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Exact nonequilibrium quantum observable statistics: A large-deviation approach
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The exact statistics of an arbitrary quantum observable is analytically obtained. Due to the probabilistic nature
of a sequence of intermediate measurements and stochastic fluctuations induced by the interaction with the
environment, the measurement outcomes at the end of the system’s evolution are random variables. Here, we
provide the exact large-deviation form of their probability distribution, which is given by an exponentially
decaying profile in the number of measurements. The most probable distribution of the measurement outcomes
in a single realization of the system transformation is then derived, thus achieving predictions beyond
the expectation value. The theoretical results are confirmed by numerical simulations of an experimentally
reproducible two-level system with stochastic Hamiltonian.
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I. INTRODUCTION

Observables of a quantum system out of equilibrium return
random outcomes fluctuating with a specific probability distri-
bution [1]. By following the operational approach [2], a quan-
tum stochastic process [3,4] can be envisaged as a nonequilib-
rium transformation modeled as the composition of stochastic
evolutions characterized by semiclassical fluctuations of the
system parameters [5–7] and intermediate quantum measure-
ments [8,9]. In the former case, especially in quantum com-
puting, stochastic fluctuations can arise from imperfections in
the physical realization of the quantum system or through the
interaction with the environment [10]. On the other hand, re-
peated quantum measurements could correspond to a process
exchanging photons with the environment [11] or could be
adopted to ensure the protection of coherent evolutions of a
quantum system by decoherence (quantum Zeno dynamics)
[12]. Experimentally, together with strong-coupling methods,
such dynamics have been realized in several physical se-
tups such as solid-state spins, superconducting qubits, and
ultracold atomic gases [5,13–17]. They are also relevant in
quantum metrology [18] to probe the phase evolution of an
atomic ensemble by means of interleaved interrogations and
feedback corrections [19,20]. In this scenario, by observing
only once the dynamics of the system (single realization),
the ensemble average of the measurement outcomes does
not provide complete information about the statistics of the
measured results. This becomes more evident when also one
rare random event, i.e., a stochastic fluctuation with very small
probability, occurs within the system dynamics [21–23]. Such
a concept is at the heart of the large-deviation (LD) theory
[24,25], dealing with the exponential decay of probabilities
associated to large fluctuations in stochastic classical [26] and
quantum systems [27–32].
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In this paper, we derive a closed-form expression for
the outcomes’ statistics obtained by measuring a quantum
system repeatedly monitored by an external observer and the
dynamical evolution of which depends on random parameters.
In particular, we prove that for a sufficiently large number
m of intermediate quantum measurements the probability
distribution of the last measurement results obeys the so-
called LD principle [25,33,34]. This means that the behavior
of the measurement outcomes’ distribution is a decaying
exponential in m, the exponent of which is equal to the relative
Shannon entropy between the configurations of the stochastic
system dynamics. In other words, only a rigorous description
of the occurrence combinatorics of the parameters defining
the stochastic evolution of the system allows for the full
characterization of the outcomes’ statistics, also beyond the
Gaussian approximation given by the sole description of the
measurement apparatus.

II. MODEL

Let us consider an arbitrary quantum system S within
the Hilbert space H. We assume that S is initialized in the
quantum state with density matrix ρ0 and that the Hamiltonian
H of the system is time independent. At the level of the single
trajectory, we assume that the random interaction between S
and an environment E gives rise to a sequence of stochas-
tic dynamical evolutions, separated by consecutive quantum
projective measurements [35], following the postulates of
quantum mechanics [36]. Hereafter, the index j denotes the
dimension of H, while the index α denotes the instants
composing the temporal sequence of measurements. More
specifically, we assume that the first m − 1 measurements are
performed on the quantum observable O ≡ ∑

j o j�o j , where
o j are the outcomes of O and {�o j } is the set of projectors
corresponding to the measured eigenvalues at time tα . The mth
measurement, instead, is performed on the quantum observ-
able � ≡ ∑

j θ j�θ j , the outcomes θ j of which are recorded
by the observer. According to the postulate of quantum
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measurement, the state ρα of S after the projective measure-
ment at tα is identically equal to one of the projectors defining
the measurement observable. Then, between each projection
event the system undergoes a dynamics, which is governed by
the Hamiltonian H and described by the completely-positive
and trace-preserving quantum map �(tα, t0)[ρ0] ≡ �α[ρ0]
[37]. If we assume a quite large number of intermediate
quantum measurements, the dynamics between measurements
is described by a unitary operator, so that �α[ρα−1] is simply
given by the superoperator Uα[ρα−1] ≡ Uαρα−1U †

α , where
Uα ≡ exp(−iHτα ), h̄ is set to unity, and τα ≡ tα − tα−1. We
also assume that, in accordance with the recently introduced
stochastic quantum Zeno phenomena [5,6,33], there exists for
each propagator Uα at least one dynamical parameter λ, which
is a fluctuating variable. For example, one could consider as
in [38,39] that each λα is equal to the time interval τα , with
τα random. Moreover, the λ’s between the measurements are
taken as constant and have a different random value only
after the occurrence of a new measurement, according to
the probability density function p(λ). Here, �λ ≡ (λ1, . . . , λm)
denotes the sequence of dynamical parameters λα in a sin-
gle realization of the system transformation. The fluctuating
dynamical parameters λα , then, are taken as independent and
identically distributed (i.i.d.) random variables sampled from
p(λ), since the environment is a priori unknown.

The stochastic nature of the measurement outcomes θm’s at
time tm lies in the specific values assumed by �o and �λ. Thus,
the dynamics of S being stochastic, the single realization of
the system density matrix ρm,�o,�λ at the end of its evolution is

a fluctuating variable; i.e., given the sequences �o and �λ, it is
mapped into

ρm,�o,�λ = PθmUmPom−1Um−1 · · ·Po1U1[ρ0]

pθm (�o, �λ)
, (1)

where Pμα
[(·)] ≡ �μα

(·)�μα
is the measurement superopera-

tor acting on (·) at tα , with μ ∈ {o, θ}. Consequently,

pθm (�o, �λ) ≡ Tr
[
PθmUmPom−1Um−1 · · ·Po1U1[ρ0]

]
, (2)

i.e., pθm (�o, �λ) = Tr[�θmρm,�o,�λ], denotes the conditional prob-
ability to obtain the outcome θm from the measurement of �

given the specific realization of the sequences �o and �λ.

III. QUANTUM OBSERVABLE STATISTICS

In a single realization of the system transformation, ρm,�o,�λ
and θm depend on �o and �λ and are random quantities. Thus,
the following question naturally emerges: Which is the best
description for the statistics of the measurement results θm, j

from the observation of S at tm? Three possible answers,
characterized by an increasing degree of prediction accuracy,
can be provided. First, one could describe the probabilistic
expected result from the measured outcomes by using the
expectation value Tr[�ρm], with

ρm ≡ 〈ρm,�o,�λ〉 =
∑

�o

∫
�λ

dm�λ p(�λ)ρm,�o,�λ (3)

and p(�λ) denoting the occurrence joint probability of the
dynamical parameters λα . It is worth noting that Tr[�ρm] is

FIG. 1. Statistics of �’s outcomes. By repeating several times
the stochastic evolution of the system and measuring each of the
outcomes θm, j at the final time instant tm, an ensemble of conditional
probabilities pθm, j is obtained, where each of them is computed after
the single realization of the system dynamics. Thus, just by count-
ing the occurrence relative frequencies of the pθm, j ’s, one can de-
rive the corresponding probability distributions (blue dashed lines).
If the number of realizations is relatively small, such distributions
do not obey the Gaussian approximation. This means that one has
to distinguish between two different statistics for θ ’s: one (green
solid line) linking the ensemble averages 〈pθm, j (�o, �λ)〉 (red dots) of
the conditional probabilities for each measurement outcome, and the
other (orange dotted line)—also called most probable distribution—
connecting all the realizations of pθm, j in correspondence to the
maximum value of the conditional probability distributions (blue
dots).

equal to the ensemble average of all possible measurement
outcomes. Second, the probability distribution of �’s out-
comes (green line in Fig. 1) can be introduced:

Prob(θ ) =
∑

j

δ(θ − θm, j )pθm, j
, (4)

where pθm, j
≡ 〈pθm, j (�o, �λ)〉 = Tr[�θm, j ρm] and δ(·) is the Kro-

necker delta. Equation (4) defines the statistics of �, while
pθm, j

(red dots in Fig. 1) is the probability to obtain on average
the jth outcome θm, j . Otherwise, the third option that we are
here proposing is to adopt the probability distribution of the
conditional probabilities pθm, j (�o, �λ), i.e., Prob[pθm, j (�o, �λ)] (in
Fig. 1, the blue dashed lines for each outcome θm, j), defined
over all the possible realizations of the sequences �o and �λ.
Only in this way, by deriving Prob[pθm, j (�o, �λ)], one will be
able to get the most probable statistics (orange dotted line) for
the quantum observable � connecting the blue dots in Fig. 1.

We start by observing that the pθm, j (�o, �λ)’s can be written as
the product of the probabilities |〈πμα−1 |Uα (λα )|πμα

〉|2—also
called dynamical transition probabilities—that the quantum
state moves from |πμα−1〉 to |πμα

〉 via the propagator Uα (λα )
(see the Appendix A for more details). Specifically, |πμα

〉’s are
the eigenvectors that define the measurement projectors �μα

,
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with μ equal to θ or o, depending on whether the observable
� or O is measured. Thus, one has that

pθm, j (�o, �λ) =
m∏

α=1

∣∣〈πμα−1

∣∣Uα (λα )
∣∣πμα

〉∣∣2
, i.e., (5)

pθm, j
=

∑
�o

m∏
α=1

∫
λα

dλα p(λα )qα (μα−1, μα, λα ), (6)

where qα ≡ |〈πμα−1 |Uα (λα )|πμα
〉|2; πμ0 ≡ π0 (with ρ0 =

|π0〉〈π0|); μα ≡ oα for α = 1, . . . , m − 1; and πμm ≡ πθm, j .

IV. LARGE-DEVIATION FORMALISM

We now derive the main result of this paper, namely, a
closed-form expression of the pθm, j (�o, �λ) distributions. Notice
that if we just characterize the quantum observable � at
tm and at the same time the hypotheses of the central limit
theorem are respected then the statistics of its outcomes is well
represented by a Gaussian probability distribution. In fact,
with this assumption, outliers in the outcomes statistics are
simply classified as the result of a nonmodeled experimental
noise on the measurement apparatus. Thus, by increasing
the number of realizations, the occurrence probability of the
outliers naturally decreases and the Gaussian distribution well
fits the data. However, this evidence is no longer valid if we
assume that the statistics of θm, j’s is given by an arbitrary
stochastic transformation governing the dynamics of the sys-
tem. In such a case, the configuration space defined by the
occurrence of random events during its evolution becomes
exponentially larger, but allows for the description of the out-
liers’ statistics with occurrence probability greater than zero
and not satisfying the Gaussian approximations. Therefore,
we expect to increase our prediction power on the outcomes’
distribution by statistically characterizing the trajectories of
the system before the measurement of �. This amounts to
computing the statistics of the dynamical transition probabili-
ties qα (μα−1, μα, λα ) as defined in Eq. (5). Briefly, the proce-
dure to derive the exact LD form of Prob[pθm, j (�o, �λ)] is to take

the logarithm of the conditional probabilities pθm, j (�o, �λ), i.e.,

lθm, j (�o, �λ) ≡ ln pθ j,m (�o, �λ) = ∑m
α=1 ln qα (μα−1, μα, λα ), com-

pute its distribution, and then apply the contraction principle
from LD theory [25].

For the sake of clarity, let us here consider that the mea-
surement bases of O and �, with [O,�] �= 0, belong to a set
of finite dimension, i.e., that each measurement eigenvector
|πμα

〉 admits only a finite number dπ of elements |π ( j)〉.
Then, the distribution of lθm, j (�o, �λ) is obtained as follow-
ing. By following a common procedure in LD theory, the
terms of lθm, j (�o, �λ) are grouped as a function of the number
of times each dynamical transition probability q jB, jA (λ) ≡
|〈π ( jB )|U (λ)|π ( jA )〉|2 occurs, where the superscripts B and A
stand, respectively, for “before” and “after” the evolution via
the propagator U (λ). In this way, lθm, j is recast in the following
sum of i.i.d. random variables:

lθm, j (�o, �λ) =
dπ∑

jB, jA=1

∫
λ

n jB, jA (λ) ln q jB, jA (λ)dλ, (7)

with n jB, jA (λ) denoting the relative frequencies for the oc-
currence of the q jB, jA (λ)’s, usually different from the corre-
sponding probability value p jB, jA (λ). The deviation between
them vanishes only by attaining a complete statistics for each
admissible value of q jB, jA (λ). This latter condition can be in
principle realized, but likely a quite long system dynamical
evolution could be required.

The probability distribution of a sum of n i.i.d. random
terms can be always written as an exponential, linearly de-
caying in n with n large. In particular, regarding Prob(lθm, j ), it
is given by an exponential distribution decaying in the number
m of projective measurements (see the Appendix B for more
details), i.e.,

Prob
[
lθm, j (�o, �λ)

] � exp
{ − m I

[
lθm, j (�o, �λ)/m

]}
. (8)

In Eq. (8), the function I (lθm, j /m), also called the rate function
associated to the probability distribution Prob(lθm, j ), equals to

I
(
lθm, j /m

) ≡
dπ∑

jB, jA=1

∫
λ

f jB, jA (λ) ln

(
f jB, jA (λ)

p jB, jA (λ)

)
dλ, (9)

where f jB, jA (λ) ≡ n jB, jA (λ)/m for each set ( jB, jA, λ) of
system parameters. The rate function I (lθm, j /m) is the
Kullback-Leibler distance (or relative entropy) between the
set { f jB, jA (λ)} of scaled relative frequencies and the set of
probabilities {p jB, jA (λ)} and, thus, has the properties to be
positive and convex. Equation (8) is valid in the limit of m
large and indicates a unique nonequilibrium weighted parti-
tion of the system configuration space (see the Appendix B
for the proof). For a small value of m, indeed, the distribution
Prob(lθm, j ) cannot be uniquely determined. The latter can be
considered as a universal property of any dynamical evolu-
tions given by the composition of quantum maps and projec-
tions. The alternative LD expression of Eq. (8), providing the
formal definition of I (lθm, j /m), is

lim
m→∞ − 1

m
ln Prob

[
lθm, j (�o, �λ)

] = I
[
lθm, j (�o, �λ)/m

]
, (10)

where the number m of measurements is assumed ideally infi-
nite. If Eq. (10), also called the large-deviation approximation,
holds, it means that the dominant behavior of Prob(lθm, j ) is
convergent and identically equal to a decaying exponential
in m.

As last, through the contraction principle [40], the distribu-
tion Prob[pθm, j (�o, �λ)] is obtained:

Prob
[
pθm, j (�o, �λ)

] =
∫

Prob
[
lθm, j (�o, �λ)

]
δ
(
lθm, j − ln pθm, j

)
d lθm, j .

(11)
Then, by applying the saddle-point method [41], one has that

Prob
[
pθm, j (�o, �λ)

] � exp
{ − m J

[
pθm, j (�o, �λ)/m

]}
, (12)

where

J
[
pθm, j (�o, �λ)/m

] ≡ min
lθ j : lθ j = ln pθ j

I
[
lθm, j (�o, �λ)/m

]
. (13)

The result is that a quantum system exhibiting stochastic
evolutions (e.g., due to random interactions with the envi-
ronment) and repeatedly monitored by an observer tends to
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FIG. 2. Experimental proposal: Exact quantum observable statistics of a 2LS with stochastic Hamiltonian. (a) Theoretical most probable
values p�

θ1
and p�

θ2
as a function of m compared with different values of the probability pθ1 , which has been numerically obtained from

single realizations of the system transformation. (b) Time behavior of system populations ρ (11) and ρ (22) by numerically solving the stochastic
evolution of the 2LS for one realization of �o and �ϕ. (c) Plot of ln(pθ1 )/m from data of inset (a). (d) Histogram of pθ1 , with m = 14 × 103, over
20 × 103 repetitions of the system dynamics.

reach in probability a unique configuration defined by specific
probability distributions of its characteristic parameters.

Most probable distribution

The expression of the most probable distribution of �’s
outcomes is here discussed. In general, from the knowledge
of the rate function I (ξ/m) associated to Prob(ξ ), we can then
compute the most probable value ξ�, representing the best
prediction for the random variable ξ in a single realization of
the system dynamics. Specifically, the most probable value of
the log-conditional probability lθm, j (�o, �λ), i.e., l�

θm, j
, is obtained

by evaluating the value at which the rate function I (lθm, j /m) is
minimized as a function of lθm, j . As proved in the Appendix C,
the closed-form expression of l�

θm, j
is

l�
θm, j

= m
dπ∑

jB, jA=1

∫
λ

p jB, jA (λ) ln q jB, jA (λ) dλ, (14)

corresponding to the statement that njB, jA (λ) = m pjB, jA (λ)
for every ( jB, jA, λ). This means that for large m the most
probable trajectories of the system dynamics are those allow-
ing for the equality between the scaled relative frequencies
f jB, jA (λ) and the occurrence probabilities p jB, jA (λ). Only this
condition minimizes the relative Shannon entropy between
the configurations induced by the stochastic dynamics of the
system. Once more, it is worth observing the importance of
imposing m → ∞; indeed, the value of the scaled relative
frequencies f jB, jA can get closer to that of the probabilities
p jB, jA only if the number of configurations generated by the
stochasticity within the dynamics is as large as possible.
Finally, to derive the most probable value of the conditional
probabilities p�

θm, j
, we use again the contraction principle from

LD theory, but this time on the functional relation between lθm, j

and pθm, j , i.e., pθm, j = elθm, j :

p�
θm, j

= exp

⎛⎝m
dπ∑

jB, jA=1

∫
λ

p jB, jA (λ) ln q jB, jA (λ) dλ

⎞⎠. (15)

V. DISCUSSION

Having proved that the nonequilibrium statistics of an
arbitrary observable obeys the LD principle for a sufficiently
large number of intermediate projection events, the answer
to the original question is given by the distribution of �’s
outcomes with occurrence conditional probabilities equal to
p�

θm, j
. Such a distribution is denoted as the most probable

distribution [see, e.g., Fig. 2(a) inset]:

Prob�(θ ) ≡ 1

N
∑

j

δ(θ − θm, j )p�
θm, j

, (16)

which has to be normalized by the factor N so as to ensure
that

∫
Prob�(θ )dθ = 1. Accordingly, the predictions about the

result of single-shot measurements from � according to the
most probable distribution Prob�(θ ) are expected to be more
accurate than the ones that we would obtain by directly com-
puting the expectation value of the measurement outcomes.
This is because large fluctuations within the evolution of the
system are now properly weighted and thus correctly included
in the outcome distributions. In this regard, also quantum
noise sensing techniques [42] could be used, so as to improve
the a priori information on p(λ).

In conclusion, the average pθm, j
being explicitly equal to

〈
pθm, j (�o, �λ)

〉 =
⎛⎝ dπ∑

jB, jA=1

∫
λ

p jB, jA (λ)q jB, jA (λ)dλ

⎞⎠m

, (17)

one can observe a deviation between the most probable values
p�

θm, j
and the probabilities pθm, j

to measure on average the out-
come θm, j at the final time instant tm. Specifically, by applying
Jensen’s inequality to p�

θm, j
and pθm, j

, the inequality p�
θm, j

�
pθm, j

is obtained. The latter well justifies the introduction of
the normalization factor N in Eq. (16). In fact, the normaliza-
tion of Prob�(θ ) has to be ensured, and the values of the p�

θm, j
’s

are thus corrected by dividing for N ≡ ∑
j p�

θm, j
� 1, so that

p�
θm, j

/N = 1 − (
∑

k, k �= j p�
θm,k

)/N , ∀ j = 1, . . . , dim(H).
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VI. EXPERIMENTAL PROPOSAL

Let us consider a two-level system (2LS) with Hamiltonian
H = 1

2ω(cos ϕσz − sin ϕσx ), with ω = 11 (in natural units
so that h̄ = 1) and σx and σz Pauli matrices. This system,
realized, e.g., within a Bose-Einstein condensate of rubidium
atoms confined by a magnetic microtrap as in [5], is intrin-
sically stochastic due to random fluctuations of the angle ϕ.
They can be produced, for example, by a random coupling
between the system and the laser source that coherently drives
it. In particular, we assume sampling of ϕ from the Rayleigh
probability distribution p(ϕ) = (ϕ/σ 2) exp[−ϕ2/(2σ 2)] with
scale parameter σ = 1. Then, the 2LS, starting from the
ground |0〉, is monitored by a sequence of m repeated projec-
tive measurements. They are separated by the constant time
interval τ = 0.05 (in natural units) and defined by the projec-
tors �1 ≡ |0〉〈0| and �2 ≡ |1〉〈1|. After each dynamical evo-
lution with whole duration tm = mτ , the quantum observable

� ≡
2∑

j=1

θ j�θ j = ρ (11)�1 + ρ (22)�2 (18)

is measured, where the measurement outcomes θ1 ≡ ρ (11)

and θ2 ≡ ρ (22) = 1 − ρ (11) identify the percentage of system
population, respectively, in the ground and excited states:
|0〉 and |1〉, respectively. Notice that, S being a 2LS, we
analyze the fluctuations of only the conditional probability
pθ1 (�o, �ϕ) ≡ Tr[�θ1ρm,�o,�ϕ].

In Fig. 2(a) we show the most probable values of pθ1 ,
i.e., p�

θ1
(solid red curve), which has been computed by

plotting the analytical expression of Eq. (15) as a function
of m. The following procedure has been followed. First, we
have numerically computed the probabilities pθ1 [blue points
in Fig. 2(a)] to measure the measurement outcome θ1 after
each realization of the system stochastic transformation [see
Fig. 2(b) inset]. Then, we have derived the quantity ln(pθ1 )/m,
by distinguishing between values of pθ1 smaller [dotted blue
curve in Fig. 2(c) inset] and greater [dashed red curve in
Fig. 2(c) inset] than 1/2. As it can be observed, only the dotted
blue curve is practically constant for m � 700 and equal to
X � −4.22 × 10−6. In particular, from the theoretical find-
ings, we can state that for m large ln(p�

θ1
) � mX [solid red

curve in Fig. 2(a)] with

X ≡
∑
jB, jA

∫
p jB, jA (ϕ) ln

[
q jB, jA (ϕ)

]
dϕ, i.e., (19)

X = 1

Nmeas

∫
dϕp(ϕ)

1∑
k, j=0

ln |〈k|U (ϕ)| j〉|2 (20)

for this specific example, where U (ϕ) ≡ exp[−iH (ϕ)τ ] and
Nmeas encodes the occurrence probabilities of the intermedi-
ate quantum measurement projectors. As a further test, we
have numerically obtained the probability distribution of pθ1

[Fig. 2(d) inset] with m = 14 × 103, by repeating 20 × 103

times the dynamics of the system, and computed the value
of ppeak

θ1
at which Prob(pθ1 ) admits the peak; we measured

ppeak
θ1

= 0.0736 and an average value pθ1
= 0.5016. This value

should equal to the most probable value p�
θ1

and this has
been effectively verified by the numerics, since from the solid
red curve in Fig. 2(a) we find for m = 14 × 103 the value
p�

θ1
= 0.0731.

VII. CONCLUSIONS

These results combine out-of-equilibrium quantum sys-
tems with statistical mechanics methods: They are expected
to be a tool to defeat noise in a quantum system, since they
provide predictions of the stochastic evolution of the system
after the single realization.
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APPENDIX A: MEASUREMENT CONDITIONAL
PROBABILITIES

Let us express the measurement projectors �μα
applied

at time instants tα and α = 1, . . . , m as a function of their
eigenvectors |πμα

〉, i.e., �μα
≡ |πμα

〉〈πμα
|, with μ ∈ {θ, o}.

Thus, by substituting the definition of the measurement su-
peroperators Pθm and Poα

into the equation

pθm (�o, �λ) ≡ Tr
[
PθmUmPom−1Um−1 · · ·Po1U1[ρ0]

]
, (A1)

the conditional probability pθm, j (�o, �λ) can be written as the
product of the transition probabilities (random terms) that the
quantum state moves from |πμα−1〉 to |πμα

〉 via the unitary
operator Uα (λα ):

pθm, j (�o, �λ) = Tr
[
�θm, jUm�om−1Um−1 · · · �o1U1ρ0U

†
1 �o1 · · ·U †

m−1�om−1U
†
m�θm, j

]
= Tr

[∣∣πθm, j

〉〈
πθm, j

∣∣Um

∣∣πom−1

〉〈
πom−1

∣∣Um−1 · · · ∣∣πo1

〉〈
πo1

∣∣U1ρ0U
†
1

∣∣πo1

〉〈
πo1

∣∣ · · ·U †
m−1

∣∣πom−1

〉〈
πom−1

∣∣U †
m

∣∣πθm, j

〉〈
πθm, j

∣∣]
= 〈

πo1

∣∣U1ρ0U
†
1

∣∣πo1

〉 · m−1∏
k=2

∣∣〈πok−1

∣∣Uk

∣∣πok

〉∣∣2 · ∣∣〈πom−1

∣∣Um

∣∣πθm, j

〉∣∣2
. (A2)
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ρ0 is the initial density matrix of the open quantum system
S before the transformation induced by random interactions
with the environment E and the monitoring by an observer.
Moreover, we also assume that ρ0 is defined by the pure
state |π0〉, i.e., ρ0 ≡ |π0〉〈π0|. For example, this assumption
is verified when the measurement outcomes at the final time
tm are obtained by a two-time measurement scheme [8]. In
such a case, indeed, ρ0 is the density matrix of S after the first
measurement of the scheme, and thus it is described only by
a pure state. Therefore, under this further hypothesis, one has
that 〈πo1 |U1ρ0U

†
1 |π01〉 = |〈π0|U1|π01〉|2, so that

pθm, j (�o, �λ) =
m∏

α=1

∣∣〈πμα−1

∣∣Uα (λα )
∣∣πμα

〉∣∣2
, (A3)

with πμ0 ≡ π0 and μα ≡ oα for α = 1, . . . , m − 1 and πμm ≡
πθm, j .

APPENDIX B: DERIVATION OF Prob[lθm, j (�o,�λ)]
VIA LD THEORY

The log probability lθm, j (�o, �λ) is the logarithm of the condi-

tional probability pθm, j (�o, �λ) defining the probability to obtain
the jth measurement outcome θm, j at the time instant tm,
conditioned to the specific realizations of the sequences �o and
�λ. More formally,

lθm, j (�o, �λ) ≡ ln pθm, j (�o, �λ) =
m∑

α=1

ln qα (μα−1, μα, λα )

=
m∑

α=1

ln
(∣∣〈πμα−1

∣∣Uα (λα )|πμα

〉∣∣2)
. (B1)

For the sake of clarity, let us assume the following two
hypotheses.

(i) p(λ) is assumed to be a dλ-dimensional Bernoulli
distribution, with the result that at each time instant tα the
parameter λα takes on dλ possible values λ(1), . . . , λ(dλ ) with
corresponding probabilities p(1)

λ , . . . , p(dλ )
λ so that

∑dλ

i=1 p(i)
λ =

1. The index i denotes the values that can be assumed by λ.
(ii) The measurement bases of � and O, given by the set of

eigenvectors {|πμα
〉}, belong to a set of finite dimension and

this means that each ket |πμα
〉 admits only a finite number dπ

of elements |π ( j)〉 with probability pπ . Notice that the index
for the dimensionality of the measurement basis configura-
tions, as well as of H, is j.

By following a common procedure in LD theory, we group
the terms of lθm, j (�o, �λ) as a function of the number of times
(relative frequencies) each dynamical transition probability
q jB,i, jA ≡ |〈π ( jB )|U (λ(i) )|π ( jA )〉|2 occurs during the transfor-
mation of the system. We denote with n jB,i, jA the relative fre-
quencies for the occurrence of the qjB,i, jA ’s. The correspond-
ing occurrence probabilities, instead, are denoted as pjB,i, jA .
Over many realizations of the system transformation, one
can reasonably assume that pπ is sampled by a uniform dis-
tribution, such that pπ = 1/dπ and p jB,i, jA ≡ p( jB )

π p(i)
λ p( jA )

π =
p(i)

λ /d2
π . The latter procedure directly leads to the analytical

expression of lθm, j (�o, �λ), i.e.,

lθm, j (�o, �λ) =
dπ∑

jB=1

dλ∑
i=1

dπ∑
jA=1

n jB,i, jA ln q jB,i, jA . (B2)

Equation (B2) shows us that lθm, j (�o, �λ) can be written as the
sum of the i.i.d. dynamical transition probabilities q jB,i, jA ,
weighted by the relative frequencies njB,i, jA corresponding
to the occurrence statistics of the qjB,i, jA ’s. Notice that the
relative frequencies n jB,i, jA are usually different from the
corresponding probability values pjB,i, jA . Then, by taking
Eq. (B2), the distribution probability of lθm, j (�o, �λ) is given by

Prob
[
lθm, j (�o, �λ)

]
= m!∏

jB,i, jA
n jB,i, jA !

∏
jB,i, jA

(
p jB,i, jA

)n jB ,i, jA

× δ

⎡⎣lθm, j (�o, �λ) −
∑

jB,i, jA

n jB,i, jA ln q jB,i, jA

⎤⎦, (B3)

where δ(·) denotes the Kronecker delta. Let us observe
that in Eq. (B3), to simplify the notation, we have used
the symbols

∑
jB,i, jA

and
∏

jB,i, jA
to denote, respectively,∑dπ

jB=1

∑dλ

i=1

∑dπ

jA=1 and
∏dπ

jB=1

∏dλ

i=1

∏dπ

jA=1. Then, by impos-
ing in Eq. (B3) the condition given by the Kronecker delta,
one has that

Prob
[
lθm, j (�o, �λ)

] = m!∏
jB,i, jA

n̂ jB,i, jA !

∏
jB,i, jA

(
p jB,i, jA

)̂n jB ,i, jA ,

(B4)

where the relative frequencies n̂ jB,i, jA ’s have to satisfy the
following constraints:∑

jB,i, jA

n jB,i, jA = m

lθm, j (�o, �λ) =
∑

jB,i, jA

n jB,i, jA ln q jB,i, jA . (B5)

By combining together the constraints (B5), we obtain a
unique constraint equation for lθm, j , i.e.,

lθm, j (�o, �λ) = m ln qdπ ,dλ,dπ
−

∑̃
jB,i, jA

n̂ jB,i, jAγ jB,i, jA , (B6)

where

γ jB,i, jA ≡ ln qdπ ,dλ,dπ

ln q jB,i, jA

. (B7)

It is worth observing that in deriving the constraint (B6)
we have chosen (dπ , dλ, dπ ) as the reference triplet of the
configuration space that defines the stochastic trajectory of
the system dynamics in a single realization. This choice is
arbitrary and represents a degree of freedom of the proce-
dure. However, that is not surprising because the number of
constraints of formula (B5) is smaller than the number of
relative frequencies n jB,i, jA , so that the values of n̂ jB,i, jA that
satisfy Eq. (B4) are generally not uniquely determined. This
means that in order to obtain a unique analytical expression
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of Prob[lθm, j (�o, �λ)] we need to answer the following question:
Which are the unique values of the relative frequencies n̂ jB,i, jA
obeying the constraint equation (B6)? By generalizing the
results in [33], we can prove that there exists a unique value for
the n̂ jB,i, jA ’s, under the hypothesis of a sufficiently large number
m of intermediate projective measurements. To see this, let us
consider the product n̂a,b,cγa,b,c with generic indices (a, b, c):

n̂a,b,cγa,b,c = m
[

ln qdπ ,dλ,dπ
− lθm, j (�o, �λ)/m

]
−

∑̃
jB,i, jA; ( jB,i, jA )�=(a,b,c )̂

n jB,i, jAγ jB,i, jA , (B8)

i.e.,

n̂a,b,c

m
= ln qdπ ,dλ,dπ

− lθm, j (�o, �λ)/m

γa,b,c

−
∑̃

jB,i, jA; jB �=a,i �=b, jA �=ĉ

n jB,i, jA
n̂ jB,i, jA

m

γ jB,i, jA

γa,b,c
. (B9)

n̂ jB,i, jA ’s being relative frequencies, it still holds that

lim
m→∞

n̂ jB,i, jA

m
= 0 (B10)

for each triplet ( jB, i, jA) except (a, b, c), with the result that

n̂a,b,c

m
� ln qdπ ,dλ,dπ

− lθm, j (�o, �λ)/m

γa,b,c

= 1

Nsf

(
ln qdπ ,dλ,dπ

− lθm, j (�o, �λ)/m

γa,b,c

)
, (B11)

with Nsf denoting the corresponding scaling factor. Thus, this
means that for large m

n̂a,b,cγa,b,c � m ln qdπ ,dλ,dπ
− lθm, j (�o, �λ)

Nsf
= const (B12)

for each triplet (a, b, c). Equation (B12) is a quite im-
portant result, since it denotes the existence of a unique
nonequilibrium weighted partition of the system configuration
space, once we have fixed the reference triplet (dπ , dλ, dπ ).
Such a property is thus the key point for the derivation of
Prob[lθm, j (�o, �λ)]. In particular, by summing together the terms
n̂a,b,cγa,b,c over all the possible values that can be assumed by
(a, b, c) except for the triplet (dπ , dλ, dπ ), we find that∑̃
jB,i, jA

n̂ jB,i, jAγ jB,i, jA � (dtot − 1)

Nsf

[
m ln qdπ ,dλ,dπ

− lθm, j (�o, �λ)
]
,

(B13)

where dtot ≡ 2dπ + dλ is the dimension of the statistical en-
semble defining the stochastic transformation of the system
from t0 to tm. Therefore, by comparing Eqs. (B6) and (B13),
one can state that Nsf = dtot − 1, so that for m sufficiently
large

n̂a,b,c � m ln qdπ ,dλ,dπ
− lθm, j (�o, �λ)

(dtot − 1)γa,b,c
. (B14)

Once we have obtained a closed solution for the value of
the relative frequencies obeying the constraints (B5), we are
able to validate the exponential approximation given by the
large-deviation principle for the probability distribution of
lθm, j in the thermodynamic limit of m → ∞. To practically

derive the LD form of Prob[lθm, j (�o, �λ)], just take Eq. (B4) and
apply the Stirling approximation on ln(m!) and ln(̂njB,i, jA !),
which is valid again in the limit of large m:

Prob
[
lθm, j (�o, �λ)

] = exp

⎛⎝ln(m!) −
∑

jB,i, jA

ln
(̂
n jB,i, jA !

) +
∑

jB,i, jA

n̂ jB,i, jA ln p jB,i, jA

⎞⎠
� exp

⎛⎝m ln m − m −
∑

jB,i, jA

n̂ jB,i, jA ln n̂ jB,i, jA +
∑

jB,i, jA

n̂ jB,i, jA +
∑

jB,i, jA

n̂ jB,i, jA ln p jB,i, jA

⎞⎠
= exp

⎛⎝m ln m −
∑

jB,i, jA

n̂ jB,i, jA ln n̂ jB,i, jA +
∑

jB,i, jA

n̂ jB,i, jA ln p jB,i, jA

⎞⎠. (B15)

Then, by substituting the expression of n̂ jB,i, jA ’s given by
Eq. (B14), after straightforward calculations one finds that

Prob
[
lθm, j (�o, �λ)

] � exp
{ − m I

[
lθm, j (�o, �λ)/m

]}
, (B16)

where

I
[
lθm, j (�o, �λ)/m

] =
dπ∑

jB=1

dλ∑
i=1

dπ∑
jA=1

f jB,i, jA ln

(
f jB,i, jA

p jB,i, jA

)
(B17)

is the rate function associated to the probability distribution
Prob[lθm, j (�o, �λ)]. In particular, in Eq. (B17),

f jB,i, jA ≡ ln qdπ ,dλ,dπ
− lθm, j (�o, �λ)/m

(dtot − 1)γ jB,i, jA

(B18)

for each triplet ( jB, i, jA) �= (dπ , dλ, dπ ), while

fdπ ,dλ,dπ
≡ 1 −

∑̃
jB,i, jA

f jB,i, jA . (B19)
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As a final remark, given the generic triplet (a, b, c), it is worth
noting that fa,b,c and the relative frequency n̂a,b,c are simply
related by the following equation:

fa,b,c = n̂a,b,c

m
. (B20)

APPENDIX C: MOST PROBABLE DISTRIBUTION l�
θm, j

Here, the most probable value l�
θm, j

of the log-conditional

probability lθm, j (�o, �λ) is derived. The latter is obtained by
evaluating the value at which the rate function I (lθm, j /m) of
Eq. (B17) is minimized as a function of lθm, j in the thermody-
namic limit of m → ∞. I (lθm, j /m) is a positive and convex
function (see Appendix B) and lθm, j is given by a convex
sum of the dynamical transition probabilities qjB,i, jA . Thus, a
sufficient condition for its minimization is that the identities

∂I[lθm, j (�o, �λ)/m]

∂ ln q jB,i, jA

∣∣∣∣∣
lθm, j (�o,�λ)=l�θm, j

= 0 (C1)

[computed in correspondence to lθm, j (�o, �λ) = l�
θm, j

] are all si-
multaneously verified for each triplet ( jB, i, jA). If we per-
form the derivative of I (lθm, j /m) with respect to ln q jB,i, jA , then
we find that the identities (C1) for the triplets ( jB, i, jA) apart
from (dπ , dλ, dπ ) can be equivalently written by means of a
unique equation, i.e.,

pdπ ,dλ,dπ
f jB,i, jA = p jB,i, jA

⎛⎝1 −
∑̃

jB,i, jA

f jB,i, jA

⎞⎠. (C2)

By summing both sides over ( jB, i, jA), we get

pdπ ,dλ,dπ

∑̃
jB,i, jA

f jB,i, jA =
⎛⎝1 −

∑̃
jB,i, jA

f jB,i, jA

⎞⎠ ∑̃
jB,i, jA

p jB,i, jA ,

(C3)

which, by using
∑

jB,i, jA
p jB,i, jA = 1, gives∑̃

jB,i, jA

f jB,i, jA =
∑̃

jB,i, jA

p jB,i, jA . (C4)

It is worth observing that Eq. (C4) represents the condition
for the minimization of the rate function I[lθm, j (�o, �λ)/m] with
respect to lθm, j . This means that the most probable trajectories
of the system dynamics are those allowing for the equality
between the summations of the relative frequencies f jB,i, jA and
the occurrence probabilities pjB,i, jA , respectively. Therefore,
this also implies that in general the same value of l�

θm, j
can be

obtained by more than one trajectory within the configuration
space of the system, each of them corresponding to a different
realization of the stochastic dynamics of the system.

By combining Eq. (C4) with the expression of lθm, j (�o, �λ) =∑dπ

jB, jA=1

∫
λ

n jB, jA (λ) ln q jB, jA (λ)dλ, using Eqs. (B7) and

(B18) and substituting lθm, j (�o, �λ) with l�
θm, j

, one has that(
ln qdπ ,dλ,dπ

−
l�
θ j,m

m

)

= (dtot − 1)

⎛⎝1 −
∑̃

jB,i, jA

p jB,i, jA

⎞⎠ p jB,i, jA

pdπ ,dλ,dπ

γ jB,i, jA (C5)

for each triplet ( jB, i, jA) �= (dπ , dλ, dπ ). If we extend
Eq. (C4) by assuming that f jB,i, jA = p jB,i, jA ∀ ( jB, i, jA), then

p jB,i, jAγ jB,i, jA

pdπ ,dλ,dπ

= f jB,i, jAγ jB,i, jA

pdπ ,dλ,dπ

= const. (C6)

Since Eqs. (C5) have to be verified for each triplet of the
system configuration space, this means that Eqs. (C5) are
identically equivalent to the relation

l�
θm, j

m
= ln qdπ ,dλ,dπ

−
⎛⎝1 −

∑̃
jB,i, jA

p jB,i, jA

⎞⎠⎛⎝ ∑̃
jB,i, jA

p jB,i, jA

pdπ ,dλ,dπ

γ jB,i, jA

⎞⎠,

(C7)

finally providing us the analytical expression of the most
probable distribution l�

θm, j
as given by Eq. (14).
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Characterization of Dynamical Phase Transitions in Quantum
Jump Trajectories beyond the Properties of the Stationary State,
Phys. Rev. Lett. 110, 150401 (2013).

[31] S. Pigeon, L. Fusco, A. Xuereb, G. De Chiara, and M.
Paternostro, Thermodynamics of trajectories of a quantum har-
monic oscillator coupled to N baths, Phys. Rev. A 92, 013844
(2015).

[32] M. Collura and F. H. L. Essler, How order melts after quantum
quenches, arXiv:1901.04402.

[33] S. Gherardini, S. Gupta, F. S. Cataliotti, A. Smerzi, F. Caruso,
and S. Ruffo, Stochastic quantum zeno by large deviation
theory, New J. Phys. 18, 013048 (2016).

[34] S. Gherardini, Noise as a resource. Ph.D. thesis, University of
Florence, 2018, arXiv:1805.01800.

[35] The introduction of semiclassical fluctuations during the evolu-
tion of the system is responsible for the modeling of the effects
on its reduced dynamics given by tracing out the environmental
degrees of freedom [7]. Instead, the local couplings between
the system and the environment are described by a sequence of
projective measurements [34].

[36] J. J. Sakurai, Modern Quantum Mechanics (Addison Wesley
Longman, Revised Edition, 1994).

[37] F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Quantum
channels and memory effects, Rev. Mod. Phys. 86, 1203 (2014).

[38] S. Gherardini, L. Buffoni, M. M. Mueller, F. Caruso, M.
Campisi, A. Trombettoni, and S. Ruffo, Nonequilibrium
quantum-heat statistics under stochastic projective measure-
ments, Phys. Rev. E 98, 032108 (2018).

[39] B. Mukherjee, K. Sengupta, and S. N. Majumdar, Quantum
dynamics with stochastic reset, Phys. Rev. B 98, 104309 (2018).

[40] The contraction principle allows us to put in relation the proba-
bility distributions in LD form of two distinct quantities, one as
a function of the other, by means of a continuous function.

[41] R. Wong, Asymptotic Approximations of Integrals: Computer
Science and Scientific Computing (Academic, New York, 1989).

[42] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing,
Rev. Mod. Phys. 89, 035002 (2017).

062105-9

https://doi.org/10.1038/s41467-018-05239-9
https://doi.org/10.1038/s41467-018-05239-9
https://doi.org/10.1038/s41467-018-05239-9
https://doi.org/10.1038/s41467-018-05239-9
https://doi.org/10.1103/PhysRevLett.111.093602
https://doi.org/10.1103/PhysRevLett.111.093602
https://doi.org/10.1103/PhysRevLett.111.093602
https://doi.org/10.1103/PhysRevLett.111.093602
https://doi.org/10.1103/PhysRevLett.89.080401
https://doi.org/10.1103/PhysRevLett.89.080401
https://doi.org/10.1103/PhysRevLett.89.080401
https://doi.org/10.1103/PhysRevLett.89.080401
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1126/science.1192739
https://doi.org/10.1126/science.1192739
https://doi.org/10.1126/science.1192739
https://doi.org/10.1126/science.1192739
https://doi.org/10.1103/PhysRevLett.121.220502
https://doi.org/10.1103/PhysRevLett.121.220502
https://doi.org/10.1103/PhysRevLett.121.220502
https://doi.org/10.1103/PhysRevLett.121.220502
https://doi.org/10.1038/ncomms5194
https://doi.org/10.1038/ncomms5194
https://doi.org/10.1038/ncomms5194
https://doi.org/10.1038/ncomms5194
https://doi.org/10.1038/nphys3076
https://doi.org/10.1038/nphys3076
https://doi.org/10.1038/nphys3076
https://doi.org/10.1038/nphys3076
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevX.5.021011
https://doi.org/10.1103/PhysRevX.5.021011
https://doi.org/10.1103/PhysRevX.5.021011
https://doi.org/10.1103/PhysRevX.5.021011
https://doi.org/10.1038/nphoton.2016.231
https://doi.org/10.1038/nphoton.2016.231
https://doi.org/10.1038/nphoton.2016.231
https://doi.org/10.1038/nphoton.2016.231
https://doi.org/10.1103/PhysRevA.88.042110
https://doi.org/10.1103/PhysRevA.88.042110
https://doi.org/10.1103/PhysRevA.88.042110
https://doi.org/10.1103/PhysRevA.88.042110
https://doi.org/10.1038/nature13559
https://doi.org/10.1038/nature13559
https://doi.org/10.1038/nature13559
https://doi.org/10.1038/nature13559
https://doi.org/10.1103/PhysRevA.92.032125
https://doi.org/10.1103/PhysRevA.92.032125
https://doi.org/10.1103/PhysRevA.92.032125
https://doi.org/10.1103/PhysRevA.92.032125
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1023/A:1019766826534
https://doi.org/10.1023/A:1019766826534
https://doi.org/10.1023/A:1019766826534
https://doi.org/10.1023/A:1019766826534
https://doi.org/10.1007/s10955-004-3452-4
https://doi.org/10.1007/s10955-004-3452-4
https://doi.org/10.1007/s10955-004-3452-4
https://doi.org/10.1007/s10955-004-3452-4
https://doi.org/10.1103/PhysRevLett.104.160601
https://doi.org/10.1103/PhysRevLett.104.160601
https://doi.org/10.1103/PhysRevLett.104.160601
https://doi.org/10.1103/PhysRevLett.104.160601
https://doi.org/10.1103/PhysRevLett.110.150401
https://doi.org/10.1103/PhysRevLett.110.150401
https://doi.org/10.1103/PhysRevLett.110.150401
https://doi.org/10.1103/PhysRevLett.110.150401
https://doi.org/10.1103/PhysRevA.92.013844
https://doi.org/10.1103/PhysRevA.92.013844
https://doi.org/10.1103/PhysRevA.92.013844
https://doi.org/10.1103/PhysRevA.92.013844
http://arxiv.org/abs/arXiv:1901.04402
https://doi.org/10.1088/1367-2630/18/1/013048
https://doi.org/10.1088/1367-2630/18/1/013048
https://doi.org/10.1088/1367-2630/18/1/013048
https://doi.org/10.1088/1367-2630/18/1/013048
http://arxiv.org/abs/arXiv:1805.01800
https://doi.org/10.1103/RevModPhys.86.1203
https://doi.org/10.1103/RevModPhys.86.1203
https://doi.org/10.1103/RevModPhys.86.1203
https://doi.org/10.1103/RevModPhys.86.1203
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevE.98.032108
https://doi.org/10.1103/PhysRevB.98.104309
https://doi.org/10.1103/PhysRevB.98.104309
https://doi.org/10.1103/PhysRevB.98.104309
https://doi.org/10.1103/PhysRevB.98.104309
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002

