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• Nonequilibrium systems driven in steady states are modelled by Markov processes.
• Observables of these systems are defined as time-integrated functionals of their states.
• Techniques based on spectral methods are presented to obtain the large deviation functions of these observables characterizing their

fluctuations in the long-time limit.
• In many cases the large deviation spectral problem reduces to solving a Schrödinger-type equation.
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a b s t r a c t

These notes give a summary of techniques used in large deviation theory to study the fluc-
tuations of time-additive quantities, called dynamical observables, defined in the context of
Langevin-type equations, which model equilibrium and nonequilibrium processes driven
by external forces and noise sources. These fluctuations are described by large deviation
functions, obtained by solving a dominant eigenvalue problem similar to the problem
of finding the ground state energy of quantum systems. This analogy is used to explain
the differences that exist between the fluctuations of equilibrium and nonequilibrium
processes. An example involving the Ornstein–Uhlenbeck process is worked out in detail
to illustrate these methods. Exercises, at the end of the notes, also complement the theory.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Myaim in these notes is to give an introduction to large deviation techniques used to calculate the probability distribution
of physical quantities, called dynamical observables, which are time-integrated functionals of Markov processes. These
observables have come to play in the last years an important role in the context of nonequilibrium systems, and the recent
discovery of fluctuation symmetries (also called fluctuation relations) generally satisfied by these systems. They also appear
naturally when defining energy-like quantities, such as work and heat, in the context of noisy systems modelled by Markov
processes, a field of research commonly referred to now as stochastic thermodynamics (see Seifert’s contribution to this
volume).

The results covered are known in large deviation theory, but are not widespread, certainly not in statistical physics, and
cannot be found all put together in a single reference. The invitation to lecture at the FPSP School (to which I participated as

* Correspondence to: National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa.
E-mail address: htouchet@alum.mit.edu.

https://doi.org/10.1016/j.physa.2017.10.046
0378-4371/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2017.10.046
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.10.046&domain=pdf
mailto:htouchet@alum.mit.edu
https://doi.org/10.1016/j.physa.2017.10.046


6 H. Touchette / Physica A 504 (2018) 5–19

a student in 2005) offers a good opportunity to summarize them by appealing to what physics students know best: quantum
mechanics.

The link with quantum mechanics is a natural one because all large deviation calculations related to time-additive
functionals ofMarkov processes reduce, when one does not consider the low-noise limit, to an eigenvalue calculation, which
is very close in spirit to finding the energy levels of a quantum system and, particularly, its ground state energy. For this
reason, it is not surprising to see many techniques of quantum mechanics (such as the Bethe ansatz and the density matrix
renormalization group) being applied to study the fluctuations of nonequilibrium processes. In a way, if you know quantum
mechanics, you also know Markov processes.

Compared to quantum systems, however, there is a fundamental difference that arises when dealing with Markov
processes, namely, that the operator or matrix that we must consider to study their steady state and fluctuations is, in
general, not Hermitian. This raises many technical but important questions, which are precisely the questions that are hard
to find in the literature, such as:

• What can we say in general about the spectrum of non-Hermitian operators?
• Under what conditions is that spectrum real?
• Which function space must we use to solve the eigenvalue problem?
• What are the boundary conditions for the eigenfunctions?
• What is their normalization?
• What distinguishes equilibrium from nonequilibrium processes in terms of fluctuations, dynamical or otherwise?

The fact that we have to deal with non-Hermitian operators is the main reason why studying nonequilibrium processes
is more challenging than studying equilibrium processes, but at the same time so much more interesting. We are far from
completely understanding nonequilibrium systems, and I do not believe, in fact, that there is or will be a general theory of
these systems (not at least in thewaymany physicists picture it). But I do believe that having a goodmathematical grounding
in the subject — at least as good as the one we expect in quantum mechanics or any modern physics subject — is necessary
for making progress.

Obviously, such a pedagogical goal cannot be achieved in 15 pages of notes (a book is in progress), so I decided to focus
here on Langevin-type equations modelling noisy systems driven by external forces and baths, sacrificing mathematical
rigor, as always, for clarity. With this, one should keep in mind that all the results discussed can be applied more generally
(sometimes with minor modifications) to a large class of Markov processes, including Markov chains and Markov jump
processes. Some references and exercises on those are given in the text.

2. Markov processes

2.1. Stochastic differential equations

We consider throughout these notes Markov processes defined by the following stochastic differential equation (SDE):

dXt = F (Xt )dt + σdWt , (1)

where

• Xt is a vector inRn representing the state of the system at the time t . Note thatwe do not use bold symbols to represent
vectors.

• F : Rn
→ Rn is a vector field that drives the deterministic evolution of Xt when there is no noise (σ = 0). We call this

function the force or the drift of the system. It can explicitly depends on time, for example, by having F (Xt , t), but we
do not consider this possibility here.

• Wt is a vector of independent Brownian or Wiener motions, whose increments dWt are Gaussian-distributed with
zero mean and variance dt . In many applications,Wt is taken to have as many components as Xt , so thatWt ∈ Rn, but
it is also possible to haveWt ∈ Rm withm > n or m < n. For simplicity, we consider herem = n.

• σ is the noisematrix, assumed here not to depend on Xt to simplify the discussion. That matrix has dimensions n×m
to match the dimensions of Xt and Wt . ForWt ∈ Rn, it is an n × n matrix.

The SDE above governing the evolution of Xt (as an infinitesimal difference equation) is called inmathematics an Itô SDE.
For the purpose of these notes, we can consider Xt to be defined equivalently by a noisy ordinary differential equation
(ODE) having the more common form

Ẋt = F (Xt ) + σξt , (2)

where ξt is an n-dimensional Gaussian white noise corresponding formally to the time-derivative ofWt and defined by the
properties

⟨ξt⟩ = 0, ⟨ξ itξ
j
t ′⟩ = δijδ(t − t ′), (3)
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where i and j denote specific components of ξ (t) and ⟨·⟩ denotes the expectation or mean (with respect to whatever random
variable or process found in the brackets).

I assume in these notes that the reader knows that Brownian motion is nowhere differentiable, which explains why it is
preferable to express a diffusion process in the Itô rather than in the noisy ODE form. I also assume some familiarity with
stochastic calculus, though this is not essential, as long as one is aware that the rules for calculating derivatives and integrals
of stochastic processes differ slightly from those of normal calculus. For background references on SDEs and stochastic
calculus, see the Further reading section. Some important differences between stochastic and normal calculuswill be pointed
out along the notes.

2.2. State distribution and generator

The first natural problem to consider when studying aMarkov process is to determine its probability density P(Xt = x) =

p(x, t), starting from an initial density p(x, 0) that represents the distribution with which we sample the initial state X0. For
the general SDE shown in (1), that density is known to be given by the Fokker–Planck equation,

∂tp(x, t) = −∇ · (F (x)p(x, t)) +
1
2
∇ · D∇p(x, t), (4)

which involves the symmetric matrix D = σσ T , called the covariance matrix. To emphasize that this partial differential
equation (PDE) is linear, we can express it as

∂tp(x, t) = L†p(x, t), (5)

where

L† = −∇ · F +
1
2
∇ · D∇ (6)

is a linear differential operator called the Fokker–Planck generator. The analogywith the Schrödinger equation of quantum
mechanics should be obvious.

The Fokker–Planck equation can also be rewritten, as is well known, as a conservative equation involving the (vector)
probability current

Jt (x) = F (x)p(x, t) −
D
2

∇p(x, t), (7)

called the Fokker–Planck current, as

∂tp(x, t) + ∇ · Jt (x) = 0. (8)

This form is useful for interpreting the nature of the stationary probability density ps(x) satisfying

L†ps = 0 (9)

or equivalently ∇ · Js = 0, where Js is the stationary current associated with ps. This shows that ps(x) is the eigenfunction of
L† with eigenvalue 0. When the process Xt is ergodic, p(x, t) → ps(x) from any initial density as t → ∞.

For the next sections, it is useful to note that the Fokker–Planck equation also determines the evolution of expectations
of Xt having the general form

⟨f (Xt )⟩ =

∫
p(x, t)f (x)dx, (10)

where f is any smooth function of the process. Indeed, it can be proved using the natural inner product defined by the
expectation that

∂t⟨f (Xt )⟩ = ⟨(Lf )(Xt )⟩, (11)

where L is the adjoint of L† (see Appendix A). This operator, which is simply called the generator of Xt , acts on the function
f rather than the density p, as is explicit from the notation above, and is equal here to

L = F · ∇ +
1
2
∇ · D∇. (12)

This result is much less known in physics than the Fokker–Planck equation, though it is as important. It corresponds,
in a way, to the Heisenberg picture of quantum mechanics which describes the evolution of observables (after taking their
expectation), as opposed to the Schrödinger picturewhichdescribes the evolution of probabilities. The generatorwill become
useful for treating large deviations.
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Table 1
Comparison of equilibrium and nonequilibrium Markov processes in steady
states.

Equilibrium Nonequilibrium

Reversible Non-reversible
Js(x) = 0 Js(x) ̸= 0 although ∇ · Js = 0
Spectrum of L real Spectrum of L generally complex

2.3. Examples

There are many standard SDEs used in physics to model noisy systems driven by forces, external reservoirs, heat baths
and noise sources in general. The following is a representative list — for more examples, see the reading list in Section 2.6.

• Kramers or underdamped Langevin equation:

dqt =
pt
m

dt

dpt =

(
−∇V (qt ) + φt − Γ

pt
m

)
dt +

√
2Γ /β dWt , (13)

where qt is the position, pt the momentum, V (q) is a potential, Γ is the friction, φt is an external force, and β is
the inverse temperature of the thermal noise. The noise acts as a force in Newton’s equation and so only affects the
momentum, not the position.

• Overdamped Langevin equation:

dqt = Γ −1(−∇V + φt )dt +

√
2Γ −1/β dWt . (14)

This is an SDE for the position obtained by taking the overdamped (m → 0) limit of Kramers equation.
• Gradient SDEs:

dXt = −∇U(Xt )dt + σdWt (15)

with σ proportional to the identity matrix, that is, σ = ε11. The stationary density of this SDE is the Gibbs distribution

ps(x) = c e−2U(x)/ε2 , (16)

where c is a normalization constant (see Exercise 3).
• Linear diffusions:

dXt = −MXtdt + σdWt , (17)

whereM is an n × nmatrix assumed to be positive definite (positive eigenvalues) in order for Xt to have a stationary
density (see Exercise 4).

• Ornstein–Uhlenbeck process:

dXt = −γXtdt + σdWt (18)

with Xt ∈ R and Wt ∈ R. This is obviously a gradient SDE with quadratic potential U(x) = γ x2/2 having a Gibbs
stationary distribution with σ = ε.

2.4. Equilibrium versus nonequilibrium processes

The distinction between equilibrium and nonequilibrium systems in the context of stochastic processes is based on the
notion of time reversibility or, equivalently, detailed balance. It would take too much space to fully explain these notions,
so we only summarize them. The idea, essentially, is that a process is an equilibrium process if the probability of any
given trajectory is the same as the probability of that trajectory reversed in time. If that is not the case, then the process
is nonequilibrium.

For Markov processes, it can be proved that this definition of equilibrium in terms of ‘‘forward’’ and ‘‘backward’’
trajectories is equivalent to the notion of detailed balance, which is itself related (in most cases) to having a vanishing
probability current in the Fokker–Planck equation (see Exercise 2). Moreover, all of these notions are related in general
to the eigenvalues of the generator L.

We summarize these connections in Table 1, assuming that the process Xt is stationary, that is to say, it has a stationary
distribution and its initial condition X0 is drawn according to that distribution.
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Table 2
Comparison between Markov processes and quantum mechanics.

Markov Quantum

State Xt |ψ(t)⟩ or ψ(x, t)
Distribution p(x, t) |ψ(x, t)|2

Evolution Fokker–Planck Schrödinger
Generator L H (Hamiltonian)
Propagator U(t) = eL

† t U(t) = e−iHt/h̄

Inner product ⟨p, f ⟩ ⟨ψ,ψ⟩ = ⟨ψ |ψ⟩

Duality ⟨p, Af ⟩ = ⟨A†p, f ⟩ ⟨ψ, Aψ⟩ = ⟨Aψ,ψ⟩ = ⟨ψ |A|ψ⟩

Self-adjoint? Not necessarily Always

2.5. Comparison with quantum mechanics

It is useful at this point to reflect on the structure of Markov diffusions, especially the linear form of the Fokker–Planck
equation and its generator, by comparing it to what we know about the evolution of quantum systems — see Table 2.

From this table, you should see that the theory of Markov processes has much in common with quantum mechanics, as
announced in the introduction. Both are linear theories of evolution for a ‘‘vector’’ corresponding to the probability density
p(x, t) forMarkov processes and thewavefunctionψ(x, t) for quantum systems. As a result, the central object in both theories
is the generator of that evolution, which is the Fokker–Planck operator L† for Markov processes and the Hamiltonian H for
quantum systems.

The main difference between the two sides is that, unlike the Hamiltonian of closed quantum systems, the generator of
Markov processes is not always self-adjoint, a property deeply related to whether we are dealing with an equilibrium or
nonequilibrium process. This means, in practice, that we have to be careful when diagonalizing matrices or operators and
dealing, in general, with eigenvectors or eigenfunctions (see Appendix B).

2.6. Further reading

• SDEs and Langevin equations: [1]. For more technical yet readable presentations, see [2] and especially [3].
• Stochastic calculus: [1,4] for the theory and [5] for simulations.
• Theory ofMarkov processes focusingmore onMarkov chains and jumpprocesses (also called continuous-timeMarkov

chains): A very good reference, for its scope, clarity and number of exercises, is [6]. Though amaths textbook, it should
be compulsory reading for any serious students in statistical physics. For a leaner textbook, see [2].

• Fokker–Planck equation: [7].
• Stochastic processes with applications in physics: [8,9]. In my opinion, statistical physics is in real need of a modern

reference on that front.

3. Dynamical observables

The study of Markov processes in physics has focused a lot in the past on the statistical properties of the state Xt —
its distribution, its average, in addition to its variance and covariance, which can be related to diffusion and transport
coefficients [10]. In the last 20 years or so, researchers have also become interested in the statistics of time-integrated
quantities involving Xt . An example is themechanical work done by the force F on Xt over a time interval [0, T ], as calculated
by

WT =

∫ T

0
F (Xt ) ◦ dXt , (19)

where the circle ◦ indicates that the integral is to be calculated using the midpoint Riemann integral rule, also called the
Stratonovich convention.1 This random variable depends obviously not only on the state Xt at time t , but on the whole
trajectory of this process between t = 0 and t = T . Thus, for different (random) trajectories, one typically gets different
(random) work values. For this reason, WT is often called an additive functional of the process or, more physically, a
dynamical observable.

We list next other physical examples:

• Potential energy: The change in time of potential energy can be written as

∆UT = U(XT ) − U(X0) =

∫ T

0
∇U(Xt ) ◦ dXt . (20)

1 The work is a scalar quantity, so the product F (Xt ) ◦ dXt is also a scalar product.
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This holds whether the SDE of Xt is gradient or not, but only if the integral is interpreted with the Stratonovich
convention, which follows the standard rules of calculus. In the Itô convention, corresponding to the left-point
Riemann rule, there would be additional terms in the integral, coming from Itô’s calculus [1], which are unphysical.
This explains why the workWT must be defined in the Stratonovich convention: for a potential force, the work is the
change of potential.

• Empirical distribution:

ρT (x) =
1
T

∫ T

0
δ(Xt − x) dt. (21)

This random function represents the fraction of time in [0, T ] that the process Xt ‘‘takes’’ the value x. For an ergodic
process, it converges to the stationary density ps for almost all trajectories. Mathematically, we say that ρT converges
in probability to ps as T → ∞.

• Empirical current:

JT (x) =
1
T

∫ T

0
δ(Xt − x) ◦ dXt . (22)

This random field represents intuitively the local mean ‘‘velocity’’ of Xt at x, if we view dXt formally as Ẋtdt . It is more
aptly called the empirical current because it represents a flow at each point x that converges in probability to the
stationary Fokker–Planck current Js(x) as T → ∞ (see Exercise 8). The Stratonovich rule is also important for this
convergence.

• Entropy production:

ΣT = 2
∫ T

0
(D−1F (Xt )) ◦ dXt . (23)

This is an important quantity in the theory of nonequilibrium systems, related to the non-reversibility (or nonequi-
librium nature) of Xt and, as is clear from its definition, also to the work WT [11]. The factor 2 is there to obtain the
normal thermodynamic relationΣT = β∆VT for the overdamped Langevin equation (14) (check this).

From these examples, it is natural to consider a general class of dynamical observables having the form

AT =
1
T

∫ T

0
f (Xt )dt +

1
T

∫ T

0
g(Xt ) ◦ dXt , (24)

where f (scalar) and g (vector) are two arbitrary functions that depend on the system and physical quantity considered, and
◦ denotes, as before, the Stratonovich (scalar) product. This choice of convention is actually not important — we could use
the Itô convention instead with a slight modification of the results that will come next. What is more important is the factor
1/T which is there for two reasons: first, to make AT intensive in time and, second, to guarantee, following the examples of
the empirical density and empirical current, that AT converges in probability to a constant (its mean) in the long-time limit,
T → ∞.

4. Large deviations

4.1. Large deviation principle

Our goal now is to study the probability distribution P(AT = a) of a given dynamical observable AT andMarkov process Xt .
In general, it is very difficult to obtain that distribution exactly. In many cases, however, it is known that it has the following
general asymptotic form:

P(AT = a) ≈ e−TI(a) (25)

in the limit of large observation time T . The meaning of this approximation, which is called the large deviation principle
(LDP), is that the dominant contribution of P(AT = a) is a decaying exponential, and so that any corrections to that
contribution is sub-exponential in T .2 The exponent or rate function I(a) is therefore the essential information that we
need to find in order to characterize the fluctuations of AT . In particular,

• I(a) ≥ 0 for all a, so P(AT = a) decays exponentially fast with T , except for values a such that I(a) = 0.
• For Markov processes, there is usually only one point a∗ where I(a∗) = 0, so if P(AT = a) decays where I(a) > 0, it

must concentrate on a∗ by conservation of probability.

2 See Appendix B of [12] or Sect. 1.2 of [13] for the mathematical definition of the LDP. The loose definition given here assumes that P(AT = a) is a
probability density.
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• The zero of I(a) is a reflection of the Law of Large Numbers: it gives the most probable or typical value of AT in the
long-time limit and coincides with the mean of AT . In an experiment where the work WT per unit time would be
measured, for example, one would see that most trajectories do work close to its mean value ⟨WT ⟩. Only rarely would
we see trajectories that require more or less work than this average.

• The rate function I(a) characterizes the rare fluctuations of AT around this typical value. In general, it is not a parabola,
so fluctuations of dynamical observables are in general not Gaussian. This is the most important point about large
deviation theory — the fact that it characterizes fluctuations beyond Gaussian fluctuations and so beyond the Central
Limit Theorem.

These properties will become clear once we start calculating rate functions for specific processes and observables.
We describe next the most commonway of obtaining rate functions using a result of large deviation theory known as the

Gärtner–Ellis Theorem,which essentially boils down, for additive functionals ofMarkov processes, to calculating a dominant
eigenvalue of a linear operator. This is not an easy task to carry out in many applications, but it is definitively simpler than
calculating the exact distribution of AT .

4.2. Spectral problem

The Gärtner–Ellis Theorem is based on the following function:

λ(k) = lim
T→∞

1
T
ln⟨eTkAT ⟩, (26)

known as the scaled cumulant generating function (SCGF). The theorem says, in its simplified version, that if λ(k) exists
for k ∈ R and is differentiable in k, then

(1) AT satisfies a large deviation principle, so its distribution has the scaling form (25);
(2) Its rate function I(a) is the Legendre–Fenchel transform of λ(k):

I(a) = max
k∈R

{ka − λ(k)}. (27)

The question now is, how do we calculate λ(k)?
For this, we can use another result of probability theory, known as the Feynman–Kac formula, to cast the evolution of

the generating function of AT as a linear PDE similar to the Fokker–Planck equation, which involves some linear operator
Lk, called the tilted generator, and then study the asymptotic evolution of that PDE to realize that it is dominated by the
dominated eigenvalue of Lk. These steps are presented in Appendix C and lead to the main result of these notes, namely,

λ(k) = ζmax(Lk), (28)

where ζmax(Lk) denotes the dominant eigenvalue of Lk. To be more precise, λ(k) is equal to ζmax(Lk) whenever λ(k) exists
as a SCGF. This is an important precision (see Exercise 17). For the SDE (1) and the observable AT defined in (24), the tilted
generator is explicitly given by

Lk = F · (∇ + kg) +
1
2
(∇ + kg) · D(∇ + kg) + kf , (29)

where f and g are the functions entering in AT (see Appendix C and Exercise 9). Note thatLk=0 = L and so λ(0) = ζmax(L) = 0.
This result is a PDE generalization of the Perron–Frobenius Theorem about positive matrices, guaranteeing that λ(k) is

real, and applies essentially whenever the spectrum Lk is gapped. The resulting dominant eigenvalue problem is similar to a
quantum eigenvalue problem, except that Lk is not in general a Hermitian operator. This makes the calculation of λ(k) more
complicated.

In fact, compared to quantum mechanics, we must now not only consider the eigenvalue problem

Lkrk(x) = λ(k)rk(x), (30)

where rk(x) is the ‘‘right’’ eigenfunction associated with the dominant eigenvalue λ(k). We must also solve in parallel the
dual eigenvalue problem

L†
k lk(x) = λ(k)lk(x), (31)

where lk(x) is the corresponding ‘‘left’’ eigenfunction, by requiring overall the following boundary condition:

rk(x)lk(x)
|x|→∞

−→ 0. (32)

The reason for this, in short, is that the duality betweenLk andL†
k is equivalent to performing integration by parts (Appendix

A) and rk(x)lk(x) is the boundary term in that integration that must vanish at infinity. Therefore, we see that, contrary to
quantum mechanics, we cannot just solve the direct eigenvalue problem for Lk by requiring that rk(x) alone decays to 0 at
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infinity —wemust consider the direct and dual eigenvalue problems at the same timewith (32) to find the correct dominant
eigenvalue.

This duality also determines the correct normalization to use for the eigenfunctions, which turns out to be∫
rk(x) lk(x) dx = 1 (33)

(see Appendix B). For convenience, we also impose∫
lk(x) dx = 1. (34)

Note that lk=0 = ps and rk=0 = 1 (see Exercise 10), so both normalization conditions reduce to
∫
ps(x)dx = 1 for k = 0.

4.3. Symmetrization

The tilted generatorLk is known, inmany cases, to have a real spectrumeven though it is notHermitian.3 This happens, for
example, when dealingwith gradient SDEs and observables such that g = 0. In this case, it should be possible to transformLk
to a Hermitian operatorHk in an unitary way (so as to preserve the spectrum) and then work only withHk using techniques
from quantum mechanics to find λ(k).

For the case of gradient SDEs mentioned, this is indeed possible and the unitary transformation or symmetrization that
we must use is given by

Hk = p1/2s Lkp−1/2
s , (35)

where ps(x) is the Gibbs stationary distribution of the SDE shown in Eq. (16) (see also Exercise 3). Note that this is an operator
transformation: when applied to a function φ, Hk acts as follows:

Hkφ = p1/2s (Lkp−1/2
s φ), (36)

so that Lk is applied to the product p−1/2
s φ. The resulting function is then multiplied by p1/2s .

For a gradient SDE defined in (15) and an observable AT such that f ̸= 0 but g = 0, it is not difficult to see by direct
calculation (see Exercise 12) that Hk has the form

Hk =
ε2

2
∆− Vk, (37)

where∆ = ∇
2 is the Laplacian, ε is the noise amplitude of the SDE, and

Vk(x) =
|∇U(x)|2

2ε2
−
∆U(x)

2
− kf (x) (38)

is an effective quantum-like potential. Our eigenvalue problem thus reduces to

Hkψk = λ(k)ψk, (39)

where ψk is the eigenfunction of Hk associated with λ(k).
We recognize in this equation the time-independent Schrödinger equation, up to a minus sign, with ε2 = h̄2/m and

potential Vk. The sign difference means that what we find as the dominant (largest) eigenvalue of Hk corresponds to the
ground state (smallest) energy of −Hk.

The eigenvalue λ(k) is the same for Lk and Hk since these two operators are unitarily related. The eigenfunctions ψk of
Hk, however, are different from the eigenfunctions rk of Lk. In general, the two are related together (see Exercise 13) by

ψk(x) = ps(x)1/2rk(x). (40)

Moreover, it can be verified that

ψk(x) = ps(x)−1/2lk(x). (41)

This is interesting because it implies that the boundary condition (32) that we have for the full eigenvalue problem now
reduces to

ψ(x)2
|x|→∞

−→ 0, (42)

3 Being Hermitian is only a sufficient condition for having a real spectrum, not a necessary condition.
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Table 3
Spectral problem for equilibrium and nonequilibrium processes.

Xt L symmetrizable? g Lk symmetrizable?

Reversible Yes 0 Yes
Gradient g = ∇ϕ Yes
Non-gradient No

Non-reversible No (generally) Any No (generally)

which is the normal quantum boundary condition (modulo a complex conjugate), while the normalization condition in (33)
reduces to∫

ψ(x)2 dx = 1. (43)

In a more practical way, it also implies that we can now focus on only one eigenvalue problem with natural (quantum)
boundary conditions imposed only on ψk.

This symmetrizationmethod greatly simplifies, obviously, the calculation of large deviation functions. A natural question
is, to which class of Markov processes can it be applied to besides gradient SDEs? Table 3 gives some answers. The basic idea
is that, if we consider an equilibrium process and an ‘‘equilibrium-type’’ observable characterized by g = 0 or g gradient,
then Lk can be symmetrized. If Xt is a nonequilibrium process, then Lk cannot be symmetrized in general because L itself
cannot be symmetrized. Finally, if Xt is reversible but g is not gradient, then Lk generally cannot be symmetrized because
the fluctuations of the observable that we consider are essentially created in a nonequilibrium way (see Exercise 21).

4.4. Example: Ornstein–Uhlenbeck process

We close these notes by applying the material of the previous sections to a specific example involving the Ornstein–
Uhlenbeck process defined in (18). Our goal is to find the rate function I(a) characterizing the fluctuations of the following
observable:

AT =
1
T

∫ T

0
Xt dt, (44)

which represents mathematically the area under the paths of the process, and which can be related physically to the
mechanical work performed by a laser tweezer on a Brownian particle immersed in water [14].

To obtain the rate function, we first write down the tilted generator associated with this process and observable, noting
in this case that f (x) = x and g = 0:

Lk = L + kf = −γ x
d
dx

+
ε2

2
d2

dx2
+ kx, k ∈ R. (45)

This operator is not Hermitian, but since Xt is gradient (any SDE on R is gradient) and g = 0, it can be symmetrized with its
(Gaussian) Gibbs distribution

ps(x) =

√
γ

πε2
e−γ x2/ε2

∝ e−2U(x)/ε2 (46)

to

Hk =
ε2

2
d2

dx2
−
γ 2x2

2ε2
+
γ

2
+ kx. (47)

We recognize the Hamiltonian of the 1D quantum harmonic oscillator if we multiply by −1 and shift the space to
x → x + ε2k/γ 2. The SCGF, corresponding to minus the known ground state of the quantum oscillator which does not
depend on the shift (see any textbook on quantum mechanics), is therefore found to be

λ(k) =
ε2k2

2γ 2 . (48)

This exists and is differentiable for all k ∈ R, so we can the apply the Legendre–Fenchel transform (27), which in this case
reduces to a simple Legendre transform (why?), to finally obtain

I(a) =
γ 2a2

2ε2
. (49)

This shows that the fluctuations of AT are Gaussian around the typical value AT = 0, a result consistent with the fact that
linear integrals of Gaussian processes are Gaussian.
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Although we do not need the eigenvectors rk(x) and lk(x) in the calculation of the SCGF and rate function, it is instructive
to compute them. For the quantum oscillator, it is well known that the eigenfunctions are given in terms of Hermite
polynomials. Considering only the ground state, we find here

ψk(x) =

( γ

πε2

)1/4
exp

(
−
γ
(
x − ε2k/γ 2

)2
2ε2

)
. (50)

Using the transformations (40) and (41), and applying the normalization conditions (33) and (34), we then find

rk(x) = exp
(
kx
γ

−
3ε2k2

4γ 3

)
(51)

and

lk(x) =

√
γ

πε2
exp

(
−
γ
(
2x − ε2k/γ 2

)2
4ε2

)
. (52)

This clearly shows that rk(x) or lk(x) do not decay to zero as x → ±∞ — it is their product again that does so, in agreement
with (32). Finally, note that rk=0(x) = 1 while lk=0(x) = ps(x), as pointed out before (see also Exercise 10).

The exercises found at the end of these notes extend this simple calculation to other equilibrium-type observables, before
slowlymoving into the realm of nonequilibriumprocesses. Formore information about nonequilibrium large deviations, and
the current research done on this topic, see the pointer references next.

4.5. Further reading

• Mathematical theory of large deviations: [13,15].
• Applications of large deviations in statistical physics: [12,16].
• Quantum approach to large deviations: [17,18].
• Related approach based on the thermodynamics of trajectories: [19–21].
• Stochastic thermodynamics: [22].
• Fluctuations of interacting particle systems modelling particle and energy transport: [23–25].
• Fluctuation relations and symmetries: [11,26].
• Theory of fluctuation processes explaining, with modified SDEs, how large deviations are created in time: [27–29].
• Entropy production: [11].
• Fluctuations of empirical density and current (level 2.5 of large deviations): [30].
• Large deviations for open quantum systems: [31].
• Low-noise large deviations: [12].
• Large deviation simulations: [32,33].
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Appendix A. Dual spaces for Markov processes

The expectation

⟨f (Xt )⟩ =

∫
p(x, t)f (x) dx (A.1)

of a function f of Xt defines the following natural scalar or inner product in the theory of Markov processes:

⟨p, f ⟩ =

∫
p(x)f (x) dx, (A.2)

which connects the space of normalized probability densities and the space of functions of Xt , also called test functions or
observables. (See Table 2 for a comparison of this inner product and the one used in quantum mechanics.)

Applying an operator either on f or on p leads us to define the notion of dual or adjoint operator: if L acts on f , then its
adjoint L† acts on p according to

⟨p, Lf ⟩ = ⟨L†p, f ⟩. (A.3)
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Because the integral defining the inner product is performed with dx, the Lebesgue measure, we say that L† is the adjoint of
Lwith respect to the Lebesgue measure.

For differential operators, the duality between L and L† simply corresponds to performing integration by parts:

⟨p,
df
dx

⟩ =

∫
pdf = pf |boundary −

∫
fdp, (A.4)

which leads to (∇)† = −∇· for the gradient and (∆)† = ∆ for the Laplacian, if we choose p and f such that the boundary
term (usually at infinity) vanishes. The Fokker–Planck equation also follows from this duality by noting from (11) that

∂t⟨f (Xt )⟩ = ⟨pt , Lf ⟩ = ⟨L†pt , f ⟩. (A.5)

Since this holds for any test functions, we must then have (4).

Appendix B. Non-Hermitian operators

Non-Hermitian or non-self-adjoint operators (we do not make a difference between the two here) can be diagonalized in
the same way as Hermitian operators in quantummechanics — just think about symmetric versus non-symmetric matrices.
The only difference is that, being non-Hermitian (essentially, non-symmetric), we have to distinguish between ‘‘left’’ and
‘‘right’’ eigenfunctions (or eigenvectors) to build their spectral decomposition.

To be precise, let us consider a linear differential operator L and consider the eigenvalue problem

Lv(x) = λv(x), (B.1)

which can be solved for a set of eigenvalues λ, called the spectrum of L, and their corresponding eigenfunctions v(x). We do
not put indices to these objects as is commonly done — their numbering or labelling is implicit. If L is not self-adjoint, the
dual eigenvalue problem

L†u(x) = βu(x) (B.2)

has a spectrum that is the complex conjugate of the spectrum of L, that is, λ = β∗, but will in general have a completely
different set of eigenfunctions u(x).

As in quantum mechanics, eigenfunctions u or v associated with distinct eigenvalues are orthogonal, so that

⟨ui, vj⟩ =

∫
u∗

i (x)vj(x) dx = δij (B.3)

by properly normalizing them. Moreover, it can be shown that

δ(x − x′) =

∑
i

u∗

i (x)vi(x
′), (B.4)

a property known in quantum mechanics as the completeness relation. As a result, we see that the set of eigenfunctions
u and v form a complete basis onto which any function can be decomposed. For an application of this decomposition for
solving the Fokker–Planck equation, see Sec. 5.4 of [7]; for its application to our problem of finding large deviation functions,
see the next appendix on the Feynman–Kac formula.

If L is self-adjoint, then u = v and we recover the usual complete basis of quantummechanics. Moreover, if L is a matrix,
then the dual eigenvalue problem (B.2) is equivalent to

u†L = β†u†
= λu†, (B.5)

where u† is now seen as a row vector multiplying L. In this sense, it is common to call u the left eigenvector of L and v the
right eigenvector of L.

Appendix C. Feynman–Kac formula

The linear structure of the Fokker–Planck equation (5) means that we can write down the time-dependent density p(x, t)
as

p(x, t) = U(t)p(x, 0), (C.1)

whereU(t) = etL
†
is an operator acting on the initial density, called thepropagator.4 This operator iswell known in quantum

mechanics and leads to what we call a semi-group structure for the evolution of p(x, t) (or the wavefunction) as a result of

4 This applies to homogeneous SDEs with time-independent drift. For a time-dependent drift, the generator is formally the time-ordered exponential
of the time-dependent generator.
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the fact that U(t) = U(s)U(s′) for t = s + s′. For stochastic processes, this semi-group property is the Markov property and
L† is simply the generator of that semi-group.

The probability density of Xt or the wavefunction of a quantum system are not the only objects whose evolution forms a
semi-group. The expectation ⟨f (Xt )⟩ also does, since its evolution is linear, its generator being L.

In the 1940s,Mark Kac (pronounced khats) showed that the general exponential functional of aMarkov process Xt defined
as

G(x, t) =

⟨
e
∫ t
0 c(Xs)ds

⟩
x

(C.2)

also has, amazingly, a semi-group structure, provided that the function c is smooth enough and such that the expectation
exists. Here the notation ⟨·⟩x means that Xt is started at x, that is, X0 = xwith probability 1. Specifically, he showed that

∂tG(x, t) = LcG(x, t), (C.3)

where Lc = L+ c , L being the generator of Xt . This linear PDE, coupled with the initial condition G(x, 0) = ⟨e0⟩x = 1, is what
is called the Feynman–Kac formula.

There aremanyderivations of that formula, someofwhich based on analogieswith quantummechanics [18]. The simplest
I could find is very similar to what we call in physics the Kramers–Moyal expansion (see [10]) and proceeds by considering
G(x, t + dt) to write

G(x, t + dt) = ec(x)dt
⟨
e
∫ t+dt
dt c(Xs)ds

⟩
x
. (C.4)

The initial condition for the expectation in this formula does not match the start of the integral, so we should propagate X0
to Xdt with the SDE (1) to obtain

G(x, t + dt) = ec(x)dt
∫

p(ξ )G(x + ξ, t) dξ, (C.5)

where p(ξ ) is the probability density of the Gaussian increment ξ that takes us from X0 = x to Xdt = x + ξ . By Taylor-
expanding G(x+ ξ, t) to second order around x, and taking the expectation with respect to ξ , we finally arrive at the correct
PDE.

To connect this result to our goal of calculating large deviations, we only need to notice that the generating function
⟨eTkAT ⟩ entering in the definition of the SCGF λ(k) in Eq. (26) is a particular case of Kac’s functional, at least for g = 0,
corresponding to c(x) = kf (x) so that Lc = Lk with a slight abuse of notations. Therefore, this generating function satisfies
the Feynman–Kac equation, which enables us to write

G(x, t) = ⟨etkAt ⟩x = (etLk1)(x), (C.6)

where the propagator etLk acts on the initial condition G(x, 0) = 1 to yield some non-trivial function of x at time t . From
there, we can use the results of Appendix B about the spectral decomposition of non-Hermitian operators to expand the
initial unit function in the eigenbasis of Lk. This yields, with the completeness relation (B.4) and the normalization (34)
adopted,

1 =

∑
i

r (i)k (x), (C.7)

where r (i)k denotes an eigenfunction of Lk (not necessarily all real), so that

G(x, t) =

∑
i

eζit r (i)k (x), (C.8)

where ζi denotes an eigenvalue of Lk. In the long-time limit, the eigenvalue with largest real part will dominate the sum (if
there is a gap) and, thus, we arrive at the result mentioned in Section 4.2 that the SCGF is the largest eigenvalue of Lk.

The same result holds for g ̸= 0, since there is also a Feynman–Kac formula for this case, one in fact that was never
considered by Kac (see Exercise 9).

Exercises

All exercises are rated, rather subjectivity, according to Knuth’s logarithmic rating systemwhereby 00 = immediate, 10 =
simple, 20 = medium, 30 = moderately hard, 40 = term project, 50 = research problem. Feel free to contact me for questions
or comments.

1. [10] The conservation of probability in quantummechanics is expressed by the requirement thatH is Hermitian.What
is the corresponding property of L for Markov processes?
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2. [15] Show that the stationary density of Kramers equation (13), in the absence of external forces (φt = 0), is a
Gibbs distribution involving the total energy H(q, p) = p2/(2m) + V (q). Calculate its associated stationary Fokker–
Planck current. Does it vanish? Discuss the consequence of this result in view of the fact that equilibrium systems are
supposed to have vanishing currents. Source: Chap. 10 of [7].

3. [15] Prove that the stationary density of the gradient SDE (15) is the Gibbs distribution (16). Do we still have that
stationary distribution when σ is not proportional to the identity matrix? Calculate the associated stationary current.

4. [20] Show that the stationary density of the linear SDE (17), with attractor at x = 0, is a Gaussian distribution of the
form

ps(x) =

√
det C
2π

exp
(

−
1
2
x · Cx

)
, (C.9)

where C is a symmetric, positivematrix.What is the equation satisfied by C involvingM andD?What is the stationary
current Js(x)? When is this density Gibbsian?

5. [20] Prove that the generator L of gradient SDEs is self-adjoint with respect to the following inner product

⟨f , g⟩ps =

∫
f (x)g(x) ps(x) dx, (C.10)

where ps is the Gibbs stationary distribution. What do you conclude for the spectrum of L?
6. [20] For gradient SDE (15), ⟨Lf , f ⟩ps is a so-called Dirichlet form:

⟨Lf , f ⟩ps = ⟨f , Lf ⟩ps = −
ε2

2
∥∇f ∥2

ps , (C.11)

where ∥ · ∥p is the norm weighted by p. Prove this result.
7. [15] Show that the expectation of the empirical density ρT (x) defined in (21) is the stationary density ps(x) when Xt

is ergodic. Explain why this must also be the most probable value of ρT in the long-time limit. [Hint: What is the
distribution of ρT? Does it satisfy an LDP?]

8. [15] Show that the expectation of the empirical current JT (x) defined in (22) is the stationary Fokker–Planck current.
9. [20] The form of the tilted generator Lk is derived from the Feynman–Kac equation in Appendix C for the case g = 0.

Adapt the proof for the case g ̸= 0 leading to the full expression of Lk shown in (29).
10. [10] Show that lk=0(x) = ps(x) and rk=0(x) = 1 for all x.
11. [15] Show for gradient SDEs that Lps = psL†. Then use this result to show that Hk, as defined by the symmetrization

(35), is Hermitian.
12. [10] Derive for gradient SDEs the expression of the quantum generator Hk shown in (37), together with the

corresponding potential Vk(x) shown in (38).
13. [10] Derive the relations (40) and (41) between ψk, rk, and lk using the relation (35) between Hk and Lk.
14. [20] Repeat the calculations of Section 4.4 for

VT =
1
T

∫ T

0
X2
t dt, (C.12)

which represents the empirical variance of Xt . What is the related quantum problem? Find λ(k), rk(x) and lk(x)
(correctly normalized). Source: [17].

15. [45] Repeat the previous exercise by replacing X2
t by Xk

t , k > 2.
16. [20] Study the large deviations of the entropyproductionΣT , as defined in Eq. (23), of theOrnstein–Uhlenbeck process.

Assume, first, that X0 and XT have fixed values, e.g., X0 = a and XT = b. Then repeat the calculation for X0 = a, but
by integrating XT over R. Finally, assume that X0 is distributed according to ps(x). You should see in each case a very
different effect of the ‘‘boundary terms’’ X0 and XT .

17. [25] Combine the calculation of Section 4.4 with the previous exercise to find the rate function of

QT =
X2
0

T
−

X2
T

T
+

1
T

∫ T

0
Xtdt (C.13)

for the Ornstein–Uhlenbeck process. This observable can be related to the heat exchanged by a Brownian particle with
its environment when manipulated by laser tweezers [34]. Obtain the rate function for the three cases considered
before: (i) X0 = a, XT = b; (ii) X0 = a and XT ∈ R; (iii) X0 ∼ ps(x) and XT ∈ R. You should see that the region where
λ(k) < ∞ is different in each case, although ζmax(Lk) is defined for all k ∈ R. [Hint: You will need the generating
function of the χ2 distribution.]

18. [30] Calculate for the Ornstein–Uhlenbeck process the rate function I(r) associated with

rT =
1
T

∫ T

0
χ[−1,1](Xt ) dt. (C.14)

where χS(x) is the indicator function equal to 1 if x ∈ S and 0 otherwise. This observable represents the fraction of
time Xt spends in the interval [−1, 1], so it is a random variable taking values in [0, 1]. What happens when γ → 0?
Sources: [35,36].
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19. [40] Show that the occupation fraction rT defined in the previous exercise can be obtained by integrating the empirical
distribution ρT (x) defined in (21) over x ∈ [−1, 1]. Can you use this result to derive the rate function I(r) from the
known rate function(al) I(ρ) of ρT (x)? Source: [35].

20. [25] Repeat the exercise about the occupation time for χ[0,∞)(x) so as to study the fraction of time Xt stays positive.
Source: [18].

21. [20] Consider the SDE

dθt = γ dt + σdWt , θt ∈ [0, 2π ), (C.15)

representing the motion of a Brownian particle on the unit circle with a drive or torque γ . Is this a gradient
(equilibrium) system?What is the stationary Fokker–Planck current Js(x)? Obtain the rate function I(j) characterizing
the fluctuations of the total empirical current

JT =
1
T

∫ T

0
dθt =

∫
JT (x)dx. (C.16)

What are the natural boundary conditions for rk(x) and lk(x) in this case? Can Lk be symmetrized when γ = 0?
Source: [37] and references therein.

22. [25] Calculate the rate function of the entropy productionΣT for the 2D linear transversal SDE defined by

F (x, y) =

(
−1 −1
1 −1

)(
x
y

)
(C.17)

and σ = ε11. Is this SDE gradient? Why is it called ‘‘transversal’’? What do you obtain if you try to symmetrize it?
Source: [38].

23. [25] Show that the tilted generator associated with the entropy productionΣT satisfies the symmetry

L†
k = L−k−c, (C.18)

where c is some constant. Derive from this a symmetry satisfied by the SCGF and rate function. Such a symmetry is
known as a fluctuation relation. Source: [11].

24. [30] Derive the expression of the tilted generator Lk for SDEs in which the noise is multiplicative, that is, in which
the noise matrix σ depends on x. In this case, you must specify the stochastic convention used for interpreting the
product σ (x)dWt .

25. [25] Another approach for deriving the SCGF is to discretize in time an SDE to obtain a Markov chain for which AT is
then a sum. Use this approach to confirm that the SCGF λ(k) is given by the dominant eigenvalue ofLk. Source: Chap. V
of [39] and the lecture notes of my large deviation course (see my website).

26. [40] Rewrite all the large deviations of these notes for Markov chains. Then do the same for Markov jump processes
or continuous-time Markov chains. Source: [28].

27. [45] Do the eigenvectors rk and lk have any probabilistic or physical interpretation? Sources: [27,28].
28. [25] We have seen that, in the mapping to the quantum Hamiltonian, the noise parameter is essentially h̄. With this,

comment on the following: The low-noise limit of SDEs is equivalent to the semi-classical limit of quantummechanics.
Source: [12].

In memoriam

I dedicate this paper to the memory of E. G. D. Cohen (1923–2017): friend, collaborator, physicist and raconteur
extraordinaire, who wisely told me once that the most important thing in science is to follow your heart.
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