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Preface

Power dissipation in microprocessors has become the dominant obstacle to the
development of computation. A laptop computer can burn your lap because the
power dissipated (corresponding to the heat generated) per unit area by modern
microprocessors can be more than that of an electric range-top unit. To combat
dissipation and keep the power density at manageable levels is now the greatest
challenge facing the electronics industry today. Today, computing performance must
be traded against power dissipation, so that the measure of a computing system
is no longer based on speed, but on speed for a given energy input, and hence
energy dissipation. Therefore, an important question is whether there is a minimum
energy that must be dissipated to heat in a computational operation. The existence
of such a minimum would suggest that there are fundamental limits to progress in
computation. The underlying question is therefore one of the relationships between
energy and information.

Discussions of the link between information and energy have a long history,
going back to Maxwell’s demon, proposed in the nineteenth century as a challenge
to the second law of thermodynamics. Maxwell’s demon suggests that by making
a measurement, and then using the result of that measurement to perform a set of
reversible processes, the entropy of a system can be lowered without doing net work.
This is a violation of the second law, and discussions since then have tried to unravel
the issue of where the demon fails, so that the second law is preserved. In 1929,
Szilard proposed that when the demon does a measurement, some dissipation must
occur. In the 1960s Rolf Landauer proposed that dissipation to heat must occur
not as a result of measurement, but only if information is erased (destroyed), and
that if information is destroyed an energy of at least kBT ln2 must be dissipated,
where kB is the Boltzmann constant, T is the temperature, and ln is the natural
logarithm. This proposal has come to be known as Landauer’s principle. The energy
mentioned in Landauer’s principle, about 3 × 10−21 Joules at room temperature, is
a very small amount of energy, negligible compared to the energy dissipated in
real computers, so for decades discussions of Landauer’s principle were largely
academic, and always theoretical. From the beginning, Landauer’s principle has
been controversial, and many academic papers have been published discussing the
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validity of the principle. In his original paper, Landauer makes reference to entropy
in his derivations, suggesting a link between thermodynamics and information.
Much of the subsequent discussion of Landauer’s principle has revolved around
this possible link and its validity.

While the Landauer’s principle has long been a topic of academic debate, it
has gained new prominence recently due to the large amount of heat generated by
today’s computers. If Landauer’s principle is correct, there may be ways to build
computers that dissipate far less than today’s computers. If Landauer’s principle is
incorrect, there is a lower limit of heat that must be dissipated by a computer at each
step, which sets an unavoidable bound on how much heat a computer must produce.
To prove the validity of Landauer’s principle requires real-world tests, but only in
the last few years have experiments been done at energy levels that can provide a
valid test.

The answer to the question of the validity of Landauer’s principle has enormous
implications for future research directions in electronic devices and computers,
as well as for the electronics and computer industries. This book brings together
all sides of the discussions regarding Landauer’s principle and examines both
theoretical and experimental issues. Its six chapters are authored by leaders in
the discussions of energy use in computation and the physical underpinnings of
information.

The first four chapters are devoted to a discussion of the link between information
and thermodynamics. Chapter 1 starts with information theory and argues that
thermodynamics can be constructed as a specific application of information theo-
retic entropy to equilibrium physical systems, quantum and classical, and supports
Landauer’s principle. Chapter 2 offers a proof of Landauer’s principle from the
unitary quantum evolution of a physical system and the thermal environment.
Chapter 3 approaches the question from the point of view of the second law of
thermodynamics and highlights different notions of reversibility, including the role
of feedback, measurement, and control. Chapter 4 argues that, in fact, the connection
between information theoretic entropy and thermodynamic entropy is illusory. On
this account Landauer’s principle is false—a result of using the same word in two
quite different contexts. The last two chapters are primarily experimental. Chapter 5,
by Ciliberto and Lutz, which includes both experiment and theory, presents a recent
test of the Landauer’s principle, along with experiments involving the links between
information and energy. Chapter 6, by Orlov et al., presents another experimental
test of the Landauer’s principle and explores adiabatic reversible computing systems
that avoid the destruction of information.

Discussions of the relationship between energy and information, going on for
over 140 years, are more important now than ever. Computing systems, and the
demand for computation, have reached levels where the energy cost of information
can no longer be ignored as a mere academic issue. This book brings together a rich
discussion of the foundations of the link between energy and information, and the
implications this link has on the future development of computing systems.
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2 C. S. Lent

1 Introduction: What Is Information?

When we look out into the physical world, we do not see information. Rather, we
see the physical world and the way things are. Or at least that is what we can hope to
see, discern, reconstruct, or model, from evidence and experimentation. According
to our best theories, what we find in the physical world are particles and fields, or
perhaps more correctly: fields and the particles that are the quanta of those fields.

One use of the term “information” refers to this raw information—the state of
the physical world or part of it. Physics is naturally particularly concerned with raw
information. The second and actually more common use of the term “information”
denotes “encoded information.” This is information that supervenes on the raw
information and can be expressed in a set of symbols, or most fundamentally,
in bits. Encoded information is the domain of information theory. Connecting
the two, representing encoded information and information processing in physical
systems, is often the work of applied physics and electrical engineering. The
questions addressed here have principally to do with the nature of the application
of information theory to physical systems and the consequences of the physical law
for information processing procedures.

1.1 Raw Information

The particles and fields of the physical world may exist in a number of states,
permitted by the physical law, and the particular state of a specific physical system
can be specified by a set of numbers. An electron can have spin up (+1) or spin
down (−1) relative to a given magnetic field. Perhaps this particular rock was found
on the lunar surface at this particular lunar latitude and longitude with this mass and
composition. The x-component of electric field at a particular point in space has a
specific value this time. The electron may be found in the left well or the right well,
etc. The values which describe the state of a physical system are the raw information
contained in the physical system itself. The raw information is often quite a lot of
information. It might include, for example, the position, electron configuration, and
nuclear state of each and every atom (or subatomic particle) in a piece of material.

Separability In order to discuss the raw information present in a particular physical
system, it is necessary to conceptually separate the system from the rest of the
physical world. The simplest case of such a separation is one in which the system
is in fact completely isolated, with no physical coupling or entanglement to any
other system. More commonly, we rely on an approximate separation, wherein the
interaction with the environment may be minimal or at least can be reasonably well
characterized. In many cases, for example, the optical field couples the system to the
environment. Some of the details of the raw information about a rock on the moon
is flowing out into space as photons. The rock is also in thermal contact with the
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lunar surface, so the details of the motion of its individual atoms are being affected
by thermal fluctuations from the underlying material.

When a system is not perfectly isolated, like the moon rock, raw information can
flow to or from the environment. Some information is lost and other information
is gained. Micro-bombardment has perhaps altered the moon rock so that some
chemical information about its earlier constitution is no longer available. That infor-
mation may have moved out into the environment carried by the raw information in
photons and surface vibrations, for example. Moreover, information present in the
rock now perhaps includes historical information about the environment recorded
through the interactions with the environment over millennia. To the trained lunar
geologist, the fine structure still visible in the sample might preserve a record of a
previous cataclysm that occurred 4 billion years ago. So some raw information about
earlier events in the solar system has been transferred to and stored in the rock. The
information in the rock may exclude a vast number of historical scenarios. The mere
existence of the moon rock means that many conceivable historical sequences, such
as the sun exploding or a Mars-size planet colliding with the moon, did not occur.

Quantum mechanics makes separability of physical systems even more
challenging—we can only point to some of the issues here. Even an isolated system
will generally be in a quantum superposition state. Strictly speaking, such a system
has no values of dynamical variables like position, momentum, spin, or energy,
until one of these is measured. An isolated need not be in an energy eigenstate, for
example—in which case it is inaccurate to say that it “has” a particular value of
energy. Moreover a physical system can be quantum mechanically entangled with
the some or many parts of the environment. No complete description of the quantum
state of one part of an entangled system can be given. Some quantum information
is shared with other subsystems and is not local to any.

Is Information Conserved? If the physical system is not completely isolated,
then information is clearly not conserved in the system itself. As discussed above,
information can flow into or out from the system and so we cannot from the
current information reconstruct the past state of the system. It may be possible then
for two different past system states to evolve into one present state, for example
two different levels of excitation might relax to a single ground state. Many-to-
one dynamics are possible because of the environment which can, in this case
for example, absorb the excitation energy and with it information about the prior
state. Of course it may be that enough raw information is retained that a partial
reconstruction is possible. When we use a physical system as a memory device, it
is a requirement that some important aspects of the past can be inferred from the
current state, e.g., what was the bit most recently recorded?

In classical physics, if we imagine a complete description of an entirely isolated
system, or of the whole universe conceived as an isolated system, then raw
information is indeed conserved by the physical law. The classical mechanical
worldview of the world as reversible machinery in motion was famously expressed
by Laplace describing an “intellect” subsequently known as Laplace’s Demon:



4 C. S. Lent

We may regard the present state of the universe as the effect of its past and the cause of
its future. An intellect which at a certain moment would know all forces that set nature in
motion, and all positions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in a single formula the
movements of the greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would be present before
its eyes.1

Because the microscopic laws of classical physics are reversible, we can solve
the equations of motion forward or backward in time. In this sense, for an isolated
system the raw information is conserved. No new raw information is generated
internal to the system, and in virtue of being isolated, no raw information flows
in or out. For example, an isolated container of classical gas molecules has a current
state consisting of the positions and momenta of all the molecules. From this raw
information about the present, the past positions and momenta can be inferred by
solving the equations of motion backward in time.

Quantum mechanically for a fully isolated system, information is conserved
by unitary evolution of the quantum state vector and this is time-reversible. One
important caveat is that measurement of any quantity (which would presumably
require interaction with another system) breaks the isolation and thus destroys the
reversibility. Yet, measurements seem to happen all the time independent of humans,
though we do not understand in detail what is required to produce a measurement
event rather than just entanglement of the target system with the measurement
system.2 Measurement, which can be triggered by small environmental interactions,
forces a quantum system to choose a new state—an eigenstate of the operator
that corresponds to the measured quantity. New raw information, in the form of
measurement outcomes, is created, and old quantum information is destroyed.

1.2 Encoded Information

By the term “information” we most often mean what we refer to here as “encoded
information.” Consider a clay tablet on which someone has impressed arrow-shaped
indentations in different orientations, or a row of capacitors each of which holds
either zero charge or +Q, or a street sign on which has been painted the word
“Stop” or “Slow.” The raw information consists of the precise shape of the tablet
with its indentations, the presence or absence of electrons on each capacitor, the
configuration of paint pigment on the sign. The encoded information is also present,
but not as additional raw information. Encoded information supervenes on the
physical, raw information, through another element—the encoding scheme.

1Pierre Simon Laplace, A Philosophical Essay on Probabilities, 1814.
2This is the famous Measurement Problem in quantum mechanics. The term is immediately
misleading because prior to the measurement, a quantum system does not in general have an
underlying value of the measured result.
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An encoding scheme consists of a partition of the possible states of the physical
system, the raw information, and an association between each element of the
partition and abstract symbols. A particular arrangement of paint pigments is
associated with the symbol “S”. The partition is broad enough to include variations
in the precise shape of the pigment. The binary “1” might be associated with a
certain amount of positive charge stored on the capacitor, give or take a margin
of error. Some regions of the systems state space have no associated symbol—the
pigment is in an indiscernible pattern, or the amount of charge is too low to be
clearly significant. The usual encoding scheme partitions the space of possible raw
information states into areas representing symbols in a generalized alphabet, and a
broad region representing invalid, meaning nothing is encoded there.

Encoded information is deliberate. Encoded information is therefore observer-
dependent. For the information to be accessible requires access to both (a) the
physical system containing the raw information, and (b) the encoding scheme to
map the raw information onto a set of symbols. One or two lanterns are in the bell
tower. The raw information includes their detailed construction and precise position,
potentially down to the atomic level. The encoding scheme consists of the mapping
“one lantern” → “The British are coming by land” and “two lanterns” → “The
British are coming by sea.”

If one lacks knowledge of the encoding scheme, encoded information is at
least unavailable information and some would argue it is not information at all,
even though the raw information is present. Prior to discovering the Rosetta stone,
Egyptian hieroglyphics were just raw information—patterns on walls.

A standard disclaimer: information theory is not about the semantic content of a
string of symbols, it is only concerned with the “size” of the container. Consider the
two sentences below.

That man wears red hats.
All men wear black hats.

The second sentence conveys much more information than the first, in the colloquial
sense of meaningful and consequential knowledge. But because both sentences
contain the same number of symbols, they have the same information theoretic size
(at least prior to any further possible compression). Neither are we concerned with
the truth or falsity of the information as it is connected with the way things actually
are. The second sentence is certainly false. Information theory is not concerned with
categories like false information or disinformation.

Reversibility of an operation on bits (a computation) is a mathematical feature of
the operation. If one can correctly infer from the output of the operation what the
input symbols were, then we say the process is logically reversible. The Landauer
principle connects logical reversibility (input symbols can be inferred from output
symbols) to physical reversibility (the physical process can be run backwards to
reconstruct the input state). If raw information is transferred from the computational
system to the large and complex environment, it cannot be reconstructed and so has
been irreversibly lost.
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Biological Information DNA encodes information for the synthesis of proteins
with an encoding scheme involving “codons” composed of three-nucleotide
sequences. It is now common to describe many processes in living systems as
information systems—signaling, replication, sensing, transduction, etc. Information
here is usually encoded in structure (as in DNA or RNA) or through the varying
concentration of specific molecules. This is, of course, just a way of speaking at a
higher level about raw information in chemical reactions. We normally understand
this to be information conceived by analogy to that deliberately encoded by humans,
which is taken to be encoded information sensu stricto.

1.3 Present Strategy

Our goal here is to connect what we know about the evolution of raw information,
guided by the physical law, and the encoded information that supervenes on it. The
particular focus here is on the Landauer Principle that connects a logical erasure
of encoded information with the physical transfer of heat to the environment. Why
should that be? Both the logical process and the physical process involve the concept
of entropy. But entropy was defined as a physical thermodynamic and statistical
mechanical quantity by Clausius, Boltzmann, Gibbs, and von Neumann, and only
later defined by Shannon as an information theoretic quantity. Some argue that
information theoretic entropy has nothing to do with thermodynamic entropy so
that the Landauer Principle makes a category error simply because the two words
are identical [1]. Norton argues that mistaking unknown bits for a “bit gas” and
thereby confusing the two entropy concepts is simply silly [2].

To disentangle this requires several steps. The next section attempts to articulate
carefully the concept of probability, which has both information theoretic and
physical uses. Section 3 introduces the Shannon notion of entropy, here called the
Shannon measure of information (SMI) as a measure on a probability distribution.
The Jaynes principle of maximum entropy is then used for the information theoretic
problem of constructing a probability distribution given limited knowledge about
outcomes that can be expressed as mathematical constraints. The results are of
immediately familiar to anyone acquainted with statistical mechanics. Section 4
follows Jaynes path in making the connection to physics. This can then be applied
to the Landauer Principle as discussed in Sect. 5. A key result here is a concrete
and specific calculation of entropy and heat flow in a minimal physical system.
The quantum formulation in Sect. 6 requires extension of the basic formalism to
open systems. The connection to Shannon entropy is made both through the usual
von Neumann entropy and through the less-familiar “entropy of outcomes.” The
quantum calculation of free expansion of a gas is revealing in this regard. By
grounding statistical mechanics explicitly in the information theoretic notion of
entropy, we can firmly establish the connections that make the Landauer Principle
clear and compelling.
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2 Probability

We first consider two classical systems.

System 1: A Fair Die A fair six-sided die is randomly cast on a table top. The
possible results are 1, 2, . . . , 6, and the probability of obtaining each result is
identical.

P1 = P2 = P3 = P4 = P5 = P6 = 1/6 (1)

System 2: An Ideal Gas We consider a monatomic gas with a very large number
N of non-interacting atoms (e.g., argon) in a volume V with pressure P . Let us
assume the system is in thermal contact with a heat bath with temperature T . A heat
bath is a system with thermodynamically many degrees of freedom that has long-
since stabilized all average measures. If the accessible microstates of the system are
enumerated and have energies Ei , then the well-known Boltzmann result (to which
we will return) is that the probability of finding the system in state j is

Pj = e−Ej /kBT

∑

j

e−Ej /kBT
. (2)

It is worth noting a few features of this basic description. We take it as understood
in the classical case that at any particular time a specific system indeed has a specific
state, and that the state which follows is determined by the previous state and the
physical law. At the moment I toss the die into the air it has a certain position, veloc-
ity, and angular momentum about some axis. Knowing that, as well as perhaps the
details of the air currents in the room and the landing surface properties, one could
imagine calculating the precise trajectory including any bouncing on the table. The
resulting motion, right through until the die settles on the surface, could in principle
be calculated, and was certainly determined at the moment the die left my hand.

Similarly, for the ideal gas: the positions and momenta of all the N particles
constitute the actual, objective, state of the system at a particular time. There is a
“fact of the matter” as to what the microstate of the gas (this liter of argon on my
desk) is right now. It is a practical impossibility for us to measure all these dynamical
quantities, particularly at the same instant, but they presumably exist.

We use the language and calculus of probabilities because we lack a complete
knowledge of the state and its change over time. The probabilities are therefore
“observer-relative.” A robotic die tosser with fairly precise launching techniques
might be able to predict, say, that the outcomes would more likely be a 4, 5, or
6. An observer who knew more microscopic information about the ideal gas could
reasonably assign a different set of probabilities to the microstates of the system.
Equation (2) represents the probabilities that any observer who knew only the
macroscopic quantities T , N , and V should assign to the microstates of the specific
system in front of them. It is not in that sense “subjective.” It does not depend on
who the observer is or on their emotional or mental state.
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Laplace’s demon, who knows the position and momentum of each particle in the
universe, has no need of probabilities. The physical law as understood in classical
mechanics enables the computation of all future states from a complete description
of the present state. It is a practical impossibility to make such a calculation, given
human limitations and also the limitations of the physical resources available in
the universe for computation. But the point of principle is important. The classical
universe is simply solving its equations of motion forward in time.

We are adopting a Bayes/Jaynes approach here that probabilities are to be
understood as numerical expressions of partial knowledge, incomplete information,
of a present state, or a future event. A probability P = 1 represents certain
knowledge that the event will occur, a probability P = 0 means the event certainly
will not occur, and a real value between 1 and 0 represents greater or lesser partial
knowledge that the event will occur. Equations (1) and (2) specify the probability
for a future measurements of the state of each system.

On the classical account, a measurement of the system (e.g., looking at the
die) reveals an existing fact of the system’s state that was true the instant before
the measurement occurred. Therefore, we do not need to distinguish between the
probability of a measurement event having a certain outcome and the system having
a certain state. We can equally well talk about the probability of the die being on
the surface with a 5 showing and the die being seen to be a 5, or revealed to be a 5
when a shaker cup is lifted. The quantum account, discussed in Sect. 6, is different.

Confirmatory evidence that a probability distribution was correct would be the
relative frequencies of many such measurements on many essentially identically
prepared systems. For the die of (1), that would take many tosses of a fair die. For
the thermodynamic case of (2), that means with the same macroscopic variables—
an ensemble average in the limit of many trials.

Another feature of this probabilistic analysis is revealed in the phrase “accessible
microstate.” There is always a background knowledge of the system which precedes
the assignment of probabilities and limits the set of possibilities considered to what
we will call the accessible region (AR). In the case of the die, for instance, we are
assuming that the die will in fact land on the table and have a face up. We decide to
ignore other possible sequences of events. Perhaps it falls off the table, bounces and
lands tilted up against a table leg with a corner of the die facing upward. Perhaps a
meteor impacts the table with catastrophic results before the die can land. For the
gas, we assume of course that the container doesn’t leak, that a passing ultra-high
energy cosmic ray doesn’t deposit extra energy in the gas, etc. A set of extremely
low-probability possibilities are removed from consideration at the outset, normally
without comment. The AR must be kept in mind because what constitutes “complete
ignorance” about the outcome is, as in the case of the die above, uniform probability
over the AR, not uniform probability over every conceivable outcome.3 We always
begin some background knowledge (Fig. 1).

3We will not wade into the subtler issues involved, but refer the reader to Chapter 12 of Jaynes [3].
The quantum treatment in Sect. 6 actually makes the choice of basis explicit, and therefore clarifies
the question: “Ignorance with respect to what?”
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Fig. 1 Schematic of
accessible region (AR) of
state space. Circles represent
possible system state and line
represents possible
transitions. Some state, those
shown outside the dotted line,
are reasonable to practically
ignore because they are either
too rare or difficult to access

3 Information Theory

3.1 SMI: The Shannon Measure of Information

Claude Shannon, considering the transmission of symbols in communication,
introduced a measure on a probability distribution which he called the entropy.
Using the term “entropy” was well-motivated, and was the course of action advised
by von Neumann, but it has resulted in some confusion. We will adopt the strategy of
Ben Naim and call this measure the Shannon Measure of Information (SMI) [4, 5].

The SMI characterizes a probability distribution P = [P1, P2, . . . , Pk, . . . , PN ]
by a real non-negative number, measured in bits, computed from the distribution.

SMI[P ] = −
N∑

k=1

Pk log2(Pk) (3)

The SMI is a measure of the amount of information, in bits, that one is missing if all
one knows about the current state or future outcomes is the probability distribution
P . If one outcome, say event 2, is certain, then P2 = 1 and Pk = 0 for all other k.
In that case the SMI is 0; there is no missing information. If all the probabilities are
equal, Pk = 1/N for all k and the SMI is log2(N) bits. If N is an even power of 2,
this is clear: N = 4 corresponds to 2 bits missing; N = 8 corresponds to 3 missing
bits, etc.

Figure 2a and b shows graphically the cases of a probability distribution among
eight outcomes for the case when the outcome is certain to be event 2

P(2) = [0, 1, 0, 0, 0, 0] SMI = 0 bits, (4)

and when all outcomes are equally likely:

Puniform =
[

1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8

]

SMI = 3 bits. (5)
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Fig. 2 Probability distributions and associated Shannon Measure of Information (SMI). (a) If
exactly one state has unit probability, then there is certainty about which state the system will
be found in and no information is missing; the SMI is 0. (b) The case of uniform probability for
eight possible states has an SMI= log2(8) = 3. (c) In general the probability distribution reflects
some missing information, but less than complete ignorance. The amount of missing information
is quantified by the SMI

Figure 2c shows the case when the probability distribution is

P = [0.15, 0.20, 0.30, 0.15, 0.05, 0.05, 0.05, 0.05] SMI = 2.67 bits. (6)

The SMI is intermediate between the uniform N = 4, SMI= 2 and the uniform
N = 8, SMI=3 cases. With this probability distribution we know something about
which events are likely to occur. There is an 80% chance that the result will be
events 1–4, for example. We have somewhat less missing information that if we
only knew Puniform. It is convenient that SMI could also stand for “Shannon Missing
Information.”
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3.2 SMI and the Question Game

To understand how the phrase “missing information” can have a precise meaning, it
is helpful to consider a variation of the game of 20 questions and see how the SMI
functions both to play the game and to make predictions. We consider the Question
Game in which a player called the chooser selects one of set of N numbered items
and the player called the questioner asks a series of yes/no questions with the object
of deducing the index of the item chosen with the fewest number of questions.

Suppose, for example, N = 8 and the chooser picks an item at random, i.e. the
probability for each choice is 1/8 as in Fig. 2b. One strategy for the questioner is to
ask “Is it 1?”, then “Is it 2?”, then “Is it 3?”, and so on. On average the questioner
would ask N/2 questions before learning the choice. This is, of course, a poor
strategy.

The optimal strategy for a uniform probability distribution is the familiar binary
search using repeated bipartitions. The questioner asks “Is the item in the set
{1, 2, 3, 4}?”, and if the answer is yes, asks “Is it in {3, 4}?”, and if the answer
is no, asks “Is it item 1?”, and thereby has determined the choice using only
three questions. This will work every time. The SMI of the uniform probability
distribution over eight choices, log2(8) = 3 bits, is the number of yes/no questions
one needs to ask to determine the choice using the optimal strategy. The amount
of missing information was initially 3 bits. With the answer to each question, the
questioner received an additional 1 bit of information, until finally there was no
information missing and the identity of chosen item was certain to the questioner.

Suppose the selector was not selecting entirely at random, but was making the
choice according to the probability distribution of Eq. (6) shown in Fig. 2c. We could
imagine that the chooser is randomly drawing numbered balls from a large container.
Each ball has a number [1, . . . , N ] on it but there are more 3’s than 2’s and so forth
according to the ratios in (6). The questioner knows the probability distribution. The
binary search as above is now not the optimal strategy. The set {1, 2, 3, 4} has a total
probability of 80%, so asking the first question as above seems like almost wasting
a question—the answer is not providing as much information.
The optimal strategy is now as follows:

1. Let the set S be the set of possible items {1, 2, . . . , N} and Pk, k = 1, 2, . . . N

be the probabilities that each item is selected.
2. Consider all possible bipartitions of the set S into two non-empty sets, Sleft and

Sright.
For each bipartition S → {

Sleft, Sright
}
:

(a) Sum the probabilities of the individual events in each set and renormalize to
get two numbers: Pleft and Pright that sum to 1.

(b) Calculate the SMI of the probability distribution for the bipartition Pbp =
[Pleft, Pright] using Eq. (3).

3. Choose the bipartition with the largest SMI and ask the chooser the question:
“Is the item in Sleft?”.
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4. If the answer is yes, replace S with Sleft.
If the answer is no, replace S with Sright.

5. Repeat from step (2) until there is only one item in the set S.

For our example using (6), an initial bipartition

S → {{1, 2, 3, 5}, {4, 6, 7, 8}}

has an SMI of 0.88129 but

S → {{3, 4, 5}, {1, 2, 6, 7, 8}}

has an SMI of 1.0, making the corresponding question a very productive question
whose answer yields a full bit of information.

Now we imagine the chooser and the questioner playing the game many times
with the same probability distribution P (we may suppose the numbered balls are
replaced as they are drawn). Many times the optimal bipartition of the remaining set
has an SMI of less than 1. Sometimes the questioner gets lucky and is able to deduce
the chosen item in 2 questions, and sometimes it takes 3 or 4. Over very many games,
what is the average number of questions required? One might have hoped the answer
would be SMI[P ], but it is not quite that simple. In one simulation, an average over
50,000 games yields an average number of questions

〈
Nq

〉 = 2.70, whereas the SMI
is 2.67. The constraint is actually

SMI[P ] <
〈
Nq

〉
< SMI[P ] + 1 (7)

which of course becomes relatively tight for large N .
We can interpret the series of yes/no answers in the game as 1’s and 0’s encoded

in a string stored in a binary register. (We will assume that we have compressed
the string using an optimal scheme—a Huffman code—so that common question
sequences are encoded with fewer bits than rare sequences.) The average number of
questions is bounded by SMI[P ]+ 1. Since the SMI need not be integer and we can
only have an integer number of bit positions in the register, we need to round up to
the nearest integer. We conclude that the average size of a binary register necessary
to specify a particular item choice, given probability distribution P , is

N(binary register) = ceil(SMI[P ] + 1). (8)

The SMI is a quantitative measure of missing information. It is helpful to keep
in mind which party is missing the information. Who is missing the information?
The chooser is holding the item in her hand. She is not missing any information, for
her there is complete certainty about what the chosen item is and the SMI is 0. It
is the questioner who is missing the information and relying on knowledge of the
probability distribution to ask good questions. The SMI in this case is a measure of
questioner’s missing information about the item, when his information about which
item is chosen is incomplete and characterized by probability distribution P .
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Jaynes makes this point about Shannon’s original problem of a sender transmit-
ting a message, encoded in a set of symbols, through a communication channel to
a receiver.4 The sender knows everything about the content of the message; there
is no probability distribution involved and no missing information for him. Prior to
getting the message, the receiver, by contrast, knows nothing about the content of
message, perhaps not even the language that the message will be in. Normally the
designer of the communication system does not know in advance what the specific
messages will be, but suppose the designer does know something about the message,
for example the language of the message and the probabilities of the occurrence of
each letter in that language. He can then use the SMI of that probability distribution
to create an efficient encoding scheme (i.e., a data compression algorithm). The
SMI of the language characterizes the incomplete information of the designer of
the information system. If the designer knows more about the messages, the SMI
is less and he can make an even more efficient system. The sender has complete
information, the receiver has no information (yet), and the designer has partial
information characterized by a probability distribution and its associated SMI.

3.3 Information Gain

For the Question Game above, the SMI characterized the initial missing information
of the receiver when all he knew was the probability distribution P (Eq. (6), Fig. 2c).
If the receiver had no information at all, the probability distribution he would have to
use is just the uniform probability Puniform of Eq. (5). We can therefore ask how much
information did he gain when he was given P . We define the information gained
from the knowledge of the probability distribution P as the difference between the
SMI (missing information) of Puniform and the SMI of P .

I [P ] ≡ SMI[Puniform] − SMI[P ] (9)

I [P ] = log2(N) +
N∑

k=1

Pk log2(Pk) (10)

We are here using the uniform probability distribution over the AR to represent
complete ignorance and asking how much information was gained by having been
given the probability distribution P . In information theory, this quantity is known
as the relative entropy of P with respect to P(uniform), or the Kullback–Leibler
divergence between the two [6].

4Jaynes [3], p. 634.
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3.4 Shannon Measure for Continuous Distributions

Can we define the SMI of a probability density P(x) defined for a continuous
outcome x?

A natural approach is to consider the SMI of a finite discretization of x ∈ [0, L]
at each point xk = kΔx. We note that the probability density P(x) will now have
the units inverse to the units of x. The probability of the event occurring in the small
interval of width Δx around xk is Pk = P(xk)Δx. The SMI on this discrete set of
N = (L/Δx) + 1 outcomes can be written

SMI[P Δx(x)] = −
∑

k

(P (xk)Δx) log2[(P (xk)Δx)]. (11)

If we try to take the limit of this expression as Δx → 0, however, this quantity
diverges.

Shannon suggested, but did not derive, the following expression, usually called
the differential entropy for a probability density P(x).

Sdiff[P(x)] = −
∫

P(x) log2[P(x)]dx (12)

This normally converges, but turns out to have several problems if it is interpreted as
a direct analogy to the discrete SMI: (a) the units of the expression are not correct,
(b) it can be negative for some distributions, (c) it is not invariant under a change of
variables, and (d) it does not smoothly match the discrete case in the usual Riemann
limit of (11).

The fundamental problem with formulating the amount of missing information,
an SMI, for a continuous distribution is simply that a particular value of x from a
continuous range takes an infinite amount of information to specify. There are an
infinite number of yes/no questions required to specify an arbitrary point on the real
axis. So the answer to the question “How much information is missing if all I know
is the continuous probability distribution P(x)?” turns out to be an infinite number
of bits.

It can be argued that for any physical system, the precision of measurement (or
quantum effects) limits the distinguishable values of the measurable x to a finite
discrete set, so (11) is always the relevant measure.

We can, however, clearly establish the related measure I [P(x)] for a continuous
distribution by analogy with (9). We take the probability density reflecting complete
ignorance to be the uniform distribution on the accessible regions x = [0, L] to be
Puniform(x) = 1/L. We can then define the information gain of P(x) for both the
continuous probability density and its finite discretization.

I [P(x)] = Sdiff[Puniform(x)] − Sdiff[P(x)] (13)
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I [P Δx(x)] = SMI[P Δx
uniform(x)] − SMI[P Δx(x)] (14)

Taking the difference removes the problems mentioned above and (14) is
numerically equivalent to a trapezoidal integration of (13) with a discretization of
Δx.

3.5 Jaynes Maximum Entropy Principle

Probability is an expression of incomplete information. Given that we have some
information, how should we construct a probability distribution that reflects that
knowledge, but is otherwise unbiased? The best general procedure, known as Jaynes
Maximum Entropy Principle (better would be: Maximum SMI Principle), is to
choose the probabilities pk to maximize the SMI of the distribution, subject to
constraints that express what we do know.

3.6 The Microcanonical Ensemble

The simplest case is the one in which we know nothing but the rule for
probabilities—that they must add up to 1.

Let us define the Shannon measure with the natural logarithm as the base, a
simple matter of multiplying by log(2) (we take log(x) to denote loge(x)). The
quantity of missing information represented by SMI is then measured in nats rather
than bits.

SMI ≡ log(2)SMI = −
∑

k

pk log(pk) (15)

We want to write a probability density P = {pk} that maximizes SMI(P ) subject
only to the constraint:

∑

k

pk = 1 (16)

Using the method of Lagrange multipliers we construct the Lagrangian

L (P, λ0) = −
∑

k

pk log(pk) − (λ0 − 1)

(
∑

k

pk − 1

)

(17)
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where 1 − λ0 is the Lagrange multiplier.5 We maximize L by setting the partial
derivatives with respect to each of the pk to 0. The equation ∂L /∂λ0 = 0 just
recovers Eq. (16).

∂

∂pk

L (P, λ0) = − log(pk) − 1 + 1 − λ0 = 0 (18)

The solution is then

pk = e−λ0 (19)

which is true for all k, so each probability is the same and, using (16) again, we have

∑

k

pk =
∑

k

e−λ0 = Ne−λ0 (20)

e−λ0 = 1

N
(21)

λ0 = log(N) (22)

pk = 1

N
. (23)

Thus our intuition that if we know nothing about the probability distribution
we should make all probabilities equal is recovered from the maximum entropy
principle. The value of SMI at this maximum is:

Smax
MI = −

∑

k

1

N
log

(
1

N

)

(24)

Smax
MI = log(N) (25)

The reader will recognize in Eq. (25) the famous Boltzmann expression for entropy
(S = kb log W ), without the Boltzmann constant. It also connects very simply to
the case in Fig. 2b where for N results with equal probability we have an SMI=
log2(N) = 3 bits, the size of the binary register needed to specify one outcome, and
the average number of yes/no questions needed to determine one result.

In terms of choosing balls from an urn our picture is this. An urn contains a
very large number of balls (many more than N ), each of which is labeled with a
number k ∈ {1, 2, . . . N}. There are the same large number of balls with each index,
so drawing a ball randomly from the urn picks one of possible results with equal
probability.

5The factor (1 − λ0) is used instead of λ0 to simplify the form of the result.
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3.7 The Canonical Ensemble

Here we consider that each ball in the urn has written on it both the index k

and a value of another quantity we will call A. The values of A are denoted
[a1, a2, a3, . . . aN ]. Every ball with a 1 on it has a1 written on it, and so for each
of the other indices. Suppose that we know the average value of the quantity A,
denoted 〈A〉. By average here we mean simply an average of the values obtained
from many repeated drawing of balls from the urn. What is the optimal (maximum
SMI) probability distribution pk that will yield the given average 〈A〉?

Following the maximization procedure, we maximize SMI (15) subject to the two
constraints:

1 =
∑

k

pk (26)

〈A〉 =
∑

k

pkak. (27)

We construct the Lagrangian, which now has Lagrange multipliers λ0 and λ1

L = −
∑

k

pk log(pk) − (λ0 − 1)

(
∑

k

pk − 1

)

− λ1

(
∑

k

pkak − 〈A〉
)

(28)

Maximizing L with respect to each pk , we obtain:

∂L

∂pk

= − log(pk) − 1 + 1 − λ0 − λ1ak = 0 (29)

with the result

pk = e−λ0e−λ1ak . (30)

We define

Z ≡ eλ0 (31)

or

λ0 = log(Z) (32)

We call Z the partition function. The probabilities can therefore be written

pk = e−λ1ak

Z
. (33)
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From the constraint (26) we require

∑

k

pk = 1 = 1

Z

∑

k

e−λ1ak (34)

so

Z =
∑

k

e−λ1ak (35)

and

pk = e−λ1ak

∑

k

e−λ1ak
(36)

which is the well-known Boltzmann distribution.
If we take the logarithm of Z, we obtain a way to express the constraint that the
average value of A is fixed.

∂

∂λ1
log(Z) = ∂

∂λ1

∑

k

e−λ1ak (37)

=
∑

k

(−ak)e
−λ1ak = −〈A〉

hence:

〈A〉 = − ∂

∂λ1
log(Z). (38)

We define

F ≡ − 1

λ1
log(Z). (39)

Now we can substitute the probability distribution (36) in the resulting probabil-
ity distribution to evaluate the value SMI at this maximum.

Smax

MI = −
∑

k

pk log(pk)
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= − 1

Z

∑

k

e−λ1ak log

(
e−λ1ak

Z

)

= − 1

Z

∑

k

e−λ1ak
[
log

(
e−λ1ak

) − log(Z)
]

= − 1

Z

∑

k

e−λ1ak (−λ1ak) + 1

Z

∑

k

e−λ1ak

︸ ︷︷ ︸
1

log(Z)

= λ1
1

Z

∑

k

e−λ1akak + log(Z)

Smax

MI = log(Z) + λ1 〈A〉 (40)

Notice the contrast between (40) and (25). For the case with no constraints,
the maximum SMI was log(N). The term log(Z) in (40) is the sum over the N

exponentials shown in (35), which rapidly decrease in magnitude. This term log(Z)

has a correspondingly much smaller value than log(N); the missing information is
much less. Equation (25) is recovered from (40) when λ1 = 0 and the distribution
is again uniform.

Writing Eq. (40) in terms of F we obtain

F = 〈A〉 − 1

λ1
Smax

MI . (41)

As an example, take the case of N = 8 and let the values of A be

a = [ 0.0, 1.0, 1.3, 2.1, 2.8, 3.4, 4.0, 6.0 ]. (42)

Suppose we know that 〈A〉 = 1.54. The probability distribution pk which
maximizes SMI is the exponential distribution (36) with λ1 = 0.4. This is the
probability which represents just the known facts: the probabilities must add to one
and the average value of A is given. Figure 3 shows the probabilities pk associated
with each of the values of ak .

There is a one-to-one relationship between λ1 and 〈A〉 given by Eqs. (27) and (36)
and shown in Fig. 4. As λ1 becomes large, the probability accumulates in the
lowest values of A. When λ1 = 0 we recover the uniform distribution. A large
negative λ1 results in more probability at the higher values of A. If all that is
known is 〈A〉, one must just read off the associated λ1 from Fig. 4 and assign the
probability distribution appropriately using (36). Any other probability distribution
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Fig. 3 The probability distribution pk which maximizes the Shannon entropy. In this
example we assume that each possible outcome of the quantity A is in the set a =
[ 0.0, 1.0, 1.3, 2.1, 2.8, 3.4, 4.0, 6.0 ]. The distribution shown is the one that maximizes the
Shannon information theoretic entropy SMI, subject to the constraint that the average outcome 〈A〉
is known to be 1.54. The result is a Boltzmann distribution (36) with the Lagrange multiplier λ1
(see (28)) equal to 0.4. This probability distribution uniquely captures only the known information.
Any other distribution with the same 〈A〉 would implicitly, and incorrectly, represent more
knowledge than simply knowing the average
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Fig. 4 For the example shown in Fig. 3, the expectation value (average) of the quantity A is shown
as a function of the Lagrange multiplier λ1. Equations (27) and (36) fix the relationship between
these quantities When λ1 is positive, the probability distribution is weighted toward small values
of A. When λ1 is negative, the probability distribution is weighted toward large values of A. When
λ1 is 0, the probability is uniform for all values of A
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would implicitly assume knowledge one does not actually have—it would put in
an incorrect, if unintentional, bias. (Tribus6 calls the Lagrange multiplier λ1 the
“temper” of the distribution, an act of dramatic foreshadowing [7]).

The procedure above can straightforwardly be extended to the case when each
result is labeled with the values of additional quantities that characterize the
outcome. If we have another quantity B with values bk and a known average
value 〈B〉, then we would obtain the corresponding exponential distribution with
an additional parameter λ2.

pk = e−(λ1ak+λ2bk )
∑

k

e−(λ1ak+λ2bk )
(43)

with

Z =
∑

k

e−(λ1ak+λ2bk ) (44)

and

〈B〉 = − ∂

∂λ2
log(Z). (45)

S max
MI = λ1 〈A〉 + λ2 〈B〉 + log(Z) (46)

The extension to any number of such quantities proceeds in the same way.

4 Classical Statistical Mechanics

We now turn to the application of the previous section to physical systems. The
main results of the previous section are familiar mathematical forms from statistical
mechanics. We consider now a physical system in equilibrium with a much larger
system and apply the analysis to derive thermodynamic results. It will then be
possible to see how to extend the analysis to metastable memory systems and
dynamic systems far from equilibrium.

6Myron Trebus’s thermodynamics text for engineers was an early attempt to popularize Jaynes
grounding of the field on Shannon information theory.
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Fig. 5 A physical system A and very large system B in thermal contact so that energy can flow
between them. The larger system B acts as a heat bath. In addition, Sect. 4.2 considers the case of
diffusive contact, in which both energy and particles can be exchanged between the systems

4.1 Statistical Mechanics of the Canonical Ensemble

Equilibrium with a Thermal Bath Consider a physical system A in thermal
contact and equilibrium with a second physical system B as shown schematically
in Fig. 5. By thermal contact we mean that the two systems can exchange energy
with each other. By equilibrium we mean that whatever transients occurred when
they were put in contact are now over and the expectation value of all physical
quantities are now time-independent. That this happens is based on our empirical
experience of the physical world. System B will represent a thermal bath with very
many (e.g., 1023) degrees of freedom.

Suppose A can exist in N states with energies [E1, E2, . . . Ek, . . . , EN ] and
similarly for the bath B. We allow that different states k and j may have the
same energy. The energy Ek of each state plays the role of the label on each ball
ak in urn described in the previous section. The energy of neither A nor B is
fixed because energy can fluctuate between them. Because of the fluctuations in
energy, system A can be found in states with different energies at different times.
The probabilities of finding system A in the kth state with energy Ek are denoted
P A = [p1, p2, . . . pk, . . . , pN ]. We define the average energy UA = 〈E〉A and
UB = 〈E〉B for each system.

The key assumption connecting information theory to physical systems is this:
We assume the probability of finding the physical system in the state Ek is the
same as the probability of randomly selecting from a set of Ek’s with a probability
distribution which maximizes the SMI for each system, given the constraints. Here
that the constraint is that the average energy is U .

The probabilities for each physical system are therefore given by the Boltzmann
probability distribution, Eq. (36), which we derived from applying Jaynes Principle,
a purely information theoretic result.
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Note that λ1 has the units of inverse energy. From (27) we have

UA =
∑

kA

pkA
E

(A)
kA

(49)

UB =
∑

kB

pkB
. E

(B)
kB

(50)

We now define the thermodynamic entropy S(U) of each physical system, A or
B, as kB log(2) times the maximal SMI.

S(U) ≡ kB log(2) SMImax ≡ kBSmax

MI (51)

The entropy S is a thermodynamic quantity defined at equilibrium. The SMI by
contrast can be calculated for any probability distribution whatsoever. In words, (51)
says:

The value of the thermodynamic entropy S(U) is kB log(2) times the amount of missing
information in the probability distribution that maximizes the (information theoretic) SMI,
given the constraint that the average energy is U .

The entropy is a so-called state function. It depends on U , the average energy but
is not determined by the history of the system prior to coming to equilibrium (we
can extend the dependence to other state variables like N and V ).

The conversion factor between the SMI (in units of bits) and the entropy S

(in units of energy/temperature) is kB log(2). We can think of this as the entropy
associated with 1 bit of missing information. The factor log(2) simply converts the
base of the logarithms from the bit-oriented log2 to the more conventional natural
logarithm. The Boltzmann factor kB reflects the historical and convenient choice of
a unit for temperature (which we will introduce below) in Kelvins rather than, say,
in Joules.

If the system A and the bath B are not strongly coupled together, we can assume
that the entropy S (and SMI) for the composite A+B system is the sum of the entropy
for each system.

SAB = SA + SB (52)
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This would not be true, for example, if the state of B simply mirrored the state of
A. This lack of correlation (in Shannon’s terms, mutual information) is part of what
we mean by being a thermal bath or reservoir—it has a vast number of degrees of
freedom that are independent of the system degrees of freedom.

Conservation of energy in the composite A+B system gives us the constraint

UAB = UA + UB. (53)

Relying on identification of the thermodynamic entropy with the maximum value of
SMI from Jaynes principle, we can apply Eq. (40) to each system:

SA = kB log(ZA) + kBλAUA (54)

SB = kB log(ZB) + kBλBUB (55)

Consider now a small energy fluctuation ΔU that increases the average energy
of A, and therefore must decrease the average energy of B by the same amount.

SAB = SA(UA + ΔU) + SB(UB − ΔU). (56)

We require that SAB be maximal under this variation and so expand each term to
first order.

SAB = SA(UA) +
(

∂SA

∂UA

)

ΔU + SB(UB) +
(

∂SB

∂UB

)

(−ΔU) (57)

Requiring that the first order change be zero then yields the stationary condition:

(
∂SA

∂UA

)

=
(

∂SB

∂UB

)

. (58)

Using Eqs. (54) and (55) to evaluate the partial derivatives, we find

λ
(A)
1 = λ

(B)
1 . (59)

At this point we define the temperature to be inversely proportional to the Lagrange
multiplier λ1 associated with the average energy constraint.

1

kBT
≡ λ1 (60)

So (59) gives us that in equilibrium between the two systems

TA = TB. (61)
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and, using (54) and (55) again, gives us

1

T
=

(
∂S

∂U

)

. (62)

The Boltzmann distribution and the thermodynamic partition function for each
system are then given by

pk = 1

Z
e−Ek/kBT (63)

where

Z =
∑

k

e−Ek/kBT . (64)

The average energy U is given by

U = 〈E〉 = − ∂

∂β1
log(Z) (65)

or

U = kBT 2 ∂

∂T
log(Z) (66)

The information theoretic expression in (41) now becomes the definition of the
Helmholtz free energy,

F ≡ −kBT log(Z) (67)

and (40) becomes

F = U − T S. (68)

If we consider differential changes at constant temperature (and volume) we have

dF = dU − T dS (69)

which is a key thermodynamic identity. At equilibrium we have from (62),

dU = T dS (70)
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or,

dS = dU

T
, (71)

so at equilibrium dF = 0, that is, the free energy is at a minimum.
For a system in thermal equilibrium with a large heat bath the free energy is a

minimum. A large mechanical system that can dissipate energy minimizes its total
energy U , settling down to an energy minimum. The free energy F = U − T S is
the corresponding quantity for a system in thermal equilibrium with a heat bath. It
reflects the interplay between lowering the energy and thermal excitation.

We note that Eq. (71) is the original Clausius definition of entropy. Thus, starting
with the Shannon information theoretic definition of entropy (3) we have arrived at
both the Boltzmann expression (25) and the thermodynamic expression of Clausius.
The fact that the historical order was exactly opposite to this logical order has been
one source of confusion.

External Work The energy of each state of the system may depend on externally
imposed parameters like the volume V , applied magnetic field B, an applied electric
field, etc. For example, for an ideal gas we take Ek = Ek(V ), then seek the
average value of the differential energy shift with volume. The shift is fundamental
because the single-particle quantum energy levels move up in energy as the volume
is decreased. Classically, it suffices for us to note that a piston must apply a force
in the direction of its motion to squeeze a gas into a smaller volume, thus doing
positive work on the gas. First, we take the derivative of log(Z) with respect to the
volume.

∂

∂V
log(Z) =

∂
∂V

∑

k

e−Ek/kBT

∑

k

e−Ek/kBT
= − 1

kBT

〈
∂Ek

∂V

〉

(72)

This average value of the energy shift, using the probabilities in (63) is then defined
to be the pressure.

p ≡
〈

−∂Ek

∂V

〉

(73)

The minus sign is because when the volume is decreased the energy increases as
does the pressure. Using (72) we then have:

p = −
(

∂F

∂V

)

T

. (74)
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Similarly, for the expectation value of the magnetization

M = −
(

∂F

∂B

)

T

(75)

and so forth.
Applying an external force to the system mechanically, electrically, or magneti-

cally is another way to increase the average energy of the system. Equation (73) can
be written in terms of this shift.

dU = −pdV (76)

This kind of direct transfer of energy from outside the system to, or from, the system
is called work. So there are two ways the average energy of the system can be
changed: by heat transfer or by work. Heat is the transfer of a certain amount of
energy Q accompanied by a change in entropy. To include both kinds of energy
change, we need to modify (70) to:

dU = dW + dQ. (77)

This is the first law of thermodynamics, the conservation of energy.
In the case of compressing the volume with a frictionless piston, for example,

dW = −pdV . We will be concerned in Sect. 5 with doing electrical work. If a
voltage source transfers differential charge dq across a voltage difference V then,
neglecting the resistance of conductors, it does work

dW = V dq. (78)

We will interpret the symbol V as voltage or volume by context.

4.2 Statistical Mechanics of the Grand Canonical Ensemble

We can extend the application of the information theoretic results of the previous
section to the grand canonical ensemble by considering a system and bath both
comprised of particles. Up to now we did not need that assumption so the results
have even broader applicability. If, in addition to energy, particles can flow between
the system and the bath, we can label states of the system with both energy Ek and
the number of particle Nk . The number of particles can fluctuate and in equilibrium
we have a constant expectation value 〈N〉. This constraint gives us a distribution of
the form in Eq. (44), where we now identify λ2 = −μ/kBT , defining the chemical
potential μ,
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pk = e−(Ek−μNk)/kBT

∑

k

e−(Ek−μNk)/kBT
= e−(Ek−μNk)/kBT

ZG

(79)

The constraint that the average particle number is 〈N〉 gives us, in analogy to (38):

〈N〉 = − ∂

∂λ2
log(ZG) (80)

The corresponding free energy expression is obtained by the same procedure that
connected (40) and (41) to the free energy (67), now using (46) to yield

F = −kBT log(ZG) (81)

and

F = U + μ 〈N〉 − T S. (82)

The chemical potential μ is the driver for particle exchange between systems in
diffusive contact.

Non-interacting Fermions and Bosons In the special case of a group of non-
interacting particles in thermal and diffusive contact with a reservoir at temperature
T , we can obtain the standard results for fermion and boson statistics using the
probability distribution (79), derived from the information theoretic result (44), and
the basic rules for state occupancy. For this case we consider a fixed set of single-
particle energy levels ei with the ith level occupied by ni particles. The total energy
of a particular configuration of occupancies will be

E =
∑

i

niei N =
∑

i

ni (83)

For fermions, we need only the fact that each level can have occupancy of either
0 or 1 but no greater. The partition function can be written in a factored form with
each factor corresponding to the possible occupancies of each level.

ZG =
(

1 + e−(e1−μ)/kBT
) (

1 + e−(e2−μ)/kBT
) (

1 + e−(e3−μ)/kBT
)

· · · (84)

=
∏

i

(
1 + e−(ei−μ)/kBT

)
(85)
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The average occupancy of the j th level is then given by:

〈
nj

〉 =

(
0 + 1e−(ej −μ)/kBT

) ∏

i �=j

(
1 + e−(ei−μ)/kBT

)

∏

i

(
1 + e−(ei−μ)/kBT

) (86)

= e−(ej −μ)/kBT

1 + e−(ej −μ)/kBT
(87)

〈
nj

〉 = 1

e(ej −μ)/kBT + 1
. (88)

Equation (88) is, of course, the famous Fermi-Dirac distribution function.
The factorization of the partition function and subsequent cancellation is a

general feature of composites of non-interacting systems. Each single-particle
energy level acts like a separate system in thermal and diffusive equilibrium with
the reservoir.

For bosons, each level can be occupied by any number of particles.

〈
nj

〉 = e−(ej −μ)/kBT + 2e−2(ej −μ)/kBT + 3e−3(ej −μ)/kBT + · · ·
1 + e−(ej −μ)/kBT + e−2(ej −μ)/kBT + e−3(ej −μ)/kBT + · · · (89)

The denominator is a geometric series in x = e−(ej −μ)/kBT ) yielding 1/(1 − x).
In terms of the same x, the numerator is S = x + 2x2 + 3x3 + · · · . We note
S−xS = x+x2+x3+· · · , which is the geometric series minus 1 or S = x/(1−x)2.
We arrive at the Bose-Einstein distribution function:

〈
nj

〉 = 1

e(ej −μ)/kBT − 1
. (90)

4.3 Exploring the System Microstates

Consider a monatomic classical ideal gas (no interactions between particles) with
N particles of mass m in a volume V at temperature T in the dilute limit. The dilute
limit is when the density of particles is low enough that the average occupancy of
each energy level is much less than 1. In this case it makes no difference whether
the particles are fermions or bosons. A noble gas is well approximated this way.
The thermodynamic entropy S and the corresponding SMI are given by the Sakur-
Tetrode equation:
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SMI = 1

kB log(2)
S(N, V, T ) = N log2

[
V

N

(
mkBT

2π�2

)3/2
]

+ 5

2
N (91)

This equation can be derived from the Jaynes Maximum Entropy principle [5] or
from standard thermodynamics. Though describing a classical gas, the expression
contains Planck’s constant because it’s necessary to enumerate the smallest volumes
in phase space (limited by the uncertainty relationship) to give an absolute number.

For a liter of Argon gas at standard temperature and pressure, the SMI from (91)
is about 1023 bits. Recall that this is the average length of the binary register
necessary to specify all the accessible microstates of the gas.7 The number of
possible microstates is therefore

Nmicrostates ≈ 2SMI = 2(1024) ≈ 10(1023). (92)

Let us imagine this liter of argon moving from one accessible microstate to another
according to its internal dynamics. We can imagine a binary register holding the
(compressed) index of the current microstate of the gas which keeps clicking from
one number to the next as the gas particle move from state to state. How much
time does it take to go from one state to another? Well, to change states requires
the atomic nuclei to move positions. Suppose the shortest time to move nuclear
positions establishes the “tic” of the clock at which point the microstate register
changes to record the next microstate index. We are looking for an upper bound
to the number of microstates explored in a given time, so we will take the shortest
possible clock tic, the light travel time across a nucleus Ttic ≈ 10−25 s. The nuclei
could hardly have changed positions faster than that. How many microstates could
the liter of argon have explored? The time since the big bang is Tuniverse ≈ 1018 s. An
upper bound on the number of microstates that the liter of argon could possibly have
explored since the beginning of the universe is then

Nmicrostates explored ≤ Tuniverse

Ttic

= 1018 s

10−25 s
= 1043. (93)

Therefore, the fraction of the accessible microstates that could possibly have been
explored since the universe began is

Nmicrostates explored

Nmicrostates

= 1043

10(1023)
= 10(−1023+43) ≈ 10−(1023). (94)

7Note that we assume that state indices (a series of 1’s and 0’s specifying each particular state)
are chosen in an optimal way, employing a so-called Huffman code, that uses fewer bits to specify
more probable states and longer bit sequences for rarer states. The average register length is the
average index length weighted by the state probabilities.
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This is an extremely small number. We conclude that any actual gas is visiting only
an extraordinarily small fraction of it possible microstates. The vast majority of
terms in the sums like the partition function represent states that have never been
realized by the system and will never be realized by the system.

The connection established by Jaynes using Shannon entropy (SMI) put statisti-
cal mechanics on a much firmer footing for both classical and quantum cases. But
it fair to wonder: why does this work so well in so many situations? We can view
the system averages, like the average energy, as time averages. Or we can view
these averages as ensemble averages over many systems with identical macroscopic
properties but different microscopic configurations. In either case, the microscopic
state of a particular system is the result of its particular dynamics, the equations of
motion and its past history or initial state. The connection with information theory is
fundamentally made by mapping one problem: (a) the physical process of dynamical
motion, onto a second problem (b) the statistics of selecting a ball with an energy
label on it from an urn with an optimal (maximum SMI) distribution of balls given
the average energy.

The number of balls in the urn that corresponds to the possibilities for the
physical system is staggeringly large. Whatever sample we use for the average is,
in an important sense, a very small sample. We have just seen that the system state
space is vastly larger than it could explore in any reasonable time.

The probability distribution is determined by the physical dynamics (classical or
quantum) and yet those dynamics do not matter to statistical mechanics. Statistical
mechanics is remarkably independent of mechanics. We know some dynamical
model systems pull systems into attractors rather than distributing them uniformly
across state space. So the question becomes: what properties of real physical
dynamical systems make them so amenable to very accurate description by selecting
“typical” states from the incredibly vast state space available? This is an active
research area. An example of sustained and sophisticated work on this issue in the
quantum thermodynamics is the work of Gemmer, Michel, and Mahler [8].

5 The Landauer Principle

The Landauer Principle (LP) asserts that for a physical system representing an
information state, loss of one bit of information necessarily entails dissipation to
the environment of a minimum amount of heat equal to kBT log(2). If information
is not lost, there is no minimum amount of heat dissipation necessary.

Any logically irreversible operation, AND, OR, SUM, etc., involves a loss of
information in the sense that inputs cannot be logically inferred from the outputs.
The archetypal irreversible operation is erasure, so we will focus our attention on
that.

For specific devices the heat dissipation may, of course, be much more than the
fundamental minimum. Modern CMOS transistors operate with orders of magnitude
more energy dissipated by each transition. If the device and associated architecture
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is designed optimally (adiabatic logic), it may be possible to lower the dissipation
by switching its state more smoothly and slowly. The Landauer Principle places a
fundamental lower limit on how much heat dissipation must occur, depending on
the amount of information that is lost.

We discuss three arguments for the Landauer Principle. The first, the many-to-
one argument is the one Landauer himself usually employed, though he most often
simply asserted the principle as self-evident. The second grounds the argument
on the Second Law of Thermodynamics. The third is a calculation on a minimal
model system. This has the advantage of being a mathematical result with clear
assumptions and clear conclusions. Of course it is susceptible to the objection that
there might be another way of constructing a memory that would violate LP. Be that
as it may, it is very clarifying to see LP simply emerge from a simple calculation. It
also forces the issue of how to define the entropy of memory states that cannot be
equilibrium states, using the same approach as in Sect. 4.

5.1 The Many-to-One Argument

This argument for LP is based on the time-reversal symmetry of the physical law at
the microscale. We will consider a physical system that has three states (or regions of
state space) that encode a binary 1, binary 0, or a null state holding no information.
Why not just use the two binary states? Choosing to define erasure as “set-to-
zero” results in a morass of ambiguity because we cannot physically distinguish
the erasure process from the physical process of writing a 0. Consider the erasure of
a single bit of information that is represented by the physical system. Let us assume
that we do not know the value of the initial bit, 1 or 0, but need to create with one
protocol, a series of externally controlled operations, that will result in the physical
system being set to the null state.

This is shown schematically in Fig. 6. The proposed protocol would be such that
given an initial physical configuration of the system that corresponds to either a 0
or a 1 bit, the protocol would be such that the physical system would evolve in time
under the relevant physical law to the state representing the null bit, as shown in the
figure.

But, the LP arguments objects, something like Fig. 6 cannot occur. If it did, then
one could start at the null state, and run the protocol backwards. But which state
would then result, 1 or 0? Running a movie of the whole physical process backward
should be a valid physical process.8 Fundamental physics takes one (classical or
quantum) state forward in time to a unique future quantum state.

8The weak interaction responsible for the decay of the neutral B meson has been directly shown to
violate time reversal symmetry. See J. P. Lees et al., “Observation of Time-Reversal Violation in
the B0 Meson System,” Phys. Rev. Lett. 109, 211801 (2012). We will restrict our considerations to
systems not involving B or K mesons, or the weak interaction.
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Fig. 6 The many-to-one quality of bit erasure to a null state. A general-purpose physical erasure
procedure would have to be able to take either a 1 or a 0 state and move it into the null state. It
would have to be the same procedure irrespective of the initial state and so work on an unknown bit.
Reversing the temporal sequence of the procedure should be possible because the microscopic laws
of physics are reversible and one-to-one. There cannot therefore be a unique backward evolution
that would restore the state to its original 1 or 0

Therefore, if it looks like the situation of Fig. 6 is occurring, careful examination
will reveal that there is at least one other system involved that is not being properly
accounted for. As shown in Fig. 7a, there must be at least one other degree of
freedom in the process, shown in the figure as the z-coordinate that, is different
between the two outcomes. The figure shows the z-coordinate of this auxiliary
system initially at 0, and then moving to ±1 depending on the initial state of the
system. The auxiliary degree of freedom could be, for example, another system
which is initially in the null state and then put by the protocol in the same 1 or 0
state as the primary system was initially. Of course, it could store the inverse state
as well. In this case the information of the enlarged system, including the original
system and the copy, has not lost the original information.

The auxiliary system could also be a very large complex system like a heat bath.
In that case the bath, taken as a whole, retains, in an entirely inaccessible way, a copy
of the original bit. Again, the enlarged system+bath has not lost the information
fundamentally, thus preserving the time-reversibility of the system. There are two
different final states for the bath, one in which it has interacted with the system in a 1
state and another in which it has interacted with the system in the 0 state. The SMI of
the bath has now increased because, knowing only the macrostate (P, V, T , . . .) of
the bath, the information about the which bit was originally stored in the system
is missing. If the bath is at thermal equilibrium at temperature T , the increase
in thermodynamic entropy must be ΔS = kB log(2) with the corresponding heat
transfer to the environment ΔQ = T ΔS = kBT log(2) .

If we deliberately make a copy of the bit, physics does not prevent us from
exploiting the fact that we have a copy to create different erase-one and erase-zero
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Fig. 7 The reality of an apparent many-to-one bit erasure process. (a) If a system appears to
evolve as in Fig. 6 under the reversible laws of physics, there must actually be another physical
system coupled to the bit-storing system. The physical state of the copy system is here represented
on the z-axis of the graph. (b) The auxiliary bit could be simply another physical system that makes
a copy of the original bit, for example a neighboring bit or one in a measurement apparatus. Having
a copy allows there to be a different physical process to erase a 1 than to erase a 0, shown as separate
curves in the figure, so the process is reversible. (c) Alternatively, the copy could be contained in
the large system of a thermal bath in contact with the bit system. The copy in that case is encoded
in the many degrees of freedom of the bath and is unrecoverable, leading to an irreversible erasure.
This process transfers entropy and heat to the bath. After erasure, the increased energy of the bath
means there are twice as many accessible bath states—those corresponding to the 1 bit having been
erased, and those corresponding to the 0 bit having been erased

protocols. We only are forced to pay the Landauer price if there is no copy, or if
there is one and we just fail to make use of it.

5.2 Argument from the Second Law of Thermodynamics

Consider again the small system A in thermal equilibrium with a very large system
(a heat bath) B as shown in Fig. 5. We will assume that B has temperature T and
that system B is in thermal equilibrium with A and so has the same temperature.
We now suppose that there are a set of macroscopic controls that allow us to
externally manipulate the state of B. In examples that we will flesh out below,
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these will be electrodes whose electrostatic potential we can change. For the often-
considered example of a perfect single-particle gas, manipulation is typically by
moving pistons and inserting and removing barriers. However it is accomplished,
suppose the entropy SA of A is reduced by the equivalent of one bit of information
(see Eq. (51)). This is what we mean by erasure.

SMIA(final) − SMIA(initial) = −1 bit (95)

SA(final) − SA(final) = −kB log(2) = −ΔSbit (96)

The heat bath is large so this has no effect on its temperature. We will again assume
that the entropy of the global system comprising A and B is the sum of the entropies
of the components. The internal motion of the heat bath B is not correlated to the
motion of A.

SAB = SA + SB (97)

The manipulations of A we will assume do not perform a measurement of the
microstate of B (or of A). We assume that the manipulation does not give us any new
information about AB. Therefore, the change in entropy of the global system must
be either zero or positive. The amount of information missing about the microstate of
the composite system AB can only increase since we (or anyone or anything doing
the manipulation) have not reduced the missing information about the microstate of
AB. This is the heart of the Second Law of thermodynamics.

ΔSAB = ΔSA + ΔSB ≥ 0 (98)

Therefore:

ΔSB ≥ −ΔSA (99)

ΔSB ≥ kB log(2) = ΔS(bit) (100)

After the manipulation is complete, the bath system B is in an equilibrium state
with an increased entropy and an energy which is larger by at least the energy
corresponding to one bit.

dUB = T dSB ≥ kBT log(2). (101)

This is, as we have stressed, a fundamental minimum, not a characteristic energy.
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5.3 Direct Calculation of Erasure in Minimal System

Representing encoded information with the raw information of a physical system
involves both the dynamics of the physical system and the encoding scheme. The
encoding scheme maps areas of the accessible region of the physical state space of
the system to specific information states. Figure 8 represents a physical system with
three states for a single particle which can be in one of three state (dots) indexed 1,
2, and 3. The figure illustrates (a) the particle on the right representing a “1”, (b) the
particle on the left representing a “0”, and (c) the particle in the middle representing
a “null” state containing no binary information.

The encoding scheme for the three logical states can be defined in terms of the
probability of the occupancy of each state. The probability of the system being found
in state 1, 2, or 3, we denote [P1, P2, P3], and the energy of each state is denoted
[E1, E2, E3]. We can choose a threshold value Pth and encode a binary 1 by a state
with P3 > Pth, a binary 0 with P1 > Pth, and the null state with P2 > Pth. If no
state has probability above the threshold, the result is not yet a valid state. This is
normal in the switching regime. A robust system is designed so the logical state is
valid and unambiguous when it is read or copied.

The dots can represent abstract states of the system or literal dots. In the quantum-
dot cellular automata (QCA) scheme, they correspond to localized electron states on
literal quantum dots. We will treat the system completely classically in this section,
and will for convenience assume a single positive charge; the quantum treatment is
taken up in Sect. 6. Actual QCA three-dot cells have been fabricated in metal-dot
systems and synthesized in single-molecules [9, 10]. The threshold probability Pth
in these systems is not set simply arbitrarily, but only needs to be large enough for
the next stage in logical operations to reset the bit strongly to a logical 1 or 0. Power
gain from stage to stage means that Pth could be 0.8, for example, and still be strong
enough to be effective as transmittable bit information.

We are interested in the process of bit erasure in this system when it is in thermal
contact with a heat bath of temperature T . We can control the energy of each
state with a set of control voltages capacitively coupled to each dot. The energetic
landscape is shown in (a–c) of (8). We choose a 20kBT energy separation between
low, active (0 or 1), and high energy state. When state 2 is high, it acts as a barrier
to hold the 1 or 0 bit. When state 2 is low it acts as a well to hold the particle in a
neutral position. Thus the energy E2 acts as a clock which can latch a bit by being
raised, or erase a bit by being lowered, returning it to the null state.

In the following, we will for convenience simply refer to the fully localized states:
P = [0, 0, 1] for the 1 state, P = [1, 0, 0] for the 0 state, and P = [0, 1, 0] for the
null state. Examining Fig. 8 reveals an important point:

A physical memory containing information cannot be in a thermal equilibrium state.

The null state is an equilibrium state satisfying the Boltzmann distribution (63),
but neither the 1 nor the 0 state shown in Fig. 8a,b can be. The reason is clear
enough—to be a memory is to hold information stored at a previous time. The
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Fig. 8 Encoding information with three physical states. A particle can be in one of three dots
encoding (a) a logical 1, (b) a logical 0, or (c) a logical null state. The energy landscape and
probability density for each configuration are shown on the right. The solid circles represent the
probability of finding the particle on a particular dot. Dot 2 acts as the barrier for holding the
particle in the 1 or 0 state in (a) and (b). It acts as the low energy null state in (c). If the bit value
is an unknown 1 or 0, as in (d), then the energy landscape is the same as in (a) or (b), but we must
assign a probability distribution that is evenly divided between the 1 and 0 states

state of a physical memory must depend on the past and not just the current
temperature and applied voltages, and whatever macro constraints are relevant. A
thermal equilibrium state, by contrast, cannot depend on the past, but only on the
present conditions.

A physical memory must be in a long-lived metastable state. When E2 is high
it must create a barrier that is sufficiently opaque to hold the particle in the 1 or 3
states for the relevant timescale—microseconds to years. Beyond that, the details
of the physical dynamics that allow state transitions between states 1, 2, and 3 do
not concern us. The 1 and 0 states of Fig. 8a,b are certainly low energy states—the
problem is they preferentially occupy one active dot and not the other though it has
the same energy. We will assume in our example that the 20kBT barrier of E2 for
these states is indeed adequate to hold a 1 or 0 bit long enough to be a memory.
If a higher barrier was needed, it could be created by raising the potential on dot 2
further.
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Entropy for Representing a Known or Unknown Bit For the 1 or 0 states shown
in Fig. 8a,b, we must take care to return to our derivation of the thermodynamic
entropy S in Sect. 4.1 and now include the fact that we know the value of the bit.
This should be treated as an additional constraint in the Jaynes maximum entropy
principle as developed in Sect. 3.7.

Consider the case when we know the bit stored is a binary 0. We again require
that the thermodynamic entropy be kB log(2) times the SMI of that probability
distribution which maximizes the Shannon entropy, subject to the given constraints.
The constraints are now (a) the probabilities sum to 1, (b) the average energy
〈E〉 = U , and (c) P3 = 0. To find the maximum entropy distribution, we construct
the Lagrangian, which now has the additional Lagrange multiplier λ3.

L = −
∑

k

Pk log(Pk) − (λ0 − 1)

(
∑

k

Pk − 1

)

− λ1

(
∑

k

PkEk − 〈E〉
)

− λ3P3

(102)
The Lagrange equation obtained from requiring the extremum with respect to
λ3, ∂L /∂λ3 = 0, yields simply P3 = 0 with λ3 arbitrary. We find the
extremum of (102) with respect to all the other Pk’s as before. The derivations
of all thermodynamic quantities derived in Sect. 4.1 go through as before, simply
omitting occupancy of dot 3 as a possibility. The Boltzmann distribution then
applies as before to all probabilities but P3. The thermodynamic entropy is then:
S = kB log(2)SMI([P1, P2]). If the bit was a 1, the constraint would be P1 = 0.
In this straightforward way we can apply the definition of thermodynamic entropy
to include a state storing a known bit, even though it represents a nonequilibrium
metastable state—as it must.

By contrast, the state shown in Fig. 8d represents a reliably stored but unknown
bit. Since we do not know the value we must assign probabilities P = [0.5, 0, 0.5],
the probabilities we would get for the equilibrium state with the barrier high (hence
P2 = 0). The associated SMI = 1 bit (one bit of missing information) and the
thermodynamic entropy S = kB log(2). In terms of thermodynamic quantities, it is
indistinguishable from an equilibrium state. But because the barrier is sufficient
to hold the unknown, but definite, bit for the relevant timescale, it should not
be imagined to be switching back and forth. It is not a “bit gas,” as Norton has
characterized it in [2], but is simply unknown.

The null state is an equilibrium state with entropy S = kB log(2)SMI[P ] = 0.

Thermodynamic Quantities During Bit Operations We examine below three
basic operations: writing a bit, erasing an unknown bit, and erasing a known bit.
In each case we will manipulate the three dot energies in time, E1(t), E2(t), E3(t),

according to a protocol designed to accomplish the task. Unless otherwise noted, at
each point in time, we assume the system is in thermal equilibrium with a bath at
temperature T . We assume that the variation in time is at gradual enough that the
system is always in its equilibrium state, except as noted for a stored known bit.
Therefore, temporal dynamics play no essential role here and we use arbitrary units
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spanning the event with t = [0, 1]. During the operation we calculate the following
four thermodynamic quantities and plot them as functions of time:

1. The equilibrium probabilities P = [P1(t), P2(t), P3(t)] for finding the particle
on each dot.

Pi(t) = e−Ei(t)/kBT

∑

k

e−Ek(t)/kBT
(103)

The corresponding expectation value of the charge on the dot is qi(t) = Pi(t)e,
where e is the elementary charge. As discussed above, for a state representing a
known bit, we simply set P1 or P3 to zero.

2. The thermodynamic entropy is given by:

S(t) = −kB log(2)
∑

k

Pk(t) log(Pk). (104)

3. The cumulative amount of heat transferred ΔQbath to the thermal bath from the
beginning of the operation until the time t .

ΔQ(t) = −
∫ t

0
dQ = −

∫ t

0
T dS = T (S(0) − S(t)) (105)

The sign is chosen so that net heat flowing from the system to the bath is positive,
and net heat flowing from the bath into the system is negative.

4. The work done on the system by the external control electrodes. The electrical
potential of each dot i is Vi(t) = Ei(t)/e, and the differential work done by the
external circuit is

dWi(it) = −Vi(t)dqi(t). (106)

The minus sign is because when the external circuit raises the dot energy, it
actually decreases the dot charge because the thermal occupancy of the dot is
reduced via (103).

W(t) =
∑

i

∫ t

0
dWi(t

′) = −
∑

i

∫ t

0
Vi(t

′)dqi(t
′)

dt ′
dt ′ (107)

This does not include the work done by the voltage sources on the gate electrodes
that are capacitively coupled to the dots. That is most of the work that the
external circuit does, pushing charge and off the gate capacitors. This motion
is dissipationless if we neglect the residual resistance of conductors; gradual
charging and discharging a capacitor can be done quasi-adiabatically. In any case,
dissipation in the gating circuit is not what we are interested in here. Therefore,
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the only contributions to W are when charge flows on or off one of the dots in
the system itself.

The bit operation is determined by the temperature T and the control protocol
defined by [E1(t), E2(t), E3(t)]. The calculations using (103)–(107) give us in
P(t), S(t),ΔQ(t), and W(t).

Writing a bit. Starting from the null state we write a 0 bit using the protocol
shown in Fig. 9. The potential energy of dot 3 is raised first. Then the energy of
dot 2, which holds the particle initially, is ramped up smoothly. As E2 crosses E1,
Fig. 9c, the particle transfers to dot 1. When E2 reaches the high energy state, E3
can be lowered and the particle is held in the state representing a bit value of 0,
as shown in Fig. 9d,e. This is, as discussed above, a long-lived metastable state
in which E2 acts as a barrier trapping the particle in dot 1 forming a one-bit
memory.

Fig. 9 Protocol for writing a 0 bit. (a) The initial state is null, with the particle on dot 2. (b) Energy
E3 is raised, biasing the system toward the 0 state. (c) The null state energy E2 is smoothly ramped
up, passing the energy E1. At this point the probability of occupying dots 1 or 2 is equal. (d) The
energy E2 is now high and the particle is localized in dot 1, representing a 0 bit. (e) E3 is lowered
again and the particle is held on dot 1 by the barrier. This is a memory storing a 0 bit in a long-lived
metastable state. A memory-storing state cannot be an equilibrium state; it must depend on the past
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Fig. 10 Thermodynamic quantities during the process of writing a 0 bit using the protocol of
Fig. 9. Time is in arbitrary units from 0 to 1. The system is in thermal equilibrium from t = 0
to t = 0.9, after which it is in a metastable memory state storing a 0 bit. (a) The dot energies
E1, E2, E3 are shown as functions of time. At t = 0.1, E3 is raised to bias the system toward the
0 state. The energy of dot 2 is ramped up throughout the process, eventually forming a high barrier
to hold the stored bit information. At t = 0.9 the bias is removed and the bit is firmly latched by
t = 1. (b) The probabilities for dot occupancy P1, P2, P3 are shown as functions of time. (c) The
thermodynamic entropy of the system calculated from Eq. (104). The peak occurs as E2 nears and
then passes E1. Thermal excitations between dots 1 and 2 make the location of the particle 1 bit
less certain. The peak corresponds to the moment shown in Fig. 9c when E2 = E1. (d) The net
heat transferred to the bath ΔQbath up to time t , calculated from Eq. (105). As E2 approaches E1,
heat is drawn from the bath; as E2 moves above E1, the heat energy is returned to the bath. (e) The
net work done by the control circuit on the system W , calculated from Eq. (107). When the write
process is complete, no net work has been done. This, of course, neglects any heat dissipated within
the control circuit that changes the dot energies (e.g., due to nonzero resistance of conductors)

Figure 10a shows the energies E1(t), E2(t), and E3(t). The probabilities of
occupancy of each state are shown in Fig. 10b. At each time 0 < t < 0.9
the probabilities are thermal equilibrium values given by (103). For 0.9 <

t < 1, the system is in the nonequilibrium metastable state where P3 = 0
by assumption. Figure 10c shows the thermodynamic entropy S(t) in units of
kB log(2) (equivalent to the SMI). As the levels E1 and E2 cross, the entropy
increases because there is less information about which dot the particle is on.
At the crossing point the missing information is 1 bit. What we do not know
is the details of the momentary thermal fluctuations which have put the system
in state 1 or state 2. Figure 10d shows the heat transferred to the environments
ΔQ(t)/(kBT log(2)) calculated from (105). As the crossing point is approached
the system takes energy from the environment to excite thermal occupancy in the
higher energy dot (here dot 1). That energy (heat) is returned to the environment
as E2 continues to increase. Figure 10e shows the work done on the system from
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Fig. 11 Erasure protocols for known and unknown bits. Diagrams (a)–(c) represent the case of
an unknown bit and diagrams (d)–(h) represent the case of a known bit. (a) If the bit value stored
is unknown, the probability of dot occupancy of dots 1 and 3 is equal. Since we do not know in
which direction to bias the system, we can only lower E2 smoothly in time. (b) As E2 is lowered
it passes E1 and E3. When they are degenerate the particle could be in any of the three dots. (c)
Finally the middle state has captured the occupancy and the system is in the null state. (d,e) For
the known bit, here shown to be 0, the system is biased into the state it is already in by raising E3.
(f) As E2 is lowered it passes E1. (g) The system is now in the low energy neutral state. (h) The
bias can then be removed
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Fig. 12 Energy levels, probabilities, and entropy during bit erasure. Plots (a)–(c) are for the case
of an unknown bit and (d)–(f) are for a known bit. (a) For an unknown bit, E2 is simply lowered
to cause the transition to the null state. (b) The probabilities for occupancy of dots 1, 2, and 3 are
shown. Initially P1 = P3 because the bit value is unknown. (c) The entropy of the system is initially
1 bit. At the point where all three energy levels are degenerate S/(kB log(2)) = log2(3) ≈ 1.58.
The entropy then decreases as the system localizes completely on dot 2. The net decrease in entropy
is 1 bit. (d) For a known bit, the system can be biased into the state it is in, by raising E3 in this
case, until the switching is complete. (e) The probabilities for occupancy of dots 1, 2, and 3 are
shown for the case of a bit known to be initially 0. Initially only P1 is nonzero because the system
is known to be in the 0 state. (f) The entropy for the case of a known bit increases around the level
crossing of E1 and E2, but is initially and finally 0

0 to t by the external circuit W(t)/(kBT log(2)) calculated from (107). This is
initially negative because energy is being drawn in from the thermal bath, but
nets to zero as the energy is returned.

Erasing an unknown bit. Figure 11a shows the energy states for a stored bit.
Suppose that this is an unknown bit—there is no other physical copy of the bit
that we can use to bias the system into the state it already in. Therefore, all we
can do to erase the bit, i.e., set it to the null state, is to lower the barrier E2 until it
localizes the charge in the middle dot. We lower it smoothly, crossing the active-
state energies, Fig. 11b, and arrive at the null state shown in Fig. 11c. Again, the
system is assumed to be always in thermal equilibrium with the heat bath.
Figure 12a shows the dot energies as a function of time and Fig. 12b shows the
probabilities. Initially both P1 and P3 are 1/2 and finally P2 = 1. The entropy
shown in Fig. 12c is initially one bit, kB log(2). The entropy increases as E2
passes E1 and E3. At the crossing point the SMI is equal to log2(3) because each
of the three states is equally probable. The entropy drops to zero as the particle
becomes completely localized in dot 2. The erasure of an unknown bit involves
a lowering of the system entropy by 1 bit. Figure 13a shows the heat transfer to
the environment calculated from (105) for this erasure process. It is initially zero
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Fig. 13 Heat transfer and work during bit erasure. For the same two protocols of switching as in
Figs. 11 and 12, two calculated thermodynamic quantities are shown. Plots (a) and (b) are for the
case of erasure of an unknown bit, and plots (c) and (d) are for erasure of a known bit. (a) For
erasure of an unknown bit, the plot shows the net heat transferred to the bath ΔQbath up to time
t , calculated from Eq. (105). As E2 is lowered, heat is drawn from the bath as thermal fluctuations
excite the system from E1 or E3 to E2. As E2 moves below the level of E1 and E2, heat energy
flows out to the bath as the system de-excites and occupies E2. The net heat transferred to the
environment (i.e., dissipated) in this case is kBT log(2). (b) The net work done by the control
circuit on the system W , calculated from Eq. (107), for the case of unknown bit erasure. This is
the source of the energy which ends up dissipated as heat to the thermal bath. (c) In the case of a
known bit, switched according to Fig. 11(d)–(h), heat drawn in from the bath as E2 approaches E1
is returned to the bath as the system moves into the null state. The knowledge of the existing bit
state affects the amount of heat dissipated to the bath precisely because it permits a different erasure
protocol to be operated. (d) Similarly, the net work done by the control circuit on the system W ,
calculated from Eq. (107), is zero by end of the switching event

and then becomes negative as E2 is lowered and thermal excitation increases
the probability of dot 2 being occupied. The heat transfer swings positive as E2
drops below the crossing point. The final net value of the heat transferred to the
environment is the Landauer Principle limit of kBT log(2). Where did this energy
come from? It came from the external circuit as shown in Fig. 13b, calculated
from (107). The net work done by the circuit during the erasure process is
precisely kBT log(2).

Erasing a known bit. Now consider the situation of erasing a known bit. In this
case we can execute a different set of operations shown in Fig. 11d–h. Figure 11d
shows the dot energies when the system holds a known 0 bit (in a metastable
rather than equilibrium state). Because it’s known to be a 0, we can raise the
energy of the other state by increasing the potential energy of dot 3 as shown in
Fig. 11d. Then the energy of dot 2 can be lowered as in Fig. 11f,g. Finally, the
energy of dot 3 is lowered to restore the whole configuration to the null state.
The energy levels, probabilities, and entropy for this process are shown in
Fig. 12d–f. During the initial time 0 < t < 0.1, corresponding to the
configuration of Fig. 12d, the probabilities are not the equilibrium values but
rather correspond to the non-equilibrium state of the particle known to be in
dot 1. Thereafter thermal equilibrium is assumed at all times. The difference
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between the initial probabilities in Fig. 12b and e is precisely the difference
between knowing the value of the bit stored and not knowing it. The entropy
in known-bit erasure, Fig. 12f, rises as E2 approaches E1, but then falls to zero
again as the particle is confined on dot 2. The reversible heat transfer shown in
Fig. 13a is similar; the system draws in heat from the bath as E2 comes close
enough for thermal excitations from dot 1 to dot 2. But as the system localizes
by several kBT , the heat is returned to the bath. The work done on the system,
calculated from (107) and shown in Fig. 13a , nets to zero by the end of the
switching. This is entirely consistent with the experimental result that erasing a
known bit can dissipate orders of magnitude less than kBT [11].

The issue of a “known” versus “unknown” bit of course has nothing to do with
consciousness. “Known” simply means there is another physical representation of
the bit that can be used to bias the system toward the state it’s already in, as in
Fig. 9e. This could be accomplished by a circuit, a computer, or a human brain. In
QCA shift registers, the bias is accomplished by having the neighboring bit holding
a copy of the target bit [12]. The neighbor is Coulombically coupled to the target
bit so it provides an electrostatic bias. Needless to say, one could have a copy of the
bit but not use it to employ the optimum erasure protocol. In that case one would
dissipate at least kBT log(2) amount of heat for each erasure.

Critics sometimes ask: How can “subjective” knowledge of the bit state change
a physical quantity like heat dissipated? The answer is simply because knowing the
existing state allows us to use a different protocol for the erasure, one which initially
biases the system into the state it is already in. In the case illustrated in Figs. 9, 10,
11, 12 and 13, we initially raise E3 to the high level to erase a known 0 bit, but
would initially raise E1 to a high level to erase a known 1 bit.

The free energy F = U − T S is similarly higher for a known state, because S is
lower, than for an unknown state with higher S. The Szilard engine is an example
of exploiting knowledge of a system state (in that case a single molecule gas) to
draw more energy out of the system [13]. A recent physical realization of this sort
of “information engine” was reported in [14].9

Figure 13a is a clear demonstration of the Landauer Principle in the simplest
single-particle system. It requires only Eqs. (103)–(105) above, that is, the Boltz-
mann thermal occupancy of energy states, the careful definition of entropy for
memory states, and the calculation of heat flow. The dissipation of kBT log(2) as
heat to the bath is unavoidable.

The erasure of an unknown bit above is at each point in time an equilibrium
process. It is not, however, time-reversible. Going backwards in the sequence shown
in Fig. 11a,b,c would result in latching a random bit, determined by a momentary
bath fluctuation, not the unknown but definite bit one started with. Imagine the
original unknown bit was the result of a long calculation. It is unknown to us until
we read it (and thereby make a copy), but its definite value has genuine information

9This sort of engine does not, needless to say, violate the second law of thermodynamics or create
a perpetual motion machine of the second kind.
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about the calculation’s result. The time-reversed protocol would not restore the
result, but replace it with a random bit. The probability distribution for an unknown
bit holding the important result of a long calculation (e.g., target is friend or foe) is
identical with the probability distribution of a meaningless random bit latched from
a thermal fluctuation.10

By contrast the erasure protocol of Fig. 11d–h is time reversible. It is in fact just
the time-reversed version of the writing protocol shown in Fig. 9. Both assume we
have another copy of the bit to determine bias applied in the writing sequence (do
we raise the potential on dot 1 or dot 3?) and the subsequent erasure.

The main result of this calculation is the difference between the heat dissipated
to the environment for erasure of an unknown bit, shown in Fig. 13a, and that for
erasure of a known bit, shown in Fig. 13c. The Landauer Principle result is clear—
heat energy of kBT log(2) is dissipated for erasure of an unknown bit, but there is
no minimum dissipation required for a known bit. If the bit is known, of course,
there is a copy of the bit somewhere and the information is not truly lost. If the copy
is eventually erased, heat dissipation must occur.

6 Quantum Mechanics, Entropy, and the Nature of the
Physical Law

6.1 Quantum Formalism and Probabilities

In quantum mechanics a physical system is described by a state vector |ψ〉, a so-
called Dirac “ket” in a Hilbert space.11 The state vector is a complete description of
the system. It contains all there is to know about the system—all the physical world
itself “knows” about the system.

The inner product between two state vectors is denoted 〈φ | ψ〉 and gives the
probability amplitude that a system in state |ψ〉 will be measured to be in state |φ〉.
The probability is the absolute square of the probability amplitude.

pφ = |〈φ | ψ〉|2 (108)

Equation (108) is the Born rule.
Dynamical observables, such as position x and momentum p, are represented

in quantum mechanics by Hermitian operators that map one ket onto another

10“Meaningless” is, of course, a question of context—maybe it was meant as a probe to measure
bath fluctuations.
11A Hilbert space is a complex linear vector space with an inner product that produces a norm on
the space. Using this norm, all Cauchy sequences of vectors in the space converge to a vector in
the space.
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Fig. 14 Quantum state of a particle in two coupled quantum dots. The particle could be in a
state that is fully localized on the left dot, |ψL〉, fully localized on the right dot, |ψR〉, or a
symmetric superposition of the two |ψS〉. (Any normalized linear combination of |ψL〉 and |ψR〉 is
possible.) If the particle is in the superposition state |ψS〉, the result of a measurement of position
is not knowable in advance of the measurement. The indeterminacy is not a reflection of the
experimenter’s ignorance, but is a fundamental feature of the physical world

ket. Measurements of an observable Q always only yield eigenvalues qk of the
associated operator Q̂.

Q̂
∣
∣φqk

〉 = qk

∣
∣φqk

〉
(109)

The eigenvalue spectrum of an operator may be discrete or continuous. The
eigenstates

∣
∣φqk

〉
are states which have a definite value of the property Q. The

probability that a measurement of Q on the system in state |ψ〉 will yield a specific
eigenvalue qk is therefore:

pqk
= ∣

∣
〈
φqk

∣
∣ψ

〉∣
∣2 (110)

This probability is different in kind from the probabilities we have dealt with
heretofore. Here the probabilistic nature is not because we lack any information that
we could otherwise have. The probabilities here reflect the fact that the physical
law and the current state of the system taken together are fundamentally insufficient
to determine the result of the measurement. This indeterminacy is a feature of the
physical law revealed by quantum mechanics.

6.2 Quantum Mechanical SMI for an Observable

We can define the SMI (Shannon Measure of Information) of the probability
distribution for measurements of eigenvalues qk when the system is in the state ψ .
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SMIQ[ψ] ≡ −
∑

k

pk log2(pk) (111)

or

SMIQ[ψ] = −
∑

k

∣
∣
〈
φqk

∣
∣ψ

〉∣
∣2 log2

(∣
∣
〈
φqk

∣
∣ψ

〉∣
∣2

)
(112)

This represents the amount of missing information (in bits) about the outcome of
measurements of Q. This information is missing from the quantum state |ψ〉 itself.
It is not simply missing because of our incomplete knowledge. The physical world
itself does not have this information present until measurement is actually made and
one particular eigenvalue of Q̂ is obtained.

Consider the two-state system illustrated in Fig. 14. A particle can be in the dot
on the left, a state represented by |ψL〉, or in the dot on the right, represented by
|ψR〉. The symmetric superposition of the two is the state represented by the state

|ψS〉 = (|ψL〉 + |ψR〉)/√2. (113)

This superposition state is a unique feature of quantum mechanics. A measurement
of the position of the particle in state (113) will always find it in either the left dot
or the right dot, each with probability 1/2. We can define an operator corresponding
to the observable position of the particle.

X̂ ≡ |ψR〉 〈ψR| − |ψL〉 〈ψL| (114)

The eigenvalues of X̂ are +1 and −1 corresponding to the particle on the right or on
the left. The SMI for this operator corresponds to the amount of missing information
about the position of the particle when it’s in each of these states.

SMIX[ψL] = 0

SMIX[ψR] = 0

SMIX[ψS] = 1 bit (115)

In the first two cases, the position is definite and there is no information about it that
is missing. For the symmetric superposition state, knowing the state tells us nothing
about the position. There is 1 bit of position information missing, even though the
quantum mechanical description of the state is complete.

Note that the SMI depends on the choice of observable as well as the state itself.
For the same state |ψS〉, we could consider the parity operator:

	̂ ≡ |ψL〉 〈ψR| + |ψR〉 〈ψL| . (116)
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The state |ψS〉 is an eigenstate of 	 with eigenvalue 1—it has a definite value of
parity. So there is no missing parity information and SMI	 is 0. The SMI is basis
dependent; it is not the eigenvalue of a Hermitian operator.

We return to considering the information the quantum state gives us about the
particles position. It is helpful to ask the question in terms of the amount of
information provided by the physical law. Let us suppose that, given an initial state
of the system and a precise description of all the potentials, fields, and interactions
that are subsequently applied to the particle, the physical law prescribes that at
a particular time the system will be in the state |ψL〉. We may then ask: How
much information about the particle’s position (by which we mean the results of
a measurement of position) does the physical law yield? The answer is 1 bit. For the
state |ψR〉 the physical law also yields 1 bit of information, completely determining
where the particle will be found (on the right). But if the physical law tells us that the
particle is in the state |ψS〉, it gives us 0 bits of information about the position that
will be measured. The information provided by the physical law (evaluating Eq. (9))
is zero. In general, if there are N eigenvalues of the operator Q̂, then the physical
law gives us a finite amount of information I about the outcome of a measurement
of Q, where

I [ψ] = log2(N) − SMIQ[ψ] bits. (117)

Continuous Eigenvalues Consider a wavefunction defined on a continuous range
of positions. Let ψ(x) be the probability amplitude for finding a particle at
position x ∈ [0, L]. If the state for which the particle is exactly found at x is
denoted |x〉, then ψ(x) = 〈x | ψ〉 and the probability density is P(x) = |ψ(x)|2.
Consider the wavefunction and probability distribution shown in Fig. 15 describing
a particle in this interval. We can use the expression for information given by
Eq. (13) to calculate the amount of position information which we obtain from the
wavefunction. In this case that is 1.32 bits. It is somewhat more constrained than if it
was localized over half the distance, which would correspond to 1 bit of information
gain. The wavefunction gives us some information about the position, but not
complete information. If our detection apparatus gave us discretized information
that the particle’s position was in a particular bin of width Δx, we could use Eq. (14)
in a similar way. Note that we are implicitly assuming, as with any probability
distribution, that there is an accessible region (AR) (see the discussion in Sect. 2)
that we know the particle is in; here that is the interval [0, L]

Given the quantum state ψ(x) we could as well ask about the results of
measurements of the particle momentum p and use the same formalism to calculate
the information about momentum we receive from knowing the wavefunction, Ip.
This value is not the same as the information about position, and again depends on
the range of momentum values considered to be the AR.

Time Dependence The operator Ĥ is the Hamiltonian operator representing the
total energy of the system. For an isolated system described by a time-independent
Hamiltonian H , the time development of the state vector is determined by the
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Fig. 15 Quantum wavefunction and probability density defined for a particle with a position on
the continuous interval x ∈ [0, L]. The top figure shows a wavefunction ψ(x) and the bottom
figure the associated probability density. Given a probability density P(x), one can ask how much
information about the position of the particle does the wavefunction provide. In this case the
result, from Eq. (13), is 1.32 bits. That is the Shannon measure of the information (SMI) gained by
knowing the probability distribution compared to a uniform distribution over the accessible region,
which is here the interval [0, L]

Schrödinger equation. If the state of the system at t = 0 is given by |ψ(0)〉, then at
any future time we can determine the state by solving the differential equation

i�
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (118)

or by evaluating the integral form

|ψ(t)〉 = e−i Ĥ
�

t |ψ(0)〉 . (119)

Although the time evolution of the quantum state is deterministic, the results
of measurements of the state are not, and measurements happen all the time. We
lack a good account of how to describe precisely what circumstances create a
measurement—the “measurement problem.” But it is clear that measurements do
occur, transcript of the history of the physical world is not determined by just the
initial state and the physical law, but in addition by a vast number of events that
could have gone one way or the other, with prescribed probabilities. One particular
outcome actually occurred and was, so to speak, written into the transcript of history.

The physical law, in this case quantum mechanics, yields probabilities for
possible outcomes of measurements and the Shannon measure gives us a concrete
way of quantifying how much information about those outcomes the physical law
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provides. In the clockwork universe of Laplace’s demon, the physical law provided
certainty about outcomes, given a complete description of the physical state. It turns
out that the physical law simply does not do that. The physical law constrains, but
does not completely constrain, the outcome of measurements. This is a profound
fact about the nature of the physical law. Nor is this just a feature of the present state
of quantum theory. Recent Bell test experiments confirm to astonishing accuracy
that this is a feature of the physical world quite independent of quantum mechanics
[15–18]. Any future successor theory would have to contain this feature—the future
of the physical world is not completely constrained by the physical law. It retains
some “freedom.”

6.3 Open Quantum Systems and Density Operators

Pure isolated quantum states of a physical system are described by a state vector
|ψ〉. Often we are dealing with a system A that is not isolated but interacting with
a very large system B, which could be a thermal bath or simply the rest of the
universe. We can then no longer describe the system with a state vector but must
employ the formalism of the density matrix. The density matrix folds in two kinds
of probability: that due to fundamental quantum indeterminacy and that due to our
practical ignorance of the details of the state of a large system. It is helpful to
derive it here so we can see exactly where this quantum probability and classical
probability are brought together.

The starting point is writing the quantum state for the global system. We can
write the state of the A system as a linear combination of basis states |αi〉. The basis
states for the large system B are |βm〉. The state describing the combined global
system of A and B can then be written

|ψ〉 =
∑

i,m

Cim |αi;βm〉 (120)

where

〈
αi;βm

∣
∣αj ;βn

〉 = δij δmn. (121)

The sum over m here is over a very large number of possible states for the bath (or
universe). We define the global density operator

ρ̂ = |ψ〉 〈ψ | (122)

=
∑

i,j,m,n

CimC∗
jn

︸ ︷︷ ︸
ρim;jn

|αi;βm〉 〈
αj ;βn

∣
∣ (123)
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=
∑

i,j,m,n

|αi;βm〉 ρim;jn

〈
αj ;βn

∣
∣ (124)

We now focus on the target system A. Any operator Q̂A which acts only on the
A subsystem can be written

Q̂A =
∑

i,j,m

|αi;βm〉Qij

〈
αj ;βm

∣
∣ . (125)

The expectation value of Q we can write

〈
QA

〉
≡

〈
ψ

∣
∣
∣QA

∣
∣
∣ψ

〉
=

∑

i, j, k, 

m, n, p, q

C∗
kpCq

〈
αk;βp

∣
∣αi;βm

〉
QA

ij

〈
αj ;βm

∣
∣α;βq

〉
.

(126)
We do the sums using (121) and exchange the symbols i and j to obtain

〈
QA

〉
=

∑

i,j,m

CimC∗
jmQA

ji

=
∑

i,j

(
∑

m

CimC∗
jm

)

︸ ︷︷ ︸
≡ ρA

ij

QA
ji (127)

=
∑

i,j

ρA
ij QA

ji (128)

Therefore we can write

〈
QA

〉
= Tr(ρ̂A Q̂A) (129)

We have defined the reduced density operator ρA
ij for system A as the sum over the

very large number of basis states for the environment. Our practical ignorance about
the details of the large system B and its interaction with A are all hidden in this sum
over the CimC∗

jm terms. Equation (129) defines the operator ρ̂A as the operator on

the A system which has matrix elements ρA
ij in the |αi〉 basis.

Note that comparing Eqs. (123) and (128) we have

ρA
ij =

∑

m

ρim;jm, (130)
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which we write compactly as a partial trace of the global density matrix over the B

degrees of freedom represented by the βm states.

ρ̂A = TrB(ρ̂). (131)

Several properties of the density matrix can be stated briefly. It can be easily
shown that the density matrix is Hermitian and has unit trace.

ρ̂† = ρ̂ (132)

Tr (ρ̂) = 1 (133)

If ρ describes a state of a system, the probability of measuring the system and
finding it to be in the state φ is given by the expectation value of |φ〉 〈φ|, the
projection operator for φ.

pφ = Tr
(|φ〉 〈φ| ρ̂

)
(134)

The diagonal elements of the density matrix ρi,i are the probabilities of the system
being found in the basis state |αi〉.

Because ρ̂ is Hermitian it can be diagonalized by a unitary transformation.
Denote the eigenvalues of ρ̂ as ρν and the eigenvectors |ν〉. If the system is in a
“pure state” that could be described by a single state vector, then all the eigenvalues
will be zero except for one. If not, the state is described as “mixed.” In that case the
eigenvalues ρν are the probability of the system being found in the state |ν〉.
The von Neumann Entropy Von Neumann defined the quantum entropy SvN to
be a measure of this “mixedness.”

SvN(ρ̂) ≡ − Tr (ρ̂ log(ρ̂)) (135)

The von Neumann entropy is equivalent to the SMI of the eigenvalues of ρ̂ times
log(2), the conversion factor between bases for the logarithm. Alternatively, we can
express the von Neumann entropy in bits, in which case it is identical to the Shannon
measure of the density matrix eigenvalues.

SvN(ρ̂) = − log(2)
∑

ν

ρν log2(ρν) (136)

= log(2) SMI([ρ1, ρ2, ρ3, . . . , ρν, . . .]) (137)

S
(bits)
vN (ρ̂) ≡ SvN(ρ̂)/ log(2) (138)

= SMI([ρ1, ρ2, ρ3, . . . , ρν, . . .]) (139)

We have a set of probabilities ρν and the Shannon measure tells us how much
information is missing given this probability distribution. It is information about
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the extent to which the system could be found to be in various of the density matrix
eigenstates. Fortunately, this measure is invariant under unitary transformations, so
SvN is the same regardless of which basis set we use.

Time Development of the Density Matrix We can consider the case of a system
that is in a mixed state, presumably because of contact with another system in the
past, but which is now isolated. From the Schrödinger equation for |�〉 in (123),
one can derive the von Neumann equation for the time development of ρ̂:

i�
∂ρ̂

∂t
= [Ĥ , ρ̂]. (140)

where the square brackets denote the anti-commutator. This holds of course for
pure-state density matrices as well. Equation (140) is also known as the quantum
Liouville equation. If the Hamiltonian is time-independent we can equivalently
write the time development as a unitary transformation from the initial state directly:

ρ̂(t) = e−iĤ t/�ρ̂(0)e+iĤ t/� (141)

The case where the system is in continous contact with the bath is, as one might
suppose, much more difficult because one has to adopt some approximate model of
the behavior of the bath. The most straightforward is the Lindblad formalism, but
we will not explore that here.

We can say something qualitative about the evolution of the density matrix in
contact with the larger system. The off-diagonal elements of the density matrix are
called “coherences” because they express quantum mechanical coherence between
the system A and the bath B. If the system and bath are initially in a direct
product state, these coherences will quickly vanish (either exponentially or with
a Gaussian shape) and the density matrix will become diagonal in the basis of
energy eigenstates. The reason for this is that the system will become quantum
mechanically entangled with the many degrees of freedom of the larger system and
the quantum complex phases in the sum (127) will average to zero. This can be seen
in moderately sized system where the global A+B system can be solved exactly [19].
If the mean interaction energy between the system and environment is Ese, then the
coherences vanish and a time of the order of h/Ese.

The density matrix is the best local description we can have of the state of the
system. The reality is that the system has no state—only the combined system+bath
really have a quantum state. There is a loss of information from the subsystem as
it interacts and entangles with the larger system, reflected by the loss of the off-
diagonal elements of the density matrix. The global state is pure and the global
information is undiminished, but it cannot be found in any of its subsystems. This
is a uniquely quantum mechanical feature.

Statistical Mechanics for Open Quantum Systems Quantum statistical mechan-
ics starts with the quite reasonable assumption that in thermal equilibrium all the
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coherences have vanished and the density matrix is diagonal in the energy basis
with probabilities given by the Boltzmann distribution [20].

ρ̂eq = e−Ĥ /kBT

Z
where Z = Tr(e−Ĥ /kBT ) (142)

Therefore, somewhat anticlimactically, the quantum treatment of the write and
erase bit operations adds little to the classical analysis in Sect. 5.3. The Hamiltonian
in the basis of dot states [|1〉 , |2〉 , |3〉] is given by

ˆH(t) =
3∑

k=1

|k〉 Ek(t) 〈k| − γ

2∑

k=1

[
|k〉 〈k + 1| + |k〉 〈k + 1|

]
(143)

In order to hold the bit in the metastable state a memory requires, we want the
tunneling energy γ to be small and the barrier height of E2 in the high state to be
large. If E1 = E3, we can define the barrier height as Eb ≡ E2 − E1. The effective
barrier to tunneling is through this barrier is then [21]

γeff =
√

E2
b + 8γ 2 − Eb

4
. (144)

The additional memory design requirement is then to make γ small and Eb

large enough to suppress quantum tunneling for the required bit hold time. The
characteristic tunneling time can be taken to be h/γeff.

With γ small there will be only slight anti-crossing of the otherwise degenerate
the energy levels as E2 moves up and down to latch or erase a bit. The Hamiltonian
eigenenergies will be very close to the on-site energies of each dot Ek The energy
scale of the switching is much larger than the tunneling energy by design. If the
system is switched slowly enough to always keep it in the thermal ground state,
which was our assumption, then the density matrix is always diagonal in the energy
eigen-basis because the off-diagonal coherences are all 0. The thermodynamic
entropy S(t) is then identical to the von Neumann entropy SvN(t). As a result, each
of the Figs. 9, 10, 11, 12 and 13 is essentially the same for both the classical and
quantum cases. Where we could expect a difference would be if the switching speed
were fast enough to drive the system out of equilibrium, or stress the ability of the
system to tunnel to the equilibrium state [22].

6.4 Non-equilibrium Quantum System: Free Expansion of an
Ideal Quantum Gas

Finally, we will look at a very-far from equilibrium situation to see the differing
roles of the von Neumann entropy and the quantum entropy of outcomes. We first
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extend the concept of the entropy of outcomes (111) from pure states to mixed states
described by density matrices. We will now call this quantity SQ, remembering
that it is not the thermodynamic equilibrium entropy S, a state function, but rather
is a dynamical measure of missing information about a particular observable. We
start with a Hermitian operator Q̂ representing an observable, its eigenvalues qi ,
eigenstates |qi〉, and the projection operator onto a particular eigenstate |qi〉 〈qi |.
For a system described by the density matrix ρ̂ we define:

pqi
= Tr (ρ̂ |qi〉 〈qi |) (145)

SQ(ρ̂) ≡ −
∑

qi

pqi
log2(pqi

) = SMI([pq1, pq2 , pq3 , . . .]). (146)

For a dynamic system we will denote SQ(t) = SQ(ρ̂(t)) and see to what degree this
extends the equilibrium notion of the thermodynamic entropy.

We consider a very simple system of a single-particle gas in one dimension in
the low density limit. The one-particle gas models an ideal non-interacting gas in
the low-density limit for which one need not take into account the Fermi-Dirac or
Bose-Einstein character of the occupancy statistics. Figure 16 illustrates the physical
situation. A linear array of N quantum dots, with on-site energy E0, forms a “large”
container. The spatial positions of the dots are taken to be uniform from x1 = 0
to xN = 100 in arbitrary units. A tunneling matrix element γk couples sites k and
k + 1. The Hamiltonian for the system is then

Ĥ =
N∑

k=1

E0 |k〉 〈k| −
N−1∑

k=1

γk

[
|k〉 〈k + 1| + |k〉 〈k + 1|

]
. (147)

Fig. 16 Schematic view of free expansion of single-particle quantum gas on a 1D chain of
quantum dots. The chain consists of a linear array of N quantum dots with near-neighbor
Hamiltonian coupling energies γ . For t < 0 (top diagram) the particle is confined to a small initial
segment of Ninit dots in the chain. The coupling elements to the left and right of the segment are
set to zero—the “valves” are closed. The initial state is in thermal equilibrium. At t = 0 the system
is isolated from the bath and the values of coupling elements on the left and right of the segment
are switched from 0 to γ (bottom diagram). The one-particle gas is therefore free to expand into
the larger container. The unitary non-equilibrium evolution of the quantum density matrix is given
by Eq. (141)



Information and Entropy in Physical Systems 57

All the coupling elements are identical, γk = γ , except those surrounding a segment
of length Ninit dots near the center of the array. These are initially set to γleft =
γright = 0, isolating the Ninit dots in the small container.

Before t = 0, the gas is in the thermal equilibrium state at temperature T and
is held in the smaller container of Ninit sites. We calculate the initial equilibrium
density matrix

ρ̂init = e−Ĥinit/kBT

Tr
(
e−Ĥinit/kBT

) , (148)

where Ĥinit includes only the dots in the small container.
At t = 0 two zero tunnelling matrix elements, γleft and γright are set to the

common value γ , thus opening the “valves” connecting the small container to the
larger container. The initial Ninit × Ninit density matrix is embedded in the larger
N × N density matrix describing the whole system and the time development is
calculated directly from the von Neumann equation (141). The container is now
assumed to be isolated from the heat bath. We calculate the case where Ninit = 8,
N = 64, and γ /E0 = 0.1. The mean value of the energy eigenvalues is Em and
the temperature is chosen to be T = Em/(15kB). The smaller container is offset
from the center of the larger container slightly to avoid artifacts of symmetry. Time
is measured in units of τ = �/γ .

The probability of dot occupancy at three snapshots in time is shown in Fig. 17.
At t = 0 the probability is nonzero only in the smaller container with quantum
confinement effects shown by the rounding of the probability at the container edges.
At t = 5τ the gas is expanding freely into the surrounding container. From t ≈ 20τ

onward the probability fills the larger container, though because the system has no
way to lose energy, quantum oscillations in the probability continue indefinitely. A
snapshot at t = 80τ shows a characteristic distribution.

Figure 18 shows the probability distribution for each energy eigenstate of the
system. Before the expansion (t = 0−) there are Ninit = 8 Hamiltonian eigenstates
with the characteristic Boltzmann distribution of probabilities. The red line is the
Boltzmann exponential as a continuous function of energy. Just after the valves
are opened (t = 0+), the number of eigenstates increases to N = 64. This is
a far-from-equilibrium situation so the occupancy is no longer thermal. The red
line again shows the Boltzmann exponential for the initial temperature, now just
for comparison because there is no temperature for the system after t = 0. The
non-equilibrium distribution in energy is perhaps surprising close to the thermal
shape, though less so at low energies. The probabilities for each allowed energy do
not change once the valves are open because the time evolution (141) is unitary,
preserving the projection onto energy eigenstates, so the (t = 0+) figure is valid for
all positive times.
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Fig. 17 Free expansion of the quantum gas in 1D. The probability density for the linear chain
shown schematically in Fig. 16 is plotted at three snapshots in time during the unitary evolution of
the density matrix ρ(t) according to (141). At t = 0, the system is confined in the smaller container
near the center of the array. The gas is initially at thermal equilibrium and quantum confinement
effects are visible in the drop-off at the edges. The single particle gas is isolated from the thermal
bath at t = 0 and released to expand into the surrounding larger container. Time is measured in
units of τ = �/γ where γ is the inter-dot coupling Hamiltonian matrix element (see Eq. (147).
The middle plot shows the expanding gas at t = 5τ . The lower plot shows the probability at
t = 80τ , when it has filled the container. Oscillations persist because there is no energy dissipation
mechanism in the model

Figure 19 shows two measures of the entropy of the expanding gas. We again note
that a thermodynamic entropy cannot be uniquely defined for this non-equilibrium
situation. The dashed red line shows the von Neumann entropy SvN(t), measured in
bits (calculated from (138)). Unsurprisingly, it is constant, 1.81 bits, throughout the
expansion precisely because the free expansion is a unitary process. The eigenvalues
of the density matrix do not change in time under (141).

The time development of the entropy of outcomes associated with the position
operator, SX(t), calculated from (146) is shown as the solid line in Fig. 19. Initially
Sx ≈ 3, corresponding to the Shannon entropy for 8 = 23 uniformly occupied
dots. It is slightly lower because the probability density at t = 0 is not quite
uniform (Fig. 17). It rises smoothly to near a value of 6, corresponding to the
Shannon entropy for 64 = 26 uniformly occupied dots. Again, the residual quantum
oscillations visible in Fig. 17 account for the remaining difference.

In this free expansion of an ideal quantum gas, the volume was increased by a
factor of 8, which would correspond to a classical increase of the thermodynamic
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Fig. 18 The probability of each eigen-energy prior to expansion, and just after the expansion
“valves” are opened for the single particle quantum gas shown in Figs. 16 and 17. Here kBT /E0 =
0.067 and γ /E0 = 0.1. The initial state is in thermal equilibrium so the probabilities for each
eigenenergy of the smaller container, with Ninit = 8, are given by the Boltzmann distribution,
Eq. (142) and indicated by the red line in the top figure. Immediately after the opening, there are
more eigenstates because the system is now larger with N = 64, as shown in the lower figure. The
probability associated with each eigenstate is now only approximately thermal (red line) because
the system is no longer in equilibrium. The probabilities in the lower figure are constant after
t = 0+ throughout the unitary evolution of the isolated system

entropy by a factor of log2(Vfinal/Vinit) = 3 (see (91)). This is nearly what we see
in Fig. 19 for this entirely quantum mechanical calculation using SX(t). But it is
not reflected in the von Neumann entropy, which is meant to capture the amount of
deviation from a purity in the density matrix. The amount of “mixedness” does not
change during isolated free expansion. Using SX(t) we capture what the classical
version captured—the increase in the amount of position information that is missing.
The entropy of outcomes for energy measurements SE is constant in time with a
value of 4.9 bits.

If the expanded system were to again be put in contact with the bath and allowed
to come to thermal equilibrium, then we would have SvN = 4.78 bits, SE = 4.88
bits, and SX=5.99 bits (still reflecting the small quantum edge effects). The von
Neumann entropy SvN is the entropy of outcomes SQ for the case when the relevant
operator is the density operator itself, Q = ρ, and it will always have the minimum
value over the space of all Hermitian operators.
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Fig. 19 Two measures of the entropy of the ideal single-particle quantum gas during free
expansion. The von Neuman entropy SvN (t), calculated from (138, 139), is constant with a value of
1.81 bits during unitary free expansion (red dashed line). It is a measure of the lack of information
about the quantum state of the system in the density matrix—its “mixedness” or deviation from
purity. The entropy of outcomes for position, SX(t), defined in (146) with Q̂ = X̂, is shown as the
solid blue line. SX is initially 2.96 bits. If there were no quantum size effects in the probability at
t = 0 ( Fig. 17), then we would have SX(0) = 3, corresponding to equal probabilities over 8 = 23

dots. As the expansion proceeds, SX increases to a value near 6 bits, corresponding to a uniform
distribution over 64 = 26 dots. It is SX that most nearly corresponds to the classical equilibrium
result, given by the Sakur-Tetrode equation (91), for the entropy of a gas related to the volume it
fills. Using the SX(t) as a measure of the missing position information offers a natural extension
of equilibrium entropy to the non-equilibrium case

7 Discussion

Discussions of information are sometimes confused by failing to distinguish raw
information from encoded information. An encoding scheme adds the mapping
between physical states and logical symbols that makes a physical process, which
is after all just physics in action, a meaningful logical or arithmetic process. Bits
are not part of the ontology of the physical world but rather supervene on physical
states.

Logically, the Shannon entropy (SMI), as a measure of missing information in
a probability distribution is the most foundational concept for entropy. Probability
represents a quantification of incomplete knowledge. Jaynes contribution was built
on the insight that the only unbiased way to construct a probability distribution is
to find that distribution which maximizes the SMI, a measure of what is unknown,
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subject to the mathematical constraints that arise from what is known. This is a
strict and objective procedure that is the same for all observers who have the same
information available to them.

We have seen in Sect. 3 that applying the Jaynes maximum entropy principle
yields mathematical results which reproduce standard statistical mechanics. Clas-
sical statistical mechanics is, after all, unnecessary if all the relevant dynamical
quantities are known—that would require only mechanics. Statistical mechanics
concerns what we can know about a system when the details of its dynamics are
unknown. When applied to the problem of a target system in thermal equilibrium
with a large heat bath, the Jaynes procedure precisely connects the information
theoretic Shannon entropy with the thermodynamic entropy of von Neumann,
Gibbs, Boltzmann, and Clausius. The thermodynamic entropy in equilibrium is
(within a constant) the Shannon entropy of the unique probability distribution which
maximizes the SMI subject to the appropriate constraints. The equilibrium ther-
modynamic entropy is a special case of the Shannon entropy applied to particular
systems that have a well-characterized average energy, number of particles, or other
macroscopic constraints.

The Jaynes formulation of physical entropy as a measure of missing information
is superior to the often-encountered notion of entropy as a measure of disorder.
Disorder is not a quantifiable idea—it is irredeemably subjective, completely in
the mind of the beholder. Information (in the information theoretic sense measured
in bits) is quantifiable and precise. The information that is missing from a given
probability distribution is quantifiable and objective.

The Landauer Principle connects an information theoretic process, bit erasure,
with a physical process, heat dissipation. Because it concerns a lower bound for
heat dissipation we looked quantitatively at a minimal physical system with a
specific encoding scheme. A key step here was to use the Jaynes definition of
thermodynamic entropy to describe a memory storage device which is ipso facto
not in an equilibrium state. This straightforward extension permits a quantitative
analysis of the minimal thermodynamic system when a known or unknown bit
is erased. We see precisely the expected heat dissipation of kB log(2) when an
unknown bit is erased, and no lower bound for the heat dissipated when erasing
a known bit (with a copy preserved).

In the quantum mechanical case, the von Neumann entropy is the SMI of the
eigenvalues of the density matrix. This is a measure of quantum state purity; a pure
state has von Neumann entropy of 0. A quantum treatment of the minimal memory
system acts essentially the same as the classical system because quantum coherences
vanish in thermal equilibrium. It must be emphasized that in quantum mechanics
what is unknown includes the fundamental indeterminacy of the physical law. This
is now known to be not a peculiarity of the quantum mechanical description, but
rather a feature of the nature of the physical world.

Grounding the entropy concept in the Shannon measure also naturally focuses
attention on the less well-known quantum entropy of outcomes SQ for measure-
ments of an observable Q. We have seen that in the case of the free expansion
of a classical gas, the quantum analogue of the classical entropy was not the von
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Neumann entropy, but the entropy of outcomes for the position operator, SX (146).
This entropy is not basis-independent—it depends specifically on the observable in
which one is interested. Whereas the von Neumann entropy captures the amount of
information missing about the pure state of the system due to entanglement with the
environment, SQ capture the amount of missing information about measurements of
the observable Q. It is applicable to both pure and mixed states.

Acknowledgements Thanks to Arieh Ben-Naim for highlighting the Jaynes approach in refer-
ences [4] and [5], and for helpful conversations. Thanks also to Neal Anderson and Ken Sauer for
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1 Introduction

Landauer’s Principle (LP), in its original and most widely recognized form,
stipulates that the erasure of information from a physical system necessarily
dissipates heat into the system’s environment [1]. The associated lower bound on
the dissipative cost of erasure—kBT ln(2) of environmental heating per erased bit
of information—is widely known as the Landauer limit. Related work of Bennett
[2, 3] associated the Landauer limit only with irreversible erasure processes, and
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suggested that there is no such lower limit on dissipation for reversible erasure
processes that utilize a durable record of the system’s pre-erasure state. We will call
this lower bound on the dissipative cost of reversible erasure—zero environmental
heating per erased bit of information—the Landauer-Bennett limit.

Both the Landauer and Landauer-Bennett limits have been discussed and ana-
lyzed for decades, primarily through theoretical analyses of idealized classical and
quantum-mechanical model systems, and both have long been controversial [3–
25]. Some of the controversy can be traced to flaws in the debate, e.g. imprecise
or incomplete definition of information and other key quantities; imprecise or
incomplete specification of the operations, processes, system boundaries, and
physical scenarios involved; excessive reliance on simple model systems and over-
generalization of results obtained from analyses of these systems; and conflation
of inviolable (if possibly unachievable) bounds with practically achievable limits.
Much of the debate is, however, rooted in substantive methodological and interpre-
tive concerns, including the proper application of thermodynamics, the connections
and/or distinctions between physical and information-theoretic entropies, and the
connections/distinctions between physical and logical reversibility. In any case,
decades-old controversies over the Landauer and Landauer-Bennett limits live on
as experimentalists begin to probe these limits experimentally [26–29] and as their
potential implications for the future of computation attract renewed interest [30, 31].

This state of affairs motivates rigorous proof of very general bounds on the
dissipative cost of information erasure—both for erasure protocols that invoke
records of pre-erasure system states and those that do not—within a common
theoretical framework. This framework should capture the essential physical distinc-
tion between conditional and unconditional erasure protocols, root the associated
dissipative costs in fundamental physical law (as opposed to the details of particular
realizations), distinguish information from physical entropy, and withstand the
methodological objections commonly raised in the literature.

Such proofs are provided in this work. Using a very general and ecumenical phys-
ical description of Landauer erasure, and assuming little more than distinguishabil-
ity of encoding states in data-bearing systems and the validity of non-relativistic
quantum theory, we obtain dissipation bounds for conditional and unconditional
Landauer erasure of information from quantum dynamics and entropic inequalities
alone. Shannon entropy, which most commonly plays the role of an information
measure in expressions of Landauer-like bounds, emerges naturally in our proof
of the unconditional erasure bound: it is neither inserted “by hand” at the outset
nor assumed to be equivalent to thermodynamic entropy or any other physical
entropy germane to the problem. The underlying theoretical methodology is, we
argue, immune to common objections to (mostly thermodynamic) demonstrations,
arguments, and proofs of the Landauer and Landauer-Bennett limits, expressed most
precisely and forcefully by John D. Norton [16], and is consistent with results from
recent experimental probes. Our results are further supported by bounds obtained
from a much more general physical-information-theoretic approach, which uses an
overtly physical information measure that differs fundamentally from Shannon’s
mathematical entropy but that coincides with it for the case of distinguishable
encoding states. Our analysis thus provides fundamental support for interpretation
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of Landauer’s limit as a lower bound on environmental heating contributed by
information loss in unconditional Landauer erasure, and for the absence of any such
dissipative contributions in conditional Landauer erasure.

The remainder of this chapter is organized as follows. In Sect. 2 we define
Landauer erasure in terms of essential properties of the physical state transforma-
tions required to reset a physical system’s state to a “standard state,” and define
the corresponding erasure cost as the initial-state-averaged system-to-environment
energy transfer resulting from such state transformations. In Sect. 3, we obtain a very
general bound on the cost of erasure so defined, and identify it as a generalization of
the Landauer-Bennett bound for conditional erasure (Sect. 3.1). We then specialize
this proof to preclude conditional erasure operations—operations that are “pre-
selected” to match the initial system state—and identify the resulting bound as a
generalization of the Landauer limit (Sect. 3.2). Next, we discuss the physical origin
of the Landauer limit and the role of conditioning within our descriptive framework,
and elaborate on the subtle role that delineation of the “erasable system” boundary
plays in erasure protocol classification (Sect. 3.3 ). In Sect. 4, we catalog some recent
methodological objections to existing proofs of the Landauer and Landauer-Bennett
limits and show how they are sidestepped in our framework. In Sect. 5, we remark
on the consistency of recent experimental results with the results of our work. We
conclude in Sect. 6, and place the bounds obtained here in the context of the more
general and thoroughly physical approach we have described elsewhere.

2 Landauer Erasure

2.1 Physical Description

We begin with a very general physical description of Landauer erasure, i.e. the
resetting of an information-bearing physical system to a standard state. Consider a
system S that can be initially prepared in any of N distinguishable states ρ̂S

i drawn
from a set {ρ̂S

i } = {ρ̂S
0 ...ρ̂S

N−1}, and can thus unambiguously encode classical
information expressed in an N -ary alphabet. We define a Landauer erasure protocol
[1] as an operation or sequence of operations on S that, for every initial state ρ̂S

i ,
leaves the system S in a standard reset state ρ̂S

reset (which may or may not coincide
with one of the ρ̂S

i ). We assume that S couples to an environment E throughout
the erasure process, and that the environment is initially in a thermal state ρ̂E

th at
temperature T . With this, Landauer erasure can be formally defined by the set

{ρS
i ⊗ ρ̂E

th → ρ̂SE ′
i }

of N state transformations of SE , for which the final local state of S is

T rE [ρ̂SE ′
i ] = ρ̂S

reset ∀i.
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Global closure of SE implies unitary evolution of the system-environment com-
posite during Landauer erasure, consistent with joint evolution of SE governed by
the time-dependent Schrodinger equation. This is to say that, for each of the N ρ̂S

i ∈
{ρ̂S

i }, there exists a unitary operator Ûi ∈ {Ûi} that transforms the state of SE as

Ûi(ρ
S
i ⊗ ρ̂E

th)Û
†
i = ρ̂SE ′

i

such that T rE [ρ̂SE ′
i ] = ρ̂S

reset, i.e. so the required state reset is achieved. Here

Ûi = T
{

exp

[

− i

�

∫ ter

0
ĤSE

i (t ′)dt ′
]}

with

ĤSE
i (t) =

(
ĤS

self + ĤE
self + ĤSE

int + V S
i (t)

)

where ter is the duration of the erasure operation (initiated at t = 0), ĤS
self and ĤE

self

are the system and environment self Hamiltonians, ĤSE
int is the system–environment

interaction Hamiltonian, V S
i (t) is the time-dependent potential applied to the system

to reset the i-th system state ρ̂S
i , and T is the Dyson time-ordering operator. We note

for later reference that the Hamiltonian has been defined so all differences between
the various Ûi stem exclusively from differences in the applied potential V S

i (t).
This is a very general and “ecumenical” physical description of Landauer

erasure. It is based on a high-level specification of requirements that states and
state transformations must meet to (1) correspond to Landauer erasure and (2)
obey physical law as expressed in the postulates of quantum mechanics. This is
to be contrasted with low-level descriptions—explicit physical models—of erasure
processes in particular realizations of information-bearing systems. Our high-
level description aims to capture only those essential features of both conditional
erasure protocols that employ operations conditioned on the initial state of S—
or, equivalently, on a physical copy of the state of S—and unconditional erasure
protocols that involve no such conditioning. The distinction between conditional
and unconditional protocols is conceptually significant and provably consequential
for the dissipative cost of erasure, as shown below.

2.2 Energy Cost of Erasure

Our objective is to lower bound the average environment energy increase

〈Δ〈EE
i 〉〉 ≡

∑

i

piΔ〈EE
i 〉 (1)
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for Landauer erasure protocols. The average is relevant to a large collection
{pi, ρ̂

S
i ⊗ ρ̂E

th} of system-environment composites, a fraction pi of which have the
system S initially prepared in the state ρ̂S

i and all of which are in contact with
thermal environments at temperature T . (It applies equally well to a large number of
state resets performed on a single system-environment composite, with SE initially
prepared in the joint state ρ̂S

i ⊗ ρ̂E
th in a fraction pi of erasure trials.) Here Δ〈EE

i 〉
is the increase in the expected value of the environment energy associated with
resetting the initial system states ρ̂S

i to the standard state ρ̂S
reset.

For later reference, we write Eq. (1) out as

〈Δ〈EE
i 〉〉 =

∑

i

pi

(
〈EE ′

i 〉 − 〈EE
i 〉

)

=
(

∑

i

piT rE
[
ρ̂E ′

i ĤE
self

]
)

− 〈EE
th〉

where 〈EE
th〉 = T rE

[
ρ̂E

thĤ
E
self

]
. Noting that the final environment states are of the

form

ρ̂E ′
i = T rS

[
ρ̂SE ′

i

]
= T rS

[
Ûi ρ̂

SE
i Û

†
i

]

we have

〈Δ〈EE
i 〉〉 = T rE

[
∑

i

piT rS
[
Ûi ρ̂

SE
i Û

†
i

]
ĤE

self

]

− 〈EE
th〉

or

〈Δ〈EE
i 〉〉 = T rE

[

T rS

[
∑

i

pi

(
Ûi ρ̂

SE
i Û

†
i

)
]

ĤE
self

]

− 〈EE
th〉 (2)

where the linearity of the partial trace operation
(∑

i piT rS
[
ρ̂SE

i

] = T rS
[∑

i pi

ρ̂SE
i

])
has been used in the final equality.

3 Dissipation Bounds for Landauer Erasure

3.1 Conditional Erasure Bound

We now obtain general lower bounds on the energy cost 〈Δ〈EE
i 〉〉 for Landauer era-

sure, as straightforwardly defined in Eq. (1), from very fundamental considerations.
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We begin by noting that, for the initial and final states of SE ,

S(ρ̂SE ′
i ) ≤ S(ρ̂S

reset) + S(ρ̂E ′
i )

S(ρS
i ⊗ ρ̂E

th) = S(ρ̂S
i ) + S(ρ̂E

th).

The first follows from the subadditivity of von Neumann entropy for general joint
states of bipartite composite systems and the second for the additivity of this entropy
for separable joint states.1 Since unitary evolution preserves von Neumann entropy,
we can equate the initial state entropy S(ρS

i ⊗ρ̂E
th) and the final state entropy S(ρ̂SE ′

i )

of SE and rearrange to get

S(ρ̂E ′
i ) − S(ρ̂E

th) ≥ −[S(ρ̂S
reset) − S(ρ̂S

i )]
or

ΔSE
i ≥ −ΔSS

i

where ΔSS
i = S(ρ̂S

reset) − S(ρ̂S
i ) and ΔSE

i = S(ρ̂E ′
i ) − S(ρ̂E

th). Applying Partovi’s
inequality [32] (see Appendix), we have for the i-th preparation ρSE

i = ρS
i ⊗ ρ̂E

th

and unitary Ûi ,

Δ〈EE
i 〉 ≥ −kBT ln(2)ΔSS

i .

From this, and from Eq. (1), the average environmental energy increase is lower
bounded simply as

〈Δ〈EE
i 〉〉 ≥ −kBT ln(2)

∑

i

piΔSS
i . (3)

This bound is proportional to the average decrease in self entropy of the individual
system states ρ̂S

i as they are transformed to the reset state. Conspicuously absent is
any term explicitly related to information loss in the erasure process.

The bound (3) applies to conditional Landauer erasure protocols, i.e. protocols
for which the operations {Ûi} applied to the system to achieve erasure are properly
matched to—are conditioned upon—initial system states ρ̂S

i . This bound presumes

existence of a set {Ûi} of N generally different unitary evolution operators—a set of
N time-dependent applied potentials V S

i (t)—that guide transformation of each of
the N pre-erasure states ρ̂S

i → ρ̂S
reset to the reset state. This is to say that selection of

the applied potential in any trial is conditioned upon the pre-erasure state of S , so the
appropriate evolution operator Ûi is selected and applied only when the pre-erasure
state of the system is ρ̂S

i .

1See the Appendix, where established properties of von Neumann entropy, unitary transformations,
and trace operations used in this work are cataloged for convenience.
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The tailored application of selected operations required for conditional erasure
can be achieved in a variety of ways. However, any conditional erasure protocol
presumes the existence or creation of a record—external to S—of the pre-erasure
state of S . The appropriate operation can be selected and applied by an agent with
prior knowledge (a remembered record) of the initial system state, by an automatous
operation that can read an existing physical record of the initial state of S (or
create one if necessary2), or automatically through interaction of S with another
system whose state holds a record or copy of the pre-erasure state of S . The bound
(3) generally applies to all such conditional Landauer erasure protocols, which we
hereafter call ERASE WITH COPY protocols.3

Note that the bound (3) is simply Δ〈EE
i 〉 ≥ 0 if, as in those cases most widely

considered in the literature, all initial states have the same entropy as the reset state.
This corresponds to the Landauer-Bennett limit, reflecting no lower bound on the
cost of information erasure for ERASE WITH COPY operations. In the general case
(3), 〈Δ〈EE

i 〉〉 can be positive, negative, or zero as a result of entropy flows that
are not related to information erasure and that may involve only reversible system-
environment energy transfer.

3.2 Unconditional Erasure Bound and the Landauer Limit

We next consider unconditional Landauer erasure, in which resetting of a system
to a standard state is achieved by application of a fixed operation independent of
the pre-erasure state of the system. Such protocols are more common in practice
(e.g. CLEAR and RESET operations in standard digital hardware), and are familiar
from thought experiments long discussed in the literature. The two most familiar of
these classic thought experiments are (1) unconditional erasure of a bit encoded in
a Szilard-engine by removing the partition and pushing the particle to a “standard”
side of the chamber via isothermal compression, and (2) erasure of a one-bit double-
potential-well memory by a time-dependent variation of the potential that lowers the

2An agent or automaton without an existing record of the pre-erasure system state can create one
through measurement as part of a more complex conditional erasure protocol, since the N pre-
erasure states are mutually orthogonal and thus distinguishable from one another. Formal treatment
of any such protocol would, however, have to include an additional subsystem that registers
measurement outcomes and account for physical costs associated with the measurement process
(e.g. creation of system/apparatus correlations and/or erasure or overwriting of the measurement
outcomes on each use). This is discussed further in Sect. 4.
3We adopt Orlov’s [29] labeling of erasure protocols that do and do not utilize records of pre-
erasure system states as ERASE WITH COPY and ERASE WITHOUT COPY protocols, respectively.
Here, WITH and WITHOUT will generally mean “conditioned upon” and “not conditioned upon,”
so WITH COPY means both “in the presence of” and “with active use of” a copy or record. Note the
physical state serving as an external record need not be an identical copy of the pre-erasure state of
S; it need only provide an unambiguous physical identifier of which encoding state ρ̂S

i the system
S is in prior to erasure.
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barrier between the wells, pushes the particle to a standard side of the well, and then
restores the barrier.

The essential feature of unconditional erasure protocols—the feature that dis-
tinguishes them from the conditional protocols discussed in Sect. 3.1—is this: in
unconditional protocols, all N state transformations

ρS
i ⊗ ρ̂E

th → ρ̂SE ′
i : T rE [ρ̂SE ′

i ] = ρ̂S
reset

required for Landauer erasure are achieved by blind application of a single unitary
operation Û to SE as

Û (ρS
i ⊗ ρ̂E

th)Û
† = ρ̂SE ′

.

Unconditional erasure requires a universal unitary Û—a single time-dependent
applied potential V S(t)—that is up to this task.

To lower bound the energy cost of unconditional Landauer erasure, note that it is
a special case of conditional erasure with Ûi = Û for all i. We can thus specialize
the expression (2) for generally unconditional erasure accordingly, by substituting
Ûi → Û for all i, to obtain

〈Δ〈EE
i 〉〉 = T rE

[

T rS

[
∑

i

pi

(
Û ρ̂SE

i Û†
)
]

ĤE
]

− 〈EE
th〉. (4)

Because the time-evolution operator is now independent of the pre-erasure state, the
linearity of unitary similarity transformations can be applied to obtain

〈Δ〈EE
i 〉〉 = T rE

[

T rS

[

Û

(
∑

i

pi ρ̂
SE
i

)

Û†

]

ĤE
]

− 〈EE
th〉. (5)

For initial states of the form ρ̂SE
i = ρ̂S

i ⊗ ρ̂E
th, this is

〈Δ〈EE
i 〉〉 = T rE

[
T rS [Û

(
ρ̂S ⊗ ρ̂E

th

)
Û†]ĤE]

− 〈EE
th〉 (6)

with

ρ̂S =
∑

i

pi ρ̂
S
i . (7)

The expression (6), which is equivalent to the straightforward average (2) over
the N individual processes, is equivalent to the energy increase of the environment
for the single state transformation

ρ̂S ⊗ ρ̂E
th → ρ̂SE ′

(8)
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of SE (via Û ), with the initial state of S described by the density operator ρ̂S given
by (7) (for which T rE [ρ̂SE ′ ] = ρ̂S

reset). Because of this mathematical equivalence,
the desired unconditional erasure bound can be obtained by lower bounding the
environment energy increase via Partovi’s inequality for the “surrogate” state
transformation (8), which yields

〈Δ〈EE
i 〉〉 ≥ −kBT ln(2)

[
S(ρ̂S) − S(ρ̂S

th)
]
.

It follows from the mutual orthogonality of the ρ̂S
i that

S(ρ̂S) = S

(
∑

i

pi ρ̂
S
i

)

=
∑

i

piS(ρ̂S
i ) + H({pi}) (9)

where

H({pi}) = −
∑

i

pi log2 pi (10)

is the Shannon entropy [33] of the pmf {pi} (sometimes called the “preparation
entropy” or “encoding entropy”). This finally yields the bound

〈Δ〈EE
i 〉〉 ≥ −kBT ln(2)

∑

i

pi

[
ΔSS

i + H({pi})
]

or

〈Δ〈EE
i 〉〉 ≥ −kBT ln(2)

∑

i

piΔSS
i − kBT ln(2)H({pi}) (11)

for unconditional erasure.
The Shannon entropy H({pi}), which emerged in derivation of the bound (11),

is commonly taken as a measure of the information initially encoded in S—and
subsequently erased from S—in such scenarios, i.e. when the i-th symbol of a
classical source alphabet is physically encoded in S by preparing S in the state ρ̂S

i .
If we adopt this measure, and write H({pi}) = −ΔIer since H({pi}) of information
is lost from S in erasure, we have

〈Δ〈EE
i 〉〉 ≥ −kBT ln(2)

∑

i

piΔSS
i + kBT ln(2)ΔIer (12)

where, again, ΔSS
i = S(ρ̂S ′

i ) − S(ρ̂S
th).

The first term in the unconditional erasure bound (12), which reflects the average
entropy change of the encoding states incurred in resetting, is equivalent to the
conditional erasure bound (3). This term can, again, be positive, negative, or zero,
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and is not specifically related to information erasure. The second term, which
is absent from the conditional erasure bound (3), reflects a contribution to the
energy cost of Landauer erasure attributable to information erasure. This term is
nonnegative and represents an irreversible transfer of energy to the environment.

If all initial states ρ̂S
i have the same entropy as the reset state—again the

canonical case considered in the literature—the bound (12) takes the familiar form

〈Δ〈EE
i 〉〉 ≥ kBT ln(2)ΔIer.

This bound, which has the standard form of Landauer’s limit, says that unconditional
erasure of information from a physical system—if quantified by the Shannon
entropy of the encoding—contributes at least kBT ln(2) of energy per erased bit
of information to the system’s (thermal) environment.

It is entirely reasonable to expect that, as the above bounds suggest, unconditional
Landauer erasure carries physical costs that conditional Landauer erasure does
not—even though both protocols connect the same initial and final states. Any uni-
tary Û capable of achieving unconditional erasure must single-handedly transform
all pre-erasure states to the same reset state ρ̂S

reset, whereas each of the individual Ûi

applied in conditional erasure can be optimally selected to most efficiently transform
a single pre-erasure state ρ̂S

i to ρ̂S
reset.

3.3 On Protocol Classification

So far in this section, we proved general dissipation bounds for conditional and
unconditional Landauer erasure that are transparently rooted in very fundamental
considerations. Because only conditional erasure protocols utilize records (or
copies) of pre-erasure system states, we again call the conditional erasure protocols
of Sect. 3.1 ERASE WITH COPY protocols and the unconditional erasure protocols of
Sect. 3.2 ERASE WITHOUT COPY protocols, respectively. The bounds we obtained
for these two classes of protocols differ only in that the kBT ln(2) Joule-per-bit
“Landauer cost” appears in the dissipation bound for ERASE WITHOUT COPY

protocols but does not appear in the corresponding bound for ERASE WITH

COPY protocols. This supports both Landauer’s limit for unconditional erasure
and Bennett’s claim that the Landauer cost can be avoided in erasure protocols
that utilize copies.4 These claims are widely accepted—the expectation of extreme
energy efficiencies in reversible computing is, for example, largely predicated on
the validity of Bennett’s claim—but are not universally accepted.

In the remainder of this section, we address two challenges to the classification of
erasure protocols as conditional or unconditional. The first challenge is to properly

4That Landauer himself regarded Bennett’s claim as a “friendly amendment” to his erasure
principle is evident in [34].
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accommodate Bennett’s distinction between “known data” and “random data” [11]
within our approach, augmenting his definitions as appropriate and reconciling
apparent contradictions between our respective conclusions regarding the associated
dissipative costs of erasing random data. The second challenge is to clarify an
apparent dependence of protocol classification—as conditional or unconditional—
upon the specification of system boundaries.

3.3.1 Erasure of Known and Random Data Revisited

In responding to critics of his work [11], Bennett made a distinction between
known and random data. He argued that Landauer erasure of known data is
thermodynamically irreversible in general, but that it can be thermodynamically
reversible—can in principle be achieved without paying the dissipative Landauer
cost—if a copy of the data is available and is used to condition the protocol. He
further argued that erasure of unknown data can be thermodynamically reversible
without any conditioning of the erasure protocol on a copy of the data. Below
we describe our own construal of the differences between physical states that
bear known data, random data, and no data at all. We then compare and contrast
our conclusions about the associated dissipative costs with those of Bennett, and
show that an apparent contradiction between our respective conclusions about the
dissipative cost of unconditionally erasing unknown and random data is resolved
when account is taken of differences in our definitions.

With Bennett, we distinguish conditional ERASE WITH COPY from unconditional
ERASE WITHOUT COPY operations, as discussed previously in Sect. 3.1. Also with
Bennett, we distinguish physical states that encode known data from physical states
that do not. In this work, however, we make an additional distinction that was
not explicitly recognized by Bennett—the distinction between physical states that
encode data and physical states that do not encode data at all. This third distinction
matters. Without this distinction, there is nothing to differentiate a system that
encodes data from a system that does not encode data but that shares the same
statistical state. Differences in the respective options available to a would-be erasing
agent5 are thus obscured. With this distinction, however, two types of uncertainty
are resolved for data-bearing systems. One is related to a would-be erasing agent’s
uncertainty in a system’s state that originates from not knowing the data state in
which the system has been prepared. The other is the uncertainty that remains when
the (generally mixed) data state is known. These distinctions and their consequences
are detailed below.

Specifically, we take a system to be encoding data if and only if it is prepared
in one of the data states ρ̂S

i and if there exists a record or copy of the data

5The “erasing agent”, which we will also call the “operator”, is the entity (organism or automaton)
tasked with executing a state-reset protocols. This entity is the “knower” of a data-bearing system’s
preparation in the case of known data.
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instantiated in a physical system that is external both to the system S and the
observer-inaccessible environment E . The requirement of an extant physical copy
imbues the state of S with “aboutness”—building a physical answer to the question
“data about what?” into the very definition of data—and more formally qualifies S
as a bearer of physical information by the criteria explicated and defended in [35].
Simply “having a state” is for us not enough to encode data or bear information:
that state must also be correlated with an external physical copy (or referent) that
the system state encodes.

If a system bears data in the above sense, and the identity of the data state is
known with certainty to the erasing agent, then we take the system to be encoding
known data. If a system bears data and the identity of the data state is unknown to
the erasing agent/automaton—or known only statistically with the statistics of the
agent’s knowledge reflected in the probabilities pi (with pi < 1 ∀i)—we take the
system to be encoding unknown data. If, on the other hand, the system has not been
prepared in any one of the data states, then we simply do not take the system to be
encoding data; again, not all system states are data-bearing states. We now compare
and contrast these notions with those used in Bennett’s [11].

Consider first the conditional and unconditional erasure of known data. Our
characterization of known data harmonizes with that of Bennett insofar as we both
presume that the pre-erasure state of the system is one of the data states. That
Bennett presumes as much is clear in the way he uses a Szilard engine6—a one-
molecule gas in a cylinder is used to encode binary data (0 or 1) by confining the
“left” or “right” half of the cylinder using a piston and partition—to distinguish
the various cases [3, 11]. We differ with Bennett in that we would also require
an external record of “left” or “right” before we would regard the engine to be
bearing data in the first place. Yet, our conclusions regarding the dissipative costs of
erasing known data with and without a copy—expressed in the bounds (3) and (12)
of Sects. 3.1 and 3.2, respectively—align with those of Bennett as discussed below.

The conditional erasure bound (3) applies to erasure of known data with use
of a copy: each term in the average (2) reflects the system-to-environment energy
transfer resulting from resetting of one of the data states using a time-dependent
potential specific to that state. The absence of a Landauer cost from (3) comports
with Bennett’s conclusion that erasure of known data can be reversible if a copy
of the encoded data is available for conditioning of the reset protocol. In Bennett’s
Szilard engine examples, this corresponds to reversible isothermal expansion of the
gas—necessarily preceded by insertion of a piston into what is known to be the
“correct” side of the cylinder as per an external record of the data state—followed
by unconditional piston insertion from the right and reversible compression to the
left (reset) half of the cylinder.

6We will refer to Bennett’s Szilard-engine examples solely to reveal similarities and differences
in various notions used by Bennett and by us, and should not be taken to imply that any results
of this paper depend in any way upon results obtained for Szilard engines, the applicability of
classical thermodynamics to Szilard engines, or any assertion that microscopic realization of a
Szilard engine could operate in the face of thermal fluctuations.
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The unconditional erasure bound (12), on the other hand, applies to erasure of
known data without use of a copy; each term in the average (2) reflects system-
to-environment energy transfer resulting from resetting of one particular data state
using a universal protocol that is used blindly to reset all data states. The presence of
a Landauer cost in (12) comports with Bennett’s conclusion that erasure of known
data is irreversible without the existence and use of a copy to condition the protocol.
In Bennett’s Szilard engine examples, this corresponds to irreversible free expansion
of the gas—achieved by unconditional removal of the partition without regard to the
identity of the data state—followed by unconditional piston insertion from the right
and reversible compression to the left (reset) half of the cylinder.

Consider next the definitions of unknown and random data and the erasure of
such data, which is where our differences with Bennett arise. For us, a system bears
unknown data if the pre-erasure state of the system is one of the encoding states
but the identity of that state is known only statistically to the erasing agent: the
preparation is random from the agent’s point of view. An external record of the data
exists, as we require for the system to bear data in the first place, so both ERASE

WITH COPY and ERASE WITHOUT COPY protocols are possible for unknown data.
For Bennett, however, a system bears random data if its statistical state coincides
with the “average state” of the data states. No external copy is presumed, so there
is no notion of conditioning the transformation of the system state to the reset state
ρ̂S

i . The states that Bennett would take to be encoding random data are states that
we would not take to be encoding data at all.

This difference between Bennett [11] and the present work is easy to see in the
context of the Szilard engine. Suppose that the partition is absent, so the molecule
wanders freely throughout the entire cylinder and would at any given time be equally
likely to be found in the left and right halves. Bennett considers the gas to be
encoding random data in such a scenario; he associates isothermal compression of
the molecule in this state to the “reset side” of the cylinder—which can be done
reversibly in principle—to be erasure of random data. We would, however, consider
the molecule to be encoding no data at all in this scenario—known or unknown—
even if the partition were to be inserted into the cylinder so the molecule is randomly
trapped on one side or the other. Resetting of this molecule state could not, on our
view, erase data or information, simply because the molecule does not encode data
or bear information to begin with. For us, the molecule would not encode data
unless it had been deliberately compressed into either the left or right half of the
cylinder and trapped there by insertion of a partition and an external record of the
“sidedness” had been retained. Resetting of such a state can be done reversibly—
even in principle—only through operations that are conditioned on this record of the
sidedness.7

7Conditioning on the sidedness does not require erasing agent knowledge of the sidedness,
provided that the operation—applied “blindly” by the agent—acts on both the system and the
copy in a manner that conditions the operation performed on the system.
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Table 1 Erasure protocols and their reversibility for known, unknown, and random/no data

This work Bennett

Data Protocol Cost Data Protocol Cost

Known ERASE WITH COPY Reversible Known ERASE WITH COPY Reversible

ERASE WITHOUT COPY Irreversible – ERASE WITHOUT COPY Irreversible

Unknown ERASE WITH COPY Reversible – – –

ERASE WITHOUT COPY Irreversible – – –

None Reset Reversible Random Erase Reversible

Similarities and differences in Bennett’s notions of known and random data and
our own are summarized in Table 1, as are our respective conclusions regarding
the reversibility of erasure. Our respective notions of known data are similar in
spirit, and we agree that Landauer erasure of known data can in principle be
reversible if a record of the data is used to condition the erasure protocol. Our
notion of unknown data—with the identity of the system state (one of the data states)
known only statistically to a would-be erasing agent, but registered in an external
physical record—is not considered by Bennett. For such a scenario, our conclusions
regarding the reversibility of erasure mirror those of known data: Landauer erasure
can in principle be reversible for protocols in which actions taken on the system are
conditioned on the external record of the encoded data, but are otherwise necessarily
irreversible.8 Finally, those cases where we do not regard the system to be encoding
data at all—where there is no external physical record of the system state—are
the cases that Bennett associates with the encoding of random data. Despite the
difference in our “labeling” of this physical scenario—state-resetting of a non-data-
bearing system for us and erasure of a random-data-bearing system for Bennett—we
both conclude that the process can in principle be reversible for some situations. In
all physical scenarios considered by us in this work and by Bennett in [11], we reach
the same conclusions regarding dissipation but differ whether or how this dissipation
is associated with data/information erasure.

We conclude this discussion with a few final remarks on distinction between
scenarios that Bennett would take to initially encode random data and that we
would take to encode no data at all. We specifically remark on two distinct
physical scenarios—germane to the Szilard engine—where we would maintain this
distinction even though the statistical state of the gas molecule is identical in the
two scenarios. One scenario has the molecule compressed into the left or right
side and held there by the partition, but with the “sidedness” completely unknown
to the erasing agent, and the other is with the partition absent so the molecule
wanders freely throughout the chamber. The first scenario corresponds to encoding
of unknown data by our definition, and the second to no encoding of data at all by
our definition and of random data by Bennett’s.

8Note that reversible erasure of unknown data with a copy requires operations, applied blindly by
the erasing agent, that access the copy without destroying it. See Sect. 4 and [36].
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The comparison begs the question: if all physical properties of a system depend
on the system state, how can there be any meaningful physical distinction between
two scenarios involving identical systems prepared in identical statistical states.
How can one be data-bearing and the other non-data-bearing? Absent an answer to
this question, it would indeed seem that the distinction is meaningless. This would
imply that all systems bear data, that no systems bear data, or that the designation
of a system as data-bearing or non-data-bearing is arbitrary.

We reject all three possibilities, because we do not regard the molecule’s status
as a data-bearer as being dependent on the state of the molecule alone: it depends on
the joint state of the molecule and some non-environmental referent system about
which the molecule encodes data. If the molecule state is correlated to the referent
state—in other words if the referent holds a record or copy of the molecule state—
then the molecule state holds data about that referent (and vice versa). If there is
no such external referent that holds a copy of the molecule state, then the molecule
does not bear data about that referent. The local molecule states can be identical
in scenarios where the molecule and referent are and are not correlated, i.e. the
joint referent-molecule states can differ crucially when the local molecule states
are identical. This resolves the difficulty, clearly distinguishing on physical grounds
those physical states that encode data and bear information from those that do not.

To illustrate the resulting disambiguation in a familiar context, consider the
combination of a Szilard engine and one-bit memory that Bennett used to exorcise
Maxwell’s Demon in [3]. If the molecule state is correlated to the state of the
memory with the partition inserted (Fig. 12(c) in [3]), then the molecule is in a data
bearing state. If the molecule state is not correlated to the state of the memory, either
with the partition inserted (Fig. 12(b) in [3]) or removed (Fig. 12(e) in [3]), then the
molecule is not in a data-bearing state. The statistical state of the molecule alone
is identical for all three of these cases, and the memory (referent) states are also
identical in the first and third ((c) and (e)), but the corresponding joint states differ
crucially in that the molecule and memory are correlated—the molecule encodes
data about the memory and vice versa—only in the first case (c). The problematic
ambiguity has thus been removed.

3.3.2 System Boundaries and Protocol Classification

We now discuss an ambiguity in classification of erasure protocols as either con-
ditional or unconditional. Specifically, we will show that choice of the boundaries
that define “the system” in statements of the Landauer and Landauer-Bennett limits
can affect this classification—and thus the interpretation of these limits—illustrating
why great care must be taken in claiming “violation” of the Landauer limit.

Consider the following scenario involving a composite system RS . Suppose that
the subsystem S interacts with the subsystem R, which holds a durable copy of the
initial state of S before, during, and after resetting of the state of S . Suppose also
that the forces applied to reset S are not conditioned on the initial state of S . A
familiar example of this nature, used below to illustrate the classification ambiguity
for such a scenario, is the ERASE WITH COPY operation via Bennett clocking in the
quantum-dot-cellular automata (QCA) [13].
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The primitive element in six-dot QCA is a three-state cell that uses two polarized
cell states (here ρ̂0 and ρ̂1) to encode a bit value and a third “null” state (here ρ̂reset)
as a reset state. State transitions required to implement communication and logic in
a QCA cell array are enabled by intercell coupling and by synchronized clocking
fields unconditionally applied to selected regions of the array. Lent and co-workers
have identified the clocked ERASE WITH COPY operation as the enabling operation
for reversible computation in the QCA nanocomputing paradigm [13].

We specifically consider an idealized erasure scenario involving two adjacent
QCA cells—a “memory” cell S and a “copy” (referent) cell R—that are placed
within close proximity to one another so they interact via a local coupling field.
Initially, at t = 0, the same bit value is encoded in both S and R. During the interval
0 ≤ t ≤ ter, a standard time-dependent clocking potential Vclk(t)— selectively but
unconditionally applied to S—transforms S from its initial state (ρ̂S

0 or ρ̂S
1 ) at t = 0

to its reset state ρ̂S
reset at t = ter without affecting the copy R. The two possible state

transitions of the joint system for this scenario are

ρ̂R
0 ⊗ ρ̂S

0 → ρ̂R
0 ⊗ ρ̂S

reset

and

ρ̂R
1 ⊗ ρ̂S

1 → ρ̂R
1 ⊗ ρ̂S

reset.

This resetting of S may at first wash seem to be a conditional ERASE WITH COPY

protocol, since S is reset while interacting with the cell R that holds a copy of S ′s
initial state. Conditioning of the forces transforming S on the state of R, and thus
on its own initial state, is “built in” to the joint system RS throughout the erasure
operation. But the state reset is achieved by applications a standard time-dependent
clocking potential, blindly applied to S with no regard for its initial state. This might
instead suggest classification of this operation as an unconditional erasure protocol.
So which is it? The answer matters, since conditional and unconditional erasure
protocols obviously carry different physical costs and different physical costs should
not result for identical processes on identical systems just because external observers
classify them differently. This is explained below.

We argue below that one could appropriately classify the operation as either
conditional or unconditional from the erasing agent’s point of view, depending on
whether the memory subsystem S or the memory-copy composite RS is taken
to play the role of “the system” referred to in statements of the Landauer and
Landauer-Bennett limits—the system from which data or information is erased. Yet,
we further argue, only identification of the system as S alone admits identification
of the protocol as Landauer erasure—i.e. to a resetting of the state of “the system.”

Suppose first that we take subsystem S to be “the system.” The ever-present
influence of R shows up as a static contribution V S

i |copy to the time-dependent
external potential V S

i (t). The static force exerted on S by R is determined by the
state of R, which depends in turn on the initial state of S , so the static contribution
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V S
i |copy to V S

i (t) is the only component of the full Hamiltonian that depends on
the initial state of S . The remainder of V S

i (t) is the blindly applied, time-dependent
external clocking potential V S

clk(t). The appropriate Hamiltonian is thus

ĤSE
i (t) = (ĤS

self + V S
i |copy) + ĤE

self + ĤSE
int + V S

clk(t)

for 0 ≤ t ≤ ter. Because the corresponding Ûi depend on the initial state of S
(through the V S

i |copy), and because the (automatically) conditional application of
these Ûi resets the state of “the system” S , the QCA ERASE WITH COPY operation
qualifies as conditional Landauer erasure of (generally unknown data) from S . With
minor modifications of the proof from Sect. 3.1, properly accounting for dependence
of S ′s “effective” self-Hamiltonian ĤS

self + V S
i |copy on its initial state, the bound

(3)—our generalization of the Landauer-Bennett limit—is recovered unscathed. No
kBT ln(2)ΔIer term appears in the lower bound on the erasure cost, consistent with
the expectation of Ref. [13].

Next, suppose next that we instead take “the system” to be RS . Interactions
between S and R are built in to “the system” and its self -Hamiltonian ĤRS

self . The
total Hamiltonian is

ĤRSE
i (t) = ĤRS

self + ĤE
self + ĤRSE

int + VRS(t)

for 0 ≤ t ≤ ter. The external “forcing” term VRS(t) now reflects only the
blindly applied clocking potential, which is independent of the initial state of RS
so the corresponding reset protocol is unconditional. The protocol is not, however, a
Landauer erasure protocol, since only the state of the subsystem S is reset. The final
state of RS—“the system” here—is not reset since the initial state of subsystem R
remains intact throughout the operation. The bound (12) obtained for unconditional
Landauer erasure therefore does not apply to this unconditional “subsystem reset”
operation. The appropriate lower bound for this operation, obtained as was (3) but
with the Δ〈EE

i 〉 ≥ −kBT ln(2)ΔSRS
i evaluated for the state transitions of the

composite RS , also returns the form (3) (since ΔSRS
i = ΔSS

i here). This is as
it should be, since the two scenarios considered here are physically identical and are
only interpreted differently.

Thus, an ERASE WITH COPY protocol characterized by a “built-in” system-copy
interaction (as in the six-dot QCA example above) is indeed properly classified as a
conditional Landauer erasure protocol, even if it seems “unconditional” in the sense
that it is driven by the unconditional application of a standard external clocking
potential. The potentials V S

i (t) in this erasure protocol include both an external
static “conditioning” bias—resulting from persistent interaction of the system with
the external nonvolatile copy of its initial state—and a time-dependent contribution
that enables the state transformation but is not conditioned on the initial state. The
external static bias conditions the resetting of the state of subsystem S—regarded as
“the system” in this case—and there is no minimum energy cost related specifically
to erasure of information as expected: the result is consistent with the Landauer-
Bennett limit, which would apply to this case.
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However, with the boundary of “the system” simply redefined to include subsys-
tems R and S , the external potential includes only the unconditional component.
Unconditional application of this potential resets the state of S but there no
Landauer cost appearing in the corresponding dissipation bound, which may seem
to suggest that the Landauer limit has been violated. There is, however, no violation,
as Landauer erasure of “the system” has not achieved with the “system” defined as
RS , since the state of subsystem R remains intact. A mistaken interpretation that
the Landauer limit has been violated would follow from an inconsistency in defining
“the system”—as S for classification of the protocol as Landauer erasure (since it is
S that is reset) and as RS for classification of the protocol as unconditional (since
the externally applied potential is not conditioned on the initial state of RS).9

4 Discussion: On Theoretical Methodology

In Sect. 3, we obtained bounds for the energy cost of Landauer erasure in physical
systems under various assumptions about the presence and use of external copies of
the to-be-erased data. The bounds (12) and (3), which generalize the Landauer and
Landauer-Bennett limits respectively, apply to erasure protocols that always begin
with the data-bearing system prepared in a state that belongs to a fixed set of N

orthogonal and generally mixed “encoding” states, and always end with the system
in a standard, generally mixed reset state. Our aim has been to deliberately prove
these inequalities in a manner that immunizes them from methodological objections
that have been leveled against other proofs, arguments, and demonstrations of the
Landauer limit. In this section, we reiterate some of the most prominent objections
and show how they are sidestepped in our approach.

For present purposes, we group most of these objections in three categories.
The first category concerns proper application of thermodynamics to the erasure
problem, which is significant because proofs and illustrations of the Landauer
and Landauer-Bennett limits have relied most heavily on thermodynamic thought
experiments involving classical gasses in cylinders and protocols that employ

9One would be similarly mistaken to see a violation of the Landauer limit in the nanomechanical
OR gate recently reported by Lopez-Suarez, Neri, and Gammaitoni [37]. They report that, in their
experiment, two distinct configurations of electrode charges (corresponding to two different binary
input combinations “01” and “10”) similarly displace the position state of a nearby nanopillar tip
(same logical output) with energy dissipation less than that Landauer limit. If this does indeed
correspond to implementation of a logically irreversible (sub-)function, as the authors claim, there
is no violation of the Landauer limit. Regarding the nanopillar as the “the system” in this scenario,
not including the electrode tips that must remain charged to hold the nanopillar tip in its “merged
position”, the “state merging” protocol is conditional and the Landauer-Bennett limit (not the
Landauer limit) would apply. No Landauer cost would be expected. That a different nanopillar tip
position results for electrode charges corresponding to input “11”—which should yield the same
physical output as inputs “01” and “10” in a faithful physical implementation of an OR gate—is a
separate worry.
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frictionless pistons, ideal removable partitions, and familiar reversible and irre-
versible thermodynamic processes (e.g., free expansion, isothermal compression
and expansion). The second category of objections concerns the role—even the
necessity—of copies and conditioning in avoiding the Landauer cost in erasure. The
third category concerns the idealized nature of the processes typically used in proofs
of the Landauer and Landauer-Bennett limits, the “indirectness” of these proofs in
some cases, and the implications of idealization and indirectness for the validity and
interpretation of bounds so proven.

Objections of all three sorts figure prominently in John D. Norton’s 2011 paper
“Waiting for Landauer” [16], which critiques thermodynamic proofs Landauer’s
Principle. Right out of the gate, Norton summarizes his primary concerns:

Landauer’s Principle asserts that there is an unavoidable cost in thermodynamic entropy
creation when data is erased. It is usually derived from incorrect assumptions, most notably,
that erasure must compress the phase space of a memory device or that thermodynamic
entropy arises from the probabilistic uncertainty of random data. [16]

He then acknowledges that “recent work seeks to prove Landauer’s Principle
without these assumptions” but promises to show that they fail because the assumed
processes can be combined in ways that would obviously violate the Second Law
and “worse” that these processes neglect thermal fluctuations. He also promises
to show how “concrete proposals” for reversible expansion of single-molecule
gasses are “fatally disrupted” by thermal fluctuations that “can only be overcome
by introducing entropy creating, dissipative processes.” His overall conclusion is
that “we still await a cogent justification of Landauer’s Principle and that present
efforts to demonstrate it are proceeding in an incoherent framework” [16].

As perhaps the most forceful and clearly articulated critique of thermodynamic
treatments of Landauer’s Principle, Norton’s paper provides a good vehicle for
framing objections to such proofs. Below we draw heavily from Norton’s paper [16]
and from the ensuing exchange of papers [17–19] with Ladyman and Robertson to
introduce these objections and some responses. Our objective is not to mount either
a point-by-point rejection or defense of thermodynamic proofs; we endorse Norton
on some points and differ with him on others. Rather, it is to show how objections to
thermodynamic proofs of the Landauer and Landauer-Bennett limits are sidestepped
in our quantum-dynamical proofs of Sect. 3.

4.1 Application of Thermodynamics to Erasure

We start with four related objections to thermodynamic treatments of erasure cost,
all emphasized by Norton and all couched in terms of the Szilard engine.10

10While Norton has separate objections to the Szilard engine as an idealization, he accepts that “it
is taken to capture the essential thermodynamic features of a more realistic one-bit memory device
in a heat bath” [16] and states his thermodynamic objections in this spirit.
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The first is the objection to the way phase-volume arguments have been used in
thermodynamic treatments of erasure. When a partition is inserted into a Szilard
engine, with the molecule trapped in either the right or left half of the chamber with
equal probability, thermodynamic proofs of the Landauer limit take the molecule’s
accessible phase volume to be the phase volume associated with the full chamber
(since it may occupy either side). Norton objects that the phase volume is actually
halved when the partition is inserted, undermining thermodynamic proofs of the
Landauer limit that would locate the erasure cost in doubling of the environment
entropy that results from halving of the molecule’s phase volume during resetting:

The error of the proof is that the molecule, prior to erasure, is not associated with an
accessible phase volume that spans the entire chamber. It will assuredly be in one half
only. Which half will vary from occasion to occasion, but it will always be one half. As
a result, the erasure operation does not need to reduce accessible phase volume at all; it
merely needs to relocate the part of the phase space accessible to the molecule. [16]

Such objections are sidestepped in the quantum dynamical proofs of this work,
which do not invoke classical phase-volume arguments or analogous arguments that
would render the system’s state space time-dependent or otherwise ambiguous.11

The pre-erasure states of a data-bearing system—our analog to the “left” and “right”
trapped molecule states—have support on orthogonal subspaces of the full-system
Hilbert space, as required for unambiguous encoding of data, but nothing in the
Hamiltonian limits access to the full system state space before, during, or after
erasure.

Second, Norton objects that in proofs making use of ensembles “the ‘random’
data state is treated as if it was the same as a thermalized data state” but that
“the random data state and the thermalized data state are not thermodynamically
equivalent.” We agree with Norton on this point, and do not presume any such
equivalence in this work. Indeed, we have explicitly distinguished scenarios where
a system encodes random data from those where a system encodes no data at all
(cf. Sect. 3.3), the latter of which corresponds to Norton’s “thermalized data state.”
While we further agree with Norton that the fact that “(w)e do not know which
half of the phase space is accessible in the case of random data is irrelevant to
the device’s thermodynamic properties,” it does not follow that such knowledge

11Phase-volume arguments are themselves artifacts of the idealization of an absolutely impene-
trable partition. An arbitrarily small pinhole in the partition—a pinhole so small that only one
molecule could fit through it and would almost never do so—is enough to give the molecule access
to the full phase volume even when it is (temporarily) trapped on one side or the other by the
partition. The presence of such a pinhole would be sufficient to undermine phase volume arguments
even when the operation over finite time scales is unaffected, and any quasi-static treatment that
would require the molecule to always be in equilibrium with its surroundings. With the pinhole
present, a particle trapped on one side of the partition would end up on either side with equal
probability when it has fully equilibrated. The same is true for a quantum particle in a symmetric
double potential well with a high but finite potential barrier in the center and interacting with a heat
bath. Any particle state initially localized in one well or the other—necessarily a non-equilibrium
state—will ultimately equilibrate to a thermal state that does not favor occupation of either side of
the chamber by the molecule.



Conditional Erasure and the Landauer Limit 85

is irrelevant to the minimum dissipative price that is paid when agents implement
reset protocols with and without the benefit of this knowledge. Here we side with
Ladyman and Robertson:

Norton questions why we should think that whether we know about which state a device is
in affect matters. But it does matter: thermodynamics is about the properties of matter and
how we can exploit or use these properties to do work. Knowing what state a device is in
changes which operations you are able to perform. [17]

Indeed, we showed explicitly in Sects. 3.1 and 3.2 that the Landauer cost arises only
when the agent implementing an erasure-by-reset protocol does not know (or have
access to a record of) the pre-erasure data state of a device and make good use of this
knowledge or record. This agent simply does not have as good or as many options
for implementing the protocol as does an agent who does possess this knowledge
(or who has access to such a record).

Third, Norton argues that logical specification of the erasure function should not
involve probabilities. He asserts that the “introduction of probability is routinely
assumed benign in physical analysis when some variable has an indeterminate
value” but that

It is not benign since it adds non-trivial structure to the indeterminateness of a variable and
can induce egregious inductive fallacies, as shown in Norton (2010). The real seat of the
(Shannon entropy formula) is this probability distribution and, absent cogent justification
of the introduction of the probability distribution, the entropy change associated with
erasure by (the Shannon entropy formula) is merely an artifact of a misdescription of the
indeterminateness of data. [16]

The encoding probabilities pi that are used in this work, and that appear in the
Shannon information formula that emerges in the dissipation bounds for uncondi-
tional erasure protocols, do not represent the “indeterminateness of data” at the root
of Norton’s concern. Here they enter straightforwardly and unproblematically as
weightings in a garden-variety average of costs associated with a set of individual
deterministic physical processes connecting specified initial and final states. Specif-
ically, these averages are environmental energy changes incurred in transformations
of various initial pre-erasure system states to final reset states—both specified—
for individual systems in large ensembles or individual erasure trials on a single
system. Such an average is unavoidable if we are to associate a single number—an
“energy of erasure” as appears on the left-hand side of Landauer’s inequality—
with protocols that, like erasure, involve “families” of physical processes12—each of
which links a single initial and final state. In erasure, there is one such deterministic
process for each initial encoding state, there are generally different dissipative costs
associated with resetting of each of these states, and the relative frequencies of
systems in the ensemble that are prepared in the various initial states (and that thus
result in execution of the various processes) generally differ. Hence the necessity
for averaging, even though no states or processes are indeterminate at the level of
individual systems or trials. The weighting probabilities that enter the proof through

12This terminology is due to Ladyman [38].
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this straightforward averaging show up later in the Shannon entropy formula that
emerges mathematically in the absence of conditioning. Specifically, in obtaining
the unconditional erasure bound (12), the statistical state ρ̂S = ∑

i pi ρ̂
S
i emerged

when the conditional erasure bound (3) was specialized for the case of unconditional
erasure and the sum over the ρ̂S

i was “absorbed” into time evolution transformation.
The objection is thus sidestepped.

Fourth and finally, Norton notes that some thermodynamic proofs that focus on
a system’s information theoretic entropy and its reduction in erasure is assumed
to correspond to a reduction of the device’s thermodynamic entropy [16]. This
continues a longstanding debate on the connection between information and entropy
[39], perhaps most recently extended by [40]. No such equivalence has been
presumed in this work: the von Neumann entropies of the individual pre- and post-
erasure states and the properties of von Neumann entropy are used as vehicles to
obtaining the energy bounds, but they are at no point assumed to have information-
theoretic significance or to be equivalent to thermodynamic entropies. The Shannon
entropy appearing in the bound unconditional erasure bound (12) again emerged
mathematically in a proof that started with a straightforward averaging over definite
processes, and was not put in “by hand” or associated with any “illicit” ensemble
construction. Absolutely no a priori assumption was made that pre-erasure states
ρ̂S

i of the collection of systems can be legitimately combined into a density
operator ρ̂S = ∑

i pi ρ̂
S
i that can then be used to represent an ensemble in the

thermodynamic sense. Such an assumption had indeed been made in the literature,
and has been challenged (e.g., [4, 12]), but is not made here. This objection is
sidestepped as well.

Many other objections to thermodynamic proofs and applications Landauer’s
limit are possible, and some have been stated by Norton and others. Some stem
from use of equilibrium expressions for free energy to derive Landauer’s limit,
and others from the use of this limit—when regarded as a direct result of the
Second Law—to justify results about adherence to the Second Law by Maxwell’s
Demon. Such objections are sidestepped here as well. We have avoided use
of any “off the shelf” results from thermodynamics—phase-space conservation,
equilibrium free energy expressions, the Second Law—in proving the Landauer and
Landauer-Bennett limits, and have made no assumptions regarding the equivalence
of thermodynamic, information-theoretic, and von Neumann entropies. The bounds
(3) and (12) derive exclusively from the properties of global Schrodinger evolution,
established properties of von Neumann entropy, distinguishability of the various
states used to encode data, and the assumption that, prior to all state resets, the
environment is in the thermal state ρ̂E

th = Z−1 exp[−ĤE/kBT ] (where Z is the
partition function). The data-bearing system itself is at no point assumed or required
to be in equilibrium with its environment or in any state with a well-defined
temperature.
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4.2 The Roles of Conditioning and Copies

Next, we take up objections related to the roles of conditioning and use of records
of the to-be-erased data to lower the dissipative cost of erasure.

Norton [16] acknowledges a distinction between unconditional and conditional
erasure protocols, if not by those names, and the possibility of lowering erasure cost
through conditioning. This is evident is his discussion of “erasure by thermaliza-
tion.” By this he means irreversible free expansion by partition removal followed
by reversible isothermal compression to the reset state. He calls the initial step of
removing the partition “ill-advised,” and correctly points out that the irreversibility
of this particular protocol “does not show that all possible erasure processes must
create thermodynamic entropy.” He further notes that defenders of the Landauer
limit require “removal of the partition, or something like it, for the process cannot
‘know’ which side holds the molecule on pain of requiring further erasure of that
knowledge” [16].

We completely agree that partition removal “or something like it”—something
unconditional—is required when reset is achieved without knowledge or other
records of the pre-erasure state, i.e. those very scenarios to which the Landauer
limit applies. This is not inconsistent, however, with the recognition that such
processes can be avoided by “relocating” the “part of the phase space accessible to
the molecule.” This relocation must be achieved by operations that are conditioned
on knowledge or durable records, and belong to those scenarios to which Landauer-
Bennett limit applies.

Surprisingly, Norton seems to deny the necessity of records for achieving
reversible erasure. In a Maxwell’s Demon cycle that does not require the usual
“operator” knowledge of which side the molecule is on (or external records of the
same), he invokes what he calls a Dissipationless erasure operation—a would-be
reversible operation that requires no operator knowledge of the pre-erasure molecule
state or any other durable, pre-existing copy of the same. Norton argues that this
operation is reversible since it is composed from Detect and trigger and Shift
operations, both of which he takes to be reversible.

We (and certainly others) would argue, however, that this operation would require
creation of an external copy of the system’s pre-erasure state that must be left
behind. This matters because, in a cycle, this copy would have to erased in a later
step using an unconditional—and thus necessarily dissipative—erasure process.
Norton objects:

The claim is unsustainable. The triggered process can proceed without the continued
existence the triggering data; all that it needs is for the data to exist at the time of the
triggering and the presumption that the processes can proceed independently once triggered.
If it helps, imagine that the process triggered is carried out by a physically distinct robotic
machine. The device’s sole function is to perform this one process without needing any
further data input; it operates autonomously once triggered; and it is programmed to return
itself to its unique ready state as its last step. [16].
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Norton does not, however, say why the robotic device’s return to “its unique ready
state in its last step” is does not amount to an unconditional—and thus dissipative—
Landauer erasure operation. As Ladyman and Robertson put it:

Norton claims that the idea of ‘controlled operation’ from a degree of freedom to itself
is vindicated since a robot may be posited to enact it. However, contrary what Norton
supposes, any such robot would have internal degrees of freedom that would store the state
of the control bit (the state of the device), thereby effectively remembering the state of the
target bit, and hence requiring resetting for a cycle to be completed. It is also arguable that
such ‘controlled operations’ of a degree of freedom on itself are not viable because any
operation would require an auxiliary system whose internal state would determine which
operation was performed. For example, a piece of paper that says ‘destroy me’ cannot read
and destroy itself but would have to be destroyed by a system that read it, that is copied it,
first. [17]

We side with Ladyman and Robertson here as well. More importantly for present
purposes, however, we note that our proofs of the Landauer and Landauer-Bennett
limits are not tied to arguments involving Szilard engines or Maxwell’s Demons.
They are very general, distinguishing at a realization-independent level between
protocols utilizing reset operations that are conditioned on pre-erasure system states
(the Ûi of Sect. 3.1) and reset operations that are not (the Û of Sect. 3.2). Nor do our
arguments rely upon anthropomorphism of the “operator,” which Norton considers
grounds for dismissal of arguments that require it:

Th(e) mistaken view persists, as far as I can see, because it is easy to anthropomorphize the
erasure device as a little man who must always record what he is doing and then erase his
records at the end. Absent that anthropomorphism, it is hard to see how the mistake can be
sustained.

In this work, the absence or presence of conditioning is reflected in the structure
of impersonal Hamiltonian operators that act on the systems in questions and that
provably have dissipative consequences that depend on conditioning. The notions
of knowledge, records, and conditioning have been physically cast, and need not be
anthropomorphized. The objection is sidestepped.

4.3 Indirectness and Interpretation

We next consider objections to what Norton has called the “indirectness” of some
proofs of the Landauer and Landauer-Bennett limits, and to the interpretation of
arguments against their achievability as arguments against their validity.

Norton points out that concrete demonstrations of the Landauer limit—what
he dubs “direct approaches” to their proof—may be based on inefficient erasure
protocols like “erasure by thermalization” in a Szilard engine. He argues that such
a demonstration, based as it is on a particular realization and protocol, cannot serve
as a proof for a general principle: the principle would then “(depend) essentially
on a poor choice of a convenient, but dissipative erasure procedure and (would) not
derive from some essential feature of erasure itself” [16].
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We would agree, and see in this observation a motivation to seek more general
indirect approaches that, like the present work, aim to identify and theoretically
capture the “essential feature of erasure itself” and quantify its lawful physical
consequences. Norton, however, expresses skepticism about any such possibility.

For example, in criticizing the “indirect” approach of Ladyman, Presnell, Short,
and Groisman [41] (hereafter LPSG), and its positing of what he calls a “statistical
form” of the Second Law, he seems to take issue with indirect approaches in general:

The attraction of [LPSG’s] method is that we can leave the details of the erasure process
undefined and seek a result that will apply to all erasure procedures. The weakness is that
it automatically precludes illumination of the origin of the entropy cost of erasure; we can
only infer that it must be there if the suppositions obtain. [16]

He argues that the suppositions do not in fact obtain—which would obviously be
problematic for LPSG—but he continues:

In positing a statistical form of the second law of thermodynamics at the outset, LPSG
...make no attempt to ground the law in the underlying physical properties of the systems to
be investigated. [16]

The question of whether LPSG have posited an invalid physical law, as crucial as it
is to the validity of any argument they make that depends upon it, is separate from
the more general question of whether indirect approaches are tenable. Although
Norton discusses the two questions together, he is clearly faulting the indirectness
of the approach for neglecting the “underlying physical properties” of the systems
question in favor of lawful relations that hold independent of all but the most
essential properties.

In our view, however, if the particulars of various realizations can be subsumed
under more general relations—immediate consequences of physical law that suc-
cessfully isolate those physical properties “essential to erasure itself”—then all the
better for the pursuit of results like the Landauer and Landauer-Bennett limits. These
inequalities, interpreted as inviolable fundamental limits, quantify the unavoidable
costs essential to erasure and separates them from all subsidiary costs associated
with implementation of the required processes in particular systems. There is
nothing unfamiliar about the pursuit of such generality in other physical contexts;
it is what gives physical laws and their immediate consequences such descriptive
power.

Norton’s distaste for indirect proofs seems to be that they cannot establish the
achievability of the Landauer limit. In his discussion of the literature, for example,
he criticizes the neglect of “further thermodynamic costs” (beyond information
erasure) “that might compromise the core idea to be protected: that ineliminable
dissipation only arises through processes that physically implement logically
irreversible functions.” It is clear from this passage—from the use of “only”—that
Norton is criticizing Landauer’s limit as a claim of achievability, i.e. a claim that
there are no ineliminable dissipation sources beyond logical irreversibility.

There are, of course, additional sources of dissipation in any realization. In some
of the literature critical of Landauer’s limit, however, such an acknowledgement
metastasizes into a claim that the Landauer or Landauer-Bennett limit is incorrect
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or invalid. While Norton himself stops short of this in claiming that “we still await
a cogent justification for Landauer’s Principle” [16], others (e.g., [25]) do not.13

But validity and achievability not the same thing—interpretation of a bound as a
limit whose violation would contradict physical law is distinctly different from its
interpretation as achievable limit.

The root of the disconnect is a conflation of expectations for what can be
obtained from high-level fundamental physical descriptions on the one hand and
from explicit physical models of particular realizations on the other. High-level
physical descriptions—like those used to describe erasure protocols in this work—
apply to broad classes of protocols executed on any physical system that support the
associated states and state transformations. They can be used to obtain fundamental
bounds that are inviolable because they express direct consequences of bedrock
physical law. They may or may not be achievable in any given realization, with
the possibility of achievability or near-achievability depending on the particulars of
that realization, but their inviolability is realization-independent.

By contrast, explicit physical models—like the device and circuit models that
dominate engineering descriptions of computing components and circuits—are low-
level descriptions of specific implementations of protocols executed on particular
physical device realizations. Such descriptions can be and are used to obtain
numerical estimates for highly specific situations. Their accuracy is determined
by the extent to which all relevant phenomena have been captured in the model
and all mathematical equations have been solved correctly and to sufficiently high
resolution. The associated demands account for the complexity of such descriptions.

Fundamental physical descriptions are thus too general to provide accurate
numerical estimates of resource requirements for particular realizations of devices
operated in specified ways under particular conditions. Explicit physical device
models of particular realizations are too specific to reveal fundamental limits that
apply to all realizations. There is nothing contradictory about this, provided that the
two are not conflated with one another. Nor is there anything contradictory about
“simple, sharp, principled expression(s)14” for fundamental limits on quantities that
could be accurately estimated in particular situations only through highly complex
calculations.

No mechanical engineer would, for example, expect an accurate numerical
estimate of a real heat engine’s efficiency from a simple two-variable model. She
would likely rely on a complex mathematical model of the engine, specialized to
the engine design of interest by numerous parameters and solved via computer
simulation. However, that same engineer would argue strenuously against the
possibility that a real heat engine of that particular design—or of any other design—

13For example, in discussing an inequality presented as an inviolable fundamental bound with no
claim of achievability, the authors of [25] state that “It should be emphasized that the greater-than-
or-equal-to sign—rather than a greater than sign—is very important because the equality must
represent a physical possibility, at least at the conceptual level.”
14Norton questions whether it is possible to express limits to computation in a “simple, sharp,
principled expression(s) [16].
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could ever operate at an efficiency exceeding the value she would obtain from
simple substitution of two temperature values into Carnot’s formula for the limiting
efficiency of a heat engine. In doing so, she would simply be recognizing the
differing nature of the efficiency estimate obtained from her computer simulation
of a particular heat engine and the Carnot limit on the efficiency of any heat engine.

This engineer would, however, raise eyebrows if she were to claim that the
Carnot efficiency limit is invalid because she doesn’t expect real heat engines
to ever achieve this limit or because it does not provide accurate numerical
efficiency estimates for particular engine realizations. Yet, much of the criticism
of the Landauer and Landauer-Bennett limits is of this nature: arguments against
the achievability of these limits are presented as arguments against their validity,
conflating achievability with inviolability (e.g., [25]). Perhaps this is, at least in part,
a historical result of the fact that Bennett’s early papers on what we have here called
the Landauer-Bennett limit also introduced the notion of reversible computing. The
highest technological hopes for reversible computing do presume at least near-
achievability of this limit, not just its inviolability. Whatever the case, it seems that
debates about these limits would be much less confusing if validity as inviolable
bounds and achievability were clearly distinguished and debated separately.

We have tried to clearly maintain this distinction in the present work. We
have provided indirect proofs of the Landauer and Landauer-Bennett limits, and
argued for their validity as inviolable fundamental limits. We have made no claim
for the achievability of these limits, simply because our proofs cannot establish
as much. The kBT ln(2) per bit Landauer cost appearing in the Landauer limit
represents a lower bound on the contribution of logical irreversibility to the
dissipative cost of erasure—a dissipative contribution that can be expressed as
a “simple, sharp, principled expression”—without denying that additional factors
(e.g., parasitic losses, thermal fluctuations) might threaten the achievability of this
limit in principle or practice and may be complicated or impossible to estimate with
high accuracy. The “essential feature of erasure” responsible for the Landauer cost
is simply the loss of distinguishability of data-bearing states upon resetting. The
essential dissipative consequences of this loss of distinguishability are transparent
consequences of physical law, and are independent of the “underlying physical
properties” of specific realizations of data-bearing systems. States of these systems
are represented by density operators, which do not require identification of the state
variables used to differentiate the encoding states (e.g., position) but capture the
distinguishability of these states. Dynamical processes that reset system states are
governed by lawful unitary evolution of the system and its surroundings include the
structure but not the details of these interactions. The unitary operations Ûi and Û

used in our proofs represent all conditional and unconditional unitary operations that
can perform the tasks that their respective protocols require them, i.e. that generate
the required initial-to-final state resetting transformations.



92 N. G. Anderson

5 Consistency with Experiment

Finally, we consider the consistency of the conditional and unconditional erasure
bounds proven here—and thus of the Landauer and Landauer-Bennett limits—with
experimental data. We specifically consider the results of four recent experiments,
the only experiments of which we are aware (at this printing) that have attempted to
probe the energetics of Landauer erasure with sub-kBT -level resolution.

We preface this discussion by noting that, strictly speaking, experiments cannot
be expected to “confirm” the Landauer limit in the usual sense—by establishing
numerical agreement between measured values and theoretical predictions—simply
because the Landauer limit is a lower bound on energy dissipation that does
not automatically carry a claim of achievability in principle or in practice. An
experimental result can thus either lie within a range of values that are consistent
with this lower bound or within a range of values that violate it. Having said
that, we also note that the results of these recent experiments not only support
the unconditional erasure bound (12) and the conditional erasure bound (3)—
generalizations of the Landauer and Landauer-Bennett limits respectively—but
also the asymptotic achievability of both. We discuss these experiments and their
connection to the present work below.

Three of these experiments, which we discuss first, probed unconditional Lan-
dauer erasure in experimental realizations of the model one-bit memory system
used in Landauer’s original work; a symmetric double well potential. The system
“occupies” one of the two potential minima to store a bit value, the stability of
which is ensured by a sufficiently large potential barrier that must be surmounted
to switch between minima, and is erased by slowly reducing the barrier, tilting
the potential to localize the system in the potential minimum designated as the
“reset” state, restoring the barrier, and removing the potential tilt. The nature of the
information-bearing system, the controlled variation of the double-well potential
required to execute the erasure protocol, and measurement of dissipated energy all
differ in the three experiments.

In the first unconditional erasure experiment of Berut and co-workers [26], the
system is a silica bead suspended in water and manipulated by optical tweezers.
An effective double-well potential is created by a laser beam alternately focused at
two nearby points, the intensity and positioning of which is varied as required for
implementation of the erasure protocol. The position of the particle is tracked in
time, and the work done on the particle—all of which is assumed dissipated into
the bath—is obtained by time integration of the bead velocity and the potential
gradient. The second experiment, due to Jun and co-workers [27], is similar in
many ways to that of Berut et al., although the system is a florescent particle
in colloidal suspension and the desired potential is created and manipulated by
application and variation of a particle-position-dependent electrostatic force. Work
done in the erasure operation is inferred from the particle position and potential
history throughout the cycle. Finally, in the experiment of Hong and co-workers
[28], the system is a single-domain nanomagnet. The double-well potential is built
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in to this bistable system, and the barrier and tilt are manipulated via applied
magnetic fields oriented along the “hard” and “easy” nanomagnet axes, respectively.
Energy dissipation was inferred from hysteresis in the nanomagnet magnetization as
measured by the magneto-optical Kerr effect.

In all three unconditional erasure experiments, results were obtained for erasure
cycles that started with the respective memory systems in known encoding states
but that employed erasure protocols that did not make use of this knowledge of
the initial encoding state or copies of the encoding state: they clearly correspond
to unconditional Landauer erasure of known data.15 Furthermore, in all three
experiments a single value for the energy dissipation associated with erasure was
obtained by averaging over multiple erasure cycles originating in each of the
two possible initial states, so they correspond to the same kind of average (2)
that is lower bounded by the unconditional erasure bound (12). Finally, all three
experiments were designed so the self entropies of the two data states would be
identical to one another, and also to the reset state since it is identical to one of the
data states, so the first term in the unconditional erasure bound reflecting self entropy
changes on individual trials vanishes (12). For erasure of one bit (ΔIer = −1), the
unconditional erasure bound specialized to all three experimental scenarios is thus
simply 〈Δ〈EE

i 〉〉 ≥ kBT ln(2).
For slow unconditional erasure processes, where one would expect Landauer’s

bound to be asymptotically achievable if it is achievable at all, Berut and co-
workers report dissipation values that, to within experimental error, saturate in the
kB ln(2) − kBT range (depending on erasure success probability) [26]. Jun and co-
workers, who were able to achieve Landauer erasure with essentially unit success,
also studied dissipation as a function of erasure time, and report clear approach to
an asymptotic value of (0.71 ± 0.03)kBT . Finally, Hong and co-workers report an
erasure dissipation of (1.45 ± 0.35)kBT for their experiment. These results, taken
at face value, support the validity of Landauer’s bound for unconditional erasure—
and its achievability—in experiments that are designed to have sufficiently high
resolution to detect violations.

The fourth experiment, due to Orlov and co-workers [29], is unique in that it
probes reduction in erasure cost available through conditioning. In this experiment,
the information-bearing system is simply a capacitor in series with a resistor that is
prepared in one of two symmetric (equal but opposite polarity) charge states to store
a bit value. In contrast to the three experiments discussed above, the reset state is
an additional “null” state that does not coincide with either of the two “data” states;
here it is the “discharged” state of the capacitor. Erasure thus of a stored bit thus
corresponds to a discharging of the capacitor, bringing its terminal voltage from
some “bit voltage” V = +Vs or −Vs to V = 0. This can be done unconditionally
or conditionally to achieve unconditional or conditional erasure.

15Recall from Sect. 3.3 that, with the way we have defined unknown data in this work, uncondi-
tional erasure of both known and unknown data carry the Landauer cost.
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Orlov et al. achieve unconditional erasure in this experiment simply by grounding
the “hot” terminal of the capacitor, allowing the capacitor to discharge freely
through the resistor, which involves no conditioning on the initial capacitor state.
They achieve conditional erasure by ramping the terminal voltage from its initial
value, which could be either V = +Vs or −Vs , to V = 0. This is specifically
conditional erasure of known data; selection of the appropriate ramping protocol
(+Vs to V = 0 or −Vs to V = 0) is conditioned on the initial charge state of
the capacitor. The amount of energy dissipated to the environment during Landauer
erasure via Joule heating of the resistor is obtained from measurement of the resistor
voltage throughout unconditional and conditional erasure cycles. The experiments
were performed at T = 300 K, and the charge states for bit encoding were selected
so the stored energy is 30kBT (i.e. far exceeding the thermal energy).

In the unconditional erasure operation, all of the energy initially stored in the
capacitor is, of course, dissipated in the resistor, and this energy far exceeds the
Landauer limit. In the conditional erasure operation, however, Orlov et al. measured
energy dissipation values as low as 0.01kBT for the lowest ramp-discharge rates
they examined. This provides direct comparison of energy dissipation to the
environment for unconditional and conditional operations—using the same system
and the same initial and final states for both cases—and a demonstration of local
energy dissipation below the Landauer limit in the conditional erasure case. While
direct application of the bounds (3) and (12) to this system is both questionable and
infeasible, both because the capacitor is an open system that exchanges particles
with an external source/sink and because the self entropies of the charged encoding
states and the null reset state are unknown and differ from one another by an
unknown amount, the results for energy dissipation in conditional and unconditional
erasure straddle kBT ln(2) and differ by more than kBT ln(2). They are in this sense
consistent with expectations from the Landauer and Landauer-Bennett limits. This
experiment also provides a particularly clear illustration of the distinction between
the energy stored in the states that encode data and the amount of energy dissipated
in the erasure of this data.

6 Summary and Conclusion

The Landauer and Landauer-Bennett limits express fundamental lower bounds
on the physical costs of unconditional and conditional information erasure, and
are some of the earliest and most durable links to have been forged between
information and physics. As such, they are cornerstone results in the ongoing
project of identifying the essential physical dimensions of information processing
and their consequences. At present—half a century since their introduction and
perhaps a decade or so before their implications steer the evolution of information
technology—these results remain controversial. Some of the controversy is rooted
in substantive conceptual and methodological concerns, such as the physical
characterization of conditioning, the connection between conditioning of erasure
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operations and erasure costs, the relationships between information and various
forms of entropy in physical contexts, and the assignment of probabilities in the
application of thermodynamics to the erasure problem. Others are by-products
of insufficient precision in making and interpreting claims—as when claims of
Landauer’s limit as inviolable are interpreted as claims that it is achievable—and
in defining the key systems and quantities. Yet others stem from lack of a common
understanding of crucial distinctions, such as those between physical states that
encode known data, random data, unknown data, and no data at all. Relitigation
of controversial issues in familiar terms has not yielded resolution.

In this chapter, we presented new proofs of dissipation bounds that generalize
the Landauer and Landauer-Bennett limits. These proofs, which are based on
fundamental physical descriptions of conditional and unconditional of Landauer
erasure, lower bound the erasure-induced system-to-environment energy transfer
from lawful quantum dynamics and entropic inequalities alone. They are specifically
constructed so they sidestep methodological objections to familiar approaches, most
of which are related to demonstrations based on classical thermodynamics and the
specific model systems used in these demonstrations. We began by defining and
describing Landauer erasure in very general physical terms in Sect. 2. In Sect. 3,
we then proved conditional and unconditional erasure bounds that are based on
this description, and discussed interpretive issues concerning conditioning, the
physical meaning of encoding data, and the role of system boundaries. Next, we
showed in Sect. 4 that many objections to previous demonstrations and proofs of
the Landauer and Landauer-Bennett limits are sidestepped in our proofs and we
discussed their proper interpretation. Finally, in Sect. 5, we showed that the results
of recent experiments that probe Landauer erasure with high energetic resolution
are consistent with the bounds obtained here. Our theoretical results support the
Landauer and Landauer-Bennett limits as immediate and transparent consequences
of physical law. They do not carry a claim that these limits are achievable. They are,
however, consistent with available experimental results that, taken at face value, do
support their near achievability.

We hope to have demonstrated that considerable clarity on issues surrounding
the energy cost of information erasure can be achieved through explicit physical
grounding the relevant notions such as those related to conditioning. In the present
work, however, we stopped just short of a thoroughly physical description of
information erasure, in that information itself—that which is being erased—was
not defined physically. This was deliberate, since our objective here was to provide
a rigorous alternative to existing proofs of the Landauer and Landauer-Bennett
limits that sidesteps objections leveled at other proofs and demonstrations without
departing from them too drastically. Yet, in following the common practice associ-
ating information content with the Shannon entropy of the encoding probabilities,
which emerged in the proof of our unconditional erasure bound, we have left the
physical status of information unresolved. We should hope to do better, not least
because the unresolved physical status of information is perhaps the deepest source
of confusion surrounding Landauer’s limit. How, after all, can we unambiguously
tally the physical cost of something that is not unambiguously physical?
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In related work, we have aimed to remedy this situation. Using an approach that
has much in common with that of the present work, but that formalizes information
as an explicitly physical quantity, we have obtained precisely the same conditional
and unconditional erasure bounds of this work for the same physical erasure
scenarios [36]. The relevant physical conception of information—observer-local
referential (OLR) information—distinguishes physical states that bear information
from physical states that do not (but are statistically identical), allows information
to be clearly distinguished from entropy, places information on an equal footing
with other physical state quantities, and defines information in a manner that
comports with common conceptions of information in computation [35]. It differs
fundamentally from Shannon’s mathematical entropy measure in multiple respects,
but coincides with it in the scenarios discussed in this work.

In addition to resolving the physical status of information, use of OLR infor-
mation allows fundamental physical descriptions of information processing to be
substantially generalized to naturally accommodate classical and quantum indis-
tinguishability of information bearing states and noisy and otherwise imperfect
operations. Furthermore, it enables isolation and tracking of information and
lower bounding the dissipative consequences of irreversible information loss in
information erasure [36, 42, 43], overwriting [44], implementation of logical trans-
formations [45], and more complex unconditional and conditional computational
operations executed in concrete computing circuits [46, 47] and other computing
structures [48–50]. By taking this further step of giving information a secure
physical grounding, the approach of the present work is greatly generalized and
can systematically be applied to a vastly wider range of information processing
scenarios. We suspect that exploration of the connection between the present
approach and this more general approach can shed additional light on the physical
origins of the Landauer and Landauer-Bennett limits.

Appendix

Here, for convenience, we catalog several established properties of von Neumann
entropy, unitary transformations, and trace operations that have been used in this
work.

1. von Neumann Entropy is Subadditive: For any state ρ̂SE ,

S(ρ̂SE ) ≤ S(ρ̂S) + S(ρ̂E )

where

ρ̂S = T rE [ρ̂SE ] ρ̂E = T rS [ρ̂SE ].

Equality is achieved in this bound when ρ̂SE is separable (ρ̂SE = ρ̂S ⊗ ρ̂E ).
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2. Global von Neumann Entropy is Invariant under Unitary-Similarity Transforma-
tions: For any state ρ̂SE and any unitary operator Û ,

S(ρ̂SE ′
) = Û ρ̂SE Û† = S(ρ̂SE ).

3. Partovi’s Inequality: For unitary evolution

ρ̂SE ′ = Û (ρS ⊗ ρ̂E
th)Û

†

of a system initially in any state ρ̂S and an environment initially in a thermal
state ρ̂S

th at temperature T , Partovi [32] showed that16

Δ〈EE 〉 ≥ kBT ln(2)ΔSE

where

Δ〈EE 〉 = 〈EE ′ 〉 − 〈EE 〉 = T r[ρ̂E ′
ĤE

self] − T r[ρ̂E ĤE
self].

4. Linearity of Unitary-Similarity Transformations: For a unitary operator Û and
sum

∑
i pi ρ̂i of operators ρ̂i ,

Û

(
∑

i

pi ρ̂i

)

Û† =
∑

i

pi(Û ρ̂i Û
†).

5. Grouping Property of von Neumann Entropy: For a set ρ̂i of density operators
with support on orthogonal subspaces, the von Neumann entropy of the convex
combination

ρ̂ =
∑

i

pi ρ̂i

is17

S(ρ̂) = H({pi}) +
∑

i

piSi(ρ̂)

16This inequality appears in [32] as Δ(Sb − βUb) ≤ 0, where ΔSb, ΔUb, and β are denoted
here as ΔSE , Δ〈EE 〉 and (kBT )−1 but carry the same meanings. The factor of ln(2) accounts
for the differences in the base of the logarithm used to define von Neumann entropy by
Partovi and ourselves; Partovi’s inequality is based on the thermodynamic definition S(ρ̂) =
−T r[ρ̂ ln ρ̂], which we have reexpressed here in terms of the information-theoretic definition
S(ρ̂) = −T r[ρ̂ log2 ρ̂].
17See, for example, Theorem 11.8 of Ref. [51].
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where

H({pi}) = −
∑

i

pi log2 pi.

6. Unitary Evolution Preserves Orthogonality: Consider a unitary Û and two
density operators ρ̂SE

i and ρ̂SE
i′ . If ρ̂SE

i and ρ̂SE
i′ are orthogonal, i.e. if

ρ̂SE
i ρ̂SE

i′ = 0

then

ρ̂SE ′
i ρ̂SE ′

i′ = 0

where

ρ̂SE ′
i = Û ρ̂SE

i Û† ρ̂SE ′
i′ = Û ρ̂SE

i′ Û†.

Note that this global preservation of orthogonality on SE does not imply local
preservation of orthogonality on S and/or E .
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1 Introduction

Thermodynamics is intrinsically related to information, as the entropy represents
the lack of our knowledge. The first clue on the information-thermodynamics link
was provided by Maxwell, who considered a thought experiment of “Maxwell’s
demon” [1]. Later, Szilard suggested a quantitative connection between work
extraction and information gain [2], even several decades before the establishment of
information theory by Shannon [3]. The role of information in thermodynamics was
investigated and controversies were raised throughout the twentieth century [4–10].

In this decade, thermodynamics of information has attracted renewed attention
because of the development of the modern theory of nonequilibrium thermodynam-
ics [11–23], which is often referred to as stochastic thermodynamics. Especially, a
fundamental thermodynamic relation called the fluctuation theorem was discovered
in 1990s [11, 12, 14, 15], which has opened up a new avenue of research. We note,
however, that only a few seminal works have been done already in the 1970s and
80s [24–28].
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Thermodynamics of information can now be formulated based on stochastic
thermodynamics [29], by incorporating information concepts such as Shannon
entropy and mutual information. Specifically, the Landauer principle for informa-
tion erasure [30–37] and feedback control by Maxwell’s demon [38–51] have been
investigated from the modern point of view.

Furthermore, the relationship between thermodynamics and information has
become significant from the experimental point of view [52]. The first quantitative
demonstration of the work extraction by Maxwell’s demon was performed in
Ref. [53], and the Landauer bound for information erasure was demonstrated in
Ref. [54]. Several fundamental experiments have been further performed both in the
classical and quantum regimes [55–69].

In this article, we review the theoretical foundation of thermodynamics of
information. Especially, we aim at clarifying the concept of reversibilities and the
consistency between Maxwell’s and the second law, which we hope would unravel
subtle conceptual problems.

We will put special emphasis on the following two observations. First, reversibil-
ity has several different aspects. In particular, thermodynamic reversibility and
logical reversibility are fundamentally distinct concepts, which are associated with
different kinds of the degrees of freedom of a thermodynamic system. Second,
mutual information is a crucial concept to understand the consistency between the
demon and the second law. We will see that the demon is consistent with the second
law for the measurement and the feedback processes individually.

We here make some side remarks. First, in this article, we only consider classical
systems in the presence of an infinitely large heat bath, though essentially the same
argument applies to quantum systems. Second, this article is completely newly
written, but is closely related to a paper [37] by the author, where the present article
is intended to be more pedagogical and comprehensive. Finally, for simplicity of
notation, we set the Boltzmann constant to unity (i.e., kB = 1) throughout the article.

This article is organized as follows. In the rest of this section, we briefly
summarize the above-mentioned two observations. In Sect. 2, we review the sec-
ond law and reversibility in conventional thermodynamics as a preliminary. In
Sect. 3, we discuss the framework of stochastic thermodynamics and clarify what
reversibility means there. In Sect. 4, we review reversibility in computation, which
is referred to as logical reversibility. In Sect. 5, we discuss thermodynamics of
information in a simple setup, and state the Landauer principle. The relationship
between thermodynamic reversibility and logical reversibility is clarified in this
simple setup. In Sect. 6, we generally formulate thermodynamics of computation.
In Sect. 7, we slightly change the topic and discuss work extraction by Maxwell’s
demon. In particular, we consider the upper bound of extractable work and formulate
thermodynamic reversibility with feedback. In Sect. 8, we generally discuss the
entropy balance during the measurement and the feedback processes of the demon
and clarify how the demon is consistent with the second law in these processes. In
Sect. 9, we make concluding remarks, where we briefly summarize some topics that
are not mentioned in the preceding sections.

♦♦♦
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Internal fluctuation

“0” “1”

(iii) Heat bath

(ii) Internal physical states

Fig. 1 A schematic of a binary memory, which is modeled as a Brownian particle in a double-well
potential. The memory represents computational state “0” or “1”, when the particle is in the left
or right well, respectively. These wells are separated by a barrier that is sufficiently higher than
thermal fluctuations. The internal physical degrees of freedom represent the position of the particle
inside individual wells, where the particle suffers thermal fluctuations inside these wells. The entire
memory is attached to a heat bath that is in thermal equilibrium

At this stage, let us summarize some key observations, which will be detailed
in the following sections. We consider a binary memory that stores one bit of
information (“0” and “1”), and suppose that the memory is in contact with a
single heat bath (see Fig. 1). We focus on the relationship among thermodynamic
reversibility, logical reversibility, and heat emission from the memory. We first note
that there are three kinds of the degrees of freedom in this setup:

(i) The computational states of the memory (i.e., “0” and “1” for the binary case).
Such computational states should be robust against thermal fluctuations, in
order to store information stably.

(ii) Internal physical states of the memory, which represent the physical degrees of
freedom associated with a single computational state.

(iii) The degrees of freedom of the heat bath, which is assumed to be in thermal
equilibrium.

Then, we have the following observations:

• Thermodynamic reversibility refers to the reversibility of the total system includ-
ing the heat bath and thus is connected to the entropy change in (i)+(ii)+(iii).

• Logical reversibility refers to the reversibility of the computational states only
and thus is connected to the entropy change in (i).

• Heat transfer to the bath is bounded by the entropy change of all the degrees of
freedom of the memory, i.e., (i)+(ii).

Therefore, the above three concepts should be distinguished fundamentally, while
some of them can become equivalent in some specific setups.
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Entropy production characterizes thermodynamic reversibility, and thus is related
to the degrees of freedom (i)+(ii)+(iii). A general version of the second law
of thermodynamics states that entropy production is always nonnegative for any
transition from a nonequilibrium state to another nonequilibrium state (see Sect. 3
for details). In particular, the entropy production of the total system, including
an engine and the memory of Maxwell’s demon, is nonnegative for individual
processes of measurement and feedback control. A crucial point here is that the
mutual information between the engine and the demon should be counted as a part
of the entropy production. By doing so, the demon is always consistent with the
second law of thermodynamics, and we do not need to consider the information-
erasure process to understand the consistency.

2 Reversibility in Conventional Thermodynamics

As a preliminary, we briefly review conventional thermodynamics, which has been
established in the nineteenth century as a phenomenological theory for macroscopic
systems. A remarkable feature of conventional thermodynamics lies in the fact that
it can be formulated in a self-contained manner, without referring to underlying
microscopic dynamics such as Newtonian mechanics and quantum mechanics. In
fact, an equilibrium state is characterized by only a few macroscopic quantities
such as the energy and the temperature. We can also define the thermodynamic
entropy in a purely phenomenological manner by using, for example, the Clausius
formula [70].

We note that conventional thermodynamics can be formulated as a mathemati-
cally rigorous axiomatic theory [71]. While in this article we do not formalize our
argument in a rigorous manner, the following argument of this section can be made
rigorous in line with the theory of Lieb and Yngvason [71].

We focus on the situation that a thermodynamic system is in contact with a
single heat bath at temperature T . Let β := T −1 be the inverse temperature.
We consider a transition from an equilibrium state to another equilibrium state.
During the transition, the system absorbs the heat Q from the bath, and changes
its thermodynamic entropy by �ST. We note that in conventional thermodynamics,
the thermodynamic entropy ST is defined only for equilibrium states, and the second
law only concerns a transition from an equilibrium state to another equilibrium state,
though intermediate states can be out of equilibrium.

Then, the second law is stated as follows.

Second Law of Conventional Thermodynamics An equilibrium state can be
converted into another equilibrium state with heat absorption Q, if and only if

�ST − βQ ≥ 0. (1)
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We note that the “only if” part (i.e., any possible state conversion satisfies
inequality (1)) is the usual second law, while “if” part (i.e., a state conversion is
possible if inequality (1) is satisfied) is also true under reasonable axioms [71].

The left-hand side of the second law (1) is referred to as the entropy production,
which we denote by

� := �ST − βQ. (2)

This terminology, the entropy production, dates back to Prigogine, who associated
−βQ with the entropy change of the bath [72]. In this spirit, � is regarded as the
entropy change of the entire “universe” that consists of the system and the heat bath.

We can also rewrite the second law (1) in terms of the work and the free energy.
Let W be the work performed on the system, and �E be the change in the average
internal energy. The first law of thermodynamics is given by

W + Q = �E. (3)

By substituting the first law into inequality (1), we obtain

W ≥ �Feq, (4)

where

Feq := E − T ST (5)

is the equilibrium free energy. If the process is cyclic, inequality (4) reduces to
W ≥ 0, which is the Kelvin’s principle, stating that perpetual motion of the second
kind is impossible (i.e., a positive amount of work cannot be extracted from an
isothermal cycle).

♦♦♦
We next formulate the concept of reversibility in conventional thermodynamics.

Based on the standard textbook argument [70], we adopt the following definition:

Definition (Reversibility in Conventional Thermodynamics) A state transition
from one to another equilibrium state is thermodynamically reversible, if and only
if the final state can be restored to the initial state, without remaining any effect on
the outside world.

We note that “effect” above is regarded as a “macroscopic effect” in conventional
thermodynamics because microscopic changes (i.e., the subleading terms in the
thermodynamic limit) are usually neglected.

A crucial feature of this definition is that thermodynamic reversibility is com-
pletely characterized by the entropy production, as represented by the following
theorem.
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Theorem Thermodynamic reversibility is achieved if and only if the entropy
production is zero, i.e., � = 0.

Proof While one can find a proof of the above theorem in standard textbooks of
thermodynamics (at least implicitly), we reproduce it here for the sake of self-
containedness.

i) Suppose that a transition is thermodynamically reversible. Then there exists a
reverse transition that satisfies the requirements in the definition of reversibility.
From the requirement that there is no remaining effect in the outside world,
Qreverse = −Q should hold, because otherwise the energy of the heat bath is
changed after the reverse transition. Combining this with �ST,reverse = −�ST,
we have �reverse = −�. On the other hand, both of � ≥ 0 and �reverse ≥ 0
hold from the second law. Therefore, � = �reverse = 0.

ii) Suppose that � is zero. Then −� = (−�ST)−β(−Q) is also zero. Therefore,
the reverse transition is possible with Qreverse := −Q, because of the “if” part
of the second law. �

We consider the concept of quasi-static process, by which we define that the sys-
tem remains in equilibrium during the entire process. Thermodynamic reversibility
is achieved if a process is quasi-static, because the quasi-static condition guarantees
that �ST � βQ. The quasi-static limit is achieved by an infinitely slow process in
many situations in which

�ST = βQ + O(τ−1) (6)

holds, where τ is the time interval of the entire process. In the infinitely-slow limit
τ → +∞, the equality in (1) is achieved. More precisely, τ → +∞ means τ/τ0 →
∞, where τ0 is the relaxation time of the system.

We note, however, that there is a subtle difference between quasi-static and
infinitely slow processes in general. For example, suppose that there is a box
separated by a wall at the center, and gas is only in the left side of the wall. No
matter how slow the removal of the wall is, the free expansion of the gas to the
right side is not quasi-static and thermodynamically irreversible. Such a situation
has been experimentally demonstrated in Ref. [73] in the context of stochastic
thermodynamics.

The foregoing argument can be straightforwardly generalized to situations with
multiple heat baths at different temperatures. In particular, the zero entropy produc-
tion of a heat engine with two baths implies the maximum efficiency of the heat-
to-work conversion. For example, the Carnot cycle attains the maximum efficiency,
where the entropy production is zero and the cycle is thermodynamically reversible.
We note that it has been rigorously proved that any thermodynamically reversible
process is infinitely slow, based on some reasonable assumptions (including that
fluctuations of the system do not diverge) [74]. Since an infinitely slow process gives
the zero power (i.e., the work per unit time is zero), thermodynamically reversible
engines might be practically useless. For that reason, the efficiency at the maximum
power has been intensively studied [75, 76].



Second Law, Entropy Production, and Reversibility in Thermodynamics of Information 107

The concept of reversibility in conventional thermodynamics is generalized to
stochastic thermodynamics, as discussed in the next section.

3 Reversibility in Stochastic Thermodynamics

Stochastic thermodynamics is an extension of thermodynamics to situations where
a system is not necessarily macroscopic, and the initial and final states are not
necessarily in thermal equilibrium [21–23]. When a large heat bath is attached to
a small system, thermal fluctuations affect the system, and its dynamics become
stochastic. Correspondingly, thermodynamic quantities, such as the heat, the work,
and the entropy, become stochastic. Biochemical molecular motors and colloidal
particles are typical examples of stochastic thermodynamic systems, with which
numerous experiments have been performed [52].

Because of thermal fluctuations, the second law of thermodynamics can be
violated with a small probability in small systems. At the level of the ensemble
average, however, the second law is still valid in an extended form. Furthermore,
a universal relation called the fluctuation theorem has been established by taking
into account the role of thermal fluctuations of the entropy production, from which
the second law of thermodynamics can be reproduced. This is the reason why
thermodynamics is still relevant to small systems.

To formulate the second law of stochastic thermodynamics, we need the concept
of information entropy, in particular Shannon entropy. Let X be a probability
variable, which takes a particular value x with probability P(x). The Shannon
entropy of X is then defined as [77]

S(X) := −
∑

x

P (x) ln P(x) ≥ 0. (7)

If the probability variable is continuous, we replace the summation above by an
integral over x. We note that if P(x) = 0, P(x) ln P(x) is regarded as zero.

In contrast to the thermodynamic entropy that can be defined only for thermal
equilibrium, the Shannon entropy can be defined for an arbitrary probability distri-
bution. However, these entropies coincide in the canonical distribution Pcan(x) :=
eβ(Feq−E(x)), where Feq is the equilibrium free energy and E(x) is the Hamiltonian
(i.e., the internal energy of state x). In this case, the Shannon entropy is given by the
difference between the average energy and the free energy:

S(X) := −
∑

x

Pcan(x) ln Pcan(x) = β

(
∑

x

Pcan(x)E(x) − Feq

)

, (8)

which is a statistical-mechanical expression of the thermodynamic entropy.
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We suppose that a small system is described by a Markov jump process or
overdamped Langevin dynamics [78, 79]. We also suppose that the system is driven
by external parameters (e.g., the center and the frequency of optical tweezers),
which are represented by time-dependent parameters in a master equation or
a Langevin equation. The following argument is independent of the details of
dynamics, and therefore we do not explicitly write down stochastic equations.

On the other hand, we assume that variables that break the time-reversal
symmetry (i.e., that have the odd parity for the time-reversal transformation) are
absent or negligible. In particular, the momentum term is negligible in dynamics of
the system (in particular, the Langevin equation is overdamped), and the magnetic
field is absent in the external potential. While some of the following arguments
are straightforwardly generalized to systems with the momentum and the magnetic
field, there are some subtle problems with odd-parity variables.

Let x be the state of the system, which has a certain probability distribution.
Correspondingly, we define the Shannon entropy of the system, written as S. We
consider a transition from the initial distribution to the final distribution of the
system, where both the distributions are arbitrary and can be out of equilibrium.
Let �S be the change in the Shannon entropy of the system, and Q be the
ensemble average of the heat absorption. We then have the following version of
the second law:

Second Law of Stochastic Thermodynamics A distribution can be converted into
another distribution with the heat absorption Q, if and only if

�S − βQ ≥ 0. (9)

As in conventional thermodynamics, the left-hand side of inequality (9) is
referred to as the (ensemble averaged) entropy production:

� := �S − βQ. (10)

This is regarded as the total entropy increase in the “whole universe” that consists
of the system and the heat bath.

As discussed before, if the distribution is canonical, the Shannon entropy
reduces to the thermodynamic entropy. Therefore, inequality (9) is a reasonable
generalization of the conventional second law (1) to situations that the initial and
final distributions are not necessarily canonical.

We can rewrite inequality (9) in terms of the work and the free energy. Let W be
the work performed on the system. We denote the average energy of the system by
E := ∑

x P (x)E(x). The first law of thermodynamics is again given by

W + Q = �E, (11)

where �E is the change in the average energy. By substituting (11) into inequality
(9), we obtain

W ≥ �F, (12)
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where

F := E − T S (13)

is called the nonequilibrium free energy [13, 20]. We note that if the probability
distribution is canonical, we have from Eq. (8) that F = Feq. In such a case,
inequality (12) reduces to W ≥ �Feq, which is nothing but the second law of
equilibrium thermodynamics.

We now consider the precise meaning of “if and only if” in the second law above.
The “only if” part (i.e., any possible transition satisfies inequality (9)) has been
proved for Markovian stochastic dynamics, including Markov jump processes and
Langevin dynamics [13, 15, 18, 20]. Furthermore, inequality (9) has been proved
for a setup in which the total system, including the heat bath, obeys Hamiltonian
dynamics [16].

Before discussing the “if” part, we show that there exists a protocol that achieves
the equality in (9), for given initial and final distributions and potentials [29]. Such
a protocol is schematically shown in Fig. 2, which consists of sudden and infinitely
slow changes of the external potential. While the initial distribution can be out of
equilibrium, the potential is instantaneously adjusted to the distribution to make

Sudden change 

of the potential

Infinitely slow change 

of the potential

Sudden change 

of the potential

)b()a(

(c)(d)

)(xP

)( xP'

)(0 xV )(1 xV

)(3 xV )(2 xV

)(xP

)(xP'

Fig. 2 Protocol that achieves thermodynamic reversibility [29]. (a) The probability distribution
P(x) (shaded) is in general different from the canonical distribution of the external potential V0(x)

(i.e., the system is out of equilibrium). (b) The instantaneous change of the potential from V0(x)

to V1(x) such that P(x) is now the canonical distribution of V1(x). (c) The potential is infinitely
slowly changed from V1(x) to V2(x). Correspondingly, the distribution changes infinitely slowly,
and ends up with P ′(x) that is the canonical distribution of V2(x). (d) The potential is again
suddenly changed from V2(x) to V3(x). The distribution P ′(x) is in general no longer the canonical
distribution of V3(x). During the entire dynamics, the probability distribution does not evolve
spontaneously, which makes the entropy production zero
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it equilibrium. Then, the potential is changed infinitely slowly, which brings the
distribution to the final one. After that, the potential is again changed suddenly, and
the final distribution can again be out of equilibrium.

It is easy to check that the entropy production is zero, � = 0, in this protocol. In
fact, the heat absorption from (b) to (c) satisfies �S−βQ = 0, while in the potential
switching processes the heat absorption is zero and the Shannon-entropy change
is also zero. Therefore, the entropy production of the entire process is zero. The
essence of this protocol is that the distribution is always canonical, except for the
very moments of the initial and final times. In this sense, this protocol is regarded as
quasi-static. In other words, the probability distribution never spontaneously evolves
during the entire process, which prohibits the entropy production from becoming
positive.

Based on the above protocol, the “if” part of the second law (i.e., a transition
is possible if inequality (9) is satisfied) can be shown, by explicitly constructing a
protocol with �S − βQ > 0. For example, we can add an auxiliary cyclic process
to an intermediate step of the infinitely slow protocol ((b)–(c) in Fig. 2). If such
a cyclic process is not slow, it simply “stirs” the system, and the system emits a
positive amount of heat (i.e., −Q′ > 0). By adding this heat emission, we have a
positive amount of entropy production in the entire process.

♦♦♦
We next discuss the concept of reversibility in stochastic thermodynamics. While

the fundamental idea is the same as in conventional thermodynamics, we need to
care about probability distributions in stochastic thermodynamics. We thus adopt
the following definition:

Definition (Reversibility in Stochastic Thermodynamics) A stochastic process is
thermodynamically reversible, if and only if the final probability distribution can be
restored to the initial one, without remaining any effect on the outside world.

As in conventional thermodynamics, reversibility defined above is completely
characterized by the entropy production.

Theorem Reversibility in stochastic thermodynamics is achieved if and only if the
entropy production is zero, i.e., � = 0.

The proof of this theorem is completely parallel to the case of conventional
thermodynamics, just by replacing thermodynamic entropy by Shannon entropy.

From the above theorem, the protocol described in Fig. 2, satisfying � = 0,
is thermodynamically reversible. We can also directly see this, because the final
distribution is restored to the initial distribution, just by reversing the entire protocol
step by step. In this reversed protocol, the heat absorption satisfies Qreverse = −Q,
and therefore no effect remains in the outside world.



Second Law, Entropy Production, and Reversibility in Thermodynamics of Information 111

4 Reversibility in Computation

We next discuss the concept of reversibility in computation, which we will show is
fundamentally distinct from thermodynamic reversibility.

Let M be the set of the input states of computation. For example, if any input
consists of n binary bits, then M = {0, 1}n. We can also consider M ′ being the set
of the output states of computation, which can be different from M in general. Any
computation process is a map Ĉ from M to M ′.

We see three simple examples of such computation.

NOT The NOT gate simply flips the input bit: M = M ′ = {0, 1}, and

Ĉ(0) = 1, Ĉ(1) = 0. (14)

ERASE The information erasure maps any input to a single “standard state.” If
the input is one bit and the standard state is “0”, then M = M ′ = {0, 1}, and

Ĉ(0) = 0, Ĉ(1) = 0. (15)

AND For the AND gate, the input is two bits and the output is one bit: M =
{0, 1}2, M ′ = {0, 1}, and

Ĉ(00) = 0, Ĉ(01) = 0, Ĉ(10) = 0, Ĉ(11) = 1. (16)

Rigorously speaking, a computable map from N
k to N is defined as a partial

recursive function, or equivalently, a partial function that can be implemented by
a Turing machine [80]. However, this precise characterization of computability
is not necessary for the following argument. We also note that we only consider
deterministic computation in this article.

We now define logical reversibility of computation [6, 7, 9]. For a logically
reversible computation, one can recover the original input from only the output,
which is formalized as follows.

Definition (Logical Reversibility) A deterministic computational process Ĉ is
logically reversible, if and only if it is an injection. In other words, Ĉ is logically
reversible if and only if, for any output, there is a unique input.

In the case of the aforementioned three examples, NOT is logically reversible,
while ERASE and AND are logically irreversible. Figure 3 schematically illustrates
these examples, where it is visually obvious that only NOT is injection and thus
logically reversible.

We next show that logical reversibility can be characterized by the Shannon
entropy of the computational states. For that purpose, we consider a probability
distribution over inputs. Let p(m) be the probability of input m ∈ M . The
probability distribution over the outputs is then given by
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Fig. 3 Three examples of
computation. NOT is
logically reversible, while
ERASE and AND are
logically irreversible

NOT ERASE AND

0 1
1 0 1 0

0 00
01
10
11
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1

p(m′) =
∑

m∈Ĉ−1(m′)

p(m), (17)

where m ∈ Ĉ−1(m′) means m′ = Ĉ(m). Correspondingly, we define the Shannon
entropies of the input and the output by

S(M) := −
∑

m∈M

p(m) ln p(m), S(M ′) := −
∑

m′∈M ′
p(m′) ln p(m′). (18)

Then, as a general property of the Shannon entropy [77], we have

�S(M) := S(M ′) − S(M) ≤ 0. (19)

In fact,

S(M) − S(M ′) = −
∑

m′∈M ′

∑

m∈Ĉ−1(m′)

p(m) ln p(m) +
∑

m′∈M ′

∑

m∈Ĉ−1(m′)

p(m) ln p(m′)

=
∑

m′∈M ′

∑

m∈Ĉ−1(m′)

p(m) ln
p(m′)
p(m)

≥ 0, (20)

where we used Eq. (17) to obtain the second term on the right-hand side of the
first line, and used p(m′) ≥ p(m) with m′ = Ĉ(m) to obtain the last inequality.
Therefore, the Shannon entropy does not increase by any deterministic computation.

We show the entropy changes in the aforementioned three examples. We assume
that the probability distribution of the input is uniform.

NOT S(M) = S(M ′) = ln 2, and thus �S(M) = 0.
ERASE S(M) = ln 2, S(M ′) = 0, and thus �S(M) = − ln 2 < 0.
AND S(M) = 2 ln 2, S(M ′) = −(3/4) ln(3/4) − (1/4) ln(1/4), and thus

�S(M) = −(3/4) ln 3 < 0.

The equality in the last line of (20) is achieved, if and only if p(m′) = p(m)

holds for any (m,m′) satisfying m′ = Ĉ(m) and p(m) �= 0. This is equivalent to the
following: For any m′ ∈ M ′ with p(m′) �= 0, there exists a unique m ∈ Ĉ−1(m′)
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Table 1 Characterization of
thermodynamic and logical
reversibilities

Reversible Irreversible

Thermodynamically � = 0 � > 0

Logically �S(M) = 0 �S(M) < 0

with p(m) �= 0. This means that Ĉ is injection, when the domain of Ĉ is restricted
to the set of m ∈ M with p(m) �= 0. Therefore, we obtain the following theorem (in
a slightly rough expression):

Theorem A deterministic computational process is logically reversible, if and only
if the Shannon entropy of the computational process does not change.

We are now in a position to discuss why logical and thermodynamic reversibil-
ities are fundamentally distinct. In fact, logical reversibility is the reversibility of
only computational states (i.e., the degrees of freedom (i) in Sect. 1), and thus
characterized by the Shannon-entropy change of computational states, �S(M). On
the other hand, thermodynamic reversibility is the reversibility of the entire system
including the heat bath (i.e., the degrees of freedom (i)+(ii)+(iii) in Sect. 1), and thus
characterized by the total entropy production �. This observation is summarized
in Table 1. We will further develop this observation in the subsequent sections,
especially in the context of the Landauer principle.

We note that any logically irreversible process can be embedded in another
logically reversible process by extending the space of computational states [7]. For
example, if we prepare M × M ′ as an extended set of computational states, we can
construct an extended map Ĉ′ by

Ĉ′ : (m, 0) ∈ M × M ′ �→ (m, Ĉ(m)) ∈ M × M ′, (21)

where 0 ∈ M ′ is the standard state of M ′. Strictly speaking, Ĉ′ should be interpreted
as a map from M × {0} to M × M ′. This extended map Ĉ′ reproduces the original
map Ĉ, if we only look at M of the input and M ′ of the output. A crucial feature
of Ĉ′ is that the input m ∈ M is kept in M of the output of Ĉ′. Therefore, the
extended map Ĉ′ is logically reversible, even when the original map Ĉ is logically
irreversible. Such a construction of a logically reversible extension of a logically
irreversible map has experimentally be demonstrated in Ref. [64] in the context of
thermodynamics of computation.

5 Landauer Principle

We now discuss thermodynamics of computation. Before a general argument, in this
section we focus on a paradigmatic model: the conventional setup of the Landauer
principle for information erasure [6, 30, 31].
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The information erasure is nothing but the ERASE gate discussed in Sect. 4: The
initial information of “0” or “1” is erased, so that the final computational state is
always in “0” that is called the standard state. This is a logically irreversible process
as discussed before.

If the initial distribution of the input is uniform (i.e., p(m = 0) = p(m = 1) =
1/2), the Shannon entropy of the input is S(M) = ln 2, while that of the output is
S(M ′) = 0. The change in the computational entropy is given by �S(M) = − ln 2,
as already shown in Sect. 4. This is the erasure of one bit of information.

To physically implement information erasure, we consider a physical device
that stores one bit of information, which is called a memory. Suppose that the
memory is in contact with a single heat bath at temperature T (= β−1). In the
conventional setup, the memory is modeled by a particle in a symmetric double-
well potential (see Fig. 4a), which has already been discussed in Sect. 1 (Fig. 1). The
memory stores “0” (“1”), if the particle is in the left (right) well. The particle moves
stochastically under the effect of a heat bath and can be described by, for example,
an overdamped Langevin equation. Let x be the position of the particle, which is the
physical degrees of freedom of this memory. We assume that the barrier between the
wells is sufficiently high compared with the thermal energy T that thermal tunneling
between the wells is negligible.

As a simpler model of the memory, the symmetric double-well potential can
be replaced by two boxes with an equal volume (Fig. 4b), where the barrier of the
double-well potential corresponds to the wall separating the boxes. In this two-box
model, the memory stores “0” (“1”), if the particle is in the left (right) box.

In any setup (either the double-well model or the two-box model), the entire
phase space, which we denote as X, represents the position of the particle. X is
divided into two regions that represent computational states “0” and “1”.

The information-erasure process with the two-box model is represented in
Fig. 4c. We suppose that the memory is in local equilibrium in the individual boxes
in the initial and final distributions. Since the two boxes have the same volume, the
change in the Shannon entropy of the entire phase space by the information erasure
is the same as that of the computational states:

�S(X) = �S(M) = − ln 2. (22)

From the second law (9) with �S(X) = − ln 2, we have

−Q ≥ T ln 2, (23)

which implies that the heat emission −Q from the memory is bounded from below
by T ln 2. This bound on heat emission is referred to as the Landauer bound, and
inequality (23) is called the Landauer principle. Experimental verifications of the
Landauer principle with a symmetric memory have been performed in, for example,
Refs. [54, 59, 60, 62, 63].
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Fig. 4 Schematics of a symmetric memory. (a) The double-well potential model. The barrier at the
center is assumed to be sufficiently high. (b) The two-box model. The left (right) box corresponds
to the left (right) well of the double-well potential model. (c) Schematic of the information-
erasure protocol with the two-box model. The initial computational state is m = 0 or m = 1
with probability 1/2. The wall is instantaneously removed, which does not change the probability
distribution of the particle. Then, the box is compressed to the left, and the final position of the
wall is at the center. As a consequence, the final computational state is the standard state m′ = 0
with unit probability. If the compression process is infinitely slow, this protocol is quasi-static and
thermodynamically reversible, where the heat emission is given by −Q = T ln 2. (d) The time-
reversal of the quasi-static erasure protocol. The initial computational state is m′ = 0, which is the
final computational state of the erasure. The left box is first expanded infinitely slowly, and then
the wall is inserted instantaneously. The final distribution is m = 0 or m = 1 with probability
1/2, which is the initial distribution of the erasure. In this process, the heat absorption is given by
Q = T ln 2, which is equal and opposite to that in the erasure process

Let W be the work performed on the memory during the erasure. Since the
internal energy does not change during the erasure, W = −Q holds from the first
law of thermodynamics. Therefore, the Landauer principle (23) can be rewritten as

W ≥ T ln 2, (24)

which gives the fundamental lower bound of the work required for the information
erasure in a symmetric memory.

The equality in (23) is achieved in the quasi-static limit, where the compression
process in Fig. 4c is infinitely slow. In fact, such a quasi-static protocol is a special
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Table 2 Summary of
thermodynamic and logical
reversibilities in the
conventional setup of
information erasure

Quasi-static Not quasi-static

Thermodynamically Reversible Irreversible

Logically Irreversible Irreversible

Heat emission −Q = T ln 2 > T ln 2

Entropy production � = 0 > 0

case of the reversible protocol in Fig. 2, and therefore the equality in (23) is achieved
from the general argument in Sect. 3. In this case, the entropy production defined in
(10) is zero: � = 0. We note that we can also directly compute that −Q = T ln 2
in the infinitely slow limit, by using the equation of states of the single-particle gas,
which will be discussed in Sect. 6 for more general situations (the present situation
is t = 1/2 there).

Therefore, information erasure is thermodynamically reversible in the quasi-
static limit. We note that the probability distribution is unchanged by the removal
of the wall, which guarantees that the process is quasi-static. On the other hand, if
information erasure is not quasi-static, the entropy production is positive: � :=
�S(X) − βQ > 0. In this case, information erasure is thermodynamically
irreversible.

To be more explicit, we show in Fig. 4d the time-reversal of the quasi-static
information-erasure protocol with the two-box model, which indeed restores the
probability distribution to the initial one, leading to the Shannon-entropy change
�S(X)reverse = ln 2. In this time reversal process, the heat of Qreverse = T ln 2 is
absorbed from the heat bath during the expansion process, which has the inverse sign
of the erasure process. We thus confirm that �reverse := �S(X)reverse − βQreverse =
0 in the time-reversal.

In short, logically irreversible information erasure can be performed in a
thermodynamically reversible manner. Of course, this is totally consistent, given the
different definitions of the two reversibilities. In fact, as also discussed in Sect. 1,
logical reversibility cares only about the reversibility of the computational states,
while thermodynamic reversibility is characterized by reversibility in the entire
universe that consists of the memory and the heat bath.

From the entropic point of view, logical reversibility implies �S(M) = 0, while
thermodynamic reversibility implies � := �S(X) − βQ = 0. These are definitely
different, even when �S(M) = �S(X) as in the present case.

In Table 2, we summarize the relationship between thermodynamic and logical
reversibilities in the standard setup of information erasure.

6 Thermodynamics of Computation

In this section, we discuss a general framework of stochastic thermodynamics of
computation. First, we remark that a physical state and a computational state are
distinct concepts. In the standard setup of the Landauer principle in Sect. 5, the
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physical state is the position of the particle, and thus is a continuous variable, while
the computational state is “left” or “right” of the double well (representing “0” and
“1”), and thus is a binary variable. In realistic situations of computation, a single
computational state contains a huge number of microscopic physical states. This
can be regarded as a coarse-graining of the physical phase space.

In general, we divide the physical phase space (i.e., the set of physical states)
into several non-overlapping regions, where each region represents a computational
state. Let X be the set of physical states, and M be the set of computational states,
as in the previous sections. We consider a subset of X, written as Xm with index
m ∈ M , which is the set of physical states that represent a computational state m. X

is then divided as X = ∪mXm, where Xm ∩Xm′ = φ for all m �= m′ with the empty
set φ.

We consider a probability distribution on the physical phase space. Let P(x) be
the probability of physical state x ∈ X, and p(m) be that of computational state
m ∈ M . Since all of x ∈ Xm represent a single computational state m, we have

p(m) =
∑

x∈Xm

P (x). (25)

We then define the conditional probability of x under the condition that the
computational state is m (i.e., x ∈ Xm):

P(x|m) =
{

P(x)/p(m) (if x ∈ Xm),

0 (otherwise).
(26)

We next consider the Shannon entropy associated with this probability distribu-
tion. The Shannon entropy of the physical states is given by

S(X) := −
∑

x

P (x) ln P(x), (27)

and the Shannon entropy of the computational states is given by

S(M) := −
∑

m

p(m) ln p(m). (28)

We also consider the conditional entropy of X under the condition that the
computational state is m:

S(X|m) := −
∑

x∈Xm

P (x|m) ln P(x|m), (29)

which represents fluctuations of physical states inside a single computational state.
A crucial property of the non-overlapping division of the phase space is the

corresponding decomposition of total (physical) entropy, which is represented as
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S(X) = S(M) + S(X|M), (30)

where

S(X|M) :=
∑

m

p(m)S(X|m) = −
∑

m∈M

∑

x∈Xm

p(m)P (x|m) ln P(x|m). (31)

This decomposition is a general property of probability theory [77], and its proof is
given by

S(X) = −
∑

x∈X

P (x) ln P(x)

= −
∑

m∈M

∑

x∈Xm

p(m)P (x|m) ln[p(m)P (x|m)]

= −
∑

m∈M

p(m) ln p(m) −
∑

m∈M

∑

x∈Xm

p(m)P (x|m) ln P(x|m)

= S(M) + S(X|M),

(32)

where we used
∑

x∈Xm
P (x|m) = 1 to obtain the third line. We note that

P(x|m) ln P(x|m) does not diverge for all x and m.
Here, S(X) represents the entire fluctuation in the physical phase space, which

is related to the heat through the second law (9). On the other hand, S(M) is
the entropy of computational states, which is related to logical reversibility as
discussed in Sect. 4. S(X|M) represents the average of fluctuations inside the
individual computational states. We refer to S(X) as the physical entropy, S(M)

as the computational entropy, and S(X|M) as the internal entropy.
We next consider dynamics on X that realizes a computation Ĉ. The dynamics

can be stochastic on the entire phase space X but should be deterministic on the
computational space M in order to realize a deterministic computation. Such a
situation is realistic in practical computations, because physical states thermally
fluctuate inside individual computational states, even when the output of compu-
tation is deterministic.

We consider the change in the entropy during computation. Let m and m′
be the initial and final computational states that are related deterministically as
m′ = Ĉ(m), and x and x′ be the initial and final physical states that are related
stochastically. We use notations X and X′ (M and M ′) to refer to the probability
variables of the initial and final physical (computational) states, respectively. The
change in the Shannon entropies are then denoted as �S(X) := S(X′) − S(X),
�S(M) := S(M ′) − S(M), and �S(X|M) := S(X′|M ′) − S(X|M).

The second law (9) is represented by the total entropy as

�S(X) ≥ βQ, (33)
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which is equivalent to, via decomposition (30),

�S(M) + �S(X|M) ≥ βQ. (34)

Correspondingly, the entropy production (10) is decomposed as

� = �S(M) + �S(X|M) − βQ. (35)

In the present setup, the nonequilibrium free energy is the same as Eq. (13):

F(X) := E(X) − T S(X) = E(X) − T S(M) − T S(X|M), (36)

where E(X) is the average energy of the memory. Then, the fundamental lower
bound of the work W required for the computation is given by

W ≥ �F(X). (37)

We consider the local canonical distribution inside a computational state m,
which is given by

Pcan(x|m) :=
{

eβ(Feq(m)−E(x|m)) (if x ∈ Xm),

0 (otherwise),
(38)

where E(x|m) is the Hamiltonian for a given m, and

Feq(m) := −T ln
∑

x∈Xm

e−βE(x|m) (39)

is the local equilibrium free energy under the condition of m. If the memory is in
local equilibrium inside individual computational states, the nonequilibrium free
energy (36) reduces to [35]

F(X) = Feq − T S(M), (40)

where Feq := ∑
m p(m)Feq(m). If the initial and final distributions are local

canonical, inequality (37) reduces to

W ≥ �Feq − T �S(M). (41)

In the rest of this section, we assume that the initial and final distributions are
local canonical. In fact, this is a reasonable assumption, given that the time scale of
global thermalization is much longer than that of local thermalization, because of
the potential wall between the computational states.

♦♦♦
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We now consider the role of the symmetry of the memory. We first consider
the case that the memory is symmetric as in Sect. 5. In such a case, the local
free energies of the two computational states are the same: Feq(0) = Feq(1), and
therefore �Feq = 0 for any computation. Therefore, inequality (41) reduces to

W ≥ −T �S(M), (42)

which is a general expression of the Landauer principle. In fact, the original
Landauer principle (24) is a special case of inequality (42) with �S(M) = − ln 2.
Inequality (42) has been directly verified in a recent experiment [62].

In terms of the internal entropy, the symmetry implies S(X|0) = S(X|1) in local
equilibrium, and therefore �S(X|M) = 0. Then, inequality (34) reduces to

�S(M) ≥ βQ, (43)

or equivalently,

−Q ≥ −T �S(M). (44)

We next consider the case that the memory is asymmetric, where �Feq �= 0
and �S(X|M) �= 0 in general. If �S(X|M) �= 0, the entropy change in the
computational states is not directly related to the heat (i.e., inequality (43) does not
necessarily hold) [32, 34, 35]. In Fig. 5a, we show a simple example of a memory
with an asymmetric double-well potential, where the left (right) well represents
computational state “0” (“1”).

As is the case for the symmetric memory, we can replace the double-well
potential by two boxes (Fig. 5b). If the double-well potential is asymmetric, the
volumes of the two boxes are not the same. Let t (0 < t < 1) be the ratio of the
volume of the left box. If the memory is symmetric, t = 1/2. For 0 < t < 1/2,
the local free energies satisfy Feq(0) > Feq(1), and the internal entropies satisfy
S(X|0) < S(X|1) in local equilibrium. We emphasize that the initial probability
distribution of m = 0 and m = 1 is arbitrary (i.e., not necessarily p(m = 0) = t),
because the memory can store any information.

We consider information erasure with the asymmetric memory. For simplicity,
we assume that the initial distribution is p(m = 0) = p(m = 1) = 1/2. The
Shannon-entropy change in the computational states by the information erasure is
then given by �S(M) = − ln 2.

Figure 5c shows the optimal information-erasure protocol, which achieves the
equality of the second law (34) [35]. A crucial point of this protocol is that the wall
is first moved to the center infinitely slowly. Thanks to this process, the probability
distribution of the particle (i.e., 1/2 for both left and right) does not change by the
removal of the wall. (If we removed the wall without moving it to the center, the
probability distribution would spontaneously relax towards the uniform distribution
over the box, which makes the process thermodynamically irreversible and the
entropy production positive.) This is in the same spirit as the protocol in Fig. 2.
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Fig. 5 Schematics of an asymmetric memory [35]. (a) An asymmetric double-well model. The
phase-space volume of X0 and X1 is not equal. (b) The corresponding two-box model. The
volumes of the left and right boxes are not equal. The volume ratio of the two boxes is given by
t : 1 − t (0 < t < 1). (c) The optimal information-erasure protocol with the asymmetric two-box
model, which achieves the thermodynamic reversible condition � = 0. The initial computational
state is m = 0 or m = 1 with probability 1/2. The wall is moved to the center of the box infinitely
slowly, and then removed instantaneously. The box is then compressed to the left infinitely slowly,
so that the final volume ratio of the two boxes is the same as the initial one. The entire process
of this erasure is quasi-static. (d) The time-reversal of the above quasi-static erasure protocol. The
initial distribution of the time-reversal is the same as the final distribution of the erasure. The wall
is first moved to the right most position infinitely slowly, and then a wall is instantaneously inserted
at the center of the box. The inserted wall is then moved infinitely slowly, such that its final position
is the same as its initial position of the erasure. In this process, the total heat absorption is given by
Q = T ln 2 + (T /2) ln(1 − t/t), which is equal and opposite to that in the erasure process

Then, the box is compressed from to the left infinitely slowly, and the final position
of the wall returns to the initial one. The total entropy production is zero in this
process, and thus it is thermodynamically reversible. To see the thermodynamic
reversibility more explicitly, we illustrate the time-reversal of the above protocol in
Fig. 5d.

We can also directly compute the heat emission for the protocol in Fig. 5c. We
assume the equation of states of the single-particle gas, i.e., PV = T , where P is the
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pressure and V is the volume of the box (and remind that kB = 1). The heat emission
is then given by −Q = W = − ∫

PdV . We note that the work is not needed for the
removal of the wall. Then, the heat emission during the entire process is given by

−Q = T ln 2 + T

2
ln

1 − t

t
. (45)

On the other hand, we have S(X|m = 0) = S(X′|m′ = 0) and

S(X′|m′ = 0) − S(X|m = 1) = ln
t

1 − t
, (46)

and therefore,

�S(X|M) := S(X′|m′ = 0) − 1

2
(S(X|m = 0) + S(X|m = 1)) = 1

2
ln

t

1 − t
.

(47)
Combining this with �S(M) = − ln 2, we obtain

�S(M)+�S(X|M)−βQ = − ln 2+ 1

2
ln

t

1 − t
+

(

ln 2 + 1

2
ln

1 − t

t

)

= 0, (48)

which achieves the equality in (34).
If t = 1/2, Eq. (45) reproduces that −Q = T ln 2. On the other hand, if t �= 1/2,

we have −Q �= T ln 2. In particular, if t > 1/2, we have −Q < T ln 2, which is
below the Landauer bound (44). Of course, this does not contradict the second law.
In such a case, the decrease in the computational entropy �S(M) is compensated
for by the increase in the internal entropy �S(X|M). Information erasure with such
an asymmetric memory has experimentally been demonstrated in Ref. [61].

In summary, heat emission is connected to the change in the total physical
entropy of the memory (i.e., (i)+(ii) in Sect. 1), which is decomposed into the
computational and internal entropies as in Eq. (30). If the change in the internal
entropy is not zero, the computational entropy is not directly related to heat
emission. This is the reason why the information erasure below the Landauer bound
(44) is possible with an asymmetric memory, while the general bound (34) is always
true.

7 Work Extraction and Reversibility with Feedback Control

We next consider work extraction from heat engines through feedback control by
Maxwell’s demon. As we will discuss below, the mutual information is the source
of work extraction by the demon, and therefore we refer to such a heat engine as an
information engine.
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(a) Initial equilibrium (b) Insertion of the wall

(c) Measurement

(d) Feedback

2lnBTk 2ln
Work

Information

Fig. 6 Schematic of the Szilard engine. (a) The initial equilibrium distribution. (b) A wall is
inserted at the center of the box. At this stage, we do not know in which side the particle is.
(c) The demon measures the position of the particle (i.e., left or right). (d) If the particle of the
engine is found in the left (right) box, the demon infinitely slowly expands the box to the right
(left) so that the final distribution returns to the initial one. The work of Wext = T ln 2 is extracted
from this expansion. Since the direction of the expansion depends on the measurement outcome
(left or right), this process is regarded as feedback control by the demon

In this section, we do not explicitly formulate the memory of the demon itself.
Instead, we only regard the demon as an external agent that affects the probability
distribution of the engine through the measurement. The full analysis of the total
system of engine and demon is postponed to the next section.

We first consider the Szilard engine, which is a simple model of an information
engine (see Fig. 6). The Szilard engine consists of a Brownian particle (or a
molecule) in a box that is attached to a single heat bath at temperature T = β−1.
During the process depicted in Fig. 6, the demon obtains one bit (= ln 2) of
information corresponding to left or right, and performs feedback control. Then,
the work of Wext = T ln 2 > 0 is extracted from the engine, and the same amount
of heat Q = T ln 2 is absorbed from the bath. The amount of the work is calculated
by the same manner as in Sect. 6. Since the dynamics of the engine is cyclic, this
positive work extraction apparently violates the second law. However, if we take
into account the memory of the demon, then the total system is not cyclic, and
therefore this is not a violation of the second law. As will be discussed in Sect. 8,
we can understand more quantitatively the consistency between the demon and the
second law by taking into account the mutual information between the engine and
the demon.

We now consider a general upper bound of the extractable work with feedback
control. We assume that the engine is in contact with a single heat bath at
temperature T = β−1. Let P(x) be the probability distribution of the engine
immediately before the measurement by the demon. We note that we use notation x

(and X) to describe the engine, instead of the memory of the demon; we use notation
y for the measurement outcome obtained by the demon.
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We suppose that the error of the measurement is described by the conditional
probability P(y|x), which is the probability of obtaining outcome y under the
condition that the true state of the engine is x. If the measurement is error-free,
we have P(y|x) = δxy with δxy being the Kronecker’s delta (or the delta function
if the state variable is continuous). The joint probability of x and y is given
by P(x, y) = P(y|x)P (x), and the unconditional probability of y is given by
P(y) = ∑

x P (x, y). From the Bayes rule, the conditional probability of x under
the condition of outcome y is given by

P(x|y) = P(x, y)

P (y)
. (49)

Correspondingly, the conditional entropy of X under the condition of a particular y

is given by

S(X|y) := −
∑

x

P (x|y) ln P(x|y). (50)

Its ensemble average over all y is

S(X|Y ) :=
∑

y

P (y)S(X|y) = −
∑

xy

P (x, y) ln P(x|y) = S(XY) − S(Y ), (51)

where S(XY) := −∑
xy P (x, y) ln P(x, y) is the Shannon information of the joint

distribution.
After the measurement, the protocol to control the engine depends on y, which

is the characteristic of feedback control. By noting that the initial distribution of
the engine is given by P(x|y) under the condition of outcome y, the second law of
stochastic thermodynamics (9) can apply to the conditional distribution:

S(X′|y) − S(X|y) ≥ βQy, (52)

where Qy is the heat absorption with y, and S(X′|y) is the conditional entropy in
the final distribution of the engine. By taking the ensemble average over all y, we
have

S(X′|Y ) − S(X|Y ) ≥ βQ, (53)

where Q := ∑
y P (y)Qy .

Before proceeding further, we here discuss mutual information, which quantifies
a correlation between two probability variables. The mutual information between X

and Y is defined as

I (X : Y ) := S(X) + S(Y ) − S(XY) =
∑

x,y

P (x, y) ln
P(x, y)

P (x)P (y)
. (54)
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It immediately follows that

I (X : Y ) = S(X) − S(X|Y ) = S(Y ) − S(Y |X). (55)

The mutual information satisfies the following inequalities:

0 ≤ I (X : Y ) ≤ min{S(X), S(Y )}, (56)

where I (X : Y ) = 0 holds if and only if the two systems are not correlated (i.e.,
P(x, y) = P(x)P (y)).

Going back to the second law (53), it is rewritten as, by using Eq. (55),

�S(X) − βQ ≥ −�I, (57)

where �S(X) := S(X′) − S(X) and �I := I (X′ : Y ) − I (X : Y ). We note that if
the feedback control works, I (X′ : Y ) < I (X : Y ) should hold (and thus �I < 0).
In fact, in the case of the Szilard engine, I (X : Y ) = ln 2 and I (X′ : Y ) = 0 hold,
because there is no remaining correlation after the entire process. In general, since
the correlation is also decreased by dissipation to the environment, −�I gives an
upper bound of the information that is utilized by feedback control. By noting that
�S(X) − βQ is nonnegative in the absence of feedback control, inequality (57)
implies that we can reduce the entropy of the system by using feedback control,
where the mutual information is the resource of the entropy reduction.

We consider the nonequilibrium free energy of X, defined in the same manner as
Eq. (13):

F(X) := E(X) − T S(X), (58)

where E(X) is the average energy of the engine. We then rewrite inequality (57) as

W ≥ �F(X) + T �I. (59)

By defining the extracted work Wext := −W , we have

Wext ≤ −�F(X) − T �I. (60)

The right-hand side above can be further bounded as

Wext ≤ −�F(X) + T I (X : Y ), (61)

where we used I (X′ : Y ) ≥ 0. Inequality (61) implies that additional work can be
extracted up to the mutual information obtained by the measurement.

We consider a special case that the initial distribution of the engine is canonical
and the final distribution is also canonical under the condition of y. More precisely,
the final Hamiltonian can depend on y, which we denote by E(x′|y), and the
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final distribution is given by P(x′|y) = eβ(Feq(X
′|y)−E(x′|y)), where Feq(X

′|y) :=
−T ln

∑
x′ e−βE(x′|y) is the final equilibrium free energy with y. Let Feq(X) be the

initial equilibrium free energy as usual. We then have

S(X) = β(E(X) − Feq(X)), S(X′|y) = β(E(X′|y) − Feq(X
′|y)), (62)

where E(X′|y) := ∑
x′ P(x′|y)E(x′|y) that gives E(X′) = ∑

y P (y)E(X′|y). We
define the change in the equilibrium free energy by

�Feq(X) :=
∑

y

P (y)Feq(X
′|y) − Feq(X). (63)

By substituting Eq. (62) into inequality (59), we have

W ≥ �Feq(X) − T I (X : Y ), (64)

or equivalently,

Wext ≤ −�Feq(X) + T I (X : Y ). (65)

We emphasize that inequality (64) or (65) is exactly equivalent to (59) under the
assumption that the initial and final distributions are (conditional) canonical, where
we did not drop T I (X′ : Y ). In fact, to obtain inequality (64) or (65) from (59),
T I (X′ : Y ) is just absorbed into the definition of �Feq(X) in Eq. (63). On the other
hand, we dropped T I (X′ : Y ) to obtain (61) from (59).

In the case of the Szilard engine, we have Wext = T ln 2, �Feq(X) = 0, and
I (X : Y ) = ln 2. Therefore, the equality in (65) is achieved in the Szilard engine.

We note that inequality (65) has been derived in Refs. [41, 43]. The role of
mutual information in thermodynamics has been experimentally demonstrated in,
for example, Refs. [56, 67].

♦♦♦
We consider thermodynamic reversibility with feedback control [81, 82]. We

remember that the second law with feedback control is given by inequality (53),
which is the ensemble average of inequality (52). Here, inequality (52) is equivalent
to the second law (9) under the condition of y. Therefore, it is reasonable to adopt
the following definition [82]:

Definition (Thermodynamic Reversibility with Feedback) In the presence of
feedback control, thermodynamic reversibility of the engine is achieved if and only
if the equality in (53) is achieved, or equivalently, the equality in (52) is achieved
for all y.

In the rest of this section, we work on this definition of thermodynamic
reversibility. We note, however, that this definition does not concern the reversibility
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(a) Initial equilibrium (b) Measurement

(c) Sudden change

(d) Infinitely slow change

(In the case that the outcome is left)

+∞=Eδ

Fig. 7 An analogue of the Szilard engine. (a) In the initial equilibrium distribution, the particle
is in the left or the right site with probability 1/2. (b) The demon performs the measurement of
the position of the particle, and obtains ln 2 of information. The case that the outcome is “left” is
shown in this figure. (c) If the particle is found in the left (right) site, the demon suddenly changes
the energy level of the right (left) site to +∞. This is analogous to the insertion of the wall of the
original Szilard engine. In this sudden change, we do not need any work. (d) The demon infinitely
slowly lowers the energy level of the right (left) site to the original level, from which T ln 2 of the
work is extracted

of the memory of the demon during the measurement process. In fact, in this
section we have just formulated the measurement process as the modification of
the probability distribution from P(x) to P(x|y), without explicitly considering
dynamics of the memory. The full treatment of the memory will be discussed in
Sect. 8 in detail.

By remembering the argument in Sect. 3, thermodynamic reversibility is
achieved by the protocol in Fig. 2, where we now replace the distribution P(x)

by the conditional one P(x|y), and also the potential V (x) by the y-dependent
one V (x|y). In other words, thermodynamic reversibility with feedback control is
achieved if we adjust the potential V (x|y) such that the conditional distribution
P(x|y) becomes always the canonical distribution of V (x|y). In particular, we need
to switch the potential immediately after the measurement, because the distribution
is suddenly changed from P(x) to P(x|y) by the measurement. We again remark
that this consideration neglects reversibility of the measurement process itself.

We revisit the Szilard engine as a special example. Since the Szilard engine
achieves the equality in (65) as mentioned above, the Szilard engine is thermody-
namically reversible. We can directly confirm that the Szilard engine is always in
the canonical distribution under a particular measurement outcome.

To see this point clearer, let us consider a simple analogue of the Szilard engine,
illustrated in Fig. 7. In this model, the particle is in one of the two sites with the same
energy, which is in contact with a single heat bath at temperature T (= β−1). The
information gain ln 2 and the work extraction T ln 2 in this model are the same as
those in the Szilard engine, implying the thermodynamic reversibility of this model.
It is obvious that this model is always in the conditional canonical distribution
during the entire process.



128 T. Sagawa

(a) Initial equilibrium (b) Measurement

(c) Sudden change

(d) Infinitely slow change

(In the case that the outcome is left)

Eδ

Fig. 8 The Szilard-type engine with measurement error [82]. (a) In the initial equilibrium
distribution, the particle is in the left or the right site with probability 1/2. (b) The demon performs
the measurement of the position of the particle, and obtains the mutual information (66). The case
that the outcome is “left” is shown in this figure. (c) If the particle is found in the left (right) site,
the demon suddenly changes the energy level of the right (left) site such that the energy difference
is given by δE. For this sudden change, a positive amount of work is performed if ε �= 0. (d) The
demon infinitely slowly lowers the energy level of the right (left) site to the original level, from
which a positive amount of work is extracted

We can generalize this model by incorporating a measurement error [82], which
is illustrated in Fig. 8. We suppose that the error rate of the measurement is given by
ε (0 ≤ ε ≤ 1); the conditional probabilities are given by P(y|x) = 1 − ε (x = y)
and P(y|x) = ε (x �= y) with x, y being “right” or “left.” In this case, the mutual
information obtained by this measurement is

I (X : Y ) = ln 2 + ε ln ε + (1 − ε) ln(1 − ε). (66)

Immediately after the measurement, we have P(x|y) = 1 − ε (x = y) and
P(x|y) = ε (x �= y). To achieve thermodynamic reversibility, we need to make
P(x|y) the canonical distribution for all y. Consider the case that y =“left” as
illustrated in Fig. 8. (The same argument applies to the case that y =“right”.) The
demon switches the energy level of the right site to make the energy difference
δE = −T ln(ε/(1 − ε)) so that P(x|y) becomes canonical (Fig. 8c):

e−βδE

1 + e−βδE
= ε,

1

1 + e−βδE
= 1 − ε. (67)

The work extraction by this switching is given by −εδE on average, because the
particle is pushed up if it is in the right site.

The demon next lowers the energy level of the right site infinitely slowly, and the
final distribution is the same as the initial one (Fig. 8d). The extracted work during
this process is given by T ln(2/(1 + e−βδE)), because the extracted work equals the
minus of the equilibrium free-energy change in this situation (i.e., the free energy
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after the sudden switching is −T ln(1 + e−βδE) and that in the final distribution is
−T ln 2).

The total work extracted from the entire process is then given by

Wext = −εδE + T ln
1

1 + e−βδE
= T (ln 2 + ε ln ε + (1 − ε) ln(1 − ε)) . (68)

We note that �Feq(X) = 0 in the entire process. Therefore, the equality in (65) is
achieved, i.e., Wext = T I (X : Y ), and thus we confirm that this protocol achieves
the thermodynamic reversibility.

This type of the Szilard engine with measurement error has been proposed in
Ref. [82], and experimentally demonstrated in Ref. [56] by using a single electron
box. Other models that achieve the thermodynamic reversibility with feedback have
been discussed in Refs. [46, 83–86].

8 Entropy Balance in Maxwell’s Demon

In the previous section, we did not explicitly consider the measurement as a physical
process, but as the modification of the probability distribution from P(x) to P(x|y).
In particular, we did not consider the entropy production in the memory of the
demon itself.

In this section, we explicitly consider stochastic thermodynamics of the entire
system of the engine X and the memory of the demon Y [50, 51]. Specifically, we
focus on the entropy balance during the measurement and the feedback processes
by explicitly considering the memory as a physical system. In this respect, we
will reproduce the second law (53) with feedback control from a slightly different
viewpoint from Sect. 7. We also discuss the fundamental energy cost required for
the measurement process.

As a preliminary, we consider general dynamics of the bipartite system X and Y

in the presence of a heat bath at temperature T = β−1. The entropy production in
the total system is given by

�(XY) := �S(XY) − βQXY , (69)

where �S(XY) is the change in the joint Shannon entropy, and QXY is the heat
absorbed by the total system. We can also define the entropy production in the
subsystem X by

�(X) := �S(X) − βQX, (70)

where �S(X) is the change in the Shannon entropy of X, and QX is the heat
absorbed by X from the heat bath. In the same manner, we define



130 T. Sagawa

�(Y ) := �S(Y ) − βQY . (71)

In many physical situations (e.g., a bipartite Markov jump process and a
Langevin system with two variables driven by independent noise), we can suppose
that the heat is additive:

QXY = QX + QY . (72)

On the other hand, the Shannon entropy is generally not additive, and the mutual
information appears:

�S(XY) = �S(X) + �S(Y ) − �I (X : Y ). (73)

By using Eqs. (72) and (73), the total entropy production is decomposed as

�(XY) = �(X) + �(Y ) − �I (X : Y ), (74)

where the total entropy production is not additive too, because of the mutual
information term. This observation is crucial to understand the consistency between
Maxwell’s demon and the second law, as discussed below. We emphasize that the
second law of thermodynamics always applies to the total entropy production:

�(XY) ≥ 0. (75)

Correspondingly, a process is thermodynamically reversible if and only
if �(XY) = 0.

We note that the terminology of the entropy “production” for the subsystems
(i.e., �(X) and �(Y )) is a little bit of an abuse. More precisely, �(X) is the
sum of the entropy increase in X and that in the bath associated with dynamics
of X. Strictly speaking, the terminology of “production” should be reserved for the
entropy increase of the total system, not for that of a subsystem. In the following,
however, for the sake of simplicity, we refer to �(X) and �(Y ) just as the entropy
production of the subsystems.

♦♦♦
We now consider stochastic thermodynamics of the measurement and feedback

processes (see Fig. 9 for a schematic). We suppose that subsystem X is an engine
measured and controlled by the demon, and subsystem Y plays the role of the
memory of the demon. The Szilard engine discussed above is a special case of this
setup; Fig. 10 shows the dynamics of the Szilard engine along with the memory
of the demon. To avoid too much complication, we do not explicitly formulate the
computational states of the demon in the following, while it is straightforward to
consider them [37].

We first consider the measurement process. Before the measurement, the system
and the demon are not correlated, and the mutual information is zero. Let x be
the initial state of the engine and y0 the initial state of the demon. During the
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x

x

Time

y
I

Feedback

Measurement

Engine

DemonremI

0y
Fig. 9 Schematic of the measurement and the feedback processes, where x, x′ (y0, y) represent the
initial and the final states of the engine (the memory of the demon). The initial correlation between
the engine and the memory is assumed to be zero. After the measurement of the engine by the
demon, a correlation is established, which is represented by the mutual information I . Feedback
control is performed by using the measurement outcome y, and the remaining correlation after
feedback is Irem

Feedback

Measurement

x’

x

{ y

2ln=I

Engine

Memory of the demon

0y

Fig. 10 A schematic of the Szilard engine and the memory of the demon, which is a special case
of Fig. 9. Here, both of the engine and the memory are represented by the two boxes with a particle
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measurement, the dynamics of the demon depends on the initial state x of the
system. For simplicity, we assume that the measurement reads out the instantaneous
value of x, and the system does not evolve during the measurement. After the
measurement, the state of the demon, denoted as y, is correlated with x. Here, y

is supposed to be equivalent to the measurement outcome in Sect. 7.
Let I be the mutual information between x and y. The mutual-information

change during the measurement is given by

�Imeas = I, (76)

which is positive if the demon gains information. From Eq. (74), the entropy
production in the total system during the measurement is given by

�(XY)meas = �(X)meas + �(Y )meas − I. (77)

From the assumption that the system does not evolve during the measurement,
�(X)meas = 0. Therefore, we obtain

�(XY)meas = �(Y )meas − I. (78)

Since the second law applies to the total entropy production, �(XY)meas ≥ 0, we
obtain

�(Y )meas ≥ I. (79)

This implies that the entropy production of the memory during the measurement is
bounded from below by the mutual information.

In terms of the nonequilibrium free energy (13), we rewrite inequality (79) as

Wmeas ≥ �F(Y )meas + T I, (80)

where �F(Y )meas := �E(Y )meas − T �S(Y )meas. Inequality (80) reveals the
fundamental lower bound of the energy cost for the measurement. Here, T I on
the right-hand side comes from the right-hand side of Eq. (79), and represents the
additional energy cost to obtain the mutual information I . This inequality has been
derived in Refs. [35, 50].

We next consider the feedback process, where the dynamics of the engine
depends on the measurement outcome y. For simplicity, we assume that the memory
does not evolve during the measurement (i.e., y remains unchanged). After the
feedback, the final state of the system is x′, and the remaining correlation between
x′ and y is denoted as Irem. The mutual-information change during feedback is then
given by

�Ifb = Irem − I. (81)
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This is negative if the obtained information is used during the feedback by the
demon as discussed in Sect. 7. We note that I , Irem, and �Ifb respectively equal
I (X : Y ), I (X′ : Y ), and �I in the notations of Sect. 7.

From Eq. (74), the entropy production in the total system during the feedback is
given by

�(XY)fb = �(X)fb + �(Y )fb + I − Irem. (82)

From the assumption that the memory does not evolve during the feedback,
�(Y )fb = 0. Therefore, we obtain

�(XY)fb = �(X)fb + I − Irem. (83)

Again since the second law applies to the total entropy production, �(XY)fb ≥ 0,
we obtain

�(X)fb ≥ −(I − Irem). (84)

This implies that the entropy production of the system during the feedback can be
negative up to the minus of the used information by the feedback. We note that
inequality (84) is equivalent to inequality (57) in Sect. 7, where �(X)fb equals
�S(X) − βQ in the notation of Sect. 7. In the case of the Szilard engine, �(X)fb =
− ln 2. Such reduction of the entropy is the bare essential of the role of Maxwell’s
demon.

We note that thermodynamic reversibility is achieved if and only if, for the
measurement and the feedback processes,

�(XY)meas = 0, �(XY)fb = 0, (85)

respectively. A model of Maxwell’s demon that satisfies both of these reversibility
conditions has been proposed in Ref. [85].

As a side remark, we consider information erasure from the memory after the
feedback process. In the erasure process, the memory does not interact with the
engine, but solely goes back to the initial distribution only in contact with the heat
bath. In this process, the second law is given by

�(Y )erase := �S(Y )erase − βQerase ≥ 0, (86)

which is nothing but the (generalized) Landauer principle (37). In the quasi-static
limit, we have �(Y )erase = 0. In terms of the work and the nonequilibrium free
energy, inequality (86) is rewritten as

Werase ≥ �F(Y )erase. (87)
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We assume the complete information erasure, in which after the information
erasure, the probability distribution and the Hamiltonian of the memory completely
return to the initial ones before the measurement. This assumption is satisfied if
the memory is in the standard computational state with local equilibrium, before
the measurement and after the erasure. In this case, �F(Y )meas = −�F(Y )erase.
Therefore, by summing up inequalities (80) and (87), we obtain [35]

Wmeas + Werase ≥ T I. (88)

Inequality (88) is the trade-off relation between the work for the measurement
and that for the erasure, and sets the fundamental lower bound of the energy cost
required for the memory. We remark that the lower bound of (88) is given only by
the mutual information, but does not depend on the details of the memory (e.g.,
symmetric or asymmetric). This mutual-information term exactly compensates for
the additionally extractable work by feedback control (i.e., the mutual-information
term in inequality (65)).

♦♦♦
We now summarize the key observation in the foregoing argument. First of all,

the measurement and feedback processes are individually consistent with the second
law, because �(XY) ≥ 0 holds for the individual processes. In this respect, there is
not any contradiction between the second law and Maxwell’s demon.

The apparent “paradox” of Maxwell’s demon would stem from the negative
entropy production of the engine, �(X)fb < 0. However, the second law must apply
to the total system, and therefore the negative entropy production of the subsystem is
not a contradiction. If we take into account the change in the mutual information, by
adding it to �(X)fb as �(X)fb + (I − Irem), we recover the total entropy production
�(XY)fb that is always nonnegative.

In the case of the Szilard engine, �(X)fb = − ln 2 and I − Irem = ln 2.
Therefore, the total entropy production is just zero: �(XY)fb = − ln 2 + ln 2 = 0,
which implies that the Szilard engine is a reversible information engine. Table 3
summarizes the entropy balance of the Szilard engine for the case that the
measurement, the feedback, and the erasure processes are all quasi-static.

As discussed above, an information-erasure process can follow the feedback
process. We emphasize that, however, we do not necessarily need to consider
information erasure to understand the consistency between the demon and the
second law.

Table 3 The entropy balance
of the Szilard engine, where
X is the engine and Y is the
demon

�(XY) �(X) �(Y ) �I

Measurement 0 0 ln 2 ln 2

Feedback 0 − ln 2 0 − ln 2

Erasure 0 0 0 0

Here, we assumed that all the processes (i.e., mea-
surement, feedback, and erasure) are quasi-static
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9 Concluding Remarks

In this article, we have only focused on the second law of thermodynamics at
the level of the ensemble average, with which we have clarified the concept of
reversibilities and the entropy production. However, stochastic thermodynamics has
much richer aspects, which we did not discuss so far. In the following, we will
briefly summarize some important topics beyond the scope of this article.

Fluctuation Theorem One of the most important discoveries in stochastic thermo-
dynamics is the fluctuation theorem [11, 12, 14–18]. Roughly speaking, we consider
the stochastic version of the entropy production σ , which gives � = 〈σ 〉 with 〈· · · 〉
being the ensemble average. Then, the fluctuation theorem (or more precisely, the
integral fluctuation theorem or the Jarzynski equality) is given by

〈e−σ 〉 = 1, (89)

which implies that the second law of thermodynamics can be represented by an
equality, if we take into account fluctuations of the entropy production. By using the
convexity of the exponential function, we have 〈e−σ 〉 ≥ e−〈σ 〉. Therefore, Eq. (89)
reproduces the usual second law 〈σ 〉 ≥ 0. We note that the fluctuation-dissipation
theorem and its generalization to nonlinear responses can be obtained from the
fluctuation theorem (89) [87, 88].

Thermodynamics of information can be formulated at the level of the stochastic
entropy production, and thus the fluctuation theorem can be generalized by incor-
porating the mutual information [43, 50, 51].

Autonomous Demons In Sects. 7 and 8, we have discussed Maxwell’s demon that
performs a single measurement-feedback process. We can extend the second law and
the fluctuation theorem to multiple measurement-feedback processes [45, 46], and
further to situations that measurement and feedback are performed autonomously
and continuously in time [89–101]. Here, the informational quantities that character-
ize continuous information flow, such as the transfer entropy [102] and the learning
rate (or just the “information flow”) [95, 101], play crucial roles.

There is also another formulation of autonomous demons based on the concept
of information reservoirs [103–108]. These two approaches (the autonomous
measurement-feedback approach and the information reservoir approach) are shown
equivalent in general [109]. It has also been shown that there is an exact mapping
between these approaches for a typical model [110], based on the concept of partial
entropy production [97]. We note that other informational quantities, such as the
Kolmogorov-Sinai entropy, have been investigated in the context of thermodynam-
ics [111, 112].

Application to Biological Systems Interesting applications of thermodynamics
of information, especially the theory of autonomous demons, are also found in
biophysics. In fact, living cells perform autonomous information processing based
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on biochemical reactions; Thermodynamics of information in biochemical systems
is now an active emerging field [113–124].

Quantum Thermodynamics and Quantum Information We have focused on
classical thermodynamics and classical information so far, while stochastic ther-
modynamics also applies to quantum systems [109, 125–130]. Quantum analogues
of the Szilard engine have been proposed [131, 132], and the role of quantum
information in thermodynamics has been intensively investigated [35, 41, 44, 133–
140]. Furthermore, several experiments on thermodynamics of information have
been performed in the quantum regime [67–69]. We also note that there is another
interesting approach to quantum thermodynamics, called thermodynamic resource
theory [141, 142].

Ultimate Origin of the Information-Thermodynamics Link Last but not least,
the fundamental origin of the information-thermodynamics link is yet to be fully
understood based on quantum mechanics. Throughout this manuscript, we have
assumed that there exists a large heat bath in thermal equilibrium, specifically in
the canonical distribution. However, the microscopic characterization of thermal
equilibrium is quite nontrivial, because a typical pure quantum state [143] and even a
single energy eigenstate [144] can behave as thermal. In this context, the eigenstate-
thermalization hypothesis (ETH) has been considered to be a plausible mechanism
of thermalization in isolated quantum systems [144]. Based on the ETH, the second
law and the fluctuation theorem have been proved in the short time regime for
isolated quantum many-body systems where the heat bath is initially in a single
energy eigenstate [145].

♦♦♦
In these decades, there has been significant progress in stochastic thermody-

namics, which has led to the modern theory of thermodynamics of information.
Stochastic thermodynamics is still quite a hot field, and thermodynamics of
information would further lead to the fundamental understanding of the interplay
between physics and information.
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1 Introduction

It is an intriguing notion that the laws of physics might imply limits on computation.
Any computation in the real world inevitably involves some physical structure and
processes that realize the symbolic computational steps. In particular, the question
of fundamental limits of the energy requirement for computation has attracted
significant attention in the literature [1–3]. In an influential paper, Landauer in 1961
used thermodynamic arguments to conclude that logically irreversible operations,
such as erasure, necessarily lead to the generation of heat in the computing process,
thus being a fundamental source of energy dissipation. This paper [4] has spawned
many subsequent studies and created a school of thought that intimately links
thermodynamics and computation.

However, there also have been dissenting voices, including this author [5, 6], who
have not only questioned the use of thermodynamic arguments for computation, but
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argued that thermodynamics does not even apply to computation. There also have
been other dissenting voices, pointing out other issues, including Refs. [7–13]. It
is the purpose of this chapter to focus on the connection (or lack thereof) between
thermodynamics and computation.

Boltzmann’s concept of entropy and its implication for reversibility have been
deeply controversial from the very beginning and remain so until today. It is perhaps
no surprise then that invoking entropy in the context of energy dissipation in
computation has stirred controversy. This controversy also is evident by the different
positions presented in the various chapters in this book, and we will leave it to
the reader to come to their own conclusion. Rather than presenting a resolution of
these conflicting views, the goal of this book has been to get to the core of these
controversial arguments.

A central concept in these arguments is the concept of entropy. Unfortunately,
the vast majority of the literature on this topic simply invokes “entropy,” without
distinguishing between different definitions of entropy, such as physical entropy or
information entropy. This lack of clarity regarding what is actually meant by entropy
has significantly contributed to the confusion in the literature on this topic. We will
carefully examine the meaning and limits of validity of these two forms of entropy,
and we will show that information entropy is relevant for computation, and physical
(thermodynamic) entropy is not. As a consequence, thermodynamics does not apply
to computation, and the thermodynamics of computation is a contradiction in terms.
Thus, the title for this chapter.

Another concept that is frequently invoked without clear definition is the
concept of reversibility. There is physical reversibility, which is related to the
time reversibility of a physical process, and there is logical reversibility, which is
related to the invertibility of a logic operation. The concept of reversibility also is
used in thermodynamics and the “arrow of time” (second law of thermodynamics).
Moreover, reversibility also is invoked in the context of adiabatic processes. Clearly,
arguments about reversibility in one context should not be used to reach conclusions
about reversibility in another context, and we will be careful not to so in this chapter.

This chapter is structured in the following way: In order to discuss the energy
requirements of computation in a meaningful way, one first needs to define what
one means by “computation.” Here, the model of computation will be that of a
Turing machine, since this is what Landauer and Bennett had used. We will then
present Landauer’s influential arguments, which use thermodynamics to discuss the
energetics of bit operations, using the concept of entropy. We will point out that
there are different forms of entropy, and we will discuss in detail the distinction
between physical (thermodynamic) entropy and information entropy. This will lead
us to the conclusion that information entropy applies to computation, but physical
entropy does not.
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2 Model of Computation

In order to discuss the physics of a computational process in a meaningful way, one
first has to define what one means by computation. In this section, we will do just
that and define what we mean by computation, and we will also say what we do not
mean by computation in this context.

Landauer’s and Bennett’s model of computation is that of a Turing machine,
which is an abstract computing machinery introduced by Alan Turing in the late
1940s [14]. Specifically, a Turing machine contains a data-storage device, the so-
called tape, which is composed of a sequence of segments, each of which contains a
symbol (bit) value. These symbol (bit) values can be changed by a bit-manipulating
device, the so-called head, which can assume certain distinct states according to a
set of rules. The computation proceeds in discrete steps, which involve reading and
writing bit values, and changing the state and the location of the head.

An elementary operation of a Turing machine has the following form: In the
beginning, the head will be in a certain initial state, denoted by Hi, and it will be
located above some segment along the tape. The head will then read the symbol
(bit) value of the tape at that location, which we will denote by Si. Once the head
has obtained the information about the current bit value, it will execute a rule, which
changes the symbol value to its final state, denoted by Sf , and the head itself changes
its state to Hf . Finally, the head will move either to the right or to the left (or not at
all), and the next computation step can begin with the new symbol and head states.

Formally, an elementary operation of a Turing machine maps an initial
head/symbol state to a final symbol/head state, with the additional head
movement, M:

(Hi, Si) → (
Sf ,Hf ,M

)

We note that this is a 2-to-3 mapping, which is logically irreversible.
Alternatively, elementary Turing-machine operations can be written as quintu-

ples of the form:

(
Hi, Si; Sf ,Hf ,M

)

A set of such mappings, or quintuples, defines the set of rules for a Turing-
machine program, and it has been shown that Turing machines are computationally
universal.

While the Turing machine is an abstract computational model, it is also useful
for considering sources of energy requirements for computation. Symbol (bit)
values have to be maintained in the presence of noise, otherwise the data will
be randomized. What is also needed is some physical mechanism, representing
the head, that is capable of reading, manipulating, and writing bit values, and of
changing its own state. All of this will require more or less energy, depending upon
the specific physical system used to realize a symbolic bit.
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Of special importance here is the read operation by which the head acquires the
current bit value, and which then determines what operation the head will execute
next. In other words, a Turing machine consists of elementary steps, where each
step is determined by the current state of the computation (data). In order for the
computation to stay on the correct path, these read operations are crucial, or the
Turing machine will perform a random walk in the computational space.

It has been well recognized that these read operations, which the head needs in
order to “know” what to do next, are similar to the read operations Maxwell’s demon
needs in order to “know” when to open his trap door. We will return to a discussion
of this connection to Maxell’s demon later in this chapter.

After having discussed the Turing-machine model of computation, which will
be the basis for the arguments in this chapter, we now briefly present a couple of
other computational models, which have nothing to do with the thermodynamics of
computation. Unfortunately, the literature also contains papers that use these models
of computation in this context, further confusing the issues of interest here.

One such model is the billiard-ball model of computation [15]. The presence,
or absence, of balls is interpreted as bit information, and bit operations can be
accomplished by having balls bounce off each other, or physical structures, such
as mirrors or walls. Note that these physical structures have to be in place before
the balls start, and someone had to design the layout these mirrors and walls for
a specific path of the balls. For some logic gates, additional balls are required to
set the functionality of such a gate. Note that these extra balls have to be aimed
and timed perfectly, in order to arrive precisely when they are needed to bounce
off the “computing” balls. In other words, the state of the computation has to be
known along all the ball trajectories before the “computation” even starts. Since
the state of the computation has to be known for all times, this includes the end of
computation. In other words, the outcome of the “computation” is known before
the “computation” even starts. As such, this model of computation is very different
from the Turing machine. This billiard-ball model is more like an automaton that is
designed for a particular task, and it can only execute that special task. On the other
hand, a Turing machine is general purpose, and does not have to be specifically
designed for a particular computation.

Since the trajectories of ideal balls are reversible (physically and thus logically),
this model of computation is reversible (both physically and logically). Also, if the
motion of the balls is assumed to be frictionless, and the collisions are assumed
to be without deformation or transfer of energy, this machinery operates without
dissipation (albeit by assumption).

There exists a large literature on adiabatic reversible computing, and a few
references are given here [16–19]. In particular, adiabatic charging techniques can
significantly reduce power consumption using mainstream conventional CMOS
technology. The main idea here is to design circuits such that no large currents
are allowed to flow across resistors while charging (or discharging) capacitors.
This work certainly is valid as it directly addresses important source of power
dissipation, i.e. Joule heating in resistors, and tries to minimize these sources of
wasting energy. However, we argue, this work has nothing to do with Landauer’s



The Thermodynamics of Computation: A Contradiction 145

arguments involving logical reversibility and thermodynamics. In both instances
the general notion of reversibility appears, albeit with very different meaning.
An adiabatic charging process uses clocking structures, which make it physically
reversible, and since information is encoded in the state of the capacitor, this makes
it also logically reversible. In other words, logical reversibility is a consequence of
physical reversibility. On the other hand, Landauer’s arguments claim that physical
reversibility is a consequence of logical reversibility, which is very different.

3 Landauer and the School of Dissipationless Computation

In this section, we will state Landauer’s original arguments, which led him
to conclude that logically irreversible processes require dissipation because of
thermodynamics.

In his influential 1961 paper, Landauer argued that logical irreversibility is the
source of dissipation. Erasure re-sets a bit to a certain (the erased) state (say, the
0 state) [4]. Since the bit could have been initially in either the 0 or 1 state, he
argued that erasure is a 2-to-1 mapping. He then used thermodynamic arguments
to conclude that such a contraction of state (phase) space necessarily requires
expenditure of energy. Specifically, he argued that the entropy of the initial state
is Si = kB ln2, and the entropy of the final state is Sf = kB ln1 = 0. According to
thermodynamics then, this change in bit entropy requires an expenditure of energy
equal to E = kBT ln2.

Bennett then showed in 1973 that computation can be done in a logically
reversible fashion by using extra bits [20]. Logically irreversible operations, i.e.
many-to-few mappings, can be made logically reversible by the addition of extra bits
to have same-to-same mappings. He argued that these extra bits have to be erased
at the end of the computation, and that this is the fundamental source of dissipation
(according to Landauer’s original argument). In order to avoid the erasure of such
random bits, he devised a three-step computational process to accomplish this:

• In Step 1, the computation is performed, and one ends up with the result of the
computation, plus the extra bits from the intermediate results that have to be
erased.

• In Step 2, the results of the computation are copied to a separate tape, which he
claims can be done in a dissipationless fashion.

• In Step 3, the computation from Step 1 is run backwards, and in the end, one ends
up with the initial state of the computation, thus effectively erasing the random
bits by un-computing them.

These arguments, which link logical irreversibility to energy dissipation through
thermodynamics, have found a wide following, which we shall call the School of
Dissipationless Computation. An early review of this school of thought was given
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by Bennett in his paper entitled “The Thermodynamics of Computation—a Review”
[21], as well as in subsequent reviews [22, 23]. A more recent review is given by
Lutz and Ciliberto in their 2015 article in Physics Today [24].

There also have been critical voices, including this author, who have questioned
Landauer’s use of thermodynamic arguments for the energetics of bit operations
[5]. In fact, we will show that thermodynamics does not apply to bit operations,
which calls into question the very foundation of the School of Dissipationless
Computation. This is the main message of this chapter.

4 The School of Dissipationless Computation Contains
Inconsistencies and Contradictions

Before going into a detailed criticism of the thermodynamic arguments invoked
by The School of Dissipationless Computation (which is what we will do below),
we first want to point out that their arguments lead to inconsistent and unphysical
conclusion, and even contain contradictions.

A basic tenet of this school of thought is that “erasure” is special (fundamentally
requiring dissipation), and distinct from other bit operations. As already stated
above, Landauer argues that during the process of erasure, an initial bit value, which
could have been “zero” or “one,” is transformed into one specific bit state, say
“zero,” which is interpreted as the erased bit state. However, any bit operation is
like this. An initial bit state, which could have been in one state or the other, is
transformed into the final bit state. All a bit can do is to exist in one of two states,
which applies to both the initial and final state of a bit operation. At the physical bit
level, there is nothing special about “erasure”; it is a bit operation like any other.
The only difference is at the human level, i.e. how a particular bit operation is
interpreted. Clearly, simply calling a bit operation “erasure” does not change the
underlying physics. More specifically, simply calling some bit operations “erasure”
and others not will not make some dissipative and others not.

This school of thought wants to make us believe that computing (forward)
is dissipative, whereas computing forward and then backward is not (Bennett’s
three tape construction). Please note that our arguments here, as were Bennett’s,
are for the Turing-machine model of computation, and not for energy-recycling
adiabatic processes. As already stated above, the basic rationale for Bennett’s
three stage construction is Landauer’s notion that “erasure” requires dissipation,
whereas “computing” does not. In order for this construction to make sense, the
“computing” steps have to be truly dissipationless, or one would dissipate twice
as much computing forward and then backward, as opposed to just computing
forward. It shall be emphasized here that such dissipationless computing is a
mere assertion, without any physical basis. Clearly, any meaningful discussion of
dissipationless computing would require a discussion of the physics of these bit
operations themselves, but there is no such discussion in this school of thought.
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The assertion of dissipationless “computing” steps has further consequences.
Since each computing step in a Turing machine requires a read operation followed
by a bit operation, both have to be dissipationless. But, if read operations do not
require any energy, and bit operations do not require any energy, one can transform a
bit in an arbitrary initial state into a specific final state without requiring any energy.
Specifically, one can write a program for a Turing machine which reads an initial bit
value, dissipationless by assumption, and which then simply writes a chosen final
state (say, “zero,” regardless of the initial state), again dissipationless by assumption.
In this fashion, one can have a program for a Turing machine that “computes” an
arbitrary sequence of bit values into a sequence of just zero’s. In other words, if one
believes the school’s assertion of dissipationless computing, one can “compute” the
“erasure” of a random tape in a dissipationless fashion, in clear contradiction to their
own assertion that “erasure” fundamentally requires dissipation.

5 Physical Entropy Versus Information Entropy, and Other
Forms of Entropy

We will now discuss various forms of entropy, especially physical (thermodynamic)
entropy and information entropy, and we will show that they have very different
meanings. Central to a discussion of entropy are the concepts of degrees of freedom
and of phase space.

Thermodynamics was developed in the 1870s by Ludwig Boltzmann to describe
the experimentally observable macroscopic behavior of gases as a consequence of
the underlying random thermal motion of the gas particles, which is not accessible
to experiment. Even though the details of that thermal motion are unknown, it still
can be described as the microscopic dynamics of the gas molecules, which can be
idealized as classical point particles for this purpose. In this classical-mechanics
picture, the instantaneous particle locations and velocities represent the microscopic
degrees of freedom. For a gas with N molecules, the set of locations and velocities
for each of these N molecules defines one particular microstate of the gas. The set
of all possible microscopic configurations that are compatible with the macroscopic
boundary conditions defines the phase space of the gas.

A central quantity in thermodynamics is the entropy, which represents an average
over all microscopic configurations that correspond to a macrostate. Specifically, the
thermodynamic entropy, S, is defined as:

S = −kB � pi ln pi

Here, kB is the Boltzmann constant, and pi is the probability with which a
particular microstate, labeled by the subscript “i,” contributes to the macrostate. The
sum is over all microstates “i” in the phase space that corresponds to the macrostate.
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For the special case that all microstates contribute with equal probability, the
entropy is given by:

S = kB ln W

Here, W is the number of microstates that correspond to the gas’ macrostate, and
pi = 1/W. By the way, this famous formula is inscribed on Boltzmann’s gravestone
in the Zentralfriedhof in Vienna.

The entropy, which is a measure of the thermal motion of the gas molecules, is
directly related to heat energy by:

�E = T �S

T is the absolute temperature. The above relation states that a change in entropy,
�S, leads to a change in heat energy, �E, which can be used to perform work, such
as in a steam engine. This is a statement of the conservation of energy, where heat
energy can be transformed into other (more useful) forms of energy. This is the
essence of the first law of thermodynamics.

It shall be pointed out that the sum over microstates, which was defined
mathematically above, also has a very physical meaning. This sum essentially
represents an average over all microstates during an experiment, which yields the
experimentally observed macrovariables. Strictly (mathematically) speaking, this
sum is over all possible microstates in the whole phase space. Clearly, in any
experimental situation, it will not be possible for the gas molecules to actually
find themselves in all these possible configurations. However, the thermal motion
is so rapid, and there are so many collisions, that for practical purposes the
actual microstates provide a representative sample of all possible microstates. This
means that one does not have to know what particular microstates contributed to
the averages observable in a particular experiment, and one can simply perform
thermodynamic averages over all possible states. There are two important points
here: One, in order for the sum over microstates to have physical meaning, these
microstates have to actually, physically contribute to the average (and not just
mathematically). Second, for practical purposes, the particular subset of microstates
during an actual experimental situation provides a representative sample of all
possible microstates.

We shall also point out that it is possible to construct experimental conditions
where the microstates that lead to the observed macroscopic quantities are not a
representative sample of the thermodynamic phase space. For example, if experi-
ments are performed at sufficiently short times scales, which do not allow proper
averaging, non-thermodynamic behavior can be observed.

We now turn our attention to information entropy. In analogy to a gas container
with N molecules, one can define analogous quantities for a sequence of N bits, such
as the tape of a Turing machine with length N. Now, the “microscopic” degrees of
freedom are the bit values, and a “microstate” is a particular sequence of these N bit
values. The combination of all possible 2N bit sequences defines the “phase space.”
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In complete analogy to thermodynamics, one can now define an entropy-like
function by performing weighted sums over all possible bit sequences (microstates).
We shall call this entropy-like function information entropy. Furthermore, and again
in analogy to thermodynamics, one can define an energy-like function, that relates
changes in information entropy to this such-defined “energy.”

It is rather obvious that information entropy has a very different physical meaning
than thermodynamic entropy. There is no random thermal dynamics for sequences
of bits, as there is for gas molecules. Averages over microstates in a gas have a
very clear physical meaning, as they directly determine the value of macrovariables.
Averages over bit sequences certainly can be performed mathematically, but they do
not have the same physical meaning as thermodynamic averages. We will discuss
the connection between energy and these two forms of entropy in the following
section.

We would like to point out that the degrees of freedom discussed so far for a bit
sequence, i.e. the bit values, are the information-bearing degrees of freedom that
carry meaning for the state of the computation (Turing machine). For any physical
implementation of bits, say the presence or absence of charge on a capacitor,
there also are additional degrees of freedom, such as the detailed location of
these charges, or how these charges couple to their microscopic environment by
phonons, etc. We shall call these additional degrees of freedom, which are part
of the thermal environment, non-information-bearing degrees of freedom. For the
bit information, we only care about the presence of charge, and not about the
microscopic details of how these charges couple to the thermal background. By
their very definition, one does not have control over these non-information-bearing
degrees of freedom, and all one can do is form thermodynamic averages. In other
words, thermodynamics applies to the non-information-bearing degrees of freedom,
but not to the information-bearing degrees of freedom.

We now conclude this section by making an analogy, which might appear
silly, but which serves to capture the essence of the important distinction between
information entropy and physical entropy.

One might liken bit configurations to arrangements of objects, such as chairs
in a conference room, or socks in a dormitory room. One then certainly can talk
about the various possible ways these objects can be arranged. Of course, it then
also is mathematically possible to define weighted sums over all these possible
configurations, and one can thus formally define an “entropy,” in mathematical
formal analogy to thermodynamics. For example, one can define in this fashion
a “dormitory entropy” for the arrangements of socks in a dormitory room. However,
this “dormitory entropy” obviously has a very different meaning than physical
entropy, and it would be foolish to conclude that useful work can be extracted
from it, in the same fashion as would be possible for physical entropy. “Dormitory
entropy” and physical entropy, while sharing the same mathematical formalism,
have very different physical meaning. The same applies to information entropy,
which simply does not have the same meaning as physical entropy.
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6 Entropy and Energy

For physical entropy, there is a clear connection to physical energy. Physical entropy
applies to systems with microscopic degrees of freedom subject to random thermal
motion, such as gas molecules in a container. As gas particles bounce off the walls
of their container, which might be static or which might be moving, these are
physical processes that involve transfer of momentum and energy between the gas
molecules and the walls. These microscopic bounces are the reason a gas volume
exerts pressure on its walls, and this pressure entails work (physical energy) when
the walls are moved. For example, if one moves the walls in, thereby reducing the
gas’ volume (phase space), real physical energy is required to do so, as work is
required to move the wall against the gas pressure. This is the physical reason why
a reduction of phase space, and thus entropy, requires expenditure of energy.

For information entropy, there is no such connection to physical energy. Bits,
by their very nature, need to retain their value, unless—of course—they need to
be changed according to the computation. In other words, bits do not perform
random thermal “motion,” and therefore they are very different from gas molecules.
If bits were to change due to thermal fluctuations, they would not be bits any more.
Moreover, it is rather obvious that a string of bits, such as a certain length of tape of
a Turing machine, does not exert physical pressure on that tape. It is also rather
obvious that changing the length of the tape of a Turing machine, and thus its
information entropy, does not require physical work. In other words, changes in
information entropy have no connection to changes in physical energy.

These points appear to be rather obvious, yet they are not appreciated by the
School of Dissipationless Computation.

7 Thermodynamics Does Not Apply to Computation

As discussed in detail above, thermodynamics applies to a physical system where
the microscopic degrees of freedom are subject to random thermal motion, and
all that can be observed at the macroscopic level are averages (weighted sums).
Thermodynamics does not apply to strings of bits since they cannot undergo random
thermal motion, or they no longer would be bits. Thermodynamics does not apply
to computation.

Computation requires the controlled deterministic switching of bits according
to the rules of the algorithm to be executed. In a real physical system and in
the presence of thermal noise, the bit operations and the bits themselves need to
be isolated from thermal fluctuations in order to avoid random switching. This
need to provide isolation from thermal noise is the fundamental reason for energy
dissipation in computation, and not the logical irreversibility of bit operations.

Thermodynamics would apply to a string of bits, if these bits were to switch at
random, but then they no longer would be useful for computation. In other words,
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the more a system can be described by thermodynamics, the less it can be used for
computation. (Just to make sure, this statement is true for the deterministic Turing-
machine model used here. It does not apply to other models of computation, such as
stochastic computing).

As has already been pointed out by us some time ago [5], there appears to
be some “complementarity” between thermodynamics and computation. A system
can either be described by thermodynamics, but then it cannot be used for
computation. Or, if a system is to be used for computation, it cannot be described
by thermodynamics.

We are led to the main conclusion of this chapter that the thermodynamics of
computation is a contradiction in terms.

8 Experimental Studies of Landauer’s Principle

In recent years, there have been several publications that claim to provide an
experimental confirmation of Landauer’s principle, i.e. that erasure is the true source
of dissipation in a bit operation. What all of these studies have in common is to
examine the switching process in a two-state system close to the noise floor. One
such study [25] investigates a single colloidal particle in a modulated double-well
potential realized by an optical trap. Another study [26] investigates, using magneto-
optical measurements, the switching of nanoscale magnetic bits. A very recent
study [27] claims to experimentally demonstrate a quantum version of Landauer’s
principle using a single atom in an ion trap.

While it is not in the scope of this chapter to refute each and every of these studies
(and others) in detail, we note that they all set up a switching protocol, which they
call “erasure.” Studying the energetics of their such-defined switching process, and
showing that this energy is close to kBT, they then conclude that erasure requires
dissipation. As such, these studies “conclude” their own assumptions. What these
studies really do is to show that switching in a two-state system requires an energy of
kBT, which hardly is a surprising result. As we have argued before, there is nothing
special about “erasure,” which is a bit operation just like any other.

A true experimental demonstration of Landauer’s contention that only erasure
requires dissipation would be experiments that show that a bit operation called “era-
sure” is dissipative, and other non-erasure bit operations do not require dissipation.
Of course, there is no such experiment (since it does not exist).

So, the problem with these experiments is not with the experiment itself, but
with their interpretation. It is not surprising to find an energy limit on the order of
kBT when studying the energetics of switching in a two-state system. It certainly
is not true that by experimentally demonstrating switching energies of kBT one has
provided a validation of Landauer’s arguments.

Of course, when dealing with such small energies on the order of kBT, there
also is ample room for experimental errors. For example, [26] obtain the small
switching energy as the difference of two large energies, obtained from their
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experiments. Unless these two large energies are very well known, there is room
for systematic errors when taking their difference. Their Fig. 4 shows their results
for the switching energy as a function of temperature (in the range of 300–400 K),
which—of course—should be linear in temperature, but the experimental data does
not show a temperature dependence, raising the suspicion of systematic errors in
these experiments. The same might be true for the other experiments, which deal
with large energies, yet draw conclusions about very small energies.

There is also an experimental study that claims to provide an experimental test
of Landauer’s principle at the sub-kBT level [28]. This study is different from
the above experiments in that it does not deal with the switching in a two-state
system. Rather, it studies the energetics of adiabatically charging and discharging a
capacitor. We have already argued above that such adiabatic processes have nothing
to do with thermodynamics and Landauer’s arguments. While we disagree with the
interpretation with this experiment, it is a nice demonstration of the possibility of
sub-kBT energy dissipation in adiabatically charging and discharging a capacitor.

9 Landauer and Maxwell’s Demon

While not central to the main message of this chapter, Landauer and the School
of Dissipationless Computation also have contributed to a re-interpretation of
Maxwell’s demon, which we shall briefly discuss here.

The connection between information and thermodynamics has a long history,
going back to Boltzmann and Maxwell’s demon [29]. In an early controversy
regarding Boltzmann’s then-young theory of thermodynamics, Maxwell conceived
of a Gedankenexperiment to show that one could—in principle—violate the second
law of thermodynamics. He argued that an intelligent “demon,” who operates a
(frictionless) door between two gas containers, could cool one container and heat
the other by open that door just at the right time to let cool molecules pass one way,
and hot molecules the other.

A resolution of this apparent paradox was given by Szilard, who argued that
the demon had to “know” when to open the door and when to keep it closed. This
required the demon to perform a measurement on an approaching gas molecule, and
the acquisition of this information in a noisy environment required an amount of
energy that restored the validity of thermodynamics. According to Szilard, it is the
acquisition of information through a noisy channel that is the fundamental reason
for the expenditure of energy.

Since the School of Dissipationless Computation believes that the fundamental
reason for energy dissipation is the erasure of information and that measurements
can be done without expenditure of energy, they re-interpreted Maxwell’s demon
in the following way: The demon can make the measurement without expending
energy, but this information then is stored in the demon’s mind. It is when the demon
erases its mind that the energy dissipation occurs.
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There are obvious problems with this interpretation. What if the demon chooses
to clear its mind 1 year after the operations on the gas molecules? Of course,
the energy needs to be expended when the gas molecules move, and not at some
arbitrary later point in time.

However, such an obvious contradiction with this re-interpretation of Maxwell’s
demon does not matter since the arguments of the School of Dissipationless
Computation are incorrect in the first place.

10 Summary and Conclusion

In this chapter, we have attempted a comprehensive discussion of Landauer’s
original arguments regarding logical irreversibility and heat generation in the
computing process. In particular, we have attempted to carefully define what we
mean by general terms, such as “computation,” “reversibility,” and “entropy.” The
literature contains quite a bit of confusion due to a lack of clear definitions of these
terms. In particular, we have gone to great length to distinguish between physical
(thermodynamic) entropy and information entropy. We found that Landauer’s prin-
ciple contains a fundamental flaw in using information entropy as if it were physical
entropy. With that, the foundation for the School of Dissipationless Computation
collapses.

We also discussed several experimental studies, which claim to provide experi-
mental proof of Landauer’s principle. We concluded that this is not so. While the
experiments may be valid, their interpretation is not.

We discussed at great length that thermodynamics does not apply to computation.
The main conclusion of this chapter is that the thermodynamics of computation is a
contradiction in terms.
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1 Introduction

In 1991 Rolf Landauer argued that information is physical [1]. Since information
is processed in physical devices, he concluded that information has to obey the
laws of physics, and in particular the laws of thermodynamics. Information is
thus stored in physical systems, such as books or memory sticks, and transmitted
by physical means, for instance with the help of electrical or optical signals.
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But what is ‘information’? A simple, intuitive answer is ‘what you don’t already
know.’ If someone tells you that the earth is spherical, you surely would not
learn much: this message has low information content. However, if you are told
that the oil price will double the day after tomorrow, assuming for a moment
this to be true, you would learn a great deal : this message has hence high
information content. Mathematically, the amount of information is quantified by the
so-called information entropy H introduced by Claude Shannon in 1948; the larger
the entropy, the bigger the information content [2]. The simplest device to store
information is a system with two distinct states, for example up/down, left/right or
magnetization/no magnetization. If the system is known to be with probability one
in one of either states, probing the system will not reveal any new information, and
the Shannon entropy is zero. On the other hand, if the two states can be occupied
with probability one-half, and the actual state is therefore initially undetermined, an
examination of the system will provide information about the state it is in. In this
case, the Shannon entropy is equal to ln(2). This value corresponds to the smallest
amount of information and is called a bit. A two-state system can thus store up to
one bit of information.

The second law of thermodynamics, as formulated by Rudolf Clausius in 1850,
is based on the empirical observation that some processes only occur spontaneously
in one preferred direction [3]. Everyone who forgot a cup of hot tea on a table has
noted that heat flows by itself from a hotter (the cup) to a colder body (the room), and
never the other way around. Heat flow is therefore said to be irreversible. Clausius
characterized the irreversibility of natural macroscopic processes by defining the
thermodynamic entropy S, a quantity that is not conserved, in contrast to energy,
but can only increase in isolated systems. This asymmetry in the change of
entropy imposes restrictions on the type of physical phenomena that are possible.
Similarly, the application of the second law of thermodynamics to information sets
limitations on information processing tasks such as transmission or erasure. More
general questions address the thermodynamic consequences of information gain. In
particular, whether it is possible to extract useful mechanical work from a system
by observing its state, and if yes how much. And at the more fundamental level: are
thermodynamic and information entropies related [4, 5]?

1.1 Maxwell’s Demon and Szilard’s Engine

The first hint of a connection between information and thermodynamics may be
traced back to James Clerk Maxwell’s now famous demon introduced in 1867 [6–
8]. The demon is an intelligent creature able to monitor individual molecules of a gas
contained in two neighboring chambers initially at the same temperature, as shown
in Fig. 1. The temperature of the gas is defined by the mean kinetic energy of the
molecules and is hence proportional to their mean-square velocity. However, not all
the particles will have the same velocity. Some of the molecules will be going faster
than average and some will be going slower. By opening and closing a molecular-
sized trap door in the partitioning wall, the demon collects the faster molecules in
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Fig. 1 Maxwell’s demon. By detecting the positions and velocities of gas molecules in two
neighboring chambers and using that information to time the opening and closing of a trapdoor
that separates them, a tiny, intelligent being could, in theory, sort molecules by velocity. By doing
so, it could create a temperature difference across the chambers that could be used to perform
mechanical work. If the trapdoor is frictionless, the sorting requires no work from the demon
himself, in apparent violation of the second law of thermodynamics (drawn by Claire Lebeau)

one of the chambers and the slower ones in the other. The two chambers now contain
gases with different mean-square velocities and hence different temperatures. This
temperature difference may be used to run a heat engine and produce mechanical
work. By gathering information about the position and velocity of each particle
and using this knowledge to sort them, the demon is therefore able to decrease
the entropy of the system and convert the acquired information into energy. The
problem is that the demon, assuming a frictionless trap door, is able to do all this
without performing any work himself, in apparent violation of the second law of
thermodynamics. The proper resolution of this paradox took 115 years.

A simplified one-particle engine has been suggested by Leo Szilard in 1929 [9].
In this setup, schematically shown in Fig. 2, the gas consists of a single molecule and
the wall separating the identical chambers is replaced by a moving piston to which
a weight can be attached. We now have a two-state system very similar to the one
discussed above. Initially, the particle has a probability of one half to be in one of the
two chambers. By looking into the container the demon acquires information about
the actual state of the system, learning what he did not know before. If the molecule
is found in the right chamber, the weight is attached to the right-hand side of the
piston which is then released from its former position. During the expansion of the
gas, the piston is pushed to the left and the weight is pulled upwards, performing
work against gravity. The piston is attached to the left-hand side of the piston when
the molecule is observed in the left chamber. The second law of thermodynamics
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Fig. 2 Szilard’s engine. A crafty observer can turn a single particle in a box into an engine that
converts information into mechanical work. If, say, (a) the particle is found on the box’s left-hand
side, (b) the observer inserts a movable wall and (c) attaches a weight to its left side; (d) the free
expansion of the one-particle gas pushes the wall to the right, lifts the weight, and thereby performs
work against gravity (adapted from Ref. [8])

limits the maximum amount of work that can be produced by the Szilard engine
to kBT ln(2), where kB is the Boltzmann constant and T the temperature of the
gas. This corresponds to the maximum amount of energy that can be obtained by
converting one bit of information, and is historically the first clear statement of
the relationship between information and energy. In modern language, this result
further implies that information and thermodynamic entropies are equal, S = kBH ,
up to the multiplicative factor kB introduced for dimensional reasons (the Shannon
entropy H is dimensionless).

1.2 Landauer’s Principle and Bennett’s Resolution

It is useful to distinguish two complementary aspects: the first one is informa-
tion gain, as we have just discussed with Maxwell’s demon, the second one is
information erasure, which has been investigated from a thermodynamic point of
view by Landauer in 1961. Let us again consider a two-state system and let us
assume that it initially stores one bit of information, that is, the two states are
occupied with equal probability one-half. This bit may be erased by resetting the
system to one of the states, which will then be occupied with unit probability, a
situation that corresponds to a zero Shannon entropy. By applying the second law
of thermodynamics, Landauer demonstrated that information erasure is necessarily
a dissipative process: the erasure of one bit of information is accompanied by
the production of at least kBT ln(2) of heat into the environment. This result is
known as Landauer’s erasure principle. It emphasizes the fundamental difference
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between the process of writing and erasing information. Writing is akin to copying
information from one device to another: state left is mapped to left and state
right is mapped to right, for example. This one-to-one mapping can be realized in
principle without dissipating any heat (in statistical mechanics one would say that it
conserves the volume in phase space). By contrast, erasing information is a two-to-
one transformation: states left and right are mapped onto one single state, say right
(this process does not conserve the volume in phase space and is thus dissipative).

Landauer’s principle played a central role in solving the paradox of Maxwell’s
demon. In 1982 Charles Bennett noted that the demon has to store the information
he acquires about the gas molecules in a memory [10]. After a full information
gathering energy producing cycle, this memory has to be reset to its initial state
to allow for a new iteration, and its information content has thus to be erased (a
similar argument was put forward by Oliver Penrose in 1970 [11]). According to
Landauer’s principle, the erasure process will dissipate an amount of energy that is
always larger than the quantity of energy produced by the demon during one cycle.
The demon has consequently to pay an energetic price to sort the molecules and have
heat flow from the colder chamber to the hotter chamber, in full agreement with the
second law of thermodynamics. Before Bennett’s resolution, it was often believed,
following arguments put forward by Leon Brillouin and Dennis Gabor, that it was
the energetic price of the measurement, that is, of the act of gathering information,
that would save the second law [12]. However, as shown by Bennett, there is no
fundamental energetic limitation on the measurement process, which like the copy
operation may in principle be performed without dissipation, in stark contrast to
erasure.

Box 1 Landauer’s Erasure Principle
Landauer’s principle can be seen as a direct consequence of the second law
of thermodynamics. Consider a system (SYS) coupled to a reservoir (RES)
at temperature T . According to the second law, the total entropy change
for system and reservoir is positive: STOT = SSYS + SRES ≥ 0. Since
the reservoir is always at equilibrium, owing to its very large size, we have
followed Clausius, �SRES = QRES/T . In other words, the heat absorbed by
the reservoir satisfies QRES ≥ T �SSYS. For a two-state system that stores one
bit of information, there are initially two possible states that can be occupied
with probability one half, and the initial Shannon entropy is Hi = ln(2). After
erasure, the system is with unit probability in one of the states and the final
Shannon entropy vanishes Hf = 0. The change of information entropy is thus
�H = − ln(2). During this erasure process the ability of the system to store
information has been modified. By further using the (assumed) equivalence
between thermodynamic entropy S and information entropy H we can write
�SSYS = kBH = kB ln(2). We hence obtain QRES ≥ kBT ln(2), showing
that the heat dissipated into the reservoir during the erasure of one bit of
information is always larger than kBT ln(2).
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2 Experimental Implementations

For almost a century and a half, the demon belonged to the realm of a gedanken
experiment as the tracking and manipulation of individual microscopic particles was
impossible. However, owing to the remarkable progress achieved in the last decades,
such experiments have now become feasible. Just to give a hint on what can be
done, we will discuss in the following sections several experimental realizations of
Maxwell’s demon and Szilard’s engine, as well as several verification of Landauer’s
principle.

2.1 Experiments on Maxwell’s Demon

The first realization of a Maxwell demon was used to cool atoms in a magnetic trap.
An ensemble of atoms is first trapped in a magnetic trap (see Fig. 3) [14]. A one
way barrier (which plays the role of the demon) sweeps the magnetic trap from the
right to the left, starting at a very large value of the potential. The atoms reaching
this position have transformed almost all their kinetic energy in potential energy
and are, therefore, very cool. These atoms go through the barrier but they cannot
come back, i.e. the barrier behaves as an atom-diode [13–15]. Thus the hot atoms
are on the right and the cold atoms are on the left. At the end of the process when
the sweeping one-way barrier reaches the bottom of the magnetic potential all of
the atoms are cooled down. The one way barrier is composed by two laser beams
suitable tuned to atomic transitions. In Fig. 3 (left) one of the two lasers is on the left
of the barrier and forces the atoms in an excited state. The frequency of the second
laser, which is on the right of the barrier, is tuned in such a way that it has no effect
on the atoms in the excited state and it repels the atoms in the ground state. Thus
the atoms coming from the right, which are prepared in the excited state, go through
the barrier and relax to the ground state by emitting a photon. Instead the atoms
coming from the left, which are in the ground state, encounter first the barrier and
remain trapped because they are repelled. Where does the connection with Maxwell
demon come from? Indeed each time that an atom loses a photon the entropy of
the light shining the atoms increases because before all the photons were coherently
in the laser beam (low entropy state) and now the emitted photons are scattered in
all directions (high entropy state). This entropy is related to an information entropy
because each time that a photon is emitted we know that an atom has been cooled. It
can be shown that indeed this gain of entropy is larger than the reduction of entropy
produced by the cooling of the atomic cloud. It is important to notice that in this
example the demon has not to be an intelligent being but it is just a suitable tuned
device which automatically implements the operation.
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Fig. 3 Using a Maxwell’s demon to cool atoms. A pair of laser beams can be tuned to atomic
transitions and configured to create a one-way potential barrier; atoms may cross unimpeded in
one direction, from left to right left in this figure, but not in the other. Left panel : when the
barrier is introduced at the periphery of the trapping potential, (right side) the atoms that cross the
barrier will be those that have converted nearly all their kinetic energy to potential energy, in other
words, the cold ones. By slowly sweeping the barrier (from the right to the left) across the trapping
potential, one can sort cold atoms (blue) from hot ones (red), reminiscent of Maxwell’s famous
thought experiment, or cool an entire atomic ensemble. Because the cold atoms do work against
the optical barrier as it moves, their kinetic energy remains small even as they return to the deep
portion of the potential well. Right panel: schematic representation of the optical set-up showing
the optical trap (red beam), the translational stage and the two beams one way barrier (adapted
from Ref. [13])

2.1.1 The Szilard Engine: Work Production from Information

A Szilard engine has been realized in 2010 by using a single microscopic Brownian
particle in a fluid and confined to a spiral-staircase-like potential shown in Fig. 4
[16]. Driven by thermal fluctuations, the particle performs an erratic up and down
motion along the staircase. However, because of the potential gradient downwards
steps will be more frequent than upwards steps and the particle will on average fall
down. The position of the particle is measured with the help of a CCD camera.
Each time the particle is observed to jump upwards, this information is used to
insert a potential barrier that hinders the particle to move down. By repeating this
procedure, the average particle motion is now upstairs and work is done against
the potential gradient. By lifting the particle mechanical work has therefore been
produced by gathering information about its position. This is the first example of a
device that converts information into energy for a system coupled to a single thermal
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Fig. 4 Experimental realization of Szilard’s engine. (a) A colloidal particle in a staircase potential
moves downwards on average, but energy fluctuations can push it upwards from time to time. (b)
When the demon observes such an event, he inserts a wall to prevent downward steps. By repeating
this procedure, the particle can be brought to move upwards, performing work against the force
created by the staircase potential. In the actual experiment, the staircase potential is implemented
by a tilted periodic potential and the insertion of the wall is simply realized by switching the
potential, replacing a minimum (no wall) by a maximum (wall) (adapted from Ref. [16])

environment. However there is not a contradiction with the second law because
Sagawa and Ueda formalized the idea that information gained through microlevel
measurements can be used to extract added work from a heat engine [17]. Their
formula for the maximum extractable work is:

〈Wmax〉 = −�F + kB T 〈I 〉 (1)

where �F is the free energy difference between the final and initial state and the
extra term represents the so-called mutual information I . In absence of measurement
errors this quantity reduces to the Shannon entropy : I = −∑

k P (�k) ln[P(�k)],
where P(�m) is the probability of finding the system in the state �k . Then in the
specific case of the previously described staircase potential [16]: I = −p ln p −
(1 − p) ln p where p is the probability of finding the particle in a specific region.
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In this context the Jarzynski equality (see “Appendix 1: Stochastic Thermody-
namics and Information Energy Cost”) also contains this extra term and it becomes:

〈exp(−βW + I )〉 = exp(−β�F) (2)

which leads to

〈W 〉 ≥ �F − kBT 〈I 〉 (3)

Equations (2) and (3) generalize the second law of thermodynamics taking into
account the amount of information introduced into the system [5, 18]. Indeed Eq. (3)
indicates that thanks to information the work performed on the system to drive it
between an initial and a final equilibrium states can be smaller than the free energy
difference between the two states. Equation (2) has been directly tested in a single
electron transistor [19].

2.1.2 The Autonomous Maxwell Demon Improves Cooling

An autonomous Maxwell demon using a local feedback mechanism allows an
efficient cooling of the system [20, 21]. The device, whose principle is sketched
in Fig. 5a, is composed by a SET (Single Electron Transistor) formed by a small
normal metallic island connected to two normal metallic leads by tunnel junctions,
which permit electron transport between the leads and the island. The SET is biased
by a potential V and a gate voltage Vg , applied to the island via a capacitance,
controls the current Ie flowing through the SET. The island is coupled capacitively
with a single electron box which acts as a demon which detects the presence of
an electron in the island and applies a feedback. Specifically when an electron
tunnels to the island, the demon traps it with a positive charge (panels 1 and 2).
Conversely, when an electron leaves the island, the demon applies a negative charge
to repel further electrons that would enter the island (panels 3 and 4). This effect
is obtained by designing the electrodes of the demon in such a way that when an
electron enters the island from a source electrode, an electron tunnels out of the
demon island as a response, exploiting the mutual Coulomb repulsion between the
two electrons. Similarly, when an electron enters to the drain electrode from the
system island, an electron tunnels back to the demon island, attracted by the overall
positive charge. The cycle of these interactions between the two devices realizes
the autonomous demon, which allows the cooling of the leads. In the experimental
realization presented in [20], the leads and the demon were thermally insulated,
and the measurements of their temperatures is used to characterize the effect of
the demon on the device operation. In Fig. 5b we plot the variation of the leads
temperatures as a function of ng ∝ Vg when the demon acts on the system. We
clearly see that around ng = 1/2 the two leads are both cooled of 1 mK at a mean
temperature of 50 mK. This occurs because the tunneling electrons have to take the
energy from the thermal energy of the leads, which, being thermally isolated, cool
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Fig. 5 (a) Principle of the experimental realization of the autonomous Maxwell demon. The
horizontal top row schematizes a Single Electron Transistor. Electrons (blue circle) can tunnel
inside the central island from the left wall and outside from the right wall. The demon watches
at the state of the island and it applies a positive charge to attract the electrons when they tunnel
inside and they repels them when they tunnel outside. The systems cools because of the energy
released toward the heat bath by the tunneling events and the presence of the demon makes the
cooling processes more efficient. The energy variation of the processes is negative because of
the information introduced by the demon. (b) The measured temperature variations of the left
(blue line) and right (green line) leads as a function of the external control parameter ng when the
demon is active and the bath temperature is 50 mK. We see that at the optimum value ng = 1/2
both leads are cooled of about 1 mK and the current Ie flowing through the SET (black line) has
a maximum. At the same time in order to processes information the temperature of the demon
(red line) increases of a few mK . (c) The same parameter of the panel (b) are measured when the
demon is not active. We see that the demon temperature does not change, whereas both leads are
now heated by the current Ie (adapted from Ref. [20])

down. This increases the rate at which electrons tunnel against Coulomb repulsion,
giving rise to increased cooling power. At the same time the demon increases its
temperature because it has to dissipate energy in order to process information, as
discussed in Ref. [22]. Thus the total (system+demon) energy production is positive.
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The coupling of the demon with the SET can be controlled by a second gate which
acts on the single electron box. In Fig. 5c we plot the measured temperatures when
the demon has been switched off. We clearly see that in such a case the demon
temperature does not change and the two electrodes are heating up because of the
current flow. This is the only example which shows that under specific conditions an
autonomous local Maxwell demon, which does not use the external feedback, can
be realized.

2.2 Experiments on Landauer’s Principle

The experiments in the last section show that one can extract work from information.
In the rest of this section we will discuss the reverse process, i.e. the energy
needed to erase information. By applying the second law of thermodynamics,
Landauer demonstrated that information erasure is necessarily a dissipative process:
the erasure of one bit of information is accompanied by the production of at least
kBT ln(2) of heat into the environment. This result is known as Landauer’s erasure
principle. It emphasizes the fundamental difference between the process of writing
and erasing information. Writing is akin to copying information from one device to
another: state left is mapped to left and state right is mapped to right, for example.
This one-to-one mapping can be realized in principle without dissipating any heat
(in statistical mechanics one would say that it conserves the volume in phase space).
By contrast, erasing information is a two-to-one transformation: states left and right
are mapped onto one single state, say right (this process does not conserve the
volume in phase space and is thus dissipative).

Landauer’s original thought experiment has been realized for the first time in
a real system in 2011 using a colloidal Brownian particle in a fluid trapped in
a double-well potential produced by two strongly focused laser beams [23, 24].
This system has two distinct states (particle in the right or left well) and may thus
be used to store one bit of information. The erasure principle has been verified
by implementing a protocol proposed by Bennett and illustrated in Fig. 6. At the
beginning of the erasure process, the colloidal particle may be either in the left or
right well with equal probability of one half. The erasure protocol is composed of
the following steps: (1) the barrier height is first decreased by varying the laser
intensity, (2) the particle is then pushed to the right by gently inclining the potential
and (3) the potential is brought back to its initial shape. At the end of the process,
the particle is in the right well with unit probability, irrespective of its departure
position. As in the previous experiment, the position of the particle is recorded
with the help of a camera. For a full erasure cycle, the average heat dissipated into
the environment is equal to the average work needed to modulate the form of the
double-well potential. This quantity was evaluated from the measured trajectory
and shown to be always larger than the Landauer bound which is asymptotically
approaches in the limit of long erasure times. However, in order to reach the bound,
the protocol must be accurately chosen because as discussed in Ref. [23] and shown



166 S. Ciliberto and E. Lutz

Fig. 6 Experimental verification of Landauer’s erasure principle. (a) A colloidal particle is
initially confined in one of two wells of a double-well potential with probability one-half. This
configuration stores one bit of information. (b) By modulating the height of the barrier and (c)
applying a tilt, (d) the particle can be brought to one of the wells with probability one, irrespective
of the initial position. This final configuration corresponds to zero bit of information. In the limit
of long erasure cycles, the heat dissipated during the erasure process can approach, but not exceed,
the Landauer bound indicated by the dashed line (adapted from Ref. [23])

experimentally [25] there are protocols that are intrinsically irreversible no matter
how slow are performed. The way in which a protocol can be optimized has been
theoretically solved in Ref. [26] but the optimal protocol is not often easy to apply
in an experiment.

2.3 Other Experiments on the Physics of Information

By having successfully turned gedanken into real experiments, the above four sem-
inal examples provide a firm empirical foundation to the physics of information and
the intimate connection existing between information and energy. This connection
is reenforced by the relationship between the generalized Jarzinsky equality [27]
and the Landauer bound which has been proved and tested on experimental data in
Ref. [24] and shortly summarized in the “Appendix 1: Stochastic Thermodynamics
and Information Energy Cost” of this chapter .

A number of additional experiments have verified the erasure principle in various
systems [28–34]. The latter include an electrical RC circuit [28] and a feedback trap
[30, 31]. In addition, Ref. [32] has studied the symmetry breaking, induced in the
probability distribution of the position of a Brownian particle, by commuting the
trapping potential from a single to a double well potential. The authors measured
the time evolution of the system entropy and showed how to produce work from
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information. Finally, experiments on the Landauer bound have been performed
in nano devices, most notably using a single electron box [29] and nanomagnets
[33, 34]. These experiments open the way to insightful applications for future
developments of information technology.

3 Extensions to the Quantum Regime

3.1 Experiments on Quantum Maxwell’s Demon

The experimental investigation of the physics of information has lately been
extended to the quantum regime. The group of Roberto Serra in Sao Paulo has
successfully realized a quantum Maxwell demon in a Nuclear Magnetic Resonance
(NMR) setup [35]. The demon was implemented as a spin-1/2 quantum memory
that acquires information about another spin-1/2 system and employs it to control
its dynamics. Using a coherent measured-based feedback protocol, the demon was
shown to rectify the nonequilibrium entropy production due to quantum fluctuations
and produce useful work. Concretely, the demon gained information about the
system via a complete projective measurement. Based on the outcome of this
measurement, a controlled evolution was applied to the system to balance the
entropy production. Using quantum state tomography to reconstruct the density
matrix ρ of the system at all times, the produced average work 〈W 〉, or equivalently
the mean entropy production 〈�〉 = β(〈W 〉 − �F), was shown to be bounded by
the information gain, 〈�〉 ≤ Igain. The latter quantifies the average information that
the demon obtains by reading the outcomes of the measurement and is defined as
Igain = S(ρ) − ∑

i piS(ρi), where ρi is the state after a measurement which occurs
with probability pi (see Fig. 7).

More recently, a quantum Maxwell demon has been implemented in a circuit
QED system [36]. Here, the demon was a microwave cavity that encodes quantum

Fig. 7 Thermodynamics of a
quantum Maxwell demon.
Verification of the second law
for the nonequilibrium mean
entropy production,
〈�〉 = β(〈W 〉 − �F) ≤ Igain,
in the presence of quantum
feedback as a function of
temperature. The parameter
Igain quantifies the
information gained through
the measurement (adapted
from Ref. [35])
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information about a superconducting qubit and converts that information into work
by powering up a propagating microwave pulse by stimulated emission. The power
extracted from the system was directly accessed by measuring the difference
between incoming and outcoming photons of the cavity. Using full tomography of
the system, the entropy remaining in the demon’s memory was further quantified
and was shown to be always higher that the system entropy decrease, in agreement
with the second law.

In addition in a quantum demon setting a multi-photon optical interferometer
allowed the measure of the extractable work which was used as a thermodynamic
separability criterion to assess the entanglement of two-qubit and three-qubit
systems [37]. An experimental analysis of two-qubit Bell states and three-qubit
GHZ and W states has confirmed that more work can be extracted from an entangled
state than from a separable state. Bounds on the extractable work can therefore be
employed as a useful thermodynamic entanglement witness.

3.2 Experiments on Quantum Landauer’s Principle

Erasure of information encoded in quantum states has been first theoretically consid-
ered by Lubkin [39] and Vedral [40] (see also Ref. [8]). An experimental verification
of the Landauer principle in a quantum setting has been recently reported using a
molecular nanomagnet at a temperature of 1 K [38]. One bit of information was
initially stored in a double-well potential of collective giant spin Sz = ±10 of a
Fe8 molecule. Work for the application of the tilt induced by a transverse magnetic
field was determined via measurements of the magnetic susceptibility. Contrary to
classical erasure which is achieved by decreasing the barrier height, here erasure
was promoted by a thermally activated quantum tunnelling process. As a result,
full erasure can be achieved much faster than in the classical regime. Using the
product of the erasure work and the relaxation time, W · τrel, as a figure of merit for
the energy-time cost of information erasure, this experiment has reached the lower
value to date with W · τrel � 2 × 10−23 erg/bit, as compared to 10−12 erg/bit. s for
the classical experiment with the colloidal particle [23]. This puts the experiment
close to the fundamental limit imposed by the Heisenberg uncertainty relation (see
Fig. 8).

4 Applications

Landauer’s principle applies not only to information erasure but also to all logically
irreversible devices that possess more outputs than inputs. Thus, any Boolean gate
operation that maps several input states onto the same output state, such as AND,
NAND, and OR, has several states which are logically irreversible and will lead
to the dissipation of an amount of heat of kBT ln(2) per processed bit, akin to
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Fig. 8 Energy-time cost of
erasure. The diagram shows
the product of the energy and
the time needed for erasure,
W · τrel, for various systems.
The quantum limit is given by
the Heisenberg uncertainty
relation, E · �t ≥ π�/2. The
Fe8 molecule is currently the
closest to the quantum limit
(red dot) (adapted from
Ref. [38])

the erasure process. As a result, Landauer’s principle has important technological
consequences. Heating laptops are nowadays becoming part of everyday experience.
Heat production in microprocessors used in modern computers is known to be a
major factor hindering their miniaturization, as it gets more and more difficult to
evacuate excess heat when size, and thus surface, is reduced. While the overall
heat dissipated in microchips is steadily decreasing, it still several orders of
magnitude larger than the Landauer limit. However, the switching energy of a
CMOS/FET transistor is predicted to reach the Landauer bound by 2035, indicating
that engineers will soon face a fundamental physical limitation imposed by the
second law of thermodynamics [41, 42]. This is remarkable as kBT ln(2) is about
3.10−21 Joule at room temperature and hence 22 orders of magnitude smaller than
typical energy dissipated on our macroscopic scale. Recently, an experiment has
demonstrated that Maxwell’s demon can generate electric current and power by
rectifying individual randomly moving electrons in small transistors [43].

Man-made computers are not the only existing information processing devices.
Scientists have long realized that living biological cells can be viewed as biochem-
ical information processors that may even outperform our current technology [44].
Cells are, for example, able to reproduce and create copies of themselves, acquire
and process information coming from external stimuli, as well as communicate
and exchange information with other cells. Recently, Landauer’s principle has been
employed to evaluate the energetic cost of a living cell computing the steady-state
concentration of a chemical ligand in its surrounding environment [45]; it has been
argued that it sets strong constraints on the design of cellular computing networks,
as there is a tradeoff between the information processing capability of such a
network and its energetic cost. Another important problem is the investigation of
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ultrasensitive switches in molecular biology. A concrete example is the flagellar
motor of E. coli bacteria that switches from clockwise to counterclockwise rotation
depending on the intracellular concentration of a regulator protein. Switching mech-
anisms are highly complex and not fully understood. A mathematical framework
that models the sensing of the protein concentration by the flagellar motor as a
Maxwell demon has been successfully developed to calculate the rate of energy
consumption needed to both sense and switch, and provide a quantitative description
of the switching statistics [46]. More recent work has focused on the efficiency of
cellular information processing [47], biochemical signal transduction [48], as well
as on cost and precision of Brownian clocks [49] and computational copying in
biochemical systems [50].

Maxwell’s demon is therefore still vibrant 150 years after its inception. Together
with Landauer’s principle, he continues to play a prominent role in modern
research as illustrated by the last examples. Having only very recently become an
experimental science, information physics appears to have a promising future ahead.

Appendix 1: Stochastic Thermodynamics and Information
Energy Cost

When the size of a system is reduced the role of fluctuations (either quantum
or thermal) increases. Thus thermodynamic quantities such as internal energy,
work, heat, and entropy cannot be characterized only by their mean values but
also their fluctuations and probability distributions become relevant and useful to
make predictions on a small system. Let us consider a simple example such as
the motion of a Brownian particle subjected to a constant external force. Because
of thermal fluctuations, the work performed on the particle by this force per unit
time, i.e., the injected power, fluctuates and the smaller the force, the larger is the
importance of power fluctuations [51–53]. The goal of stochastic thermodynamics
is just that of studying the statistical properties of the above-mentioned fluctuating
thermodynamic quantities in systems driven out of equilibrium by external forces,
temperature differences, and chemical reactions. For this reason it has received
in the last twenty years an increasing interest for its applications in microscopic
devices, biological systems and for its connections with information theory[51–53].

Specifically it can be shown that the fluctuations on a time scale τ of the internal
energy �Uτ , the work Wτ and the heat Qτ are related by a first principle like
equation, i.e.

�Uτ = U(t + τ) − U(t) = W̃τ − Qτ (4)

at any time t .
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Furthermore the statistical properties of energy and entropy fluctuations are
constrained by fluctuations theorems which impose bounds on their probability
distributions (for more details see Ref. [51–53]). We summarize in the next section
one of them which can be related to information and to Landuer’s bound.

Estimate the Free Energy Difference from Work Fluctuations

In 1997 [54, 55] Jarzynski derived an equality which relates the free energy
difference of a system in contact with a heat reservoir to the pdf of the work
performed on the system to drive it from A to B along any path γ in the system
parameter space. Specifically, when a system parameter λ is varied from time t = 0
to t = ts , Jarzynski defines for one realization of the “switching process” from A to
B the work performed on the system as

W =
∫ ts

0
λ̇

∂Hλ[z(t)]
∂λ

dt, (5)

where z denotes the phase-space point of the system and Hλ its λ-parametrized
Hamiltonian.1 One can consider an ensemble of realizations of this “switching
process” with initial conditions all starting in the same initial equilibrium state. Then
W may be computed for each trajectory in the ensemble. The Jarzynski equality
states that [54, 55]

exp (−β�F) = 〈exp (−βW)〉, (6)

where 〈·〉 denotes the ensemble average, β−1 = kBT with kB the Boltzmann
constant and T the temperature. In other words 〈exp [−βWdiss]〉 = 1, since we can
always write W = �F +Wdiss where Wdiss is the dissipated work. Thus it is easy to
see that there must exist some paths γ such that Wdiss ≤ 0. Moreover, the inequality
〈exp x〉 ≥ exp 〈x〉 allows us to recover the second principle, namely 〈Wdiss〉 ≥ 0,
i.e. 〈W 〉 ≥ �F .

Landauer Bound and the Jarzynski Equality

We discuss in this appendix the strong relationship between the Jarzynski equality
and the Landauer’s bound. In Box 1 we presented the Landauer’s principle as related
to the system entropy. Let us consider as a specific example the experiment on

1This is a more general definition of work and it coincides with the standard one only if λ is a
displacement (for more details see Ref. [53]).
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the colloidal particle described in Sect. 2.2 [24]. In the memory erasure procedure
which forces the system in the state 0, the entropy difference between the final and
initial state is �S = −kB ln(2). In contrast the internal energy is unchanged by the
protocol. Thus it is natural to await �F = kBT ln(2). However the �F that appears
in the Jarzynski equality is the difference between the free energy of the system in
the initial state (which is at equilibrium) and the equilibrium state corresponding
to the final value of the control parameter: F(λ(τ)) − F(λ(0)). Since the height of
the barrier is always finite there is no change in the equilibrium free energy of the
system between the beginning and the end of the procedure. Then �F = 0, which
implies

〈
e−βWst

〉 = 1. Thus it seems that there is a problem between the Landauer
principle (see Box 1) and the Jarzynski equality of Eq. (6).

Nevertheless Vaikuntanathan and Jarzyski [27] have shown that when there is
a difference between the actual state of the system (described by the phase-space
density ρt ) and the equilibrium state (described by ρ

eq
t ), the Jarzynski equality can

be modified:

〈
e−βWst(t)

〉

(x,t)
= ρeq(x, λ(t))

ρ(x, t)
e−β�F(t) (7)

where 〈.〉(x,t) is the mean on all the trajectories that pass through x at time t .
In the experiment presented in Sect. 2.2, the selection of the trajectories where

the information is actually erased corresponds to fix x to the chosen final well at the
time t = τ . It follows that ρ(0, τ ) is the probability of finding the particle in the
targeted state 0 at the time τ . Indeed because of the very low energy measured in the
protocol thermal fluctuations play a role and the particle can be found in the wrong
well at time τ , i.e. the proportion of success PS of the procedure is equal to ρ(0, τ ).
In contrast the equilibrium distribution is ρeq(0, λ(τ )) = 1/2. Then:

〈
e−βW(τ)

〉

→0
= 1/2

PS

(8)

Similarly for the trajectories that end the procedure in the wrong well (i.e. state 1)
we have:

〈
e−βW(τ)

〉

→1
= 1/2

1 − PS

(9)

Taking into account the Jensen’s inequality, i.e.
〈
e−x

〉 ≥ e−〈x〉, we find that Eqs. (8)
and (9) imply:

〈W 〉→0 ≥ kBT [ln(2) + ln(PS)]
〈W 〉→1 ≥ kBT [ln(2) + ln(1 − PS)]

(10)
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Notice that the mean work dissipated to realize the procedure is simply:

〈W 〉 = PS × 〈W 〉→0 + (1 − PS) × 〈W 〉→1 (11)

where 〈.〉 is the mean on all trajectories. Then using the previous inequalities it
follows:

〈W 〉 ≥ kBT [ln(2) + PS ln(PS) + (1 − PS) ln(1 − PS)] (12)

which is indeed the generalization of the Landauer’s limit for PS < 1. In the limit
case where PS → 1, we have:

〈
e−βW

〉

→0
= 1/2 (13)

Since this result remains approximatively verified for proportions of success close
enough to 100%, it explains why in the experiment we find �Feff ≈ kBT ln(2).

This result is useful because it strongly binds the generalized Jarzynski equality
(a thermodynamic relation) to Landuer’s bound.
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1 Energy in Computation

1.1 Introduction

The development of integrated circuits is limited by power dissipation. Anyone
using a mobile device has experienced the effects of the high dissipation required in
today’s computing devices: laptop computers that can burn the lap, and hand-held
devices with a short battery life. The CPU is perhaps the most important component
in these systems since it processes the information, and this information processing
requires energy. The CPU dissipates a significant fraction of the energy used in
computational systems, so improvements in CPU energy efficiency would pay large
dividends.

Is it possible to do computation with less dissipation than with standard CMOS?
Is there a lower limit to the energy that must be dissipated to heat in the processing
of information? Recently, there have been a number of papers, for example [1],
that suggest that charge-based computation faces fundamental energy dissipation
limits, usually stated as kBT ln2 per bit operation, spurring an enormous research
effort searching for alternative state variables to encode information. The energy
kBT ln2 is often called the “Landauer Limit,” though this is a misnomer. It should
properly be called the “Ultimate Shannon Limit” (USL) [2], the energy needed to
maintain a signal-to-noise ratio of unity in a thermal environment. The “Landauer
Principle” (LP) states that an energy of kBT ln2 is necessarily dissipated to heat
only when information is destroyed, or “erased” and that no lower limit exists if
information is preserved. Thus, there is no Landauer Limit. If the Landauer Principle
is correct, energy savings are possible by avoiding the destruction of information,
using reversible computing with adiabatic logic transitions.

The Landauer Principle is widely accepted, but there is a significant literature that
either dismisses it outright or asserts that theoretical proofs put forward are flawed
[3, 4]. Experimental tests of LP were not performed because the energy involved,
kBT ln2 ∼ 3 zJ at room temperature, was considered immeasurably small. The
reduction in power dissipation in adiabatic circuits was measured by thermoelectric
techniques [5], but not at a level that could resolve energies of a few kBT. Recently
an experiment by Berut et al. [6] verified one half of the Landauer Principle, that
a minimum energy of kBT ln2, the Ultimate Shannon Limit, must be dissipated in
an irreversible operation where information is destroyed. We have recently made
experimental measurements that test the other assertion in the Landauer Principle,
that there is no lower limit when information is not destroyed [7].

The conventional logic used in today’s computers encodes information with
charge stored on capacitors, specifically the CMOS transistor gates and interconnect
capacitance. Power dissipation for standard CMOS logic is given by the equation

PTotal = N
(
αCV 2

DDf + Ppassive

)
(1)

where VDD is the supply voltage, C is the load capacitance at the output of each
logic gate, N is the number of gates, α is the activity factor (the fraction of
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devices switching), and f is the operating frequency. The first term represents the
active power dissipation, which is the power dissipated in information processing.
The second term, the passive power dissipation, is power that is simply wasted
when a voltage is applied to the circuit, due to transistor leakage. Reduction of
the passive power has been the subject of intense research, such as that in the
areas of tunnel FETs and ferro-electric gate FETs. However, even if the passive
dissipation can be eliminated, the dissipation in information processing can increase
to unacceptable levels. Alternative approaches such as neuromorphic computing and
quantum computing can reduce energy use, but are limited in applicability, accuracy
or both. An approach is needed that can provide significant energy savings while
giving deterministic “correct” answers.

Equation (1) and Fig. 1 highlight the twin problems faced by the CMOS
electronics industry. The ITRS 2015 Roadmap projects a fully scaled CMOS process
to have a device density of 1010 cm−2, a switching speed of 12 THz, and a
switching energy of 3 aJ (750 kBT at room temperature). As an extreme example
of possible energy scales, if all of the devices on such a chip were switched at
full speed, just the active power dissipation of the chip would be approximately
150 kW/cm2. Even lowering the switching energy to 100 kBT, a practical limit
for deterministic computing with negligible error rates, will only reduce the active
power to 20 kW/cm2. While this is an extreme example, clearly the processing of
information using current methods does not provide a path to ultra-high-density
high-speed computation where all devices are switched at their maximum operating
frequency. When 3D circuits are considered, the power density challenge becomes
even more daunting, with current 3D schemes limited to a single logic layer, and
other layers restricted to low-activity circuits such as memory. Whatever the circuit
and device implementations, cooling imposes limits on power density, and this
amounts to limits on the computational density.
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While the industry seeks to deal with the problem of dissipation with approaches
such as steep devices and dark silicon [8–11], it is important to understand the
fundamental limits of dissipation in computation. Discussions of the minimum
amount of energy that must be lost to heat during computation can be tied to debates
going back to Maxwell’s demon. In 1961 Landauer [12] postulated that energy must
be dissipated as heat only when information is destroyed, an idea that has come to
be known as the Landauer principle (LP). The minimum amount of energy that
must be dissipated is related to a quantity known as the Ultimate Shannon Limit
[2, 13], kBT ln2, the minimum energy needed to create a bit of information that is
distinguishable from noise. According to LP, if information is not destroyed there is
no fundamental lower limit to dissipation in computation, only practical limits due
to system requirements that can be much, much less than kBT.

The Landauer principle is a consequence of how the energy used to represent
information interacts with the environment, and applies to all state variables [14].
Approaches such as neuromorphic and analog computing do not circumvent LP, but
trade accuracy for power dissipation, much as our brain does. While this approach
is adequate for some classes of problems such as image processing, at which our
brain excels, solutions to other problems require accurate answers. Only reversible
computing can break through the Shannon limit by recovering and reusing the bit
energy.

1.2 A New Look at Reversible Computing and Energy Recovery

The electronics industry is locked into the dissipation limitations discussed above
by standard CMOS circuitry, where the dissipated active power described in Eq.
(1) is a consequence of the fact that the information contained in the logic gate
is destroyed at every logic transition. The energy to form a bit of information is
drawn from the power supply, and when it is no longer needed it is discarded to
heat. This has the advantage of being very simple, as decisions to destroy bits of
information are made locally. Discarding information as heat is very convenient, as
dealing with destroyed bits is not a device or circuit problem, but someone else’s
problem, namely the thermal manager’s.

In each logic gate, each bit of information is represented by the energy

EBit = 1

2
CV 2

DD (2)

stored on the capacitor C, and this entire amount of energy is dissipated as heat
twice in each cycle as the bit of information is created and then destroyed. Standard
CMOS circuits make this destruction of information unavoidable, so the only way
to limit active dissipation is to reduce the energy in a bit (reduce VDD) or limit the
rate at which bits are destroyed (limit f ).
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There is another approach. Reversible computing with adiabatic clocking can
reduce the active power and break the connection between active and passive
dissipation. The energy dissipation with adiabatic clocking is, assuming a constant
capacitance and Tramp >> RC:

EAdiabatic = RC2V 2
DD

/

Tramp
(3)

where R is the resistance associated with the circuit and Tramp is the duration of
the clock circuit ramp. When the ramp time is greater than the RC time constant of
the circuit, this approach offers energy efficiencies orders of magnitude better than
current computational paradigms. Reversible adiabatic computing is an idea that
was proposed many years ago, but was dismissed as “slow,” since the circuit was not
run “as fast as possible,”, as well as assertions that reversible systems simply cannot
reduce dissipation, because the Landauer principle itself is incorrect. However, with
the freeze in clock speeds since the early 2000s, circuits already operate well below
speeds set by RC limits, so a trade-off of clock speed for dissipation is already
being made. Since speeds set by the RC limit are so high, reversible designs can be
quite fast. Circuits once considered too “slow” can therefore become attractive, and
experiments have shown that significant power savings are possible.

In reversible systems, dissipation is ultimately limited by leakage. While
approaches such as steep devices can reduce leakage, more is likely needed for
reversible adiabatic systems to become practical. New devices are needed that
eliminate leakage currents, along with a reversible architecture that enables energy
recovery.

1.3 When Does Energy Recovery Make Sense?

An important question in system design is: How fast should a computational chip be
run. The answer, of course, is that it should run “as fast as possible”! But how fast
is this? In the 1980s and 1990s the answer was simple: The chip should run as fast
at the RC time constants set by devices and circuits would allow, which means “as
fast as physically possible.” Reversible, adiabatic circuits were examined during this
time, but were not pursued because they ran slower than the limit imposed by the
circuit, which made little sense at the time since dissipation was not a problem. Since
circuit speed was the only important performance criterion, with power dissipation
being of little concern, reversible adiabatic circuitry was abandoned in favor of
pure device scaling. However, by the late 1990s the resulting exponential increase
in the power density made further scaling with “as fast as physically possible”
architectures untenable.

Dark silicon, large on-chip caches, and multi-core arose as techniques to run
“as fast as possible,” but at a power density limited by cooling. In dark silicon,
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power is removed from logic gates that are not being used. This eliminates the
leakage power from the gates, but more importantly reduces the overall power
density since the heat generated in the active areas is spread over the dark areas.
Hence, dark silicon effectively reduces device density. At the 8 nm node it has
been estimated that up to 80% of the chip will be dark at any given time [10].
The multi-core approach uses a lower-than-possible clock frequency (increasing
the effective delay) to limit dissipation, and recovers some of the lost performance
through parallelism. While giving up raw performance, at least these approaches
provide some computational performance improvements by making use of the ever-
increasing number of transistors that process developments give, in the form of
Moore’s law. They do not change the basic approach of energy use in CMOS, an
approach that can uncharitably be characterized as drunken sailor mode. As money
flows through the fingers of a drunken sailor, so energy flows and is wasted in
CMOS. While this is a simple approach, it is very wasteful. There may be gains
to be had by examining the problem at a basic level.

Dark silicon and multi-core are ways to keep the processor running “as fast as
possible.” The real question is, what does “as fast as possible” REALLY mean?
Since “as fast as physically possible” is no longer possible, which approach is best?
The goal in computation is to make the best use of limited resources. Energy, time
(delay), and area can be viewed as resources available to the computation, so an
appropriate figure of merit for the best technology is one with the smallest product
of energy, delay, and area, EDA. While these are the traditional resources considered
for computation, there are other resources whose limits must be considered. Cooling
is a resource whose limit of 100–200 W/cm2 for air-cooling now poses the greatest
challenge for electronics, and should be considered in evaluating technology
choices. For computation in a mobile platform the energy source, the battery, is
a limited resource, and a variant of the EDA metric is useful. In this case the goal is
to minimize the energy drawn from the battery, so an appropriate metric is E2DA.

The EDA metric is a useful tool in evaluating technology choices in the face
of limited resources. A given technology will yield some intrinsic performance
for a basic logic element, the switching energy Eo, the propagation delay Do, and
the area Ao. Using the EDA metric, the best performance possible for this logic
is EoDoAo. If there are no other constraints, the best technology is that with the
smallest EoDoAo, and it makes no sense to trade performance for energy savings
using reversible computing. However, if cooling is a limited resource, it is necessary
to re-evaluate the use of the resources E, D, and A. To meet the power density limit,
performance must be given up. But what is the best way to trade away performance?
For example, consider a circuit with intrinsic performance parameters of Eo = 1 aJ,
Do = 10 ps, and Ao = 10−11 cm2, shown in Fig. 1 where the delay and area
have been combined to produce a 2D plot. At full performance, this circuit would
have a power density of 1 × 104 W/cm2, so the dissipation must be reduced by
a factor of 100 to meet the cooling constraint. Using the multi-core approach the
delay must increase by a factor of 100 (compared to what is possible without the
power constraint), so the EDA metric becomes 100 Eo Do Ao. Likewise, if the
dark silicon approach is taken, the effective area of the active circuit is increased
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by a factor of 100, so the EDA again becomes 100 Eo Do Ao. This means that
the circuit is not making the best use of the available energy, time, and area, and
some other approach might be better. In adiabatic reversible logic, performance is
traded in time, but as a result the switching energy decreases. When the delay is
increased by a factor of 10 in adiabatic reversible logic the dissipated energy is
reduced by a factor of 10 and the EDA metric remains Eo Do Ao, since the factors
of 10 cancel, while the power density E/(DA) is lowered by a factor of 100 as
required. This demonstrates that when the computation is resource constrained, in
this case by cooling, adiabatic reversible computing makes sense because it makes
the best use of available resources. In a mobile computing environment, adiabatic
reversible computing is even more attractive since the energy saved (recycled) is
squared in the metric E2DA, reflecting the premium placed on battery life. Here,
adiabatic reversible computing will be most attractive in computationally intensive
applications where simply turning the device off most of the time is not acceptable.

Adiabatic reversible computing is an alternative way to compromise computing
performance to meet the constraints of limited resources. However, to realize any of
the advantages that reversible computing offers, the bit energies must be recovered
and recycled.

2 Experimental Test of the Landauer Principle

2.1 Experimental Overview

As a fundamental test of the Landauer principle, we will demonstrate experimentally
that energy dissipation to heat in a reversible computational scheme can be set
arbitrarily low while the bit energy is maintained well above kBT, by appropriately
choosing the degree of adiabaticity. We will show that this very small dissipated
energy, about 20 yJ, can be accurately measured in the presence of thermal noise.
Next, we will show that the energy dissipation in the irreversible bit manipulation
inevitably leads to dissipation of the entire bit energy, and since minimum bit energy
is kBT ln2 (equivalent to USL), this sets a lower bound on the energy that must be
dissipated in an irreversible process.

For the experimental test of LP we chose a simple analog of a bipolar clock
circuit described in the section of this chapter on adiabatic circuits. In such a system,
the binary “zero” and “one” are represented by the respective positive (+V0) and
negative voltage (–V0) values across a capacitor, so that the voltage that represents a
bit is VC = ±V0. A discharged capacitor represents a “NULL” state which does not
carry any information, VNULL ≈ 0. Note that the system is symmetric in that 0 and
1 are each represented by the same amount of energy. The functional diagram of the
circuit used in the experiment is shown schematically in Fig. 2a. The first step is to
copy a bit of information into the memory cell M (in our case a capacitor accessed
through a resistor, and a resistor is representing a channel of a transistor in a CMOS
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Fig. 2 (a) Functional diagram of copy operation. (b) Functional diagram of erase operation

logic circuit). Schematically a switch is used to select whether a 1, 0 or NULL is
written into the cell, which is initially at NULL. A 1 or 0 is written into the cell by
quasi-adiabatically ramping the input voltage from 0 V to +V0 or −V0. When the
ramp reaches its final value, the switch can be placed in the hold position, and a bit
of information is then held in the capacitor, represented as charge with an energy of

EBIT = C

(
V 2

0

2

)

(4)

The bit energy, EBIT, must be greater than the value defined by USL, kBT ln2 to
make the information distinguishable from noise [2]. Erasing the bit of information
stored in M can be done in one of three ways, as shown schematically in Fig. 2b,
where the voltages on the three input lines are at +V0, −V0, and 0 V. Once the switch
has been moved to the desired position, the voltages +V0 and −V0 are adiabatically
ramped to zero. A decision must be made as to which switch position to choose
when erasing the bit of information in M. If one knows the value stored in M, then
the switch can be set to the appropriate position, +V0 or −V0 and the voltage ramped
down with little dissipation. However, this knowledge of the contents of M means
that a copy of the information exists somewhere. If the information exists only in M,
then no choice can be made that requires knowledge of the information in M. In this
case one either can connect the switch to the ground discharging the capacitor non-
adiabatically through the resistor (“abrupt erase”) or make a guess at the information
contained in M with a ½ probability of choosing the wrong switch position (e.g.,
switching from +V to −V). If the capacitor is discharged abruptly by connecting
it to ground, the full energy of the bit, EBIT, is dissipated to heat in the resistor R.



Experimental Tests of the Landauer Principle in Electron Circuits, and. . . 185

Guessing the state of the memory cell incorrectly results in a dissipation of 4 EBIT
since the voltage across the resistor is abruptly doubled. This experiment, then, is
a test of the Landauer principle, in that EBit > kBT ln2 must be dissipated only if
information is destroyed. If a copy exists, information is not destroyed in the erasure
and dissipation can be less than kBT ln2.

2.2 Experimental and Measurement Details

Taking into consideration the limits for deterministic computing mentioned previ-
ously, we settled on a bit energy value of EBIT = 72 kBT, which corresponds to a
probability of “thermally activated error1”, ptherm ∼ exp(−EBIT/kBT) ∼ 5 × 10−32,
where kBT = 4.05 × 10–21 J at 293 K. This probability guarantees the avoidance of
thermal errors in 30 years (∼109 s) of operations, assuming clock speed of 100 GHz,
and 1011 devices on chip.

The circuit elements, R and C, must be selected to allow measurements of
electrical signals (voltages) corresponding to very small energies (<<kBT). The
voltage across the capacitor for a given EBIT, in our case chosen to be 75 μV,

|V0| =
√

2EBIT

C
≈ 75 μV, (5)

is determined by a capacitance value, and larger voltage can be chosen by reducing
the value of the capacitor. The capacitor C for the experiment in Fig. 2 is chosen to
represent the largest capacitor in the circuit so that parasitic capacitances (dominated
by the input capacitance of the measurement amplifier, CIN ≈ 3 pF) do not
contribute a significant error to the measurements. We chose a D series low loss
ceramic disk capacitor with rated insulation resistance 1010 � at 100 V. The value
of the capacitor, 104.4 pF, was measured with capacitance bridge. To reduce stray
capacitances of the cables the capacitor C is soldered directly to the same PCB pad
as the input terminal of the first stage amplifier.

To minimize energy losses in the resistor R one needs to use linear ramps
for transitions between logic levels, thus achieving quasi-adiabatic charging of
capacitors. The voltage that develops across R during linear voltage ramps is
inversely proportional to the ramp time, t1:

VR_sweep = RC
dVIN

dt
= RC

(
V0

t1

)

(6)

1The above estimate gives a probability of the bit value randomly acquiring an incorrect value due
to thermal fluctuations of voltage across the capacitor and it assumes an ideal noiseless readout
circuit.
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where V0 is the final (initial) voltage for the ramp up (down). The energy dissipated
in the resistor R during the ramp process is:

ER = VR
2

R
t1 = V 2

0 C

(
RC

t1

)

= 2EBIT

(
RC

t1

)

(7)

which can be made as small as desired for a given set of circuit parameters (V0, R,
C) by the appropriate choice of t1. For the purpose of demonstration, we choose
the amount of energy dissipated as heat for each ramp ER = 0.005 kBT. There is
no strict limitation on the choice of the resistor R value; we chose it based on the
following considerations. First, the resistor value must be relatively small so that we
can neglect all parasitic impedances parallel to it in the bandwidth (BW) of interest
(see below). Second, it can be seen from (6) and (7) that the ratio RC/t1 is a constant
for a given ER and V0. Based upon the first constraint (negligible parasitics) we have
chosen for R a 1.1 k � metal film chip resistor. This sets the ramp time, using (7), at
t1 = 3.36 ms. As we show below, to extract the signal from noise we have to resort
to multiple curve averaging, and there is a “reasonable experimental” upper limit on
a ramp time t1, that comes from the averaging time required to perform experiments
with large number of averaged signal traces. The above choice of t1 allows us to
repeat the entire operation cycle (T ≈ 18 ms) up to four million times within a 20-h
period. The chosen time constant of the RC chain,2 τ = RC ≈ 0.11 μs, insures that
voltage across the capacitor reaches 99.9% of the input voltage step within ∼0.8 μs,
a negligibly short time compared to ramp time t1. The voltage across resistor during
the ramp time is given by:

VR =
√

ERR

t1
≈ 2.5 nV. (8)

This signal is challenging to measure in the presence of noise, which is many
orders of magnitude greater than VR. Indeed, at any given temperature, thermal
agitation of the electron cloud leads to voltage fluctuations across the capacitor in
any RC circuit, with the RMS value of3

VN =
√

4kBT R

4RC
=

√
kBT

C
. (9)

Note that this value of noise voltage corresponds to the energy of E = kBT/2
stored in the capacitor. This also can be interpreted as the fact that any capacitor
has one thermodynamic degree of freedom, so that the mean energy stored in it

2The parameter τ also defines the response time for the acquisition system to be able to capture
the power dissipation process in the ERASE WITHOUT A COPY experiment that corresponds to
a discharge of the capacitor C through resistor R.
3This formula takes into account the “brickwall” bandwidth of an RC circuit, B = π

2
1

2πRC
.
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Fig. 3 Simplified circuit diagrams of the measurement setup to measure (a) VC and (b) VR.
Elements in the blue boxes are the components R and C referred to in the text. Elements in the
yellow box form a low pass filter with fH = 14 kHz. A Tektronix AFG 3252 arbitrary waveform
generator with a two-stage, low output resistance (10 �) voltage divider is used as a voltage source.
The high-pass filter between stages necessary to prevent overload of the subsequent stages due to
random DC offset in the first and second stages is set to 0.16 Hz

at a given temperature is kBT/2 [15]. Given our choice of parameters, the thermal
voltage across R in a full bandwidth of 1/4 RC = 2.185 MHz is VN = 6.24 μV. This
estimate shows that VN /VR > 2000 if the full bandwidth is explored. However, the
measurement bandwidth (MBW) needs to be just broad enough to avoid the loss
of the signal during the transient time, fT ≥ 30/t1 ≈ 10 kHz. In this experiment,
we choose the MBW ≈ 14 kHz by using a 1st order low-pass filter at the output
of the amplifier, which corresponds to the equivalent brick-wall noise bandwidth of
≈20 kHz.

The measurement system used to measure this voltage is comprised of a 3-stage
amplifier with a total gain of 79.3 × 79.3 × 79.3 ≈ 500,000, Fig. 3a. The referred-
to-input RMS total noise voltage in the measurement system can be calculated:

VN =
√

B
(
e2
N + i2

NR2 + 4kBT R
)

(10)

where eN and iN are voltage and current noise spectral densities (NSD) of the
amplifier, and 4kBTR is the Johnson NSD in the resistor R. The noise in the
measurement system is, in turn, dominated by the first stage JFET input amplifier
(TLE2081) with voltage NSD,4 eN = 11.6 nV/Hz1/2, and the Johnson NSD in the
resistor R (4.2 nV/Hz1/2). The noise voltage developed across R due to current
NSD of the amplifier (2.8 fA/Hz1/2) is negligibly small compared to the first two

4The noise contributions of the second and third stage in the amplifier are negligibly small due to
high gain (79.3) of the first stage amplifier.
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Fig. 4 The measurement of
referred to input measurement
amplifier noise (first stage is
op-amp TLE2081). The size
of one bin corresponds to 1
bit of ADC resolution. Solid
line—Gaussian with a
standard deviation of
1.48 μV. The value calculated
from datasheet for the noise
bandwidth of 20 kHz is
1.7 μV

EN (µV)

terms. Equation (10) gives, for the resulting total noise in the 20 kHz bandwidth,
VN ≈ 1.7 μV. To characterize the noise of the amplifier experimentally, we acquire
signal traces at the output of the amplifier with no signal applied to the input.
Using an ADC with acquisition rate 200 ksps,5 100 ms time frames are acquired
and then statistically analyzed to calculate the standard deviation, VN . Figure 4
shows a histogram of an acquisition snapshot containing 216 samples (referred to
input). As expected, the extracted RMS value of voltage noise at the amplifier
input, VN ≈ 1.5 μV, is very close to that expected from Eq. (10). Obviously, the
signal we are trying to measure, VR ∼2.5 nV, will still be completely obscured by
this noise. However, a simple solution, trace averaging, exists for enhancing the
SNR in the case where the noise is stationary Gaussian noise, as in Fig. 4. By
averaging enough traces, N, one can achieve any desired noise reduction. However,
it is literally a matter of time, because measured noise voltage scales as 1/

√
N, so

enhancement in signal-to-noise ratio, SNR, defined here simply as SNR = VR/VN is
achieved at the expense of a squared acquisition time. It should be noted that signal
averaging to reduce noise does not mean that actual dissipation is being ignored.
The measured signal contains a contribution from the signal as well as thermal
noise. Averaging reduces the thermal noise contribution but not the contribution
of dissipation from the input signal. By averaging 4 × 106 traces over 20 h, we
improved SNR by a factor of

√
N = 2000, and reduced the noise down to a tolerable

level of VN ≈ 1.5 μV/2000 = 0.75 nV. Note that the presence of white Gaussian
noise at the digitizer’s input improves the resolution by nearly 11 bits due to the
oversampling/decimation mechanism and the quantization error can be neglected if
the noise level is greater than least significant bit (LSB) of the ADC [16].

Unlike VR, the voltage across the capacitor, VC ≈ 75 μV, can be readily measured
for a bit represented by 72 kBT. Indeed, even without averaging the ratio V0/VN > 30
makes the signal clearly distinguishable from noise. The total gain of the amplifier

5At this acquisition rate, we can capture the highest frequency components of the spectrum,
22 kHz.
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for this measurement is also reduced (down to ∼3500) since the signal is so much
stronger and only two stages, Fig. 3b, are required to achieve levels appropriate for
the digitizer.

2.3 Experimental Results and Discussion

The results of the experiment outlined in Sect. 2.2 are shown in Fig. 5. The top
panel shows the input voltage applied to the memory cell M, where a “1” and then
a “0” are copied into the cell and then erased without destroying the information
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Fig. 5 Waveforms for COPY–ERASE WITH A COPY experiment. (a) Input waveform applied
to the RC “Memory Cell.” (b) Voltages across the resistor (blue) and capacitor (red) plotted on
the same scale; (c) voltage across the resistor averaged 4 × 106 times. R = 1.1 k�, C = 104 pF;
T = 293 K
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(a)

(b)

Fig. 6 Energy balance for the COPY–ERASE WITH A COPY experiment. (a) Energy dissipated
in the resistor R = 1.1 k� (b) Energy delivered to the capacitor C = 104 pF; T = 293 K

(a copy is kept in the experimental system so we know how to erase with little
dissipation). V0 = 75 μV is chosen so that EBit ≈ 72 kBT of charge is delivered to
the capacitor to represent the information. The middle panel shows a single-trace
(no averaging) measurement of the voltage across the capacitor (red) along with
voltage across the resistor measured with amplifier of Fig. 3b. This shows that a
robust bit of information is delivered to the capacitor, with a very good signal-to-
noise ratio, while the voltage across the resistor is so small that it is lost in the
noise. As discussed, an accurate measurement of the energy lost in the resistor
requires averaging to eliminate the noise signal. The bottom panel in Fig. 5 shows
the result of voltage measurement across R obtained by averaging 4 × 106 traces.
Approximately 0.005 kBT, the amount equal to 20 yJ, of energy is lost to heat
in the resistor during the charge and discharge (ramp) phases. This is far below
kBT, in accordance with the Landauer principle, and shows that a logic transition
can be made with very little dissipation, as long as information is not destroyed.
This experiment represents, to our knowledge, the lowest energy dissipation directly
measured to date.

Figure 6 shows the calculation based upon experimental data Fig. 5 of energy
dissipation for a full cycle of operations COPY 1–HOLD–ERASE WITH A
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COPY TO NULL, COPY 0–HOLD–ERASE WITH A COPY TO NULL along
with the energy delivered/removed from the capacitor. The total energy dissipated
increases during each of the COPY and ERASE WITH A COPY operations, but the
dissipation during each phase of the cycle is clearly much less than kBT.

One can ask how much energy needs to be dissipated at the input of the
measurement apparatus to perform a measurement? The measurement is itself
a COPY operation that in principle can be performed with arbitrarily small
dissipation. To estimate this energy loss in our experiment we need to consider a
load on the energy storing capacitor C by the leakage resistance of the capacitor
C (>1010 �) and the input resistance of the amplifier (>1012 �). A conservative
estimate for the energy loss in the measurement circuit is on the order of 10−7 EBIT,
or <10−4 ER ≈ 10−6 kBT.

Finally, let us consider a case where a bit of information was stored in our
system, but then this information was irreversibly erased by closing the switch from
“hold” to “ground.” This situation corresponds to the ERASE WITHOUT A COPY
experiment and as expected in such a case, all of the bit energy is dissipated to
heat in the process. If the bit energy is the smallest discernable from noise, kBT
ln2, then all of it will be dissipated thus confirming the so-called “Landauer limit,”
really the ultimate Shannon limit. For experimental illustration, we have chosen
Ebit = 30 kBT, which corresponds to V0 = 50 μV. In contrast to an adiabatic charging
process, ERASE WITHOUT COPY is an abrupt process which happens in a much
shorter timeframe, on the order of τ = RC. Therefore, it requires a different (high
speed) amplifier and acquisition system (broadband digital scope). A two-stage high
speed amplifier (BW > 10 MHz) with a total gain of ∼6300 employing a low noise
videoamplifier AD811 was used for this purpose.6 The task of the experiment is to
capture an exponential decay for discharging capacitor, VR = V0 exp

(− t
RC

)
. The

result of integration Ediss = 1
R

T∫

0
V 2

R(t)dt in this case should produce the known

result, Ediss = CV 2
0

2 , i.e., the energy stored in the capacitor C is dissipated to heat
when it is abruptly discharged through a resistor R. The results of the measurements
are shown in Fig. 7. The exponential decay is observable, however, the front of the
pulse (t < 0.1 μs), is distorted due to the limited bandwidth of the acquisition system
so only about 60% of the area under pulse is captured. For comparison, we plotted
a simulated exponential decay from V0 = 50 μV to zero (dashed red line in Fig. 7).
The result of integration (inset in Fig. 7) verifies that measured energy dissipation
in this process ≈21 kBT is about 60% of the full energy stored in the capacitor,

Ediss = CV 2
0

2 = 30 kBT .

6Once again, trace averaging is used to improve the SNR since much larger bandwidth and large
current NSD of AD811 results in VN ∼ 100 μV. Note that it takes only 100 ms to average 105

traces and effectively reduce the noise to 0.3 μV.
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Fig. 7 The ERASE “0”
WITHOUT A COPY
experiment. VR is voltage
measured across the resistor.
Erasure starts at t = 0. The
voltage stored in the capacitor
is 50 μV. Dashed line: VR =
50μV0 exp

(
− t

0.11 μs

)
Inset:

energy dissipated in the
resistor R = 1.1 k� in an
ERASE WITHOUT A COPY
operation

To summarize the experiment, we would like to point out that the obtained results
are in no way unexpected—they are in complete agreement with any elementary
physics textbook, even though the measurement of energies much less than kBT can
be challenging. In spite of that the subject of minimal energy dissipation required
for computation remains a controversial topic. Curiously, in recent publications
[17–20] it has been claimed that in all possible electron charge-based devices the
minimal energy value kBT ln2 must be multiplied by N, where N is the number of
charge carriers (electrons or holes) representing a bit of information, typically cited
as 104 [19]). Based on this assertion, several far-reaching conclusions were drawn
about a supposed many orders of magnitude higher “energy efficiency” (by a large
factor of ∼104) of spin- or nanomagnet-based computational schemes compared to
charge-based systems employing charge carrying devices (e.g., FETs) as computing
elements. For example, Fashami et al. suggest in [19]:

“Transistors switch by moving electrical charge into or out of their active regions.
If this process is carried out non-adiabatically, then it dissipates an amount of energy
equal to at least NkT ln (1/p), where N is the number of electrons (information
carriers) moved into or out of the device, T is the temperature and p is the ‘bit
error probability’ associated with random switching [21, 22]. On the other hand,
if logic bits are encoded in two stable magnetization orientations along the easy
axis of an anisotropic single domain magnet (or the single-domain magnetostrictive
layer of a multiferroic nanomagnet), then switching between these orientations can
take place by dissipating only ∼kT ln(1/p) of energy, regardless of the number of
spins (information carriers) in the nanomagnet [22]. This is a remarkable result and
accrues from the fact that exchange interaction between spins makes all the ∼104

spins in a single-domain nanomagnet behave collectively like a giant single spin [22,
23] (a single information carrier) and rotate in unison [22]. As a result, for the same
bit error probability p, the ratio of the minimum energy that must be dissipated to
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switch a nanomagnet to that dissipated to switch a nanotransistor will be ∼1/N << 1.
This makes the nanomagnet intrinsically more energy efficient.”

This assertion is incorrect, and to trace how it came about one needs to take a
closer look at its first appearance in a paper by Salahuddin et al. [22]. To clarify this
topic, we must make an examination of some of the statements made in reference
[22]. In the introductory part of [22], an in-series RC circuit, where a capacitor C
is charged and discharged to a voltage V, is considered as a bit processing element.
It is stated in [22] that: “ . . . the discharging process involves charging the next
stage, making the total dissipation in one cycle equal to CV2 = NqV, where N
is the number of electrons and q is the electronic charge.” One can immediately
note two issues. First, the expression CV2 = NqV is nothing but an identity, simply
based on the notion Q = CV, while for the circuit considered in [22] charge is a
continuous variable, and unless effects of charge quantization are in play there is
no requirement on the discreteness of charge. Second, the assertion: “ . . . the total
dissipation in one cycle equal to CV2” is only true in a special case of square wave
with a period T > RC. Indeed, energy dissipation per cycle can be much greater
than CV2 if T << RC, to the point when no energy is delivered to capacitor and all
of it is dissipated in the resistor, or much less than CV2 if charging is performed
quasi-adiabatically as we showed above.

Next, the key derivation for the claim Emin = N kBT ln2 is presented in
[22] as follows: “It can be shown that for an error probability of 1/r = Ioff/Ion,
thermodynamics requires the minimum voltage to be V = kBT/q lnr, which
translates to a theoretical minimum dissipation of N kBT lnr or N kBT ln2 (see Refs
[1, 21] and references therein) for an error probability 1/r = 50%.” Let us take a
closer look at these assertions. First, there is no such entity as “the minimal voltage”
at any given temperature unless the relevant bandwidth is specified. The value of
Vmin = (kBT/q) ln2 can of course be calculated and, indeed, has dimensionality
of volts but has no special physical meaning. For example, at room temperature
kBT/q ln2 = 18 mV. If we now look at how “a theoretical minimum dissipation of
N kBT lnr or N kBT ln2” per bit operation is derived in [22], it becomes clear that
the value of Vmin = (kT/q) ln2 was inserted in the identity CV2 = NqV (which, as
we showed above is, strictly speaking, incorrect for the considered case of an RC
chain charged from voltage source) and then equated to what is claimed to be a
minimal energy: Emin = Nq Vmin = Nq(kBT/q) ln2 resulting in Emin = N kBT ln2.
This derivation undoubtedly is an example of circular reasoning, a logical fallacy
in which the reasoners begin with what they are trying to end with [24]. No other
proof for this statement for a minimum energy could be found, neither in the text
of [22] nor in the references cited in that paper. It should be noted that the result
obtained in [22] for the minimum energy required for non-adiabatically switching
a nanomagnet, kBT ln2, is correct. This, however, comes as no surprise, since the
USL, the Ultimate Shannon Limit is valid for any state variable [2].
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3 Adiabatic Circuit Approaches

3.1 Introduction to Adiabatic Reversible Systems

In order to function as a reversible computational system, the physical implementa-
tion must be both logically and physically reversible. We have seen experimentally
that in agreement with Landauer’s principle, it is not measurement in the system
that must cause dissipation, but the destruction of information. Consequently, one
can make copies of a bit without dissipation to heat, analogous to drawing money
from a bank. When use of these copies is finished, the bits can be paid back, provided
that there is a record of where the bits came from (the 1 or 0 supply). It is logical
reversibility that provides this record keeping. The most general implementation of
a reversible computing system is shown in Fig. 8. Input information is applied to the
system, left side, and the computation proceeds until the outputs are available at the
right. Energy can be drawn from reservoirs to form 1 and 0 bits as needed during the
computation. Once the process is completed the system enters the decompute phase,
where the computation is essentially run backwards so that the bit energies drawn
from the reservoirs are pushed back into the reservoirs. Control circuitry regulates
the compute and decompute phases, and represents overhead circuitry needed to
implement a reversible system. While conceptually simple, the circuit overhead can
be significant.

A number of methods have been proposed to implement reversible computing
systems. One way to achieve logical reversibility is to use logically reversible
gates, such as Fredkin and Toffoli gates [25, 26], Fig. 9, where the inputs can be
reconstructed from the outputs. The Fredkin gate performs a controlled swap, where
if the control input C is a 1, I1 is mapped to O2 and I2 to O1, while if C = 0 the
inputs are passed directly to the outputs. The Toffoli gate is a controlled-controlled
NOT, where if both C1 and C2 are 1, the input is inverted and passed to the output,
otherwise the input is passed directly. In addition to logical reversibility which
provides the architectural information needed for energy recovery in the decompute

Reversible LogicInputs

“1” Reservoir “0” Reservoir

Outputs

Compute / Decomputer Controller

Fig. 8 Block diagram of reversible computing system
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Fig. 9 Example reversible logic gates. (a) Fredkin gate. (b) Toffoli gate

phase, the system must also be physically reversible so that energy is not lost by
simply operating. There must be a means for taking energy from reservoirs to form
bits of information, without loss of energy, as well as a means for returning this
energy to reservoirs, again with no loss of energy. Such truly reversible, adiabatic,
processes are impossible to achieve in practice, so an approximation must be made
with quasi-adiabatic processes.

One approach to reversible computing systems leads to circuits that can be
viewed as “ballistic,” where the only energy supplied to the system is that applied
as the input bits. Such systems use reversible logic, and depend on the physical
reversibility of the system. The bits must move “without friction” from the inputs
to the outputs. For this reason, designers of circuits of this type usually point
to superconducting devices as possible implementations [27, 28], and leverage
progress in quantum computing experiments, an area where reversibility is a
requirement. A limitation of this approach is that if energy is lost to dissipation
along the way, the information may be lost, and the computation fails. If extra bits
must be generated in the intermediate stages of the computation the energy for these
bits must be applied as ancillary inputs, and any generated bits that are unused are
“garbage” bits that must be carried along but don’t contribute to the answer. The
approach has the advantage of simplicity. Energy is applied only at the edges, and if
the number of ancillary bits is not too large, there may be no need for a decompute
stage. The only energy cost is that of the bit energies applied at the inputs.

A more flexible approach is to use low-loss reversible logic with a decompute
phase. In this way energy can be taken from a reservoir to restore the energy lost
to unavoidable dissipation, and to create new bits in intermediate stages of the
computation. This is a quasi-adiabatic implementation that is normally referred to as
adiabatic reversible logic. The degree of adiabaticity will determine the total system
dissipation. As discussed in the experimental portion of this chapter, the adiabaticity
is usually linked to a trade-off with speed. In an electrical system, moving energy
involves moving charge through resistive components. The associated capacitance
defines an RC time constant that characterizes the time scales of the system. The
slower the system relative to the RC time constant, the more adiabatic the operation.
The energy lost in this quasi-adiabatic operation sets the lower bound on the
dissipation of the system.
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Field-effect transistors have been very successful in logic applications, so it is
natural to leverage the highly developed FET fabrication and circuit design expertise
in the design of adiabatic reversible systems. While they might not be ideal devices,
FETs provide a path toward the short-term implementation and demonstration
of adiabatic systems. FETs have a number of non-idealities that make their use
problematic in reversible systems, with two dominant problems. The first is the
finite sub-threshold current slope [29], which leads to leakage current from source
to drain. Since FETs operate by controlling the height of an energy barrier to
set the current through the device, the turn-off characteristic is determined by the
Boltzmann energy distribution of carriers, the so-called Boltzmann tail. At room
temperature, this gives an off-current that falls exponentially below a threshold
input voltage by one decade of current decrease for each 60 mV below threshold,
which means that the transistor is never truly off. This finite off-current leads to
dissipation that will usually set the practical lower limit on the energy dissipation
in adiabatic systems. The Boltzmann tail contributes to the second major problem
with FETs as devices, the finite threshold voltage. To suppress the off-current, an
enhancement-mode FET is designed to have a threshold that is a few tenths of
a volt, to obtain an ION/IOFF ratio that is at least a few orders of magnitude. In
conventional CMOS, this sets a lower limit on the supply voltage VDD since the
gate overdrive (VDD − VTh) determines the on-current and speed of the device. A
ratio of VDD/VTh of 3–4 is typically used for circuits with good performance, with
near-threshold or sub-threshold logic saving energy but at the cost of greatly reduced
performance [30–34]. These requirements produce a web of constraints on efforts
to reduce power dissipation. To limit the off-state leakage power, the threshold must
be ∼0.2–0.3 V. For reasonable performance, this sets a lower limit of VDD of 0.7–
1.0 V, which in turn makes it difficult to reduce the bit energy, ½ CVDD

2 since one
can only reduce capacitance through scaling. Significant research efforts in the last
decade have sought devices that can break the 60 mV/decade Boltzmann limit, and
cut through the web of constraints by enabling lower threshold voltages, lower VDD,
and consequently lower bit energies. Tunnel FETs and ferro-electric FETs have been
explored as devices that can give a steeper turn-off characteristic than conventional
devices.

The non-zero threshold of FETs is problematic in adiabatic circuits because it can
lead to the issues of non-adiabatic dissipation and trapped energy. These problems
are illustrated by the circuit of Fig. 10. Here we consider the simplest logic element,
an inverter, which is logically reversible. It can be made physically quasi-adiabatic
by using a single power clock with ramped edges, as shown in Fig. 10. Consider the
case where the output will be set to a logic 1. A logic 0, ground, is applied to the
input while the power clock is in the inactive state, ground. The desired action is for
the p-channel device to be on and the output capacitor will charge as the power clock
ramps up. As shown previously, the capacitor can be charged by a ramp voltage
with an arbitrarily small energy lost to heat. The key is that during the charge and
discharge phases the transistor must be on, and the source-drain voltage kept small.
However, when the input and clock are both ground at the beginning of the ramp up,
VGS of the p-channel transistor is 0, and the device is off. Essentially no charging of
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VClk

Output

Time

Time

VTh

Non-adiabatic dissipation
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CO

charge

Fig. 10 (a) Inverter clocked with single polarity power clock. (b) Voltage waveforms input
grounded, showing non-adiabatic dissipation and stranded charge due to FET threshold voltage

the output occurs until the voltage of the clock reaches VTh, and then as the transistor
turns on there is a non-adiabatic inrush of current, with VDS ∼ VTh, resulting in
energy loss. A similar problem occurs during the discharge phase. Here the output
voltage starts at VDD, and ramps down with the clock, with a small voltage VDS.
When the clock voltage falls to ∼VTh the p-channel transistor turns off, and little
charge is removed from the output capacitor during the remainder of the ramp. The
associated energy left on the capacitor is trapped, and will dissipate to heat either
through leakage or in the n-channel transistor if a logic 1 is applied to the input.
This example illustrates the significant problems that the finite threshold voltage
of transistors can cause when implementing adiabatic circuits. To overcome these
issues, more elaborate logic circuits and architectures must be used, which adds to
overhead associated with adiabatic logic.

Reversible logic implemented with transistors can be divided into two rough
categories: Quasi-adiabatic and Asymptotically adiabatic [35]. These names can be
somewhat confusing since all “adiabatic” circuits are actually quasi-adiabatic, but
these labels are useful in categorizing the degree of adiabaticity. In asymptotically
adiabatic circuits the dissipation has no lower limit, and is determined only by the
speed of the voltage transitions. In quasi-adiabatic circuits, there is some inherent
destruction of information, with unavoidable dissipation, such as the example given
above. An example of quasi-adiabatic logic is positive feedback adiabatic logic
(PFAL) [36], which is one of the most popular adiabatic logic families. PFAL has the
advantage that it can be pipelined, and requires only a single-polarity power clock.
A two-input PFAL AND gate is shown in Fig. 11a. The heart of the gate is a set
of cross-coupled inverters that make up a static-RAM cell, and provide differential
outputs. The pull-up network on each side of the gate determines the value that
the gate will take on when the power clock is ramped up. When the clock ramp
is complete, the inputs can be removed and the output state is held by the SRAM
cell. Using a four-phase set of power clocks, this hold function allows pipelining of
PFAL gates. A representative set of input, clock, and output signals for the gate is
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Fig. 11 (a) Schematic of PFAL AND gate. (b) Voltage waveforms showing the operation of the
gate and the occurrence of non-adiabatic dissipation

shown in Fig. 11b [37]. As explained above, some energy is trapped at the output or
output , which causes some unavoidable dissipation.

An example of asymptotically adiabatic logic is split-rail charge recovery logic
(SCRL) [38]. SCRL avoids trapping energy during clocking by using bipolar logic
levels and power clocks. In an SCRL inverter source of the p-channel device is
connected to a positive-going power-clock, and the source of the n-channel device
is connected to a negative-going power-clock. Assigning logic 1 to +V and logic 0
to −V avoids the transistor threshold problem, because when an input is applied to
the gate, one of the transistors (n or p channel) is on even when the clock is inactive
(ground). Then, when the clock is ramped, the output capacitor begins charging
immediately, so that the source-drain voltage of the transistor can be kept small,
thus minimizing dissipation. Likewise, when the clock voltage is ramped down, the
active transistor remains on throughout the discharge ramp, and no charge is left



Experimental Tests of the Landauer Principle in Electron Circuits, and. . . 199

stranded on the output capacitor. Pipelining is possible with SCRL, but since there
is no inherent memory as in PFAL, additional circuitry is required to control the
decompute, energy-recovery, phase.

3.2 Bennett Clocking

To recover energy from a logical system, it is necessary that any operations be
logically reversible. Conceptually, the most straightforward way to achieve this is to
use logically reversible gates, so that logical reversibility is guaranteed. However, it
is possible to operate an irreversible logic circuit in a fashion that makes it logically
reversible. An example of this is to use irreversible logic with multi-phase power
clocks that form a retractile cascade, called Bennett clocking. In Bennett clocking,
the power clocks sequentially energize successive levels of logic in the compute
phase, and then de-energize logic in the reverse fashion during the de-compute
phase, recovering the energy in the circuit. The timing of a three-level, positive
going Bennett clock is shown in Fig. 12a.

Combined with adiabatic CMOS logic such as SCRL, with both positive and
negative going power clocks, Bennett clocking enables a simple conversion of
conventional combinational logic to reversible logic. Destruction of information is

0V

0V

0V

CLK 1

CLK 2

CLK 3

CLK 1+ CLK 2+ CLK 3+

CLK 1– CLK 2– CLK 3–

(a)

(b)

Fig. 12 (a). Timing diagram of three-level Bennett clocking. (b). Schematic of Bennett clocked
SCRL shift register
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avoided by retaining the inputs during the de-compute phase. In operation, an input
is applied to the first gate, and then the first level Bennett clock is ramped up and
held. The output from gates clocked by this level can then be used as the inputs to
gates in the next. Then the second level Bennett clock is ramped, and so on. As an
illustration, a three-stage Bennett clocked shift register is shown in Fig. 12b. In the
de-compute, energy recovery phase, the last Bennett level, e.g. CLK 3 in Fig. 12, is
ramped down, and since the inputs from previous levels are still applied to the gates
in this level, the energy stored in the gates is returned to the clock as it ramps down.
This is repeated until all the Bennett levels are ramped down, completing a Bennett
clock cycle. Inputs to the logic block can be changed and Bennett clock ramping
begun for the next computation. As mentioned earlier, energy recovery requires
some overhead. In Bennett clocking this overhead is temporal, since the inputs to
the logic block must be held throughout the cycle, which limits the opportunity for
pipelining.

3.3 Adiabatic Microprocessor

3.3.1 Adiabatic Architecture

As a demonstration of the design of adiabatic circuits, a general-purpose micropro-
cessor based on the Bennett clocking scheme was implemented by the group at the
University of Notre Dame. This is a relatively complex circuit, which exposes many
of the design and architectural challenges faced in the design of adiabatic systems,
especially Bennett clocked retractile circuits. To limit the size of the project, a
textbook example of a RISC mini-MIPS processor was chosen. This implements a
subset of the MIPS instruction set, using an 8-bit data word length and a multicycle
microarchitecture [39]. While limited in scope, this is a real-world test for a design
using the Bennett clocking scheme.

Bennett clocking can recover energy in combinational logic, but a microproces-
sor contains a significant amount of logic that is sequential, such as latches and
register files, where energy recovery is difficult. For our simple design, we did not
try to recover energy in these circuits. About 60% of the total number of transistors
in our implementation are in sequential elements, so the bit energies of only about
40% of the transistors can be recovered by adiabatic circuitry. However, sequential
elements generally have much lower activity rates than the combinatorial blocks,
so a better rate of energy recovery is expected than that suggested by the transistor
count. Our simplified mini-MIPS architecture uses instruction word length of 32
bits as in a full MIPS, but our adiabatic processor implements a subset of the
instructions, and the word length used in the datapath is only 8 bits. Ten instructions
are implemented: addition, subtraction, bitwise AND, bitwise OR, set less than, add
immediate, branch if equal, jump, load byte and store byte; but these are enough for
universal computation. Details of these instructions can be found elsewhere [39].
The register file consists of eight 8-bit registers.
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Fig. 13 Simplified top-level diagram of the microprocessor

An important design decision is the depth, or number of phases, of the Bennett
power clocks. There are several important trade-offs to be considered. Each Bennett
phase requires a clock generator, and the routing of clock lines to each of the
associated gates. Implementing a large number of Bennett phases will therefore add
considerably to the complexity of the system. However, using a small number of
phases limits the design because the number of phases determines the logic depth of
the combinational logic. In addition, the energy recovery efficiency increases with
the number of Bennett phases because information will be destroyed in the registers
separating Bennett blocks. More Bennett phases means fewer registers, and less
dissipation due to data destruction. For our design, we chose to implement a 12-
phase Bennett clock system.

A top-level block diagram of our RISC implementation is shown in Fig. 13.
The processor interfaces to external memory, and has an internal datapath including
blocks for the register file stage, and ALU. Each block is separated from the next
by a register. Each logic block maps onto adiabatically clocked combinational logic
with one Bennett clock set. The operation of the processor is controlled by a state
machine that contains 13 states, with an additional initialize (init) state.

In our design, a block of combination logic is broken down into cascaded levels
where each level is assigned to a Bennett clock phase. The Bennett clocking must
then be integrated with the over-all clocked timing of the processor. In the datapath,
the timing constraints are satisfied by standard clocking of the registers separating
these Bennett blocks. During each cycle of the standard clock, the Bennett clock
runs through a full cycle of energization and de-energization of the energy recovery
logic. Data is clocked into the registers when all Bennett levels are fully energized
(all logic signals are valid at this point). The outputs of the registers are held at the
previous values until all Bennett levels are de-energized. At this point the register
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outputs change to apply the new inputs to the combinational logic block, and the
next Bennett cycle starts.

There are a number of concerns that must be addressed in the design, most
stemming from timing. For instance, the controller provides the ALU multiplexer
select and register enable signals, which in a standard static implementation would
produce valid signals practically instantaneously, limited only by gate delay times.
However, in our case the Bennett-clocked adiabatic controller module produces
these signals at a time determined by the logic, as well as the power-clock phase.
This timing must be taken into account in the rest of the design. A relaxed or
ramping control signal cannot be used in an energized datapath block, since it would
produce erratic behavior that would dissipate energy. This illustrates an essential
timing design criterion: control signals must be produced and applied before the
controlled block can be energized by its power clocks.

This requirement leads to some important design constraints. In our processor,
the same set of 12 power-clock pairs power both the control module and the
datapath. The timing constraint can be met by careful design, taking into account
the control dependencies of the processor architecture, as illustrated in Fig. 14. In
our design, with the chosen number of Bennett levels, some control signals could
not meet the timing requirements if they were computed by Bennett logic. To meet
the timing, those controls had to be directly implemented as specific bits in the
state register, increasing the size of the state machine. The alternatives would have
been to include more Bennett levels (more power-clock pairs), or to implement the
control computation partially in standard static logic, which would have dissipated
more energy.

The examples of control timing illustrate the close relationship of logic design
and timing in a Bennett clocked system. To ensure that the logical design and timing
are both correct goes beyond the capabilities of current computer-aided design
(CAD) tools. For this reason, we developed a suite of tools to aid in the design
of the processor.

3.3.2 Adiabatic CMOS Design Tools

Since CAD tools do not currently exist for adiabatic CMOS, we developed computer
tools to aid in the logic design, design verification, and design automation of
adiabatic CMOS circuits. While these tools can be applied to some other styles
of energy-recovery logic, they were designed specifically for Bennett Clocked
Adiabatic CMOS circuits using SCRL. The main benefit of this approach is the
high degree of compatibility with the standard CMOS design flow and fabrication
process, while achieving the recovery of most of the signal energy.

The main components of the developed software tools are:

1. Ramp Logic Semi-Timing Simulation Environment.
2. Bennett Energization Sequence Checker.
3. Standard Logic Synthesis Integration.
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Ramp Logic Timing Simulation Environment We built upon industry standard
logic level design tools to implement structural modeling and semi-timing sim-
ulation of the Bennett clocked adiabatic circuits. The hardware design language
(HDL) chosen was SystemVerilog, and we used the simulation environment Mentor
Graphics ModelSim.

The signal/circuit models are discrete-level and discrete-time, but are still able to
address the important timing constraints of the retractile circuits. The tools consist of
two components: Bennett Wrappers Package, and the Bennett Gate Model Library.

Bennett Wrappers Package The first issue that must be addressed in simulating
adiabatic logic is the presence of additional logic states. The Bennett wrapper makes
this extension and contains the ramp logic signal type definition along with signal
generator and conversion functions. While the standard Verilog/SystemVerilog logic
signal type has four states [1, 0, X, Z], the adiabatic circuits spend a significant time
in transitional states, so they require verification using a model which includes these
transitional states. The new ramp logic signal type has nine states [X, RLXD, ACT1,
ACT0, REN1, RDE1, REN0, RDE0, Z], including a relaxed (or “null”) state, as well
as separate energization/de-energization transition states for both logic 1 and 0. In a
semi-timing simulation, each signal transitions through the intermediate states when
there is a switching event. This requirement allows us to check for behaviorally
accurate and correct energization of the structural components.

Bennett Gate Model Library In the design of the processor, we developed
a CMOS standard-cell library containing 45 logic gates, with physical layouts,
and modules describing the behavior of the logic gates with Bennett power-rail
modifications. While a standard minimal logic gate model defines only the mapping
between the input and output signals, a model for a Bennett clocked gate must also
treat the power-clocks as inputs, and define the behavior based on the energization
level of all inputs. These are modeled using the newly defined 9-state ramp logic
type. This ensures that a gate model will produce the valid logical output only with
proper timing and the energization of the inputs and the power-clocks. The proper
timing of inputs and power-clocks is of paramount importance in Bennett clocked
circuits, where signals must be applied in a well-defined order. Figure 15 shows the
beginning of a processor execution test program, showing the repeating activation
sequence of 12 Bennett levels while executing the test program.

Bennett Energization Sequence Checker The use of a standard gate model
library for this Bennett-clocked circuit ensures that the logical function of a design
is fully-specified, building on the designer work, also correct. However, it does
not guarantee that the circuit has been connected to the power-clocks so that the
adiabatic energy-recovery operates correctly. Our design, like any general Bennett-
clocked design, is a mixture of static and adiabatic logic. It is sometimes necessary
to include circuit elements that have the power-clock inputs connected to static VDD
and VSS rails, so that it operates as standard CMOS with the associated loss of
all signal energy. However, the main goal of the design effort is to maximize the
adiabatic recovery and use as few standard statically powered blocks as possible.
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Therefore, the semi-timing simulation should perform automatic checking of the
adiabatic energization sequence in every node in which the designer intends to
achieve energy-recovery, and correct interface to any static logic.

The Bennett Energization Sequence Checker contains the SystemVerilog asser-
tion functions/tasks and compiler macros to check the adiabatic charging and
discharging of the specified circuits nodes as defined by the logic designer. The
macros are typically called in the definition of a new adiabatic module, where they
check the specified signals and generate debug output as necessary. Every new
adiabatic module must contain at least two assertions: First, all incoming power-
clocks, since these are used for internal consistency, and second, all incoming
data signals, so that they can be checked for validity during the specified time
interval.

The power-clock consistency checker has a vector input port for all positive
power-clocks and all negative power-clocks. To ensure that the Bennett Clocks
are valid, the checker produces an assertion error if any power-clock pair is not
correctly complementary, or if any phase transitions at the wrong time. This would
be a transition of any power-clock below the current highest active level, since all
lower levels should be stable at the active level.

The signal sequence assertions are used to check that a given set of signals
energizes in the correct order, and that there are no transitions or illegal states below
the highest active level. For example, an adiabatic module requires that all data
input signals must have a stable active logic value (not relaxed or ramping), before
the lowest power-clock of that module begins to transition.

Standard Logic Synthesis and Integration The split-rail Bennett circuits can be
synthesized using a standard CMOS tool flow with only minor modifications. By
implementing adiabatic logic with gate and logic level compatibility, the approach
brings energy benefits over standard CMOS circuits even in the near-term. Figure 16
illustrates the design process, which has been preliminarily tested in a standard
CMOS design environment from the Cadence Design Systems. The current version
of the Bennett interfacing tool (a C++ standalone netlist parser program) is in an
early alpha stage, with only the extraction of structural netlist and identification of
Bennett levels implemented.

Design Entry and Logic Synthesis The design entry proceeds using, for example,
structural or behavioral specification in a hardware description language (HDL).
A standard logic synthesis tool produces a structural gate-level netlist, based on
the gate library characteristics. Since the transistors in our approach are already
sized and the logic gates constructed exactly as in the standard CMOS, all automatic
sizing optimizations and balancing of the delays in the combinatorial networks are
directly valid.

Bennett Placement Constraints The Bennett placement constraints ensure that
the standard gates will be placed into the physical part of the floorplan where they
can be efficiently wired to the correct power-clocks. For each instantiated gate,
this is determined by the relative logic level in the Bennett clock cascade. The
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Fig. 16 (a) Design process for Bennett-clocked adiabatic circuits. (b) Mapping of logic design
onto physical layout using standard cells

floorplanning can be very flexible, in principle, but in our initial design, we chose to
implement the most straightforward approach to place each specific level in a logic
block to one physical row. Inside one Bennett block, each pair of power-clocks is
driving only one row, which simplifies the wiring complexity to approximately the
same level as in the VDD and ground rails of the standard CMOS. Each power-clock
can also drive several separate Bennett blocks, depending on the circuit architecture
choices.

The logic gate dependency information exists inside the standard synthesis
tool, but this information is not generally accessible from the outside, since the
internal data structures are proprietary. Therefore, we decided to implement our
own software, which reads in the structural netlist produced by the logic synthesis
and constructs a graphical representation of the dependencies between the gates of
a design. The tool basically tags each gate with a placement constraint defining
in which logic row the gate is to be placed in. Figure 17 shows an example of a
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Fig. 17 Node graph for a parity generator, illustrating how a circuit is broken down into levels
that are assigned to Bennett clock phases

parity generator extracted from combinatorial netlists, and placed on graph levels
corresponding to the Bennett levels. This step should involve the balancing of the
number of gates in each row to obtain a block with as fully utilized rows as possible,
but our alpha-level tool does not yet implement this. Another important feature to
be implemented is the ability to place several logic blocks together, which would
improve the physical row utilization significantly.

Place-and-Route The structural netlist containing the Bennett placement con-
straints can be fed into a standard place-and-route tool, which constructs the
physical layout of the logic part of the design and connects the standard cells
with wires. The standard optimizations for combinatorial logic are valid for the
adiabatic circuits. The wires for the power-clocks can then be added to drive each
appropriate row of logic, for example by using the automatic functions for the clock
tree synthesis. However, the power-clock routing complexity is significantly smaller
than the complexity of a standard clock in a block of random logic without the clock-
per-row placement constraint.

Interfacing Sequential Logic The combinatorial synthesis and placement are
relatively straightforward, but accommodating the sequential elements like flip-
flops and latches in the synthesized standard netlist requires considerations of
the circuit timing and architecture. Basically, the standard CMOS flip-flops and
latches are all compatible with the proposed approach, but their timing has to
be controlled synchronously with the power-clocks. However, the location of the
sequential elements in the output netlist of the standard logic synthesis has not
been optimized for the retractile cascade circuits, and the best performance can be
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obtained only by giving additional constraints for the standard synthesis. We have
not yet implemented automation for this.

Circuit Architecture Generally, the proposed augmented design flow has rela-
tively small overhead vs. the standard CMOS flow, but to obtain the best perfor-
mance and energy offered by the Bennett clocked circuits requires some additional
considerations. One of the trade-offs between the computing performance and
energy dissipation is related to the size of each block and the number of power-
clocks: the larger the block, the more energy can be recovered, but then a smaller
number of complete computational results will be produced per clock cycle.
Optimizing this trade-off is not simple because of the constraint of power density.
A large block size might enable higher computation performance per clock cycle,
since a small block would not be able to run as fast as theoretically possible due to
power density constraints.

3.3.3 Standard Cell Design and Simulation

As mentioned in the previous section, a new standard cell library was needed
for the design of the adiabatic processor. As HDL primitives typically operate
only within the standard CMOS logic states, a new library was written with a
behavioral description for each adiabatic gate needed in the design. These include
combinatorial elements such as logic gates and transfer gate-based designs for
control of data flow. Sequential elements are standard static CMOS, and thus no
redefinition was needed for them. The logic design for the microprocessor was done
at the gate level using this custom adiabatic library. The overall architecture is based
on a standard mini MIPS, but the gate-level implementation for each module is an
original design aiming to minimize logical depth to reduce system complexity and
number of power clock phases.

The library includes inverters, NAND gates from 2 to 8 inputs, 2-input NOR,
2-input XOR, 2-input AND, 2-input OR, transfer gate (TG)-based multiplexers, a
TG-based conditional inverter and a few complex logic modules. In addition to these
adiabatic cells, cells for conventional CMOS sequential elements such as SRAMs
and flip-flops were created for use in the microprocessor. A λ-based design is used
to ease scaling and porting of the design to various fabrication processes.

A test-framework was created for the behavioral simulation of the MIPS proces-
sor. This framework includes descriptions of the signals needed for proper operation,
such as the power clocks, and a test program [39] that exercises all functions and
modules of the microprocessor. The processor was designed and verified using the
adiabatic circuit design tools described previously. These simulations demonstrated
that the adiabatic processor operates correctly, and during the design process,
simulations of sub-systems were conducted as a debugging aid.

The transistor-level design and layout implementation of cells in the library are
based on their HDL description. To verify correct operation of logic gates and
modules, simulations were performed using SPICE. For each gate, a FET-level
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Fig. 18 SPICE simulation showing typical operation for an adiabatic inverter

schematic was created and tested by simulation before designing the physical layout.
Netlist extractions, including parasitics, were performed on each of the finished
layouts to ensure that the circuit design and the physical implementation match.

To simulate the adiabatic operation of the cells, tests written using SPICE
directives to generate the necessary inputs and power clock waveforms. Figure 18
shows an example operation of an inverter at a frequency of 100 kHz. This shows
the operation of a minimum size inverter with NMOS size 8λ and PMOS size 16λ.
For this simulation, the netlist was extracted from the layout including parasitics
for a MOSIS 0.5 μm process. Our simulations showed that all of the cells work as
intended and follow the behavioral model.

Layouts The layout of our adiabatic MIPS microprocessor was implemented from
our standard cell library. Since no synthesis tools currently support adiabatic logic,
we built the entire circuit by hand, checking the layout against the HDL design.
The use of a standard cell library helped in the layout of the full circuit because
it enabled an orderly layout, that is easily checked against the HDL. In addition, a
standard cell design is ideal for Bennett-clocked systems, since one can simply lay
out the circuit so that each row contains a single logic level interfaced to a single
power clock phase, which minimizes routing issues.

The standard cells were designed to comply with the design rules of a MOSIS
0.5 μm process. In addition, the design is being fabricated in Notre Dame’s
undergraduate IC Fabrication course using a 1 μm process. The layout uses two
metal layers.

Several elements are common to all cells, and were incorporated into a template
as the starting point for every adiabatic cell. The height of adiabatic cells was
chosen to be 75λ, and each contains four power rails: VDD, VSS and the positive
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Fig. 19 Adiabatic inverter. (a) Electrical schematic, including substrate ties. (b) Physical layout

and negative power clock lines for a single Bennett clock phase. The VDD and VSS
signals are needed to set the potentials of the CMOS substrate wells. These rails
run horizontally through the cell so that when cells are stacked in a row the power
rails are automatically connected. Since a row shares a Bennett clock phase, all cells
in a row need to be in the same logic position in the design. By stacking rows and
connecting them to sequential Bennett phases, we set the data flows from the top to
the bottom of the circuit. An exception is where non-buffered multiplexers are used.
Because of this directionality, we designed the cells so that inputs enter through
the top of the cell, and outputs exit through the bottom of the cell. Interconnections
between cells are made in the second metal layer to optimize transistor density. All
layouts were created in the L-Edit software from the Tanner Tools suite. Figure 19
shows an inverter schematic (a) and layout (b).

The microprocessor layout was assembled by hand using the cells from our
library. Since each row corresponds to a single power clock phase, physical
placement is tied to logic design. Deviations from the rule of one row per clock
phase were needed where logic levels (rows) with too many components were split
into multiple physical rows to maintain a reasonable width. The data flows vertically
through the design, so the rows of logic are stacked in a vertical fashion. This aims
to optimize routing space for the power clocks, which contribute a large number
of signals in Bennett-clocked systems. Static CMOS elements needed in the circuit
have no timing requirements and can be placed in any convenient space. In our
design, they were used to fill gaps and improve transistor density.
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Fig. 20 Final layout of adiabatic microprocessor

The final layout for the adiabatic MIPS microprocessor is shown in Fig. 20. The
adiabatic logic is located in the mid and lower portion of the layout. The upper
section is dominated by the register and SRAM memory banks. Registers that are
closely associated with an adiabatic combinatorial section, such as the state register
for the controller state machine, are located near their corresponding logic. The total
transistor count is 5766, of which approximately 40% are adiabatic.

3.3.4 Adiabatic Microprocessor Summary

Our design of the mini MIPS processor shows that significant adiabatic designs are
possible. Standard CAD tools do not currently exist for adiabatic designs, so we
implemented some tools to aid in the design and verification of the processor. The
processor has been fabricated in the Notre Dame Nanofabrication Facility. Testing
of the chip is expected to be done in the future.
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3.4 New Devices for Adiabatic Logic

As discussed earlier, in conventional CMOS, logic transistors are used as resistive
current switches in pull-up and pull-down networks to control the charging and
discharging of capacitors. The principal shortcoming of transistor switches is their
leakage current, which leads to dissipation and sets limits on the supply voltage and
bit energies. Steep devices such as tunnel FETs and ferroFets can help, but don’t
solve the basic problem of leakage. While adiabatic circuits can be implemented
by standard MOSFETs and advanced FETs, to realize the full potential of energy
recovery through adiabatic circuits will require new devices. In this section, we
will touch on just a couple of the possible new devices that could be well-suited
to adiabatic reversible logic: adiabatic capacitive logic, and quantum-dot cellular
automata.

3.4.1 Adiabatic Capacitive Logic

Nanorelays have been investigated for use in logic since they eliminate the leakage
current, and in principle their operation can be scaled to close to the practical limit
(∼100 kBT) for irreversible operations [40]. Unfortunately, nanorelays are not a
good fit to the conventional logic paradigm due to strongly conflicting operating
requirements. Since the device current flows through mechanical contacts when
closed, these contacts must have a very low resistance, which suggests a large
contact area and soft materials such as Au. However, to reduce the switching energy,
the relay and hence the contact should be small as possible. Soft materials typically
have higher adhesion, which leads to a greater hysteresis at disconnect and greater
dissipation. In addition, switching the relay under bias, as in conventional logic,
degrades the contacts due to arcing. This contributes to the greatest challenge facing
nanorelays, endurance, since contact degradation limits the lifetime. For a device
lifetime of 10 years, an endurance of at least 1x1014 on/off cycles is required but the
maximum demonstrated endurance is <1010 cycles [41]. A recent development by
a group at CEA-LETI in France [42] proposes to use MEMs structures, similar to
nanorelays, as variable capacitors, not switches. In this approach, called adiabatic
capacitive logic (ACL), illustrated in Fig. 21, variable capacitors are used in pull-up
and pull-down networks to form a voltage divider. Figure 21a shows the schematic
symbols of the two types of variable capacitors used: left, one that decreases its
capacitance when a control voltage is applied, and right, one where its capacitance
increases with applied voltage. Implementation of these variable capacitors will be
discussed below.

Figure 21b presents a schematic of a simple inverter. CS is a variable capacitor
which decreases capacitance with applied voltage, and CL is the load capacitance,
typically the input of the next gate. Additional variable capacitors can be added
to the pull-up or pull-down networks to form additional logic gates. In Fig. 21c
two variable capacitors are connected in parallel in the pull-up network to form
an NAND gate. Since only capacitors are used in the logic circuit, there is no
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Fig. 21 Adiabatic capacitive logic. (a) Variable capacitor schematic symbols. (b) Inverter. (c)
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dissipation due to a direct transfer of charge from the power clock to ground.
Leakage currents are essentially eliminated, and the only dissipation occurs in
the parasitic series resistances when charge moves through the wires and onto
the capacitor plates. Since the capacitors in ACL change value, Eq. (3) must be
modified, an issue that is being addressed by the theoretical work of the CEA/LETI
group, but the basic principle remains: ramp times greater than the RC time constant
yield energy savings, and since no transistors are involved R can be made small by
using low resistance materials.

In the operation of the inverter, when an input “1” (V > VinLow) is applied to the
variable capacitor, its capacitance decreases, so that when the adiabatic power clock
ramp is applied, the output voltage stays low. Likewise, if a logic “0” (V = 0 V) is
applied the variable capacitor stays at a high capacitance and the output voltage rises
to a high voltage when the power clock is ramped. The output voltage is given by:

VOut = CS (Vin)

CS (Vin) + CL

VCLK (11)

where CL is the load capacitance and CS (Vin) is the variable capacitance. This
equation sets some conditions on the desired values of CS and CL in the inverter. For
an output 0 we want CS < CL and for an output 1 we want CS > CL. These conditions
can be met by the spacing and areas of electrodes. Preliminary calculations suggest
values of CS = 10 CL for an output logic 1 and CS = CL/4 = for a logic 0.
These values should be possible with the devices described in the fabrication
section. It should be noted that energy is supplied to the circuit from the ramping
power clock, so the gates can demonstrate the power gain needed to provide noise
immunity, cascadability, and drive fan-out. The fact that a capacitively coupled
clock can deliver energy to a circuit and provide power gain was demonstrated
experimentally in a single-electron device that shares some similarities with the
proposed circuits [43]. Since CL is increased in a fan-out structure, the driving gate
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Fig. 22 Notional diagram of voltage-controlled capacitor

must be specifically designed to retain the appropriate capacitance ratios, but power
gain using the clock as the power source makes fan-out possible.

A notional diagram of a MEMS, nanorelay-like structure of a voltage-controlled
variable capacitor is shown in Fig. 22. Here, the position of a cantilever is controlled
by an input voltage Vin across the capacitance CL, while the electrically isolated end
of the cantilever forms the capacitances CS1 and CS2. With no input voltage applied,
the end of the cantilever is close to the top electrode, making CS1 much larger than
CS2. When a voltage is applied to the input capacitor CL the cantilever moves down,
increasing the value of CS2 and reducing that of CS1. Since no current is required
to flow through any contact, the contacts can be coated with an insulator, and the
problem of leakage current is eliminated.

Adiabatic capacitance logic operates by moving charge on the output node
between the plates of CS and CL as the power clock is applied. Depending on the
value of CS the output voltage takes on either a high or low value. The lack of a
direct electrical connection to the output node is an advantage in that it essentially
eliminates leakage currents (except for low-level effects such as tunneling) and
the associated dissipation. However, the fact that this node is “floating” makes it
vulnerable to small leakage currents such as surface leakage, and tunneling that can,
over time, charge the node and shift the output voltage. To mitigate this effect, it is
possible to take advantage of the fact that the MEMS capacitor structures and logic
gates can operate with both positive and negative power clocks. When the gates
are operated with an alternating series of positive and negative clocks, any parasitic
leakage will cancel out over a full cycle, keeping the floating node at no net charge.
While the leakage might be data dependent, meaning that the leakage is different if
the bit is a 1 or 0, the alternating clock voltage should keep the floating node close
to 0 V. There is little impact on circuit and architecture design since the sign of
neither the input nor the clock affects the operation of the gate. Where conversion
to conventional logic such as CMOS is required, a simple absolute-value circuit can
be used.

Figure 23 illustrates the operation of an ACL shift register, a small circuit
demonstrating the principles of adiabatic operation. The shift register is driven by
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Fig. 23 (a) Four-phase bipolar clock. One period of each phase consists of two sequences of Null,
Evaluate, Hold, and Recover. (b) ACL shift register

a 4-phase power clock, shown as flat-topped ramps, where each phase is shifted by
45◦ from the previous phase, Fig. 23a. Each half-phase of a clock (first positive,
then negative) can be broken into four phases: Null, Evaluate, Hold, and Recover.
Consider the first inverter shown in the shift register, Fig. 23b, powered by CLK1.
The input is applied during the Null phase. Next, CLK1 ramps up (Evaluate) and the
proper value appears at the output, which is applied to inverter 2. While inverter 1 is
in the hold phase, CLK2 ramps up for the Evaluate phase of inverter 2. Next, CLK1
ramps down (Recover) and energy is transferred from the inverter back into the
clock. New data can be applied to inverter 1 as the old bit shifts down the line. Note
that either a positive or negative voltage can represent an input logic 1, regardless of
whether the clock will go positive or negative.

3.4.2 Molecular Quantum-Dot Cellular Automata

The scaling of FETs becomes very difficult as device dimensions approach a few
nm. This can be seen in the naming of the latest technology nodes. For instance, in
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14 nm node devices the gate length is approximately 20 nm, and the node name is
just that: a name. The difficulty is that at these dimensions quantum mechanical
effects, especially tunneling, become significant. Since the off-state of an FET
should have no current, it is necessary to suppress tunneling, while the on-state
requires a high current flow. It is very difficult to meet both of these requirements
at dimensions of a few nm. Size scales of a few nm bring one into the realm of
molecules. Molecules as electronic devices are attractive because the structure of
the molecule can provide energy barriers that are very high, with spatial modulation
lengths of less than a nm, promising functionality that is not possible in top-down
fabricated structures. The bottom-up fabrication of molecules is attractive because
chemical synthesis takes care of the assembly of atoms on the sub-nm scale.

Over the years, there have been a number of attempts to use molecules as
electronic devices [44–53], but these have mostly been attempts to make molecules
into devices that resemble traditional current-carrying electronics. The problem is
that small, individual molecules do not like to carry macroscopic currents, and
the contacts to the molecule generally dominate the device operation. There is
another device paradigm, quantum-dot cellular automata (QCA) that proposes to use
molecules as charge containers rather than conductors. This builds on the extensive
work on QCA, a computing paradigm that was developed and first demonstrated
at the University of Notre Dame [54–64]. Operating QCA cells and small circuits
have been demonstrated in a number of implementations, including metal dots
[59], semiconductor dots [65], magnetic domains [66], and dangling surface bonds
in Si [67]. What makes molecular QCA particularly interesting is that molecules
represent the ultimate size scaling, and QCA maps well onto adiabatic reversible
computing.

The basic premise of QCA is to encode information in the position of charge
(electrons or holes) within the mixed-valence molecule, which is the basic element,
called a cell. The charge can move within the molecule via tunneling, but cannot
leave the molecule. Figure 24 shows a notional diagram of a molecule where there
are three localization centers, or dots, within the molecule. In the actual molecule,
these localization centers can be a metal atom surrounded by ligand and other
atoms, but the actual atomic structure of the molecule is omitted here. The synthesis
of such a molecule is the subject of on-going research [68–75], and some initial
demonstrations of controlled charge switching within a molecule have been made
[76, 77], but the topic is beyond the scope of this chapter. The molecular cell is in

“0” “NULL” “1”

Fig. 24 Notional diagram of three-dot molecular QCA cells, showing the three polarizations 0,
NULL, and 1. The polarization of the cell is determined by the location of the mobile charge
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the logic 1 state when the mobile charge, say an electron, occupies the left dot, the
logic 0 state when the right dot is occupied, and a NULL state when the bottom dot
is occupied. If there is no input the occupation probability of each of the dots should
be equal, so that the three states are energetically degenerate. If an input electrode
applies a potential to the dots of the cell, the degeneracy of the states is broken, and
the cell is polarized into one of the states. In particular, the NULL state is important
because it will enable adiabatic clocking of the cells, where a power clock is applied
as an input to the NULL dot. When energized, the electron is pulled into the NULL
dot. An input potential can then be applied to select either the 0 or 1 dot, and as the
power clock is relaxed and the cell enters the active state, the electron will tunnel to
the dot selected by the input. Clocking the cell enables a molecular cell to exhibit
power gain, where a weak input applied to a cell is brought back to full strength
by the cell and then passed to the next cell. Power gain has been demonstrated in
metal-dot QCA [43].

In a QCA system, cells are physically placed to implement the desired computa-
tional function. The cells are coupled by Coulomb interactions, but do not exchange
charge, so that the state of one cell can act as the input of a neighboring cell. Figure
25a shows a molecular system suitable for computation. The molecules are attached
to lines on the surface of the substrate, above buried clocking lines that control
the flow of information. Note that the clocking lines do not need to address each
individual cell. As a simplified example of how a QCA system works, Fig. 25b
shows a “top view” of an array of cells in the active state, illustrating how an array
of QCA cells can be arranged as a line to transmit information, and as a majority
gate, Fig. 25c. A majority gate takes three input polarizations and produces an output
polarization that is the majority vote of the inputs. A majority gate can be used as
an AND gate if one of the inputs is set to a 0, or an OR gate if an input is set to
a 1. Cells can also be arranged to make an inverter. Majority gates and inverters
represent a universal set of combinational logic, and clocked QCA cells can also

(a)
QCA line

(b)

A

B

C

Out

(c)

Fig. 25 (a) Molecular chip showing buried clock lines and silicon molecular attachment lines. (b)
Active cells in a QCA line. (c) QCA majority gate
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implement sequential functions such as latches. Thus, any computational system
can be implemented using QCA.

The greatest difficulty facing molecular QCA systems is that the interfacing
of molecules to top-down fabricated structures is difficult. The mixed valence
molecules that have been produced so far measure 2–3 nm across, making the
alignment of input and output electrodes difficult. Our preliminary calculations
show that single-electron transistors are capable of measuring the position of an
electron within a molecule, but an experimental demonstration remains to be done.

4 Direct On-Chip Measurement of Dissipation in Adiabatic
Systems

The measurement of power dissipation on a chip for irreversible dissipative logic
is typically obtained by conventional electrical techniques (i.e., by measuring
averaged currents and voltages supplied to the chip). However, power measurement
of adiabatic switching circuits becomes a complicated task, not only because the
adiabatic circuits are powered by time-varying voltages, but also because power
dissipation is masked by a large reactive power component, due to the nature of
reversible adiabatic logic where charge is recycled. The first direct on chip heat
measurement of adiabatic circuits was reported by Solomon and Frank [5], where a
commercial bismuth telluride Peltier cooler was used as a sensitive thermal sensor.
The chip was pressed onto a heat sink with a thermoelectric unit sandwiched
between the chip and the heat sink and inserted into a thermally insulating enclosure
to minimize thermal drift. Power to the chip was switched with a period of several
seconds and a lock-in method was used for detection. The reported sensitivity in
these experiments was about 3 mK/mW, i.e. 1 mW of power dissipated on chip
resulted in measured temperature increase of 3 mK and minimum detectable power
was on the order of 10 nW/Hz1/2. The adiabatic circuit was tested with different load
capacitors in a frequency range up to 20 MHz and yielded a square dependence on
frequency with power dissipation up to ∼10 mW. The detailed heat balance of the
tested adiabatic circuit was not disclosed in [5], but it is likely that the heat generated
by the circuit in such a setup is not restricted to a flow through the thermoelectric
converter. It also could occur through the electrical wires reaching the chip carrier
and through ambient air convection. This is particularly likely if the thermal mass
of the active circuit in which heat generation occurs is much less than the thermal
mass of the entire substrate/chip carrier, so it acts as a tiny mass attached to a large
cooled heat sink.

Therefore, we took a different approach and fabricated thin film thermocouples
(TFTCs) directly atop the active elements of the Si CMOS circuits. In this case the
heat generated in the circuit heats up the hot junction to a much higher temperature
than in [5]. The cold junctions located away from the hot junctions in the area of
Si wafer that remains in thermal equilibrium with the ambient. Due to the large
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Fig. 26 (a) Experiment with Ni-Au thermocouple placed on top of heater separated from it by
20 nm of Al2O3. Experimental results (red dots) along with the COMSOL simulations (blue dots)
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thermal conductivity of Si, and the negligibly small thermal mass of the active
circuit compared to the thermal mass of the entire Si chip, the heat sinking capability
of the substrate is very large. As a result, for the range of power dissipation discussed
below (<10 mW) the temperature at the surface of the chip quickly drops to the
ambient temperature (∼293 K) for distances >10 μm away from the powered circuit.

We fabricated 1 μm wide Ni-Au TFTC with the hot junctions directly atop
the active elements, separated by a thin (∼200 nm) layer of dielectric to provide
electrical insulation. The cold junctions of the thermocouples are located about 50–
500 μm away to ensure minimal heating. To calibrate this test-bed and determine
the limits of measurable power using this approach we used TFTCs fabricated on
top of ∼1.15 mm long, 10 μm wide, and 200 nm thick poly-Si resistors, with hot
junctions having dimensions 1 × 2 μm2 situated in the middle of the heater, inset in
Fig. 26. Experimental results are compared with the simulations from COMSOL
Multiphysics software using the electric current and heat transfer modules. The
temperature increase at the center of the wire was calculated using COMSOL’s
domain probe, and the simulated temperature is shown in Fig. 26a along with the
experimental results. The simulations take into account the heat flow along the
heater and into the air and substrate. The structure for the simulations, Fig. 26b
is matched to the physical layout of the experiment, inset Fig. 26a, i.e. the 200-
nm-thick poly-Si heater is placed on top of a 600-μm-thick Si wafer with 400 nm
thermally grown SiO2. The heater is coated with 300 nm SiO2 and 25 nm ALD
deposited Al2O3. In order to simulate the Joule heating of the poly-Si heater, one
end of the wire was grounded and current was applied through a boundary current
node. The applied current was varied between 0.05 mA and 1.05 mA to match to
the applied power in the experiment. The experimental results shown in Fig. 26a are
obtained using two techniques7: one, the so-called “2 ω” method when a sinewave
at a frequency ω is applied to a heater which results in a heat signal oscillating at
a frequency 2 ω producing an electrical response in a thermocouple at the same
frequency 2 ω and then measured by a lock-in amplifier (SR830). The resulting
signal is then multiplied by

√
2 to account for the built-in RMS coefficient in the

lock-in amplifier measurement [78]. Alternatively, a triangle wave from 0 to 10 V
is applied to poly Si wire leading to the oscillation in power dissipation in the entire
heater structure from 0 to 10.5 mW. The TC response is acquired with a digital
oscilloscope (Picoscope 6404) and averaged to improve SNR. For the results shown

�
Fig. 26 (continued) showing TC response in volts (left axis) and temperature increase in K (right
axis). Inset shows a micrograph of a TC on top of the meandering poly Si resistor. The Seebeck
coefficient of S = 20 μV/K was used for conversion. (b) Structure and close-up of the model of
the poly-Si heater attached to a Si substrate with a domain probe representing a thermocouple hot
junction atop the structure

7In both cases the signal from the TFTC is first amplified with a differential transimpedance
amplifier (DTA).
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Time (ms)

(a)

(b)

Fig. 27 Burst pulse experiment. (a) A unipolar pulsed signal (0 → 8 V) with 50% duty cycle is
applied to the heater during the time interval from 2.5 ms to 14 ms. A 1.2 kHz train of pulses
is shown. (b) TC response at several frequencies. At frequencies below amplifier low-pass filter
cutoff (390 Hz) the temperature measured by a thermocouple reaches maximum for each applied
pulse while at higher frequencies the measured TC signal corresponds to the average heating, set
exactly at 50% of maximum as expected for 50% duty cycle

in Fig. 26a trace averaging resulted in
√

N = 40 improvement of SNR (see Sect. 2.3
for details on averaging procedure). The large spread of data at power dissipation
below 0.1 mW indicates insufficient averaging. Nonetheless, both methods yielded
the same results and are in good agreement with the simulations. The results show
that application of 1 mW of power to the entire heater structure increases its
temperature by ∼40 mK. Taking into account the geometry of the heater (total
length 1150 μm) and the hot junction of TFTC (about 1 μm long), the power
dissipated in the segment of the heater in contact with the thermocouple is about
three orders of magnitude smaller, on the order of 1 μW. From there we estimate
the effective thermal resistance of this arrangement, ∼40 K/mW. This is about four
orders of magnitude larger than the thermal resistance measured in [5], meaning a
much larger thermal signal is available for measurement. However, this advantage
is mitigated by the vast difference in thermoelectric efficiency between the Ni-Au
thermocouple used in this work (relative Seebeck coefficient, S = 20 μV/K) and
Bi-Te thermopile (S = 24 mV/K) used in [5].

The waveforms in a digital circuit are very different from low frequency
sinewaves and linear ramps, therefore another test was performed using the same
test-bed. For this purpose, we devised an experiment where power and waveforms to
a circuit are applied periodically at low “blanking” frequency (1–10 Hz). Figure 27
shows the results of such an experiment where the thermal signal was acquired
for unipolar square-wave bursts of “filler” pulses of different length separated by
blanks during which no signal is applied to the heater, Fig. 27a. At filler frequencies
lower than the cutoff frequency of the (fT ∼ 390 Hz), the signal generated by the
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Fig. 28 Frequency dependence of thermocouple response for burst experiment. The −3 dB
attenuation at 10 MHz caused by the distributed capacitance is clearly visible. Results are shown
for frequencies much higher than lop-pass filter cutoff of 390 Hz

TFTC follows the shape of individual pulses so that the temperature changes from
minimum to a maximum (black and blue traces in Fig. 27b), whereas at frequencies
above fT , the average temperature is measured (green trace in Fig. 27b), resulting
in exactly half of maximum temperature for a 50% duty cycle. The experiment was
repeated for filler burst pulses up to 20 MHz. The resulting frequency dependence
of TC signal is presented in Fig. 28, where power dissipated in the resistor remains
constant from several kHz to approximately 2 MHz. Above that frequency the
distributed capacitance of the poly Si resistor to the substrate through a 400 nm
thick layer of SiO2 insulating the poly Si resistor from the substrate (approx.
1 fF per micron length) forms a low pass filter with a cut-off frequency about
10 MHz, resulting in attenuation of power delivered to the heating element, in good
agreement with experimental observations.

To build upon this work, Au-Ni thermocouples are being fabricated on an
adiabatic CMOS circuit consisting of three conventional CMOS inverters connected
by transmission gates for adiabatic reversible operation. Operated in reversible
mode, three split rail clocking signals will be used to move charge onto the gates
adiabatically, along with five signals to control the transmission gates. In irreversible
mode, the transmission gates between inverters are opened (conducting) so that
the three inverters are connected in series, and a single rail power supply is used.
Thermocouples are fabricated directly above one of the gates of the inverters,
Fig. 29, where the dissipated power density will be greatest and are electrically
isolated by 20 nm of Al2O3 and 20 nm of SiO2 deposited by ALD. To minimize
interference from clocking lines crossed by the thermocouple leads, the length and
overlap area of each lead with the clocking lines are carefully designed in the layout
to be equal. Since the electrical conductivity of Au is approximately 3× that of Ni,
the Ni lead of the thermocouple is 150 nm thick while the Au is 50 nm thick so
that the resistance of the two leads is approximately equal. All this is to make the
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Fig. 29 A part of CMOS circuit equipped with four Au-Pt thermocouples situated above the
channels of transistors

thermocouple approximately a balanced line so that any electrical noise picked up
is common mode noise to both leads and can be cancelled out by the DTA used to
measure the thermal signal.

Unlike in the polysilicon heater experiment, in a digital circuit most of the heat
is dissipated as a transient during switching events (ignoring passive power from
leakage). A finite difference simulation in MATLAB was used to estimate the
thermal response and transients of a typical digital circuit. A block of silicon of
size 50 × 50 × 20 μm3 was simulated with a 2 μm long by 12 μm wide gate. The
bit energy was estimated by calculating the capacitance of the output of the inverter
using the lithographic dimensions and dielectric thicknesses, and by assuming that
the dissipation occurs in the MOS channel within 1 μm of the silicon surface.
Heat conduction through the poly gate and metal contacts was not simulated but is
most likely a small perturbation compared to the cooling power of the bulk silicon
substrate. It was also assumed that the time over which the bit energy is dissipated
is comparable to the time steps of the simulation (1 ns) so that the transient heat
dissipation was modeled as a pulse of energy for a one-time step re-occurring at the
switching frequency. For boundary conditions, the sides and bottom of the simulated
silicon are constant temperature surfaces and the top is a zero heat-flux surface.
The thermal response on the channel at the silicon surface as a function of time
is shown in Fig. 30. The time-averaged change in temperature is approximately
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Fig. 30 Simulated thermal response of CMOS switching at f = 10 MHz
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Fig. 31 Temperature distribution of switching at f = 10 MHz. The black box in the center shows
the channel area where the heat is generated

30 mK at a switching frequency of f = 10 MHz and this value scales linearly with
the frequency. The time averaged power is only 44 μW but this is dissipated in a
much smaller volume than in the case of the polysilicon heater. Notice, however,
that the peak height of the transients is determined solely by the local dissipated
energy density (which is assumed to be uniform) and the heat capacity of the silicon.
Because of this, the difference between the maximum and minimum temperature
is constant throughout the simulation and independent of the switching frequency.
Figure 31 shows the temperature distribution around the channel area at one of the
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temperature minima from Fig. 30. These simulations suggest that the temperature
change is well within the measurable range for on-chip thermocouples provided that
the thermocouples are placed very close to the channel, and that they will provide a
means of making a quantitative comparison between conventional CMOS operation
and adiabatic reversible operation in the future.

5 Summary

Our experiments have demonstrated that the Landauer principle is correct and that
dissipation in computational systems can be made arbitrarily small if the destruction
of information is avoided. All state variables are subject to the same dissipation
limit for irreversible operations, the ultimate Shannon limit. The Landauer principle
applies to Boolean as well as non-Boolean computational paradigms. The only thing
that matters is how information is treated in the computational system.

A significant adiabatic reversible system, a mini-MIPS microprocessor, was
designed and synthesized in SCRL CMOS. This showed that new CAD tools
are needed to support the design of adiabatic systems. While FETs are useful
for demonstrations of adiabatic systems, the leakage and finite threshold inherent
to FETs are significant limiters to their usefulness in adiabatic applications. A
brief summary of two possible replacement devices, adiabatic capacitive logic and
molecular quantum-dot cellular automata was given. There are challenges to both
of these, but they may provide a path forward to implement large-scale adiabatic
systems.

We have begun experimental measurements of CMOS adiabatic systems using
thermocouples placed close above the devices. While these experiments are still in
the early phases, they will provide a direct quantitative comparison of the power
dissipation of irreversible and adiabatic-reversible operation.

Adiabatic reversible systems will always require a trade-off between energy
savings and performance. In the past, this was deemed an unacceptable trade-off.
However, with the capabilities of integrated systems increasingly limited by power
dissipation, adiabatic reversible approaches offer a way forward. In fact, they may
be only way around the problem of dissipation.
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