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Abstract. We introduce a simple method to compute free energy differences employing Jarzynski identity in 
conjunction with Wang – Landau algorithm. We demonstrate this method on Ising spin system by comparing the results 
with those obtained from canonical sampling.  
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INTRODUCTION 

Calculation of free energy differences has become 
very important in different fields of science. This is 
because free energy determines the behaviour of the 
systems, like polymer conformational changes, ligand 
attachment to protein, drug designing and many more. 
Several methods have been proposed to calculate free 
energy differences between two equilibrium states of a 
system. These include methods based on perturbation 
[1], thermodynamic integration [2] and adaptive 
integration [3] which are categorised as equilibrium 
sampling methods. Jarzynski identity [4], Crooks 
fluctuation theorem [5] and fast switching method [6] 
are known as nonequilibrium sampling methods. 
Another way of estimating free energy differences is 
by using path-sampling ensembles [7]. Jarzynski 
identity (JI) is the first nonequilibrium sampling 
method that was proposed. JI is given by 
                       FW ee                      (1) 

where 
TkB

1  with Bk  Boltzmann constant and T 

the temperature; W is the work done on the system. 
The advantage of this method over equilibrium 
sampling methods is that the system need not be in 
equilibrium or near equilibrium during the process. 
However it should be in equilibrium at the beginning 
of the process. It has been shown that the results 
obtained from JI suffer from large statistical 
fluctuations during the instantaneous switching 
process due to the biasing in unidirectional averaging. 

This is usually overcome by applying Bennet 
averaging [8] to JI. In this paper, we introduce a way 
to calculate ΔF using JI from an entropic ensemble 
generated by employing Wang-Landau algorithm [9]. 
We show that despite instantaneous switching, the 
results obtained from our method do not suffer from 
large statistical fluctuations. 

NON – BOLTZMANN MONTE CARLO 
SIMULATION  

The proposed method consists of two steps. In the 
first step, we estimate the density of states (DoS) 
denoted by g(E) using Wang - Landau algorithm. In 
the second step we unweight the entropic ensemble to 
a uniform ensemble and reweight it to a canonical 
ensemble; the quantity )exp( W  is obtained by 
averaging over the canonical ensemble. Here W 
denotes the work done by instantaneous switching. 
Estimation of g(E) is done as follows. 

 
At first, we set g(Ei)=1,  i  and H(Ei)=0  i. H is 

the histogram of visited microstates. Consider an 
initial microstate Ci. Calculate the energy of the 
configuration, say Ei. Generate a trial configuration Ct 
by making a small change in Ci. For example, flip a 
randomly selected spin in case of Ising spin system or 
change the position of a monomer in case of polymers. 
Calculate energy of the trial state say Et. We accept 
this trial state with the probability p given by, 
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If trial state is accepted, Ci+1 →Ct; we update the DoS 
and histogram corresponding to trial state as 

0)()( fEgEg tt  
1)()( tt EHEH  

where f0 is called Wang-Landau factor. Usually we 
take f0 as exp(1). If trial state is rejected, Ci+1→Ci and 
we update the DoS and histogram accordingly. This 
constitutes a Monte Carlo step. N such Monte Carlo 
steps constitutes a Monte Carlo sweep, where N is size 
of the system under consideration. We carry out 
several Monte Carlo sweeps. Typically we check for a 
flat histogram after every 10,000 Monte Carlo sweeps. 
We say a histogram is flat when the highest and lowest 
of its entries do not differ from each other by more 
than 20%. When the histogram is flat we stop. This 
constitutes one Wang – Landau iteration. We reduce 
modification factor to 01 ff  and reset 

histogram 0)( iEH i , and carry out the Wang – 
Landau run with f1. We repeat this till fn takes a value 
close to unity. We collect converged DoS, g(Ei) and 
use to generate an entropic ensemble. In the 
production run, we start with a random configuration 
C0 and generate a sequence of microstates  

C0→C1→C2→C3→…Ci→Ci+1→... CN 
employing Wang – Landau algorithm with converged 
DoS g(Ei). We do not update DoS in production run. 
After generating every microstate we calculate the 
possible work done on the system with the desired 
applied external field and collect W(Ci)=Wi i and 
also the energy of that microstate E(Ci)=Ei  i. 

Calculation of Free Energy Differences 

Once we collect an ensemble of microstates 
belonging to an entropic ensemble, ΔF can be 
calculated using JI  as follows. 
We unweight (divide with g(E)-1) and reweight 
(multiply with Boltzmann factor).  The average of 

)exp( W  over canonical ensemble is calculated after 
applying and reweighting factors, see below. 

C

C
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In the above C belongs to entropic ensemble. Then we 
calculate ΔF using JI. 

The advantage of this method is, with the 
converged DoS, we can perform a production run with 
different applied fields and calculate ΔF at any desired 
temperature. Since DoS contains whole information of 
the system, the ΔF calculated with this method is 

statistically accurate despite instantaneous switching. 
We have applied above described method to a Ising 
spin system [10]. We have also calculated ΔF through 
JE and Crooks fluctuation theorem employing 
canonical sampling method. 

CANONICAL MONTE CARLO 
SIMULATION 

In this section, we describe canonical sampling 
method which is often used to calculate ΔF through JI. 
First we equilibrate the system at desired temperature 
using metropolis algorithm [11]. Consider a microstate 
C0 from equilibrium ensemble and calculate energy E0. 
Apply small external field ΔƐ. Calculate the energy E1. 
The difference between E1 and E0 gives small work 
done 1 . This we call a work step. Then we perform a 
Monte Carlo sweep with the field ΔƐ. In canonical 
sampling, the acceptance probability 
is )]}(exp[,1min{ it EEp , where Et and Ei 
are energies of trial and current states. This 
acceptance/rejection step is called Monte Carlo step 
and N Monte Carlo steps constitutes a Monte Carlo 
sweep. This is called a heat step. We perform alternate 
work and heat steps till external field Ɛ reaches 
predetermined value, say Ɛf. Let n be the number of 
work steps required to switch the field from an initial 
value of Ɛ0 to a final value Ɛf. In other words, 

nf 0n  

where nf )( 0
. n is called switching time. if n 

is small, the process is irreversible; when n →∞, we 
get a quasi-static reversible process. We have, 

                              
n

i
iW

1
                    (4) 

We carry out the simulation independently for a large 
number of times with the same switching protocol and 
construct an ensemble }{ iW  of work values from which 
we calculate the free energy difference using JI. In the 
simulation we have taken 00 and 1.0f . The 
size of the Monte Carlo ensemble is one million. 

ISING SPIN SYSTEM 

We have considered an 3232  Ising spin system 
on a square lattice to demonstrate the both the methods 
described above. A spin takes a value of +1 if it points 
upwards and -1 if it points downwards. The interaction 
energy between two spins Si and Sj which are located 
at nearest neighbour sites i and j is given by 

jiij SJS , where J is the strength of spin-spin 
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interaction. For a two dimensional lattice, each spin 
interacts with four nearest neighbours. The total 
energy of the system is given by  
                          

ji
ji SSJH

,

                    (5) 

where ji,  denotes that i and  j are nearest neighbour 
sites and the summation runs over all the distinct  
nearest neighbour pairs with periodic boundary 
conditions. 
 

RESULTS AND DISCUSSIONS 

We have calculated the free energy differences at 
various temperatures through JI using both the non – 
Boltzmann and canonical sampling methods described 
above. Let WLF  and CF  be the free energy 
differences calculated from Wang – Landau algorithm 
and canonical sampling respectively. We have 
collected an entropic work ensemble of one million 
size to calculate WLF . In canonical sampling, for the 
applied field 1.0f , CF  converged for switching 

time 16n . In FIGURE 1, we have plotted WLF and 
CF  as a function of temperature. We observe that the 

results show a good agreement with each other. 
 

 
FIGURE 1.  Comparison between of free energy differences 
calculated from Jarzynski identity employing Metropolis and 
Wang – Landau algorithm at different temperatures. 

 
FIGURE 2 shows probability density of work for 

forward process W  and backward process W  
for switching times 16n  and 32n .  A Forward 
process is a process that described in canonical 
sampling method and the backward process similar to 
that described in canonical sampling method but in 
reverse direction i.e., we equilibrate the system at Ɛf 
and turn it to Ɛ0 and the remaining procedure is same. 
According to Crooks fluctuation theorem, free energy 
difference is given by the intersection of these two 

distributions. The ΔF obtained from these distributions 
is well matched with the value obtained from the 
proposed method. 
. 

 
FIGURE 2. Probability density of work for switching 
times n=16 and n=32 at temperature T=3. Dashed lines are 
for backward process and solid lines are for forward process. 

CONCLUSIONS 

In summary, we have proposed a simple method to 
calculate free energy differences using Jarzynski 
idenity employing Wang – Landau algorithm. We 
compared the results with those obtained from 
canonical Monte Carlo techniques and they are in very 
good agreement. 
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