginning of our simulation, the density
states isa priori unknown, so we simply set all entries t
g(E)51 for all possible energiesE. Then we begin our ran-
dom walk in energy space by flipping spins randomly a
the probability at a given energy level is proportional
1/g(E). In general, ifE1 andE2 are energies before and afte
a spin is flipped, the transition probability from energy lev
E1 to E2 is

p~E1→E2!5minFg~E1!

g~E2!
,1G . ~1!

Each time an energy levelE is visited, we modify the exist-
ing density of states by a modification factorf .1, i.e.
g(E)→g(E) f . ~In practice, we use the formula ln@g(E)#
→ln@g(E)#1ln(f) in order to fit all possibleg(E) into double
precision numbers for the systems we will discuss in t
paper.! If the random walk rejects a possible move and sta
at the same energy level, we also modify the existing den
of states with the same modification factor. Throughout t
paper we have used an initial modification factor off 5 f 0
5e1.2.718 28, . . . , which allows us to reach all possibl
energy levels very quickly even for a very large system. Iff 0
is too small, the random walk will spend an extremely lo
time to reach all possible energies. However, too larg
choice of f 0 will lead to large statistical errors. In our simu
lations, the histograms are generally checked about e
10000 Monte Carlo~MC! sweeps. A reasonable choice is
make (f 0)10000have the same order of magnitude as the to
number of states (QN for a Potts model!. During the random
walk, we also accumulate the histogramH(E) ~the number
of visits at each energy levelE) in the energy space. Whe
the histogram is ‘‘flat’’ in the energy range of the rando
walk, we know that the density of states converges to
true value with an accuracy proportional to that modificati
factor ln(f). Then we reduce the modification factor to a fin
one using a function likef 15Af 0, reset the histogram, an
begin the next level random walk during which we modi
the density of states with a finer modification factorf 1 during
each step. We continue doing so until the histogram is ‘‘fla
again and then reduce the modification factorf i 115Af i and
restart. We stop the random walk when the modification f
tor is smaller than a predefined value@such as f final
5exp(1028).1.000 000 01]. It is very clear that the modifi
cation factor acts as a most important control parameter
the accuracy of the density of states during the simulat
and also determines how many MC sweeps are necessar
the whole simulation. The accuracy of the density of sta
depends on not onlyf final , but also many other factors, suc
as the complexity and size of the system, criterion of the
histogram, and other details of the implementation of
algorithm.
1-2
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DETERMINING THE DENSITY OF STATES FOR . . . PHYSICAL REVIEW E 64 056101
It is impossible to obtain a perfectly flat histogram and t
phrase ‘‘flat histogram’’ in this paper means that histogr
H(E) for all possibleE is not less thanx% of the average
histogram̂ H(E)&, wherex% is chosen according to the siz
and complexity of the system and the desired accuracy of
density of states. For theL532, 2D Ising model with only
nearest-neighbor couplings, this percentage can be chos
high as 95%, but for large systems, the criterion for ‘‘fla
ness’’ may never be satisfied if we choose too high a p
centage and the program may run forever.

One essential constraint on the implementation of the
gorithm is that the density of states during the random w
converges to the true value. The algorithm proposed in
paper has this property. The accuracy of the density of st
is proportional to ln(f) at that iteration; however, ln(ffinal)
cannot be chosen arbitrary small or the modified ln@g(E)#
will not differ from the unmodified one to within the numbe
of digits in the double precision numbers used in the cal
lation. If this happens, the algorithm no longer converges
the true value, and the program may run forever. Even iff final

is within range but too small, the calculation might take e
cessively long to finish.

We have chosen to reduce the modification factor b
square-root function, andf approaches one as the number
iterations approaches infinity. In fact, any function may
used as long as it decreasesf monotonically to one. A simple
and efficient formula isf i 115 f i

1/n , wheren.1. The value
of n can be chosen according to the available CPU time
expected accuracy of the simulation. For the systems tha
have studied, the choice ofn52 yielded good accuracy in
relatively short time, even for large systems. When the mo
fication factor is almost one and the random walk generat
uniform distribution in energy space, the density of sta
should converge to the true value for the system.

Procedures for allowingf→1 have been examined b
Hüller @27# who used data from two densities of states
two different values off to extrapolate tof 51. However, his
data for a small Ising system yield larger errors than
direct approach. The applicability of his method to large s
tems also needs a more detailed study.

The method can be further enhanced by performing m
tiple random walks, each for a different range of ener
either serially or in parallel fashion. We restrict the rando
walk to remain in the range by rejecting any move out of t
range. The resultant pieces of the density of states can
be joined together and used to produce canonical aver
for the calculation of thermodynamic quantities at any te
perature.

Almost all recursive methods update the density of sta
by using the histogram data directly only after enough his
gram entries are accumulated@6,7,11,13–16,28–30#. Be-
cause of the exponential growth of the density of states
energy space, this process is not efficient because the h
gram is accumulated linearly. In our algorithm, we mod
the density of states at each step of the random walk, and
allows us to approach the true density of states much fa
than conventional methods especially for large systems.~We
also accumulate histogram entries during the random w
05610
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but we only use it to check whether the histogram is fl
enough to go to the next level random walk with a fin
modification factor.!

We should point out here that the total number of co
figurations increases exponentially with the size of the s
tem; however, the total number of possible energy lev
increases linearly with the size of system. It is thus easy
calculate the density of states with a random walk in ene
space for a large system. In this paper, for example, we c
sider the Potts model on anL3L lattice with nearest-
neighbor interactions@31#. ForQ>3, the number of possible
energy levels is about 2N, whereN5L2 is the total number
of the lattice site. However, the average number of poss
states~or configurations! on each energy level is as large
QN/2N, whereQ is the number of possible states of a Po
spin andQN is the total number of possible configurations
the system. This is the reason why most models in statist
physics are well defined, but we cannot simply use our co
puters to realize all possible states to calculate any ther
dynamic quantities, this is also the reason why efficient a
fast simulational algorithms are required in the numeri
investigations.

By the end of simulation, we only obtain relative densi
since the density of states can be modified at each time
visited. We can apply the condition that the total number
possible states for theQ state Potts model is(Eg(E)5QN or
the number of ground state isQ to get the absolute density o
states.

III. APPLICATION TO A FIRST-ORDER
PHASE TRANSITION

A. Potts model and its canonical distribution

In this section, we apply our algorithm to a model with
first-order phase transition@32,33#. We choose the 2D ten
state Potts model@31# since it serves as an ideal laborato
for temperature-driven first-order phase transitions. Si
some exact solutions and extensive simulational data
available, we have ample opportunity to compare our res
with other values.

We consider the two-dimensionalQ510 Potts model on
L3L square lattice with nearest-neighbor interactions a
periodic boundary conditions. The Hamiltonian for th
model can be written as

H52(̂
i j &

d~qi ,qj ! ~2!

and q51,2, . . . ,Q. The Hamiltonian~or energy! is in the
unit of the nearest couplingJ. We assumeJ51 for simplic-
ity in this paper. During the simulation, we select lattice si
randomly and choose integers between@1:Q# randomly for
new Potts spin values. The modification factorf i changes
from f 05e152.718 28 at the very beginning tof final
5exp(1028).1.000 000 01 by the end of the random wa
To guarantee the accuracy of thermodynamic quantitie
low temperatures in further calculations, in this paper we
the condition that the number of the ground states isQ to
normalize the density of states. The densities of states
1-3
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FUGAO WANG AND D. P. LANDAU PHYSICAL REVIEW E64 056101
1003100, 1503150, and 2003200 are shown in Fig. 1~a!.
It is very clear from the figure that the maximum density
states forL5200 is very close to 1040000 which is actually
about 5.7531039997 from our simulational data.

Conventional Monte Carlo simulation~such as Metropolis
sampling @1,2#! realizes a canonical distributionP(E,T)
by generating a random walk Markov chain at a giv
temperature

FIG. 1. ~a! Density of statesg(E) for the 2D Q510 Potts
model. ~b! The canonical distributions atTc . ~c! Extrapolation of
finite lattice ‘‘transition temperatures.’’
05610
f

P~E,T!5g~E!e2E/kBT. ~3!

The temperature is defined in the unit ofJ/kB with J51.
From the simulational result for the density of statesg(E),
we can calculate the canonical distribution by the above
mula at any temperature without performing multiple sim
lations. In Fig. 1~b!, we show the resultant double-peake
canonical distribution@33#, at the transition temperatureTc
for the first-order transition of theQ510 Potts model. The
‘‘transition temperatures’’ are determined by the tempe
tures where the double peaks are of the same height. N
that the peaks of the distributions are normalized to one
this figure. The valley between two peaks is quite deep, e
is 731025 for L5100. The latent heat for this temperatur
driven first-order phase transition can be estimated from
energy difference between the double peaks. Our results
the locations of the peaks are listed in the Table I. They
consistent with the results obtained by multicanoni
method@6# and multibondic cluster algorithm@9# for those
lattice sizes for which these other methods are able to g
erate estimates. As the table shows, our method prod
results for substantially larger systems than have been s
ied by these other approaches.

Because of the double peak structure at a first-order ph
transition, conventional Monte Carlo simulations are not
ficient since an extremely long time is required for the s
tem to travel from one peak to the other in energy spa
With the algorithm proposed in this paper, all possible e
ergy levels are visited with equal probability, so it ove
comes the tunneling barrier between the coexisting phase
the conventional Monte Carlo simulations. The histogram
L 5 100 is shown in an inset of the Fig. 1~b!. The histogram
in the figure is the overall histogram defined by the to
number of visits to each energy level for the random wa
Here, too, we choose the initial modification factorf 05e1,
and the final one as exp(1028).1.000 000 01; and the tota
number of iterations is 27. In our simulation, we do not se
predetermined number of MC sweeps for each iteration,
rather give the criterion that the program checks periodica
Generally, the number of MC sweeps needed to satisfy
criterion increases as we reduce the modification factor
finer one, but we cannot predict the exact number of M
sweeps needed for each iteration before the simulation.
believe that it is preferable to allow the program to dec
how great a simulational effort is needed for a given mo
fication factorf i . This also guarantees a sufficiently flat hi
togram resulting from a random walk that in turn determin
the accuracy of the density of states at the end of the si
lation. We nonetheless need to perform some test run
make sure that the program will finish within a given tim
The entire simulational effort used was about 3.33107 visits
(6.63107 MC sweeps! for L5100. With the program we
implemented, the simulation forL5100 can be completed
within two weeks in a single 600 MHz Pentium III proce
sor.

To speed up the simulation, we need not constrain o
selves to performing a single random walk over the en
energy range with high accuracy. If we are only interested
a specific temperature range, such as nearTc , we could first
1-4
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TABLE I. Estimates of ‘‘transition temperature’’Tc and positions of double peaksE1
max, E2

max for the
Q510 Potts model with our method, the multicanonical~MUCA! ensemble@6#, and the multibondic
~MUBO! cluster algorithm@9#. E1

max andE2
max are the energy per lattice site at the two peaks of canon

distribution atTc .

Size Our method MUCA MUBO
L Tc E1

max E2
max Tc E1

max E2
max Tc E1

max E2
max

12 0.709 91 0.8402 1.7013 0.710 540 0.806 1.688 0.710 540 2 0.833
16 0.706 53 0.8694 1.6967 0.706 544 0.844 1.676 0.706 514 4 0.867
20 0.705 11 0.8925 1.6875 0.704 789 1 0.883 1.
24 0.703 62 0.8940 1.6765 0.703 730 0.908 1.698
26 0.703 17 0.9002 1.6805 0.703 412 0 0.908 1.6
30 0.702 89 0.9233 1.6888
34 0.702 58 0.9343 1.6732 0.702 553 0.927 1.683 0.702 553 0 0.921
40 0.702 39 0.9337 1.6731
50 0.701 77 0.9416 1.6776 0.701 876 5 0.940 1.6
60 0.701 71 0.9522 1.6733
70 0.701 53 0.9519 1.6717 0.701 562 0.9511 1.670
80 0.701 43 0.9576 1.6701
90 0.701 41 0.9551 1.6727
100 0.701 35 0.9615 1.6699 0.701 378 0.9594 1.6699
120 0.701 31 0.9803 1.6543
150 0.701 27 0.9674 1.6738
200 0.701 24 0.9647 1.6710
` 0.701 23660.000 025
exact 0.701 232 . . .
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perform a low-precision unrestricted random walk, i.e., o
all energies, to estimate the required energy range, and
carry out a very accurate random walk for the correspond
energy region. The inset of Fig. 1~b! for L5100 only shows
the histograms for the extensive random walks in the ene
range betweenE/N521.90 and20.6. If we need to know
the density of states more accurately for some energies
also can perform separate simulations, one for low-ene
levels, one for high-energy levels, the other for middle e
ergy, which includes double peaks of the canonical distri
tion at Tc . This scheme not only speeds up the simulati
but also increases the probability of accessing the ene
levels for which both maximum and minimum values of t
distributions occur by performing the random walk in a re
tively small energy range. If we perform a single rando
walk over all possible energies, it will take a long time
generate rare spin configurations. Such rare energy le
include the ground-energy level or low-energy levels w
only a few spins with different values and high energy lev
where all, or most, adjacent Potts spins have different val

With the algorithm in this paper, if the system is n
larger than 1003100, the random walk on important energ
regions~such as that which includes the two peaks of
canonical distribution atTc) can be carried out with a singl
processor and will give an accurate density of states wi
about 107 visits per energy level. However, for a larger sy
tem, we can use a parallelized algorithm by performing r
dom walks in different energy regions, each using a differ
processor. We have implemented this approach using P
~parallel virtual machine! with a simple master-slave mode
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and can then obtain an accurate estimate for the densit
states with relatively short runs on each processor. The d
sities of states for 1503150 and 2003200, shown in Fig.
1~b!, were obtained by joining together the estimates o
tained from 21 independent random walks, each constra
within a different region of energy. The histograms from t
individual random walks are shown in the second inset
Fig. 1~b! for 2003200 lattice. In this case, we only requir
that the histogram of the random walk in the correspond
energy segment is sufficiently flat without regard to the re
tive flatness over the entire energy range. In Fig. 1~b!, the
results for large lattices show clear double peaks for the
nonical distributions at temperaturesTc(L)50.701 27 forL
5150 andTc(L)50.701 243 forL5200. The exact result is
Tc50.701 232, . . . , for theinfinite system. Considering the
valley which we find forL5200 is as deep as 9310210, we
can understand why it is impossible for conventional Mon
Carlo algorithms to overcome the tunneling barrier w
available computational resources.

If we compare the histogram forL5100 with that forL
5200 in Fig. 1~b!, we see very clearly that the simulatio
effort for L5200 (9.83106 visits per energy level! is even
less than the effort forL5100 (3.33107 visits per energy
level.!. It is more efficient to perform random walks in rela
tively small energy segments than a single random walk o
all energies. The reason is very simple, the random walk
local walk, which means for a givenE1, the energy level for
the next step only can be one of nine levels in the ene
range@E124,E114# ~for the Potts model discussed in th
1-5
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FUGAO WANG AND D. P. LANDAU PHYSICAL REVIEW E64 056101
section!. The algorithm itself only requires that the histogra
on such local transitions is flat.~A single random walk, sub-
ject to the requirement of a flat histogram for all ener
levels, will take quite long.! For random walks in small en
ergy segments, we should be very careful to make sure
all spin configurations with energies in the desired range
be equally accessed so we restart the random walk per
cally from independent spin configurations.

An important question that must be addressed is the
mate accuracy of the algorithm. One simple check is to e
mate the transition temperature of the 2DQ510 Potts model
for L5` since the exact solution is known. According to t
finite-size scaling theory, the ‘‘effective’’ transition temper
ture for finite systems behaves as

Tc~L !5Tc~`!1
c

Ld
, ~4!

whereTc(L) and Tc(`) are the transition temperatures f
finite- and infinite-size systems, respectively,L is the linear
size of the system andd is dimension of the lattice.

In Fig. 1~c!, the transition temperature is plotted as a fun
tion of L2d. The data in the main portion of the figure a
obtained from small systems (L510;30), and the error
bars are estimated by results from multiple independent r
Clearly the transition temperature extrapolated from
simulational data isTc(`)50.701460.0004, which is con-
sistent with the exact solution (Tc50.701 232, . . . ,) for the
infinite system. To get an even more accurate estimate,
also test the accuracy of the density of states from single
for large systems, we performed a single, long random w
on large lattices (L550;200). The results, plotted as
function of lattice size in the inset of the figure, show that t
transition temperature extrapolated from the finite system
Tc(`)50.701 23660.000 025, which is still consistent wit
the exact solution.

We also compare our simulational result for theQ510
Potts model with the existing numerical data such as e
mates of transition temperatures and double peak locat
obtained with the multicanonical simulational method
Berg and Neuhaus@6# and the multibondic cluster algorithm
by Janke and Kappler@9#. All results are shown in Table I
With our random walk simulational algorithm, we can ca
culate the density of states up to 2003200 within 107 visits
per energy level to obtain a good estimate of the transi
temperature and locations of the double peaks. Using
multicanonical method and a finite scaling guess for the d
sity of states, Berget al. only obtained results for lattices a
large as 1003100 @6#, and multibondic cluster algorithm
data@9# were not given for systems larger than 50350.

In Sec. IV, the accuracy of our algorithm will be furthe
tested by comparing thermodynamic quantities obtained
2D Ising model with exact solutions.

B. Thermodynamic properties of theQÄ10 Potts model

One of the advantages of the our method is that the d
sity of states does not depend on temperature; indeed
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the density of states, we can calculate thermodynamic qu
tities at any temperature. For example, the internal ene
can be calculated by

U~T!5

(
E

Eg~E!e2bE

(
E

g~E!e2bE

[^E&T . ~5!

To study the behavior of the internal energy nearTc more
carefully, we calculate the internal energy forL560, 100,
and 200 nearTc as presented in Fig. 2~a!. A very sharp
‘‘jump’’ in the internal energy at transition temperatureTc is
visible, and the magnitude of this jump is equal to the lat
heat for the~first-order! phase transition. Such behavior
related to the double peak distribution of the first-order ph
transition. WhenT is slightly away fromTc , one of the
double peaks increases dramatically in magnitude and
other decreases.

Since we only perform simulations on finite lattices, a
use a continuum function to calculate thermodynamic qu
tities, all our quantities for finite-size systems will appear
be continuous if we use a very small scale. In the inset
Fig. 2~a!, we use the same density of states again to calcu
the internal energy for temperatures very close toTc . On this
scale, the ‘‘discontinuity’’ at the first-order phase transitio
disappears and a smooth curve can be seen instead of a
‘‘jump’’ in the main portion of Fig. 2~a!. The discontinuity
in Fig. 2~a! is simply due to the coarse scale, but when t
system size goes to infinity, the discontinuity will be real.

From the density of states we can also estimate the
cific heat from the fluctuations in the internal energy

C~T!5
]U~T!

]T
5

^E2&T2^E&T
2

T2
. ~6!

In Fig. 2~b!, the specific heat so obtained is shown as
function of temperature. We calculate the specific heat in
vicinity of the transition temperatureTc . The finite-size de-
pendence of the specific heat is clearly evident. We find t
specific heat has a finite maximum value for a given latt
size L that, according to the finite-size scaling theory f
first-order transitions should vary as

c~L,T!L2d} f ~@T2Tc~`!#Ld!, ~7!

wherec(L,T)5C(L,T)/N is the specific heat per lattice site
L is the linear lattice size,d52 is the dimension of the
lattice.T(L5`)50.701 23, . . . , is theexact solution for the
Q510 Potts model@31#. In the inset of Fig. 2~b!, our simu-
lational data for systems withL560, 100, and 200 can b
well fitted by a single scaling function, moreover, this fun
tion is completely consistent with the one obtained from l
tice sizes fromL518 to L550 by standard Monte Carlo
@33#.

With the density of states, we not only can calculate m
thermodynamic quantities for all temperatures without m
tiple simulations but we can also access some quanti
1-6
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FIG. 2. Thermodynamic quantities calculated from the density of states for theQ510 Potts model:~a! internal energy,~b! specific heat
and the finite-size scaling function,~c! free energy, and~d! entropy.
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such as the free energy and entropy, which are not dire
available from conventional Monte Carlo simulations.T
free energy is calculated using

Z5 (
$config.%

e2bE5(
E

g~E!e2bE

F52kT log~Z!. ~8!

Our results for the free energy-per-lattice site is shown
Fig. 2~c! as a function of temperature. Since the transition
first-order, the free energy appears to have a ‘‘discontinui
in the first derivative atTc . This is typical behavior for a
first-order phase transition, and even with the fine scale u
in the inset of Fig. 2~c!, this property is still apparent eve
though the system is finite. The transition temperatureTc is
determined by the point where the first derivative appear
be discontinuous. With a coarse temperature scale we ca
distinguish the finite-size behavior of our model; howev
we can see a very clear size dependence when we view
free energy on a very fine scale as in the inset of Fig. 2~c!.

The entropy is another very important thermodynam
quantity that cannot be calculated directly in conventio
Monte Carlo simulations. It can be estimated by integrat
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over other thermodynamic quantities, such as specific h
but the result is not always reliable since the specific h
itself is not easy to determine accurately, particularly cons
ering the ‘‘divergence’’ at the first-order transition. With a
accurate density of states estimated by our method, we
ready know the free energy and internal energy for the s
tem, so the entropy can be calculated easily

S~T!5
U~T!2F~T!

T
. ~9!

It is very clear that the entropy is very small at low tem
perature and atT50 is given by the density of states for th
ground state. We show the entropy as a function of temp
ture in a wide region in Fig. 2~d!.

The entropy has a very sharp ‘‘jump’’ atTc , just as does
the internal energy and such behavior can be seen
clearly in the inset of Fig. 2~d!, when we recalculate the
entropy nearTc . The change of the entropy atTc shown in
the figure can be obtained by the latent heat divided by
transition temperature, and the latent heat can be obtaine
the jump in internal energy atTc in Fig. 2~a!.

With the histogram method proposed by Ferrenberg
Swendsen@24#, it is possible to use simulational data at sp
1-7
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FUGAO WANG AND D. P. LANDAU PHYSICAL REVIEW E64 056101
cific temperatures to obtain complete thermodynamic inf
mation near, or between, those temperatures. Unfortuna
it is usually quite hard to get accurate information in t
region far away from the simulated temperature due to d
culties in obtaining good statistics, especially for large s
tems where the canonical distributions are very narrow. W
the algorithm proposed in this paper, the histogram is ‘‘fla
for the random walk and we always have essentially
same statistics for all energy levels. Since the output of
simulation is the density of states, which does not depend
the temperature at all, we can then calculate most thermo
namic quantities at any temperature without repeating
simulation. We also believe the algorithm is especially use
for obtaining thermodynamic information at low temperatu
or at the transition temperature for the systems where
conventional Monte Carlo algorithm is not so efficient.

C. The tunneling time for the QÄ10 Potts model atTc

To study the efficiency of our algorithm, we measure t
tunneling timet, defined as the average number of swee
needed to travel from one peak to the other and return to
starting peak in energy space. Since the histogram that
random walk produces is flat in energy space, we expect
tunneling time will be the same as for the ideal case o
simple random walk in real space, i.e.,t(NE);NE , where
NE is the total number of energy levels. To compare o
simulational results to those for the ideal case, we also
form a random walk in real space. We always use a fix
g(xi)51 in one-dimensional real space, wherexi is a dis-
crete coordinate of position that can be chosen simply
1,2,3,4, . . . ,NE . The random walk is a local random wa
with transition probabilityp(xi→xj )51/2, wherexj5xi 61.
We use the same definition of the tunneling time to meas
the behavior of this quantity. The tunneling time for the ide
case satisfies the simple power law ast(NE);NE

a and the
exponenta is equal to 1. (t is defined using the unit o
sweep ofNE sites.! Our simulational data for random walk
in energy space yield a tunneling time that is well describ
by the power lawt;Na as shown in Fig. 3. The solid line
in the graph have the simple power law ast(NE);NE , and
we see that our simulation result is very close to the id
case. Since our method needs an extra effort to update
density of states to produce a flat histogram during the r
dom walk in energy space, the tunneling time is much lon
than the real space case. Also, because the tunneling
depends on the accuracy of the density of states, whic
constantly modified during the random walk in energy spa
it is not a well-defined quantity in our algorithm. The tunne
ing time, shown in Fig. 3 is the overall tunneling time, whic
includes all iterations with the modification factors fromf 0
5e1.2.718 28, . . . , to the final modification factor f final
5exp(1028).1.000 000 01.

We should point out that the two processes are not exa
the same, since the random walk in real space uses the e
density of states@g(xi)51#. However, the random walk in
energy space requires knowledge of the density of sta
which isa priori unknown. The algorithm we propose in th
paper is a random walk with the density of states tha
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modified at each step during the walk in energy space. At
end of our random walk, the modification factor approach
one, and the estimated density of states approaches the
value. The two processes are then almost identical.

Conventional Monte Carlo algorithms~such as the heat
bath algorithm! have an exponentially fast growing tunnelin
time. According to Berg’s study in Ref.@7#, the tunneling
time obeys the exponential lawt(L)51.46L2.15e0.080L. The
multicanonical simulational method has reduced the tunn
ing time from an exponential law to a power law ast(NE)
;NE

a . However, the exponenta is as large as.1.33 @6#,
which is far away from the ideal casea51. Very recently,
Janke and Kappler introduced the multibondic cluster al
rithm, the exponenta is reduced to as small as 1.05 for 2
ten-state Potts model@9#. In Fig. 3, we also show the resu
obtained with the multicanonical method and the heat b
algorithm in Ref.@6#. We should point out that just like the
multicanonical simulational method, our algorithm has
power increasing tunneling time with a smaller exponenta.
For small systems, our algorithm offers less advantage
cause of the effort needed to modify the density of sta
during the random walk. Very recently, Neuhaus has gen
alized this algorithm to estimate the canonical distributi
for T,Tc , in magnetization space for the Ising model@34#.
He found that for small systems, the exponent for CPU ti
versus L for our algorithm and multicanonical ensemb
simulations are almost identical. Our results in Fig. 3 a
only for single-range random walks, and multiple-range ra
dom walks have been proven more efficient for larg
systems.

IV. APPLICATION TO A SECOND-ORDER
PHASE TRANSITION

The algorithm we proposed in this paper is very efficie
for the study of any order phase transitions. Since
method is independent of temperature, it reduces the crit

FIG. 3. Tunneling timest for the Q510 Potts model for our
random walk algorithm in energy space, and for an ideal rand
walk in real space, for the multicanonical ensemble method, and
the heat bath algorithm. The solid lines show the ideal case w
t(NE);NE .
1-8



si
hm
y
-

o
o
n

n

te
f
a
th

i-

m
to

e
un
ee
o
s
nl
u

y

fo
f
in
th
m
-

rg

n
t

urs

ion
ng
u-
ery
at

rgy
tes.
2
the
be-
en-

f-
error
ted
alks

n
tion
en-
left
of

the
nly
the

of
om
we
en-
cu-

in
we
the

h-

DETERMINING THE DENSITY OF STATES FOR . . . PHYSICAL REVIEW E 64 056101
slowing down at the second-order phase transitionTc and
slow dynamics at low temperature. We estimate the den
of states very accurately with a flat histogram, the algorit
will be very efficient for general simulational problems b
avoiding the need for multiple simulations at multiple tem
peratures.

To check the accuracy and convergence of our meth
we apply it to the 2D Ising model with nearest neighb
interactions on aL3L square lattice. This model provides a
ideal benchmark for new algorithms@24,35,36# and is also an
ideal laboratory for testing theory@5,37#. This model can be
solved exactly, therefore we can compare our simulatio
results with exact solutions.

In Fig. 4, we show our estimation of the density of sta
of Ising model on 2563256 lattice. Since the density o
states forE.0 has almost no contribution to the canonic
average at finite positive temperature, we only estimate
density of states in the regionE/NP@22,0.2# out of the
whole energy@22,2#. To speed up our calculation, we d
vide the desired energy region@22,0.2# into 15 energy seg-
ments, and estimate the density of states for each seg
with independent random walks. The modification fac
changes from f 05e1.2.718 28 . . . to f final5exp(1027)
.1.000 000 1, . . . ,. Theresultant density of states can b
joined from adjacent energy segments. To reduce the bo
ary effects of the random walk on each segment, we k
about several hundred overlapping energy levels for rand
walks on two adjacent energy segments. The histogram
random walks are shown in the inset of this figure. We o
require a flat histogram for each energy segment. To red
the error of the density of states relevant to the accurac
the thermodynamic quantities nearTc we optimize the pa-
rameter and perform additional multiple random walks
the energy rangeE/NP@21.8,21# with the same number o
processors. For this we use the density of states obta
from the first simulations as starting points and continue
random walk with modification factors changing fro
exp(1026).1.000 001 to exp(1029).1.000 000 001. The to
tal computational effort is about 9.23106 visits on each en-
ergy level. Note that the total number of possible ene

FIG. 4. Density of states (log10@g(E)#) of the 2D Ising model
for L5256 ~multiple range random walks!. The overall histogram
of the random walk is shown in the inset.
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levels is N21 and we perform random walks only o
@22,0.2# out of @22,2#. The real simulational effort is abou
6.13106 MC sweeps for the Ising model withL5256. With
the program we implemented, it took about 240 CPU ho
on a single IBM SP Power3 processor.

The density of states in Fig. 4 is obtained by the condit
that the number of ground states is two for the 2D Isi
model~all up or down!. This condition guarantees the acc
racy of the density of states at low energy levels that are v
important in the calculation of thermodynamic quantities
low temperature. With this condition, whenT50, we can get
exact solutions for internal energy, entropy, and free ene
when we calculate such quantities from the density of sta
If we apply the condition that the total number of states isN

for the ferromagnetic Ising model, we cannot guarantee
accuracy of the energy levels at or near ground states
cause the rescaled factor is dominated by the maximum d
sity of states.

For L5256, we perform multiple random walks on di
ferent energy ranges, and one problem arises, that is the
of the density of states due to the random walk in a restric
energy range. We perform three independent random w
in the rangesE/N5@21.7,21.2#, E/N5@21.8,21.1#, and
E/N5@21.9,21.0# to calculate the densities of states o
these ranges. In Fig. 5, we show the errors of our simula
results from the exact values. We make our simulational d
sities of states match up with the exact results at the
edges. It is very clear that the width of the energy range
the random walks is almost not relevant to the errors of
density of states. The reason is that the random walks o
require the local histogram to be flat as we discussed in
previous section.

To study the influence of the errors of the densities
states on the thermodynamic quantities calculated fr
them, in the energy range that we perform random walks,
replace the exact density of states with the simulational d
sity of states. In the inset of Fig. 5, the specific heat cal

FIG. 5. The errors in the density of states for random walks
different energy ranges for the 2D Ising model. In the inset,
show the specific heats calculated from the density of states for
random walk in the rangesE/N5@21.9,21.0# ~solid line!, the ex-
act density~dotted line!, and the density of states that the two hig
est energy entries are deleted forE/N5@21.9,21.0# ~dashed line!.
1-9
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FUGAO WANG AND D. P. LANDAU PHYSICAL REVIEW E64 056101
lated from such density of states is shown as a function
temperature. We also show the exact value with the sim
tional data, the difference is obvious. To reduce the bound
effect, we delete the last two density entries, and insert th
into the exact density of states again, then the differe
between exact~dotted line! and simulational date~long
dashed line! is not visible with the resolution of the figure
With our test in the three different ranges of energy, it
quite safe to conclude that the boundary effect will not
present in our multiply random walks if we have a couple
energy levels overlap for adjacent energy ranges. In our
simulations for large systems, we have hundreds of over
ping energy levels.

Since the exact density of states is only available on sm
systems, it is not so interesting to compare the simulatio
density of states itself. The most important thing is the ac
racy of estimations for thermodynamic quantities calcula
from such density of states on large systems. With the d
sity of states on large systems, we apply canonical ave
formulas to calculate internal energy, specific heat, free
ergy, and entropy. Ferdinand and Fisher@38# obtained the
exact solutions of above quantities for the 2D Ising model
finite-size lattices. Our simulational results on finite-size l
tice can be compared with those exact solutions.

The internal energy is estimated from the canonical av
age over energy of the system as Eq.~5!. The exact and
simulational data perfectly overlap with each other in a w
temperature region fromT50 to T58. A stringent test of
the accuracy is provided by the inset of Fig. 6, which sho
the relative errors«(U). Here, the relative error is general
defined for any quantityX by

«~X![
uXsim2Xexactu

Xexact
. ~10!

With the density of states obtained with our algorithm, t
relative error of simulational internal energy forL5256 is
smaller than 0.09% for the temperature region fromT50 to
8. From Eq.~5!, it is very clear that the canonical distribu
tion serves as a weighting factor, and since the distributio
very narrow,U(T) is only determined by a small portion o
the density of states.~For theL550 2D Ising model atTc ,
only the density of states forE/NP@21.6,21.2# contributes
in a major way to the calculation.! Therefore the error«(U)
is also determined by the errors of the density of states in
same narrow energy range.

The entropy of the 2D Ising model can be calculated w
Eq. ~9!. In Fig. 6~b!, the simulational data and exact resu
are presented in the same figure. With the scale in the fig
the difference between our simulational data and exact s
tions are not visible. In the inset of Fig. 6~b!, the relative
errors of our simulational data are plotted as a function
temperature. For the Ising model on a 2563256 lattice, the
relative errors are smaller than 1.2% for all temperat
range. Very recently, with the flat histogram method@39# and
the broad histogram method@18–20#, the entropy was esti
mated with 107 MC sweeps for the same model on 32332
lattice; however, the errors in Ref.@21# are bigger than our
errors for 2563256.
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V. APPLICATION TO THE 3D ÁJ EA MODEL

Spin glasses@40# are magnetic systems in which the in
teractions between the magnetic moments produce frus
tion because of some structural disorder. One of the simp
theoretical models for such systems is the Edwar
Anderson model~EA model! @41# proposed twenty five year
ago. For such disordered systems, analytical methods
provide only very limited information, so computer simul
tions play a particularly important role. However, because
the rough energy landscape of such disordered systems
relaxation times of the conventional Monte Carlo simulatio
are very long. The dynamical critical exponent was estima
as large asz.6 @42–44#. Normally, simulations can be per
formed only on rather small systems, and many proper
concerning the spin glasses are still left unclarified@45–52#.

In this paper, we consider the three-dimensional6J Ising
spin glass EA model. The model is defined by the Ham
tonian

H52(
^ i , j &

Ji j s is j , ~11!

FIG. 6. Thermodynamic quantities for the 2D Ising model c
culated from the density of states. Relative errors with respect to
exact solutions by Ferdinand and Fisher are shown in~a! for inter-
nal energyU, ~b! for entropyS.
1-10
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TABLE II. Estimates of entropy (s0) and internal energy (e0) per lattice site at zero temperature for th
3D EA model by our method and the multicanonical method~MUCA! @15#.

Size Our method MUCA
L s0 e0 s0 e0

4 0.07560.027 21.73460.006 0.072460.0047 21.740360.0114
6 0.06160.025 21.76760.024 0.048960.0049 21.774160.0074
8 0.049360.0069 21.77960.016 0.045960.0030 21.782260.0081

12 0.053460.0012 21.78060.012 0.049160.0023 21.784360.0030
16 0.057560.0037 21.775860.0041
20 0.055660.0034 21.774560.0043
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wheres is an Ising spin and the couplingJi j is quenched to
61 randomly. The summation runs over the neare
neighborŝ i , j & on a simple cubic lattice.

One of the most important issues for a spin-glass mode
the low-temperature behavior. Because of the slow dynam
and rough phase-space landscape of this model, it is also
of the most difficult problems in simulational physics. Th
algorithm proposed here is not only very efficient in estim
ing the density of states but also very aggressive in find
the ground states. From a random walk in energy space
can estimate the ground-state energy and the density of s
very easily. For a spin-glass system, after we finish the r
dom walk, we can obtain the absolute density of states by
condition that the total number of states is 2N. The entropy at
zero temperature can be calculated from eitherS0
5 ln@g(E0)# or lim

T→0
U2F/T, where E0 is the energy at

ground states. Both relations will give the same result si
U andF are calculated from the same density of states. O
estimates fors05S0 /N ande05E0 /N per lattice site, listed
in Table II, agree with the corresponding estimates m
with the multicanonical method. With our algorithm, we c
estimate the density of states up toL520 by a random walk
in energy space for few hours on a 400 MHz processor.

If we are only interested in the quantities directly relat
to the energy, such as free energy, entropy, internal ene
and specific heat, one-dimensional random walk in ene
space will allow us to calculate these quantities with a h
accuracy as we did in the 2D Ising model. However
spin-glass systems, one of the most important quantitie
the order parameter that can be defined by@41#

qEA~T![ lim
t→`

lim
N→`

q~T,t !, q~T,t ![K (
i 51

N

s i~0!s i~ t !/NL .

~12!

Here,N5L3 is the total number of the spins in the systemL
is the linear size of the system,q(T,t) is the autocorrelation
function, which depends on the temperatureT and the evo-
lution time t, andq(T,0)51. Whent→`, q(T,t) becomes
the order parameter of the spin glass. This parameter t
the following values:

qEA~T!H 51 if T50

50 if T>Tg

Þ0 if 0,T,Tg .

~13!
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The value atT50 can be different from one in the cas
where the ground state is highly degenerate.

In our simulation, there is no temperature introduced d
ing the random walk. And it is more efficient to perform
random walk in single system than two replicas. So
order-parameter can be defined by

q[K (
i 51

N

s i
0s i /NL , ~14!

where$s i
0% is one of spin configurations at ground states a

$s i% is any configuration during the random walk. The b
havior of q we defined above is basically the same as
order parameter defined by Edwards and Anderson@41#. It is
not exact same order-parameter defined by Edwards
Anderson, but was used in the early numerical simulatio
by Morgenstern and Binder@53,54#.

After first generating a bond configuration, we perform
one-dimensional random walk in energy space to find a s
configuration$s i

0% for the ground states. Since the order p
rameter is not directly related to the energy, to get a go
estimate of this quantity we have to perform a tw
dimensional random walk to obtain the density of sta
G(E,q) with a flat histogram inE-q space. This also allows
us to overcome the barriers in parameter space~or configu-
ration space! for such a complex system. The rule for the 2
random walk is the same as the 1D random walk in
energy space.

With the density of statesG(E,q), we can calculate any
quantities as we did in the previous sections. It is very int
esting to study the roughness of this model. First, we st
the canonical distribution as a function of the order para
eter

P~q,T!5(
E

G~E,q!e2E/kBT. ~15!

In Fig. 7~a!, we show a 3D plot for the canonical distr
bution at different temperatures for one bond configurat
of L56 EA model. At low temperatures, there are fo
peaks, and the depth of the valleys between peaks dep
upon temperature. When the temperature is high, the m
tiple peaks converge to a single central peak. Because we
the linear scale to show our result in Fig. 7~a!, it is not clear
how deep the dips among peaks are. In Fig. 7~b!, we show
1-11
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the canonical distribution using logarithmic scale for t
same distribution but only atT50.5, and we find that the
dips are as deep as 1024. We also noted there actually are s
peaks, but the plot with a linear scale does not show al
them because two are as small as 1023 compared to other
four peaks.

In Fig. 8~a!, we show the roughness of the canonical d
tribution for another realization on an 83 lattice. Because of
the wide variation in the distribution at low temperature, w
used a logarithmic scale: the relative size of dips are as d
as 10230 at T50.1. There are several local minima even
high temperatures. With conventional Monte Carlo simu
tions, it is almost impossible to overcome the barriers at
low temperature, so the simulation will get trapped in one
the local minima as shown in the figure. With our algorith

FIG. 7. ~a! Overview of the rough topology of the canonic
distribution in the order-parameter space for one bond configura
of the 3D EA model on anL56 simple cubic lattice.~b! The
logarithmic plot for the canonical distribution as a function of t
order-parameter for the 3D EA model at the temperatureT50.5.
05610
f
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ep
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all states will be visited with more or less the same proba
ity and trapping is not a problem.

With the density of statesG(E,q), we also can calculate
the energy landscape by

U~q,T!5

(
E,q

EG~E,q!e2bE

(
E,q

G~E,q!e2bE

. ~16!

In Fig. 8~b!, we show the internal energy as a function
order parameter for temperaturesT50.1;2.0. We find that
the landscape is very rough at low temperatures. The rou
ness of the energy landscape agrees with the one for can
cal distribution. But the maxima in energy landscape are c
responding to the minima approximately in the canoni
distribution.

As we already noted in the previous paragraph, the rou
ness of the landscape of the spin-glass model makes the
ventional Monte Carlo simulation extremely difficult to ap
ply. Therefore, even a quarter of a century after the mo
was proposed, we even cannot conclude whether there
finite phase transition between the glass phase and the d
dered phase. With Monte Carlo simulations on a large s
tem (6423128) and a finite-size scaling analysis on a sm
lattice, Marinariet al. @55# expressed doubt about the exi
tence of the ‘‘well-established’’ finite-temperature pha
transition of the 3D Ising spin glass@42,45#. Their simula-
tional data can be described equally well by a fini
temperature transition or by aT50 singularity of an unusua
type. Kawashima and Young’s simulational data could n
rule out the possibility ofTg50 @46#. Thus, even the exis
tence of the finite-temperature phase transition is still con
versial, and thus, the nature of the spin-glass state is un
tain. Although the best available computer simulation resu
@13,50,56# have been interpreted as a mean-fieldlike behav
with replica-symmetry breaking~RSB! @57#, Moore et al.
showed evidence for the droplet picture@58# of spin glasses
within the Migdal-Kadanoff approximation. They argue
that the failure to see droplet model behavior in Monte Ca
simulations was due to the fact that all existing simulatio
are done at temperatures too close to transition tempera
so that system sizes larger than the correlation length w
not used. As discussed in the previous paragraph, the lo
the temperature is, the rougher the canonical distribution
energy landscape are; hence, it is almost impossible for c
ventional Monte Carlo methods to overcome the barrier
tween local minima and globe minima. It is possible to he
the system up to increase the possibility of escape from lo
minima by simulated annealing and the more recent sim
lated tempering method@59# and parallel tempering metho
@60,61#, but it is still very difficult to perform equilibrium
simulations at low temperatures. Very recently, Hatano a
Gubernatis proposed a bivariate multicanonical Monte Ca
method for the 3D6J spin-glass model, and their result als
favors the droplet picture@16,62#. Marinari, Parisiet al. ar-
gued, however, that the data were not thermalized@56#. The
nature of spin glasses thus remains controversial@49#.

n

1-12
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FIG. 8. ~a! The canonical dis-
tribution P(q) as a function of the
order parameter for one bond con
figuration of the 3D EA model on
anL58 simple cubic lattice at the
temperatureT50.1;2.0. ~b! Cor-
responding energy landscape
U(q,T) at different temperatures
na
d
th
t

de
s
a

ta

all
ver

l
rily
und
der
The algorithm proposed in this paper provides an alter
tive for the study of complex systems. Because we nee
calculate the order parameter with high accuracy, and
quantity is not directly related to the energy, we need
perform a random walk in the two-dimensional energy-or
parameter space. After we estimate the density of state
this 2D space, we can calculate the order parameter at
temperature from the canonical average. In Fig. 9~a!, we
show our results for the 3D EA model forL54, 6, and 8.
Because we need to perform a 2D random walk with a to
05610
-
to
is
o
r
in
ny

l

of aboutL6 states, the simulation is only practical for a sm
system (L<8). The results in the figure are the average o
100 realizations forL54, 50 realizations forL56, and 20
for L58.

We notice that the behavior of^q(T)& is very similar to
the magnetization~the order parameter for the Ising mode!,
but the finite value at low temperature is not necessa
equal to one because of the high degeneracy of the gro
state for the spin-glass model. The fluctuation of the or
parameter at the different temperatures forL54, 6, and 8 is
1-13
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shown in the inset of the figure.
To estimate the transition temperature of the spin-gl

system, we calculated the fourth-order cumulant as a fu
tion of temperature. In Fig. 9~b!, we show our simulationa
results forL54, 6, and 8. All curves clearly cross aroun
Tg51.2. Below this temperature, the spin configurations
frozen into some disorder ground state and the order par
eter assumes a finite value. Above this temperatureTg , the
system is in a disordered state and the order param
vanishes.

One complication for simulation of such random syste
is the determination of the relative importance of the er
due to the simulation algorithm and the error due to the fin
sampling of bond distributions. From Figs. 9~a! and 9~b!, we
cannot tell what the origin of the error bars is so we a
performed multiple independent simulations for the sa
bond configuration on anL56 3D EA model. We found tha
the statistical errors for the order parameter and the fou
order cumulant from these simulations were much sma
than the error bars shown in Figs. 9~a! and 9~b! for all

FIG. 9. Properties of the 3D EA spin glass model calcula
from the density of statesG(E,q) resulting from a 2D random walk
in energy-order parameter space:~a! The order parameter vs tem
perature.~b! The temperature dependence of the fourth order cu
lant of the order parameter. The cumulants for different lattice s
cross aroundTc51.2.
05610
s
c-

e
m-

ter

s
r
e

o
e

h-
r

temperatures. We conclude that the error bars in the fig
arise almost completely from the randomness of the syst

The computational resources devoted here to the
model were not immense. All our simulations for one bo
configuration (L54, 6, and 8! were performed within two
days on~multiple! Linux machines (2002800 MHz) in the
Center for Simulational Physics. This effort should thus
viewed as a feasibility study, and substantially more eff
would be required to determine the nature of the spin-gl
phase or to estimate the transition temperature with high
curacy. Nonetheless, we believe that these results show
applicability of our method to systems with a rough lan
scape. Because the number of states is aboutN2 for 2D ran-
dom walks, such calculations not only require huge mem
during the simulation but also substantial disk space to s
the density of states for the later calculation of thermod
namic quantities.

VI. DISCUSSION AND CONCLUSION

In this paper, we proposed an efficient algorithm to c
culate the density of states directly for large systems.
modifying the estimate at each step of the random walk
energy space and carefully controlling the modification fa
tor, we can determine the density of states very accurat
Using the density of states, we can then calculate thermo
namic quantities at any temperature by applying simple
tistical physics formulas. An important advantage of this a
proach is that we can also calculate the free energy
entropy, quantities that are not directly available from co
ventional Monte Carlo simulations.

We applied our method to the 2DQ510 Potts model that
demonstrates a typical first-order phase transition. By e
mating the density of states with lattices as large
2003200, we calculated the internal energy, specific he
free energy, and entropy in a wide temperature region.
found a typical first-order phase transition with a ‘‘discon
nuity’’ for the internal energy and entropy atTc . The first
derivative of the free energy also shows such a discontin
at Tc . The transition temperature estimated from simu
tional data is consistent with the exact solution.

We also applied our algorithm to the 2D Ising mode
which shows a second-order phase transition. It was a
possible to calculate the density of states for a 2563256
lattice with a computational effort of 6.13106 Monte Carlo
sweeps. With the accurate density of states, we calculated
internal energy and entropy. For all temperatures betw
T50 andT58, the relative errors are smaller than 0.09
for internal energy, 1.2% for entropy.

The algorithm was also applied with success to the
6J EA spin-glass model for which we could determine t
roughness of the energy landscape and canonical distribu
in the order-parameter space. The internal energy and
tropy at zero temperature were estimated up to a lattice
203, and the transition temperature was estimated at ab
Tg51.2.

In this paper, we only concentrated the random walk
energy space~and order-parameter space!; however, the idea
is very general and we can apply this algorithm to any

d

-
s
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rameters@11#. The energy levels of the models treated he
are perfectly discrete and the total number of possible ene
levels is known before simulation, but in a general mo
such information is not available. Since the histogram of
random walk with our algorithm tends to be flat, it is ve
easy to probe all possible energies and monitor the histog
entry at each energy level. For some models where all p
sible energy levels can not be fitted in the computer mem
or the energy is continuous, e.g., the Heisenberg model
may need to discretize the energy levels. According to
experience on discrete and continuous models, if the t
number of possible energies is around the number of lat
sitesN, the algorithm is very efficient for studying both firs
or second-order phase transitions.

In this paper, we only applied our algorithm to simp
models, but since the algorithm is very efficient even
large systems it should be very useful in the studies of g
eral, complex systems with rough landscapes. It is cle
however, that more investigation is needed to better de
mine under which circumstances our method offers subs
tial advantage over other approaches and we wish to enc
age the application of this approach to other models.

Note added in proof. Recently, we learned about Ref
,

.
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z.

u
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@63,64# from the authors, who estimated the density of sta
from the histogram of microcanonical simulations. To get
accurate density of states over all the energy range, t
performed independent simulations in multiple small w
dows in energy space. Their method is similar to o
multiple-range random walk, but our random walk algorith
maintains a flat histogram even in small windows in ene
space. They have successfully estimated the density s
for the L510, 3D Ising model with the nearest-neighb
interactions@63# and theL51000, 1D Ising model with
long-range interactions@64#.
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