Computational Information Theory and Inference Carlo Albert

Basic Principles

- Bayesian Statistics: prior, likelihood, posterior.
- The Monte Carlo Paradigm: noise vs. bias.
- Basic building blocks of samplers: transformations, weighting (importance sampling), acceptance/rejection.
- Exploring a high-dimensional potential
 - The Metropolis algorithm (Markov Chain Monte Carlo)
 - Gibbs sampling: local interactions.
 - o Adaptive (non-Markov) algorithms
 - Ensemble methods
- Hamiltonian Dynamics: Beyond random search.
 - o Hamiltonian Monte Carlo (HMC)
 - HMC for stochastic differential equations: path-integrals and separation of time.
- Thermodynamics: Entropy and learning.
 - Approximate Bayesian Computation (ABC)
 - Simulated Annealing ABC: learning with minimal entropy production [Albert et al. 2014].
 - o Summary Statistics: Machine Learning of thermodynamic state variables.
- Statistical Mechanics: Interacting particle systems as inference tool.
 - Field-theoretic description: Doi-Peliti formalism.
 - o Inference: particle filters and path-integral methods.