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This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-

equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy

to dynamic states. It is shown that this so-called second entropy is maximized in the steady state,

in contrast to the rate of production of the conventional entropy, which is not an extremum. The

relationships of the new theory to Onsager’s regression hypothesis, Prigogine’s minimal entropy

production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki

distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is

worked through in full detail for the case of steady heat flow down an imposed temperature

gradient. A Monte Carlo algorithm based upon the steady state probability density is

summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in

agreement with known values. Also discussed is the generalization to non-equilibrium mechanical

work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two

general applications are briefly explored: a non-equilibrium version of the second law of

thermodynamics, and the origin and evolution of life.

1. Introduction

Equilibrium statistical mechanics is based upon the Boltzmann

distribution,

Pi ¼
1

Z
e�Ei=kBT : ð1:1Þ

This gives the probability of finding a sub-system in a micro-

state i when the sub-system is in thermal equilibrium with a

heat reservoir of temperature T, (Ei is the microstate energy,

kB is Boltzmann’s constant, and Z is the normalizing partition

function). According to Feynman,1 ‘‘This fundamental law is

the summit of statistical mechanics, and the entire subject is

either the slide-down from this summit, as the principle is

applied to various cases, or the climb-up to where the funda-

mental law is derived.’’

Few would disagree that the Boltzmann distribution plays

such a central role in equilibrium statistical mechanics. How-

ever, a fundamental limitation of the Boltzmann distribution is

that it is not applicable to non-equilibrium systems, (at least

not without making some sort of quasi-equilibrium approx-

imation). There is a pressing need to develop an analogous

probability distribution for non-equilibrium systems.

Such dynamic or time-dependent systems comprise the vast

majority of biological, technological, and even cosmological

systems. One can broadly classify non-equilibrium systems

based on whether the phenomenon is transient, harmonic, or

steady. Often there is an applied, time-dependent field, which

might be mechanical (such as an applied electric or magnetic

field, or a mechanical force), or thermodynamic (such as an

applied temperature or concentration gradient).

Of the various time-dependent systems, it is the steady state

non-equilibrium systems that appear to offer the simplest path

to generalizing the Boltzmann distribution. The canonical

equilibrium case is a sub-system in equilibrium with a heat

reservoir of temperature T. The closest non-equilibrium ana-

logue is steady heat flow, where a sub-system is in thermal

contact with two heat reservoirs of different temperatures.

Like an equilibrium system, in the steady state the sub-system

itself shows no net macroscopic change over time. Unlike an

equilibrium system, the surroundings (in this case the thermal

reservoirs) do display a net change over time.

This is the essential similarity and essential difference be-

tween an equilibrium system and a steady state system. One

can immediately conclude two things about the non-equili-

brium probability distribution for a steady state: because it

describes the sub-system it should not depend explicitly on

time, and because it describes a non-equilibrium system it

should depend upon the direction of time.

The arrow of time has excited debate ever since the birth of

statistical mechanics: ‘How does the irreversible behavior of

the world around us arise from the reversible nature of the

microscopic equations of motion?’ Nowadays few would find a

paradox here, citing in explanation the second law of thermo-

dynamics, namely that over time systems tend to move in the

direction of increasing entropy. The absence or presence of an

arrow of time distinguishes equilibrium from non-equilibrium

systems. This is reflected in the Boltzmann distribution, which

is insensitive to the direction of time. In contrast, a non-

equilibrium probability distribution, even the steady state

distribution that cannot depend explicitly on time, must differ

from the Boltzmann distribution in that it depends on the

direction of time.

Onsager, in deriving the reciprocal relations for the trans-

port coefficients, focused attention on the essential role that
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time reversibility plays in non-equilibrium statistical me-

chanics.2 Inspired by his work, over several years I have been

developing a theory for non-equilibrium statistical mechanics

that has been presented in a series of papers.3–7 This article

highlights the more significant aspects of these recent ad-

vances, including the notion of second entropy for transitions

and its maximization, (sections 3.2, 4.3, and 4.6.4), the non-

equilibrium probability distributions, (sections 4.4, 6.1, and 7),

the non-equilibrium Monte Carlo algorithms, (section 5), and

the microscopic transition theorems, (sections 4.6.3 and 6.2).

The purpose of the article is to present a consistent, self-

contained account of the theory, and to attempt to provide

clearer and more rigorous justification for it than has been

possible to date, with perhaps a little more pedagogy than

is usual in the research literature. In doing so I have avoided

giving a comprehensive review of the literature of non-

equilibrium statistical mechanics, and instead have restricted

references to a few key papers that intersect with the present

results.

The article is organized like this: Section 2 introduces the

dynamical reversibility of equilibrium systems. Section 3 deals

with thermodynamic fluctuations and the transitions between

thermodynamic states. Described in detail is the connection

between the so-called second entropy, which describes such

transitions, Onsager’s regression hypothesis, and the

Green–Kubo formulae for the transport coefficients. Section

4 narrows the focus to the particular case of steady heat flow

down an imposed temperature gradient. The rate of second

entropy production is shown to be maximal in general. Here

also is given the non-equilibrium phase space probability

density that generalizes the Boltzmann distribution, and uti-

lizes the so-called mirror work, which depends upon the

direction of time and which therefore breaks the symmetry

characteristic of equilibrium systems. Section 5 develops two

Monte Carlo algorithms for heat flow. One is based upon the

non-equilibrium phase space probability density and uses the

Metropolis scheme with umbrella sampling, and the other is

based upon the transition probability and is a type of stochas-

tic molecular dynamics algorithm. Section 6 generalizes the

results to systems subjected to non-equilibrium work, and

presents the appropriate non-equilibrium probability distribu-

tion and certain transitions theorems for these. Section 7

indicates briefly how the approach may be applied to non-

equilibrium quantum systems. Section 8 discusses two appli-

cations of the non-equilibrium theory: a dynamic version of

the second law of thermodynamics, and an account for the

origin of life and the direction of evolution. The conclusion,

section 9, summarizes the main results and indicates possibi-

lities for future work.

2. Dynamical reversibility

2.1. Hamilton’s equations

Let us begin with the time reversible nature of the microscopic

equations of motion and of equilibrium states. Consider an

isolated sub-system comprising N particles, with qi and pi
being the position and momentum of particle i, respectively.

Hamilton’s equations of motion are

qi
� ¼ @H

@pi
; pi

� ¼ � @H
@qi

; ð2:1Þ

where H is the Hamiltonian, and the over-dot denotes the

time derivative or velocity. A microstate of the sub-system is a

point in its phase space, C = {qN, pN}. The conjugate point

has all the momenta reversed,

Cw = {qN, (�p)N}. (2.2)

This operation of velocity reversal plays a central role in the

non-equilibrium theory, and is equivalent to reversing the

direction of time. This follows from the equations of motion,

at least in the usual case that the Hamiltonian is insensitive to

the direction of the velocities,H(C) =H(Cw). (The theory can

be extended to include magnetic fields and the velocity-depen-

dent Lorentz force, but we do not do so here.)

The trajectory of the sub-system may be denoted C(t|C0),

which gives the point at a time t after the system was at C0. If

C1 = C(t|C0), then the reversibility of the equations of motion

show that

C0 = C(�t|C1), and Cw
0 = C(t|Cw

1). (2.3)

The first says that we can arrive at the original starting point

by running time backwards from the original end-point of the

trajectory. Equivalently, the second says that the conjugate of

the original starting point is the end-point of a trajectory going

forward in time from the conjugate of the original end-point.

The trajectory may alternatively be written as a conditional

transition probability,

L(C1|C0, t) � d(C1 � C(t|C0)), (2.4)

where a Dirac d-function appears. Hence the time reversibility

of the equations of motion may be written

L(C1|C0, t) = L(C0|C1, �t) = L(Cw
0|C

w
1, t). (2.5)

2.2. Macrostates

Statistical mechanics requires the notions of entropy and

macrostates.8 A macrostate of the system is a particular value

of a function of phase space. (Here for notational simplicity a

macrostate is taken to be defined by a single variable. Repla-

cing the scalar by a vector allows the following to be applied to

an arbitrary set of variables.) Alternatively, any function of

phase space signifies a collective of macrostates. If E(C) is such

a function, then the probability that the isolated sub-system is

in the macrostate labelled a is

}(a|E) = hd(a � E(C))iE = W�1E

R
EdCd(a � E(C)), (2.6)

where WE =
R
EdC =

R
dCd(E �H(C)) is the volume of the

energy hypersurface to which the sub-system is confined.

Suppose that the collective has a definite parity, E(C) =

sEE(C
w). A function that is insensitive to the direction of the

velocity is said to have even parity, sE = 1. A function that

changes sign when the velocities are reversed, is said to have

odd parity, sE = �1. With this the unconditional transition

probability between macrostates for the isolated system

3586 | Phys. Chem. Chem. Phys., 2006, 8, 3585–3611 This journal is �c the Owner Societies 2006
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satisfies

Pða bjt;EÞ ¼Lðajb; tÞPðbjEÞ

¼W�1
E

R
E dC1dC2dða� eðC2ÞÞ

� dðb� eðC1ÞÞdðC2 � CðtjC1ÞÞ

¼W�1
E

R
E
dC
y
1dC

y
2dða� seeðCy2ÞÞ

� dðb� seeðCy1ÞÞdðC
y
1 � CðtjCy2ÞÞ

¼Pðaeb seajt;EÞ:

ð2:7Þ

This uses the fact that dC = dCw. If the collective has even

parity, this says that for an isolated system we shall observe

the forward transition a - b as frequently as the reverse b -

a. In essence this is what Onsager meant by the principle of

dynamical reversibility, which he stated as ‘in the end every

type of motion is just as likely to occur as its reverse’. He also

said that in consequence for every transition A - B, ‘the

direct reverse transition B - A must take place equally

often’.2

2.3. Thermal equilibrium

Statistical mechanics depends upon the notion of reservoirs,

which are necessarily infinitely larger than the sub-system and

unaffected by exchange with the sub-system, which have

infinite conductivity, and which are generic in nature and only

enter the probability distribution via the values of their con-

jugate field variables. If the sub-system is brought into thermal

contact with a heat reservoir of temperature T and allowed to

equilibrate, then the probability of the sub-system being in a

particular microstate obeys the Boltzmann distribution,8

}eq (C|b) = Z(b)�1e�bH(C), (2.8)

where b � 1/kBT and Z is the partition function that nor-

malizes the distribution to unity. The exponent of the Boltz-

mann distribution represents the part of the entropy of the

reservoir that depends upon the sub-system.8 The subscript

‘eq’ emphasizes that this is an equilibrium result. As such, it

must be insensitive to the direction of the velocities,

}eq (Cw|b) = }eq (C|b), (2.9)

as follows explicitly from the even parity of the hamiltonian.

The microstates C of the sub-system are in fact macrostates

of the total system (since for each phase point of the sub-

system there are many configurations of the molecules of the

reservoir). Since the total system is isolated, then the transi-

tions between these macrostates must obey the principle of

dynamical reversibility, eqn (2.7). The parity of the collective C

may be accounted for by noting that the positions have even

parity and the momenta have odd parity, and so we may write

the conjugate phase point as Cw = {(sqq)
N, (spp)

N}. Since the

unconditional transition probability for the microstates of the

sub-system in the presence of the stochastic perturbations

from the thermal reservoir obeys the principle of dynamical

reversibility, it follows that this may be written as

PeqðC2  C1jtÞ �LðC2jC1; tÞPeqðC1jbÞ

¼LðCy1jC
y
2; tÞPeqðCy2jbÞ

�PeqðCy1  C
y
2jtÞ:

ð2:10Þ

The macrostate probability for a sub-system in thermal equili-

brium with a reservoir is

PeqðajbÞ ¼hdða� eðCÞÞieq

¼
R
dCdða� eðCÞÞPeqðCjbÞ:

ð2:11Þ

The unconditional macrostate transition probability obeys

dynamical reversibility,

Peqða bjtÞ ¼
R
dC1dC2dða� eðC2ÞÞ

� dðb� eðC1ÞÞPeqðC2  C1jtÞ

¼
R
dC
y
1dC

y
2dða� seeðCy2ÞÞ

� dðb� seeðCy2ÞÞPeqðCy1  C
y
2jtÞ

¼Pðseb seajtÞ:

ð2:12Þ

2.4. Time correlation function

The functions of phase space are implicitly dependent upon

time, and we may use the short-hand notation A(t) �
A(C(t|C0)). The equilibrium time correlation function is de-

fined as

CABðtÞ �hAðtÞBð0Þieq

�hAðCðtjC0ÞÞBðC0Þieq

¼
R
dC1dC2AðC1ÞBðC2ÞPeqðC1  C2jtÞ

¼sAsB
R
dC
y
1dC

y
2AðC

y
1ÞBðC

y
2ÞPeqðCy2  C

y
1jtÞ

¼sAsBhAð0ÞBðtÞieq

¼sAsBCBAðtÞ:
ð2:13Þ

Of course, by time homogeneity of an equilibrium system we

have CAB(t) = CBA(�t). Note that here C(t|C0) is the trajec-

tory perturbed by the stochastic interactions with the heat

reservoir; it is not the adiabatic trajectory.

Note that we often choose the functions of phase space in

such a way that their average value is zero. This can be

accomplished by replacing A by dA � A � hAieq and similarly

for B. With this replacement the time correlation function goes

to zero at long times, which is the formally exact behavior.

Since a velocity variable has opposite parity to the corre-

sponding position variable, sA = �s _A, we have the result

hA(t) _A(0)ieq = � h _A(t)A(0)ieq. (2.14)

This reveals the very important result that the velocity is

instantaneously uncoupled from the position,

hA(0) _A(0)ieq = 0. (2.15)

This journal is �c the Owner Societies 2006 Phys. Chem. Chem. Phys., 2006, 8, 3585–3611 | 3587
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3. Fluctuations and their transitions

In 1931 Onsager derived the reciprocal relations, which show

that the matrix of linear coefficients that couples non-equili-

brium fluxes to thermodynamic driving forces is symmetric.2

(For example, in a system with an applied electric field and

temperature gradient, the cross-coefficient relating the resul-

tant heat flux to the electric field is equal to the cross-

coefficient relating the induced electric current to the tempera-

ture gradient.) His analysis was based on two ideas, namely

dynamic reversibility, which was discussed above, and the

regression hypothesis. The latter says that the restoring force

that returns a spontaneous thermodynamic fluctuation to its

equilibrium value is indistinguishable from an externally ap-

plied force that causes a flux in that variable. In other words,

equilibrium fluctuations encompass all that is required to

describe non-equilibrium fluxes.

3.1. First entropy

In ref. 4, the reciprocal relations for the diffusion constant of a

Brownian particle were derived, and it was argued that the

analysis carried over for thermodynamic fluctuations.

Although the Brownian particle yields to a transparent and

physically meaningful analysis, it is arguably better to analyze

fluctuations directly rather than by analogy. The reader is

referred to ref. 4 for the physical motivation for the various

mathematical quantities introduced below.

Let q represent the displacement of a set of thermodynamic

observables from their equilibrium values, hqi = 0. The first

entropy, which is the constrained entropy for a displacement,

is to quadratic order,

SðqÞ ¼ Sð0Þ þ 1

2
qTSq: ð3:1Þ

The exponential of this gives the probability, which is

obviously Gaussian, and the correlation matrix is therefore

given by

S�1 ¼ �hqqTi0 =kB: ð3:2Þ

The following analysis is restricted to small excursions from

equilibrium when the quadratic expansion is valid. It is

possible to lift this restriction. In that case the full first entropy

S(q) may be used, and the first derivative vector is non-zero,

and it and the second derivative matrix may be evaluated at

the current value of q rather than at zero.

3.2. Second entropy

Consider a time interval |t| and denote the initial position by

q � q(t) and the final position by q0 � q(t þ t). Position here

means the value of the thermodynamic variables, and velocity

will mean the rate of change of these variables. Define the

coarse velocity by q
o ¼ ðq0 � qÞ=t. The coarse velocity is the

time average of the instantaneous velocity _q over the interval.

The coarse velocity represents a collective of macrostates in

the sense of section 2, since C determines uniquely both q(t)

and q(t þ t), and we can define an entropy for it, s(q0, q|t).
Because of its relationship with dynamical transitions between

pairs of macrostates this may be called the dynamical entropy

or the second entropy.

By dynamic reversibility, eqn (2.12), }eq (q0 ’ q|t) =

}eq (q ’ q0|t), and since the probability is the exponential

of the entropy, }eq (q0 ’ q|t) p exp s (q0, q|t)/kB, this says
that the dynamical entropy is an even function of the coarse

velocity and of time. Similarly, the time correlation function

CðtÞ � hq0qTieq is an even function of t, assuming here and

below that q has even parity.

The second entropy is just the generalization to dynamic

states of the conventional (or first) entropy, which usually

describes structure. Like the latter, the second entropy is a

concave function of its arguments and so it has similar proper-

ties, including the fact that it is maximized by the physical

values of any constraints, and that these states are stable.

These physical values represent the most likely macrostate. In

the following we shall deal with small fluctuations from the

most likely state and approximate the second entropy by a

quadratic form. We shall further specialize the analysis to the

steady state. It should be understood however that the theory

is more general than the present illustration of it.

The most general quadratic form for the dynamical entropy

is

sðq0; qjtÞ ¼ const:þ 1

2
q0TA0q0 þ q0TBqþ 1

2
qTAq: ð3:3Þ

The principle of dynamical reversibility implies that this must

be symmetric function of q0 and q, which means that A0 ¼ A,

and that B ¼ BT. (The matrix A � @2s=@q@qT is also sym-

metric.) These two matrices must be even functions of t. In
view of the symmetries the second entropy may be rewritten as

sðq0; qjtÞ ¼ const:þ 1

2
½q0 þ A�1 Bq�TA½q0 þ A�1 Bq�

þ 1

2
qT½A� BA�1B�q:

ð3:4Þ

A very strong condition is imposed by the reduction of the

second entropy to the first, which is equivalent to the normal-

isation of the conditional transition probability. Since the

collectives are complete sets of disjoint states, the weight of

the macrostate q is the sum of the weights of the intersections

(q0, q),

eS(q)/kB =
R
dq0es(q

0
,q|t)/kB. (3.5)

The trick to evaluating these sorts of Gaussian integrals is to

complete the squares, which we did in eqn (3.4). The final term

in that equation is independent of q0 and so it gives an

exponential pre-factor for the integral. The Gaussian integral

that remains gives an immaterial logarithmic constant con-

tribution to the first entropy. Hence we obtain the very

important condition that

S ¼ AðtÞ � BðtÞAðtÞ�1BðtÞ: ð3:6Þ

The right hand side has to be independent of t. The solution,
for B in terms of A, is

BðtÞ ¼ �AðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I � AðtÞ�1S

q
: ð3:7Þ
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3.3. Extensivity of the second entropy

Now the t dependence of the second entropy is elucidated. For

large times, there can be no correlation between q and q0, and

hence

AðtÞ ! S; BðtÞ ! 0; jtj ! 1: ð3:8Þ

Conversely, on small time intervals, based upon the analysis of

Brownian motion we expect

jAðtÞ�1Sj � 1: ð3:9Þ

(It will turn out that this is equivalent to jq� tj � jqj.) We shall

proceed under this assumption to obtain an explicit expression

for the t-dependence of A, and we shall use the final result to

deduce the limits on t when the assumption is justified.

Inserting eqn (3.7) and (3.6) into the second entropy ex-

pression eqn (3.4), and expanding to linear order we obtain

sðq0; qjtÞ ¼ 1

2
½q0 � q�TAðtÞ½q0 � q� þ 1

2
½SðqÞ þ Sðq0Þ�

þ O ðAðtÞ�1SÞ2 :
ð3:10Þ

For the final term we have replaced the quadratic form by the

explicit entropies, qTSq0 ¼ SðqÞ þ Sðq0Þ, which is convenient

and permissible to leading order, but is not essential for what

follows.

In order to find the t-dependence of A, we invoke a

reduction condition on the two step transition, q - q0 -

q00, each step of duration |t|/2. Consider the ansatz

sðq00; q0; qjt=2; t=2Þ ¼ 1

2
½q00 � q0�TAðt=2Þ½q00 � q0�

þ 1

2
½q0 � q�TAðt=2Þ½q0 � q�

þ 1

2
½SðqÞ þ Sðq00Þ�:

ð3:11Þ

Note that this has the appearance of a Markov transition, as

there is no coupling between q00 and q. It turns out to be

possible to satisfy the reduction conditions with the coefficient

of such a coupling set to zero.

The first reduction comes from integrating one of the

terminal positions and we must have,

es(q
00
, q
0
|t/2)/kB =

R
dqes(q

00
, q
0
, q|t/2, t/2)/kB. (3.12)

Completing the squares, a straightforward calculation shows

that the ansatz satisfies this condition, with the first neglected

term being O ðA�1 SÞ2.
The second reduction arises from integrating the central

position,

es(q
00
,q|t)/kB =

R
dq0es(q

00
,q
0
,q|t/2,t/2)/kB. (3.13)

Again completing the squares we obtain in this case the desired

condition on the matrix, namely

AðtÞ ¼ 1

2
Aðt=2Þ: ð3:14Þ

In view of the fact that the matrix must be an even function of

t we conclude from this that it must have the form

AðtÞ ¼ 1

jtj sss : ð3:15Þ

The matrix s
ss
will turn out to be the matrix of linear transport

coefficients that characterize steady flow.

With this result and the definition of the coarse velocity, the

second entropy may be written as

sðq0; qjtÞ ¼ jtj
2

q
� T s

ss
q
� þ 1

2
½Sðq0Þ þ SðqÞ�; ð3:16Þ

where the final term may be written as qTSq0=2. This result

shows that the second entropy is an extensive function of the

time interval, the coarse velocities being regarded as intensive

variables. This extensivity was originally deduced from the

behaviour of a Brownian particle using somewhat different

arguments.4

The condition under which this result for the second entropy

was derived, jAðtÞ�1Sj � 1, becomes

jtj � tlong � j sss S
�1 j: ð3:17Þ

The right hand side defines the upper limit on the time interval

over which these results are valid.

The ansatz (3.11) cannot hold in the limit |t| - 0. In this

limit we expect that the velocity will be constant over the brief

interval due to the inertia of the thermodynamic variables.

Hence exp s(q00, q0, q|t/2, t/2)/kB p d(q0 � (q00 þ q)/2). In this

limit then

AðtÞ ¼ 1

t2
s
i
; jtj ! 0: ð3:18Þ

We may define the inertial time as

tshort � s
i
s�1
ss

��� ���: ð3:19Þ

We can also define the t-dependent velocity correlation ma-

trix, sðtÞ ¼ t2AðtÞ. In view of the above behavior we have

sðtÞ ¼ s
i
; jtj 	o tshort

jtj s
ss
; tshort 	o jtj 	o tlong:

�
ð3:20Þ

It is possible to smoothly interpolate between these two

regimes. However, because |t| is a non-analytic function, we

should not imagine that we can arrive at this result or at a

smooth function via a finite Taylor expansion. With this

definition the second entropy for small velocities is

sðq0; qjtÞ ¼ 1

2
q
� TsðtÞ q� þ 1

2
½Sðq0Þ þ SðqÞ�: ð3:21Þ

Just as in section 3.1 for the first entropy, it is possible to go

beyond the fluctuation level in the description of the second

entropy. The present second entropy matrix would be replaced

by the matrix of second derivatives of the second entropy

evaluated at the current values of q and q0.

3.4. Regression, fluctuation, and dissipation

The difference between thermodynamics and statistical

mechanics is that the former deals with the most likely state,

whereas the latter deals with the average state. This distinction
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is discussed in detail in ch. 2 of ref. 8. The most likely value of

a constraint, (i.e. macrostate), is the state that maximizes the

entropy constrained with respect to that variable. Here and

below we shall use the phrase ‘most likely’ in precisely this

mathematical sense.

Equating the derivative of the second entropy with respect

to q0 to zero yields the most likely coarse velocity as

q
�ðqÞ ¼

�t
2 sðtÞ�1Sq; jtj � tlong
�t
2
s�1
i

Sq; jtj 	o tshort
�signðtÞ

2
s�1
ss

Sq; tshort � jtj � tlong:

8><
>: ð3:22Þ

Here we have invoked the quadratic form so that

@SðqÞ=@q ¼ Sq. For positive t this result gives the most likely

velocity going forward from q, and for negative t this is the

most likely velocity leading up to q. Due to dynamical

reversibility, these are the negative of each other. This says

that the most likely velocity is zero at t = 0, and increases

smoothly and linearly from that point. In the intermediate

regime the most likely velocity is constant.

This derivation may be regarded as a proof of Onsager’s

regression hypothesis.2 The term qS(q)/qq may be interpreted

as the thermodynamic force (divided by T). Hence this result

says that the most likely velocity of the fluctuating variable in

the intermediate regime is linearly proportional to the force

acting on it. In this case the force is the internal thermo-

dynamic restoring force.

The regression hypothesis is closely related to the fluctuation–

dissipation theorem.9 In the context of the Langevin equation,

the theorem relates the strength of the stochastic or fluctuating

force to the magnitude of the friction or dissipation.10 In the

present context the theorem says that the coefficient that

describes the rate of return of a thermodynamic fluctuation

to equilibrium is the same as the coefficient that describes the

dissipative flux due to an externally imposed thermodynamic

force or gradient. (The term ‘dissipative flux’ originally meant

the transfer of heat from a hot body to a cold body, but now

more generally means an increase in entropy.) In the case of a

fluctuation an internal restoring force arises from the depar-

ture from equilibrium, and this creates an internal flux back to

equilibrium. In the other case an external force maintains a

departure from equilibrium. The consequent internal flux

seeking to return the system to equilibrium is exactly cancelled

by an external flux from the reservoirs that increases their

entropy. The coefficient of interest, which may be called a

susceptibility, or a transport coefficient, can be obtained from

the velocity correlations, as is done next, or from the ratio of

the flux to the applied field, as is done for the case of heat flow

in section 4.3.

The second entropy matrix is negative because it describes

fluctuations from equilibrium. Hence a state with non-zero

velocity has a reduced sub-system second entropy and it

therefore represents a more ordered state of the sub-system.

An external driving force or applied thermodynamic gradient

makes the velocity non-zero, (and hence orders the sub-

system), and we shall show that this corresponds to a dis-

sipative flux that continually increases the entropy of the

reservoirs, and the second entropy of the total system. In

other words, order is created in the sub-system by the increas-

ing disorder of the surroundings. We shall show that this sub-

system order maximizes the total second entropy, and hence it

is a more probable state of the universe than is a disordered

sub-system. This is typical non-equilibrium behavior, and it

reconciles the order that we observe in our biosphere with the

second law of thermodynamics, (see section 8 below).

3.5. Velocity correlations and Green–Kubo

Because the transition probability is proportional to the

exponential of the dynamical entropy, the transition matrix

may be extracted from the equilibrium fluctuations. From the

Gaussian integrals we obtain

hqðtþ tÞqðtÞTi0 ¼
1

Z

R
dq0dqTq0qTesðq

0 ;qjtÞ=kB

¼kBAðtÞ�1BðtÞS�1

¼� kB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I � AðtÞ�1S

q
S�1 :

ð3:23Þ

On not too long and on intermediate time scales this reduces to

hqðtþ tÞqðtÞTi0 =kB ¼� S�1� t2

2
sðtÞ�1

� �
; jtj � tlong

¼� S�1� jtj
2
s�1
ss

� �
; tshort � jtj � tlong:

ð3:24Þ

Using the fact that hqqTi0 ¼ �kB S�1, this may be written in

terms of the coarse velocity,

hq�ðt; tÞqðtÞTi0 ¼
kBt
2

sðtÞ�1; jtj � tlong

¼ kBsignðtÞ
2

s�1
ss
; tshort � jtj � tlong: ð3:25Þ

Differentiating both sides of the first equality with respect to t
and taking the limit that t goes to zero shows that

kB s�1i
¼h€qðtÞqðtÞTi0

¼ lim
t!0

1

t
h _qðtþ tÞqðtÞTi0

¼� h _qðtÞ _qðtÞTi0 :

ð3:26Þ

(These results use the fact that h _qðtÞqðtÞTi0 ¼ 0, as follows

from dynamical reversibility.) This enables the inertial mass to

be determined from the velocity fluctuations.

On intermediate time scales, eqn (3.25) must be independent

of t. The derivative of the left hand vanishes if, and only if,

hq�ðt; tÞqðtÞTi0 ¼h _qðtþ tÞqðtÞTi0 ;

tshort � jtj � tlong:
ð3:27Þ

It also follows that the instantaneous velocity is constant in the

intermediate regime,

h€qðtþ tÞqðtÞTi0 ¼ 0; tshort � jtj � tlong: ð3:28Þ

Using these results, in the intermediate regime the transport

coefficient may be obtained from a number of equivalent
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expressions,

s�1
ss
¼ 2

kB
hq�ðt; tÞqðtÞTi0

¼�t
kB
hq�ðt; tÞ q�ðt; tÞTi0

¼ 2

kB
h_qðtþ tÞqðtÞTi0

¼ 2

kB

Z t

0

dt0 h _qð0Þ _qðt0ÞTi0;

tshort � t� tlong:

ð3:29Þ

The final form may be recognized as a Green–Kubo ex-

pression.9–13

The Onsager matrix for the transport coefficients is related

to the second entropy matrix by

L ¼ �1
2T

s�1
ss
: ð3:30Þ

Since s
ss
, is derived from the symmetric AðtÞ, this shows that

the Onsager matrix is symmetric. This is called the reciprocal

relation.

In general hq�ðt; tÞqðtÞTi0 will yield the transport function,

sðtÞ, and it may be possible to extract the linear transport

coefficient s
ss
by fitting. If the system is driven by an external

thermodynamic force, then it achieves a steady state in which

s
i
is identically zero, (and tshort = 0). The flux in this steady

state and at this state point is characterized by s
ss
.

Langevin dynamics, and its probabilistic variant the Fokker–

Plank equation, have long provided a phenomenological ap-

proach to non-equilibrium problems.9–11,14 It may be shown

that the present second entropy expression for the transition

probability in the intermediate regime corresponds to Langevin

dynamics in the high friction limit.4 It may also be shown by

direct evaluation that the second entropy transition probability

inserted into the probability evolution equation, (equivalently

Liouville’s theorem), yields Smoluchowski’s equation.

4. Heat flow

The analysis in the preceding section 3 dealt with the fluctua-

tions and rates of change of thermodynamic variables. The

analysis may now be made more concrete, and specific non-

equilibrium results may be derived, by application to the

problem of heat flow. In this case a thermal gradient is

imposed on a sub-system separating two heat reservoirs of

different temperatures. There is consequently a steady flow of

heat from the hot reservoir to the cold reservoir through the

sub-system. First we have to identify explicitly the thermo-

dynamic variables appropriate for this problem.

4.1. Thermodynamic variables

We consider a sub-system connected to thermal reservoirs of

temperatures T
 and located at z = 
L/2. (To simplify the

notation we treat only this scalar one dimensional case.) We

expect that the imposed temperature gradient, (T1 � T�)/L,

will induce a corresponding temperature gradient in the sub-

system, and also a gradient in the energy density.

To see this quantitatively we require the first entropy. We let

the energies of the respective reservoirs be Er
. We identify a

fixed region of the sub-system adjacent to each boundary and

denote the energy of these regions by Es
. We impose the

energy conservation laws

DEs1 = �DEr1, and DEs� = �DEr�. (4.1)

This constraint is not exact because the boundary regions can

also exchange energy with the interior of the sub-system.

However, we assume that the rate of this exchange is much

slower than that with the reservoir. We address this point

further below.

Using the definition of temperature, T�1 = qS/qE, the

conservation laws, and a Taylor expansion about some fixed

state, we may write the reservoirs’ entropy as

Sr
ðEr
Þ ¼ Sr
ðEr0
Þ �
Es

T


: ð4:2Þ

The first term is independent of the sub-system and may be

neglected. With this, the entropy of the total system con-

strained to be in the macrostate Es
 is the sum of that of the

isolated sub-system in that macrostate and that of the reser-

voirs,

StotalðEsþ;Es�jTþ;T�Þ ¼ SðEsþ;Es�Þ �
Esþ
Tþ
� Es�

T�
: ð4:3Þ

Here S(Es1, Es�) is the entropy of the isolated sub-system.

Differentiating this with respect to the constraints we have

@Stotal

@Es

¼ 1

Ts

� 1

T

: ð4:4Þ

The most likely state, which is denoted throughout by an over-

line, is the one that maximizes the entropy. In this case the

entropy derivative vanishes when the boundary temperatures

of the sub-system equal that of the respective reservoirs,

�T s
 = T
. (4.5)

This result is intuitively appealing and not unexpected.

We now treat the same problem from a slightly different

perspective. Motivated by the fact that it is the inverse

temperature that is thermodynamically conjugate to the en-

ergy, we define the zeroth temperature,3,5

1

T0
� 1

2

1

Tþ
þ 1

T�

� �
; ð4:6Þ

and the first temperature,

1

T1
� 1

L

1

Tþ
� 1

T�

� �
: ð4:7Þ

The zeroth temperature is essentially the average temperature

of the two reservoirs, and the first temperature is essentially

the applied temperature gradient, T�11 � rT�1 = �rT/T2
0.

The sub-system temperatures Ts0 and Ts1 can be defined

identically in terms of Ts1 and Ts�.

The sub-system energies used above can be rearranged in

the form of energy moments,

E0 = [Es1 þ Es�], (4.8)
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and

E1 = (L/2)[Es1 � Es�]. (4.9)

It is not hard to show that with these definitions the zeroth and

first temperatures of the sub-system are thermodynamically

conjugate to the zeroth and first energy moments,

1

Ts0
¼ @SðE0;E1Þ

@E0
; and

1

Ts1
¼ @SðE0;E1Þ

@E1
: ð4:10Þ

Actually this is the more fundamental definition of the tem-

peratures, but it is entirely consistent with the preceding

expressions.

With the above definitions it is a brief exercise to rearrange

the constrained total entropy as

StotalðE0;E1jT0;T1Þ ¼ SðE0;E1Þ �
E0

T0
� E1

T1
: ð4:11Þ

Maximizing the total entropy with respect to its arguments

shows that the most likely state then is one in which these

sub-system temperatures equal their reservoir counterparts,
�Ts0 = T0, and �Ts1 = T1.

The point of this second formulation is its generality. The

energy moments are always well defined, for example

Ea =
R
Vdrzae(r), (4.12)

where e(r) is the energy density. In this formulation there is no

need to invoke an arbitrary boundary region. It will turn out

that the rate of change of the first energy moment is related to

the heat flux through the sub-system. We define the zeroth and

first temperatures to be conjugate to the respective energy

moments via the derivatives of the entropy, and again we can

avoid having to invoke a boundary region. A formal deriva-

tion of the conjugate relations may be found in ref. 3. The idea

that moments and gradients are conjugate is due to Onsager.2

4.2. Gaussian approximation

The first energy moment of the isolated system is not con-

served and it fluctuates about zero. The general analysis of

section 3.1 holds. Accordingly the entropy of the isolated

system may be written as a quadratic form,

SðE0;E1Þ ¼ S0ðE0Þ þ
1

2
E1SE1; ð4:13Þ

where the correlation matrix satisfies

S�1 ¼ �1
kB
hE1E1i: ð4:14Þ

In this approximation the first temperature is given by

T�1s1 = SE1. (4.15)

In view of this, an applied temperature gradient induces an

energy moment in the sub-system that is given by

�E1 = S�1T�11 . (4.16)

4.3. Second entropy

4.3.1 Isolated system. We now consider the transition

E1 - E1
0 in time t > 0. For the case of an isolated system,

the results of section 3.2 apply. The second entropy in the

intermediate regime is

sðE01;E1jtÞ ¼
jtj
2
E0
1

�
sss E0

1

�
þ 1

2
½SðE01Þ þ SðE1Þ�: ð4:17Þ

Here the coarse velocity is E0
1

�
� ðE01 � E1Þ=t; the zero is

appended to emphasize that this is the internal or adiabatic

rate of change of moment (i.e. the system is isolated from any

reservoirs).

The derivative with respect to E1
0 is

@sðE01;E1jtÞ
@E01

¼ signðtÞsss E0
1

�
þ @SðE

0
1Þ

2@E01

¼ signðtÞsss E0
1

�
þ 1

2T 0s1
: ð4:18Þ

Hence the most likely rate of change of moment due to

internal processes is

E0
1

�
¼ �signðtÞs�1ss =2T

0
s1 ¼ �signðtÞs�1ss SE

0
1=2; ð4:19Þ

the final line holding in quadratic approximation. (For |t _E0
1|

{ E1, we can replace E01 by E1 on the right hand side.)

4.3.2 Reservoirs. We now place the sub-system in thermal

contact with the two reservoirs discussed in the preceding section.

In this case the energy moment can change by the internal

processes just discussed, or by exchange with the reservoirs,

E01 = E1 þ D0E1 � DE1r. (4.20)

The second entropy is now the sum of that of the isolated

system and that due to the reservoirs. Taking into account the

extra degree of freedom it is

stotalðD0E1;DE1r;E1jtÞ ¼
t
2
E0
1

�
sss E0

1

�
þ 1

2
SðE 01Þ þ SðE1Þ
h

� 2E1 � DE1r

T1

�
:

ð4:21Þ

Here we have used t > 0 because we are dealing with the

established steady state. The final term in the brackets is the

sum of the sub-system-dependent reservoir entropy in the

initial and final states of the transition. The derivative with

respect to the external change yields

@stotal
@DE1r

¼ @SðE
0
1Þ

2@E01

@E01
@DE1r

þ 1

2T1

¼ �1
2T 0s1

þ 1

2T1
:

ð4:22Þ

This vanishes when �T 0s1 = T1, which is the most likely result

obtained from the first entropy.

Maximising the total second entropy with respect to E1

yields essentially the same result, 1/ �T 0s1 þ 1/ �Ts1 = 2/T1, which

is to say that Ts1 = T1, and hence �E1
0 = �E1. That is

DE1r ¼ D0E1, which is to say that in the steady state the

change in the sub-system moment due to energy flow from

the reservoir is exactly cancelled by the internal energy flows

within the sub-system, and so the sub-system structure remains

unchanged.
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The derivative with respect to the internal change yields

@stotal
@D0E1

¼sss E0
1

�
þ @SðE

0
1Þ

2@E01

@E01
@D0E1

¼sss E0
1

�
þ 1

2T 0s1
:

ð4:23Þ

This vanishes at the most likely velocity, which is

E0
1

�
¼ �s�1ss =2

�T
0
s1 ¼ �s�1ss =2T1: ð4:24Þ

This says that the most likely rate of change of the moment

due to internal processes is linearly proportional to the

imposed temperature gradient. This is a particular form of

the transport law, eqn (3.22), with the imposed temperature

gradient providing the thermodynamic driving force for the

flux. Note again that in this case the sign of t has been taken as

positive because we are assuming that the system has been in a

steady state for some time already, (i.e. the system is not time

reversible).

This result confirms Onsager’s regression hypothesis. The

most likely velocity in an isolated system following a fluctua-

tion from equilibrium, eqn (4.19), is equal to the most likely

velocity due to an externally imposed force, eqn (4.24), when

the internal force is equal to the external force, �T 0s1 = T1.

This result for the most likely change in moment is equiva-

lent to Fourier’s law of heat conduction. To see this we note

that in the steady state the rate of change of moment is zero,
_E1 = 0, so that the internal change is cancelled by that due to

the reservoirs, _E0
1 = _Er1. The rate of change of the reservoir

moment is just the energy flux through the system,

J ¼ 

_Er

A
¼

_Er1

V
¼

_E
0

1

V
; ð4:25Þ

where A is the cross-sectional area of the sub-system and

V = AL is the sub-system volume. Now Fourier’s law says

J = �lrT = lT2
0/T1, (4.26)

where l is the thermal conductivity. Accordingly we have

_E
0

1 ¼
lVT2

0

T1
: ð4:27Þ

This means that thermal conductivity and second entropy

transport coefficient are related by l = �1/2VT2
0sss. (In the

steady state, si = 0 and _E
0

1 ¼ E0
1

�

.)

4.3.3 Rate of entropy production. These results give the rate

of entropy production. The rate of change of the first entropy

of the universe, which, since the sub-system’s structure does

not change with time, is the same as that of the reservoirs, is

given by

_S
ð1Þ ¼ DE1r

T1t
¼

_E
0

1

T1
¼ �s

�1
ss

2T2
1

: ð4:28Þ

This is evidently positive, (since the second entropy is concave

down). The second equality follows because T1s( �E1
0) = T1,

and T1s( �E1) = T1, which implies that �E01 = �E1, and hence

DE1r ¼ D0E1.

It should be clear that the most likely or physical rate of first

entropy production is neither minimal nor maximal; these

would correspond to values of the heat flux of 
N. The

conventional first entropy does not provide any variational

principle for heat flow, or for non-equilibrium dynamics more

generally. In the literature one finds claims for both theorems:

some claim that the rate of entropy production is minimal and

others claim that it is maximal, whereas the present results

indicate that it is neither. One has to distinguish the first or

structural entropy, which conventionally is what is meant by

the word ‘entropy’ in the literature, from the second or

dynamic entropy, which was introduced in ref. 4 and which

provides the basis for the present non-equilibrium theory. It is

the second entropy which obeys a variational principle that

allows the physical non-equilibrium state to be obtained by

maximizing it with respect to constraints.

The most likely value of the total second entropy, which is

of course its maximum value, is readily shown to be

stotal ¼
t
2
sss E0

1

�
 !2

þD0E1 � DE1r

2T1s

þ DE1r

2T1
þ SðE1Þ �

E1

T1

¼t s�1ss

8T2
1

� s�1ss

4T2
1

� �
þ SðE1Þ �

E1

T1
:

ð4:29Þ

The final, constant, term is the static entropy of the total

system, (sub-system plus sub-system-dependent part of the

reservoir), due to establishing the structure. The first term in

the brackets is the constant rate of second entropy decrease

due to the dynamic order of the sub-system, and the second,

larger, term in the brackets is the constant rate of entropy

increase of the reservoirs. Consequently the most likely rate of

change of second entropy is

s
�
total ¼ �

s�1ss

8T2
1

; ð4:30Þ

which is greater than zero. This result shows that for a steady

state system, the dynamic order induced in the intervening

sub-system consumes second entropy at a certain rate, but that

this ordering enables the external reservoirs that impose the

thermodynamic gradient to produce second entropy at a

greater rate so that the second entropy of the universe

increases. (Because the conductivity of the reservoirs is by

definition much greater than that of the intervening sub-

system, the reservoir contribution to the total second entropy

is just half their first entropy.)

Since the second entropy scales linearly with time, maximiz-

ing the total second entropy to find the most likely flux is the

same as maximizing the rate of entropy production of the

universe. If one were to increase the flux _E0
1 beyond its

optimum value, one would increase the rate of entropy con-

sumption by the sub-system due to its increased dynamic order

by a greater amount than one would increase the entropy

production of the reservoirs due to the faster transfer of heat.

The converse holds for a less than optimum flux. In both cases

the total rate of second entropy production would fall from its

maximum value.
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This result must be stressed. The present analysis of non-

equilibrium systems is equivalent to a variational procedure

that maximizes the rate of second entropy production of the

universe. One should not confuse this with the principle of

minimum rate of (first) entropy production due to Prigo-

gine.15,16 As we now show, the latter refers to the fact that

when external forces are applied to a sub-system to create a

steady state, additional forces and fluxes would increase the

rate of production of (first) entropy.

In the present language, let xi be the values of the sub-

system variables that are exchangeable with a reservoir, and let

the imposed, conjugate thermodynamic forces be Xi, i =

1,2,� � �, (e.g. x = E1 and X = 1/T1). The total constrained

first entropy is

Stotal(x|X) = S(x) � xTX, (4.31)

and the rate of first entropy production of the reservoirs is

Sr

�
¼ _xrTX. In the steady state, _x ¼ 0, and _x0 ¼ _xr, and in this

case the rate of first entropy production of the universe is the

same as that of the reservoirs because the structure of the sub-

system is constant.

In the steady state the total constrained second entropy is

stotalðD0x;D xr; xjX; tÞ ¼
t
2

x
o0T

s
ss

x
o0

þ 1

2
½Sðx0Þ þ SðxÞ � 2xT X þ D xT

r X �;
ð4:32Þ

where x0 ¼ xþ D0x� Dxr. Maximizing the constrained sec-

ond entropy yields X sðxÞ ¼ X sðx0Þ ¼ X, and hence

D0x ¼ Dxr. Also, the most likely flux is x
o0 ¼ � s�1

ss
X=2. In

the case of the non-exchangeable variables that don’t appear

explicitly here, it may be shown that their internal flux and

their internal conjugate thermodynamic force are both zero,

but the values of the non-exchangeable variables themselves

are non-zero. (See for example ref. 3 for the coupling of energy

and density gradients.)

Using these results, the most likely rate of change of the first

entropy of the reservoirs is

_Sr ¼ �_x
0T

X ¼ �1
2

XT s�1
ss

X : ð4:33Þ

This is a positive definite quadratic form that is minimized

when the forces are zero. (The second entropy matrix is

negative due to its concavity.) This result was given by

Prigogine, and from it he gave the principle of minimum rate

of (first) entropy production, which in essence says that

allowing additional fluxes across the boundary, (i.e. applying

additional forces), increases the rate of (first) entropy produc-

tion.15,16

Similarly, the maximum value of the total second entropy is

�stotal ¼
t
8

XT s�1
ss

X þ SðxðXÞÞ � xðXÞTX � t
4

XT s�1
ss

X

¼SðxðXÞÞ � xðXÞTX � t
8

XT s�1
ss

X :

ð4:34Þ

The first two, constant, terms are the total (first) entropy

increase due to establishing the structure, and the final term

is the ongoing production of (second) entropy. Hence the most

likely rate of second entropy production of the universe is

_stotal ¼
�1
8

XT s�1
ss

X : ð4:35Þ

This result in terms of the applied forces only holds for the

optimized second entropy. That is, it is only valid for the

physical or most likely steady state, and it is less general than

the expression in terms of the constrained fluxes used through-

out the text. It does not obey a variational principle, except for

the trivial one in that it is a positive definite quadratic form. (It

is the constrained second entropy that obeys a variational

principle for the fluxes.) The most likely flux predicted by the

present second entropy analysis is of course stable because the

sub-system second entropy is concave down as a function of its

arguments.

4.4. Phase space probability distribution

We now seek the steady state probability distribution for a

system with an imposed temperature gradient. This is the

microstate probability density for the phase space of the

sub-system. The reservoirs enter by the quantities defined in

the preceding section, namely the zeroth, b0 � 1/kBT0, and the

first, b1 � 1/kBT1 temperatures. We denote this steady state

probability density as }ss(C|b0,b1).
From the preceding section it is evident that the zeroth and

first energy moments of the sub-system are going to enter the

probability distribution. The zeroth energy moment is the

ordinary Hamiltonian,

E0ðCÞ ¼HðCÞ ¼
XN
i¼1

ei; ð4:36Þ

and the first energy moment in the z-direction is just

E1ðCÞ ¼
XN
i¼1

eizi; ð4:37Þ

where ei is the total energy of particle i. The adiabatic rate of

change of the energy moment, which is the natural or Hamil-

tonian motion where no heat flows to the isolated system, is

denoted _E0
1(C) = C � rE1(C

�
). Both moments have even phase

space parity, E0(C) = E0(C
w) and E1(C) = E1(C

w), since it is

assumed that there are no velocity dependent forces in the

Hamiltonian. The rate of change of the energy moment

necessarily has odd parity, _E0
1(C

w) = � _E0
1(C).

As mentioned in the Introduction, the steady state prob-

ability density cannot depend explicitly on time, but it must

depend upon the direction of time. Accordingly it cannot have

even phase space parity,

}ss(C|b0, b1) a }ss(C
w|b0, b1). (4.38)

Since both E0 and E1 have even parity, the probability density

cannot be a function of them alone. Nevertheless the fact that

these are conjugate to b0 and b1 suggests that they will occur in
the probability density. It seems likely that the flux _E0

1 will also

occur in order to break the even parity.

In section 3.2 we elucidated the nature of fluctuations in the

thermodynamic variables of an isolated system. We concluded

that on short time scales, t t tshort, the system behaved
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inertially, and that on intermediate time scales, tshort t t t
tlong, the system was in a steady state. In the inertial regime the

system was insensitive to the direction of time, (i.e. it had even

phase space parity), whereas in the steady state it moved in a

definite direction in time. Hence our strategy in constructing

the steady state probability density is to begin with an even

probability density appropriate for a fluctuation, and to

propagate it forward in time into the intermediate regime

where it becomes the steady state probability density.

This is done as follows. Suppose the sub-system is at C at

t = 0, and let C0(t|C) be the adiabatic trajectory, (i.e. the

Hamiltonian evolution if the sub-system were isolated). De-

note the past and future energy moments by E
1 (C) �
E1(C0(
t|C)), for some time interval t > 0. From the time

reversible nature of the equations of motion, C0(t|C) =

[C0(�t|Cw)]w, it follows that E
1 (C
w) = E8

1 (C). On the trajectory

the zeroth moment is conserved, E
0 (C) = E0(C).

We shall tentatively consider the steady state probability as

that which adiabatically evolved to the current point C from a

probability density of even parity induced by the reservoirs a

time �t in the past. (By Liouvilles’s theorem, the probability

density is a constant of the adiabatic motion.)8 The probability

is the exponential of the reservoir contribution to the total

entropy, eqn (4.11), (the points in phase space are microstates

and have zero entropy), and hence we have

~PtentðCjb0; b1Þ ¼
1

~Zssðb0; b1Þ
e�b0E

�
0
ðCÞe�b1E

�
1
ðCÞ: ð4:39Þ

Here Z̃ is the normalizing partition function, which is dis-

cussed further below. This probability gives the correct struc-

ture at time t = �t for a system in thermal contact with the

reservoirs, but it does not give the correct dynamics. However,

the adiabatic evolution of the dynamics is much faster than the

evolution of the structure, since _E
0

1 ! _E
0

1 in time tshort, but

generally jtshort _E
0

1j � jE1j. Hence allowing this probability to

evolve adiabatically to the present time t = 0, will give the

correct steady state dynamics, (provided t \ tshort), without
greatly changing the structure, (provided t t tlong).
This probability distribution is somewhat inconvenient from

the computational point of view. Worse, it depends sensitively

upon the time interval t. It may be corrected by noting that

E�0 (C) = E0(C), and that

E�1 ðCÞ ¼
1

2
½Eþ1 ðCÞ þ E�1 ðCÞ� �

1

2
½Eþ1 ðCÞ � E�1 ðCÞ�

� E1ðCÞ �Wmir
1 ðCÞ: ð4:40Þ

For |t _E1| { |E1|, which we assume throughout, the first

bracketed term on the right hand side can be approximated

by E1(C). The difficulties associated with the tentative prob-

ability distribution are removed by this replacement: it be-

comes insensitive to the value of t, (see section 4.5.2 below),

and it gives the correct structure at the present time rather

than at a time in the past (see section 4.5.4 below). For reasons

that will become clearer below, we shall call the second term

the mirror work. With these we give the steady state prob-

ability for a system with an imposed thermal gradient as7

PssðCjb0; b1Þ ¼
e�b0E0ðCÞe�b1E1ðCÞ

h3NN!Zssðb0; b1Þ
eb1W

mir
1
ðCÞ: ð4:41Þ

The tentative probability distribution, eqn (4.39), is an ap-

proximation to this steady state probability distribution. The

mirror work has odd parity, W1(C
w) = �W1(C), which is

reflected in its name, and so the steady state probability can be

written as the product of even and odd factors, }ss(C|b0, b1) =
}e(C|b0, b1)}o(C|b1).
The normalizing partition function is

Zssðb0; b1Þ ¼
R

dC
h3NN!

e�b0E0ðCÞe�b1E1ðCÞeb1W
mir
1
ðCÞ; ð4:42Þ

where h is Planck’s constant and N is the number of atoms in

the sub-system, and where the possible dependence on t has

not been exhibited. The non-equilibrium unconstrained total

entropy is Stotal,ss(b0, b1) = kB ln Zss(b0, b1), and its derivatives

generate non-equilibrium statistical mechanical averages, just

as in the equilibrium case.8 The non-equilibrium constrained

free energy is �T0 times the constrained total entropy,

F = �T0Stotal,ss,cons. The latter is the sub-system-dependent

part of the reservoir entropy (the exponent of the probability

density), plus the entropy of the isolated sub-system con-

strained to be in the macrostate. Hence

F(E0, E1, E


1 |b0, b1) = E0 þ b1[E1 � (Eþ1 � E�1 )/2]/

b0 �T0S
(2)
0 (E0, E1, E

þ
1 , E

�
1 ), (4.43)

where the final term is the constrained second entropy of the

isolated sub-system, (see also section 4.6.4 below). The con-

strained free energy is strictly greater than�kBT0 ln Zss. But in

the thermodynamic limit the minimum value of the con-

strained free energy (with respect to the constraints, which

are written to the left of the vertical bar), is strictly greater

than, but almost equal to, the partition function with negli-

gible error, F�(b0, b1) � F( �E0, �E1, �E
1 |b0, b1) \ �kBT0 ln

Zss(b0, b1). The state giving this minimum value is by defini-

tion the most likely thermodynamic state. The derivatives of

the free energy in the most likely macrostate generate various

relationships between thermodynamic quantities, just as in the

equilibrium case.8

4.5. Properties of the mirror work

4.5.1. Definition and rationalization. The mirror work may

be written in several equivalent forms,

Wmir
1 ðCÞ ¼

1

2
½Eþ1 ðCÞ � E�1 ðCÞ�

¼ 1

2

Z t

�t
dt0 _E

0

1ðC0ðt0jCÞÞ

¼ 1

2

Z 0

�t
dt0½ _E

0

1ðC0ðt0jCÞÞ � _E
0

1ðC0ðt0jCyÞÞ�:

ð4:44Þ

The second equality shows that only the even part of the

integrand contributes, and the past contribution to date is

exactly half the total contribution. The third equality demon-

strates that the first two equalities do not violate time

causality.

We can give a physical rationalization of the mirror work as

the ‘internal’ part of the change in E1, since only the ‘external’

part of the change in E1 should contribute to the reservoirs’

entropy. That is, since E1 is not a conserved variable, the total

change in energy moment arises from its adiabatic evolution,
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which costs no reservoir entropy, and from perturbations by

the reservoir, which do. The total change in moment is already

accounted for by the even exponent, and the mirror work is

essentially the internal change that must be subtracted. This

particular physical interpretation of Wmir
1 is discussed in more

detail below.

The mirror work is equal to the change in reservoir entropy

over an interval. This follows since in the steady state there is

no net change in the total change in energy moment. Hence the

internal change in moment over an interval must be cancelled

by the change in the sub-system moment induced by the

reservoir, D0E1 = �Ds(r)E1. But by energy conservation, the

change in the sub-system moment induced by the reservoir

must be equal and opposite to the change in the reservoir

moment, Ds(r)E1 = �DE1r. Hence DWmir
1 = D0E1 = DE1r, and

we have b1DW
mir
1 = DSr/kB. Accordingly, we may indeed

interpret DWmir
1 as a type of thermodynamic work performed

by the reservoir, which accounts for the notation used for this

term.

4.5.2 Insensitivity to s. The non-zero contributions to the

integral for the mirror work come from about the origin. Eqn

(3.22) shows that in the inertial regime the coarse rate of

change of a thermodynamic variable is linearly proportional to

the departure of that variable from its equilibrium value, and

eqn (3.29) shows that the coarse velocity over the interval is

equal to the instantaneous velocity in the intermediate regime.

Hence we have

_E0
1ðC0ðtjCÞÞ 	 signðtÞ _E0

1ðE1ðCÞÞ; tshortjtjtlong: ð4:45Þ

(This is valid if jt _E0
1 j � jE1j, which in practice is always the

case and will be assumed throughout.) Also the over-line in

this and similar contexts will henceforth denote the most likely

flux going forward in time. In this case, eqn (4.14) and (4.19)

give the most likely flux as

_E
0

1ðE1Þ ¼
�lVkBT2

0

hE2
1i0

E1 � �cE1; ðfutureÞ; ð4:46Þ

where the thermal conductivity is related to the transport

coefficient by sss = �1/2lVT2
0.

Since the asymptote is odd in time, it integrates to zero and

the mirror work can be written

Wmir
1 ðCÞ ¼

1

2

Z t

�t
dt0½ _E

0

1ðC0ðt0jCÞÞ � signðt0Þ _E
0

1ðE1ðCÞÞ�

ð4:47Þ

This shows explicitly that the mirror work is dominated by the

brief inertial part of the trajectory, and that it is independent

of t for t \ tshort.
In so far as the time integral that is Wmir

1 is dominated by

short times, then the temporally even part of _E1(t) must vanish

by |t|t tshort, the inertial time. Hence a reasonable estimate of

integral is

Wmir
1 ðCÞ �

tshort
2

_E
0

1ðCÞ: ð4:48Þ

This is consistent with an early ansatz,3 which was shown to be

a reasonable approximation in certain regimes.5

An estimate of the inertial time was given above as eqn

(3.19).4 For the present problem of heat flow it becomes

tshort ¼
�2h _E

0

1ðtÞE1ð0Þi0
hð _E

0

1Þ
2i0

; t� tshort;

¼ 2lVkBT2
0

hð _E0
1Þ

2i0
:

ð4:49Þ

The long time limit was given as eqn (3.17), and for the present

case it is explicitly4

tlong ¼
hE2

1i0
2lVkBT2

0

: ð4:50Þ

4.5.3 Adiabatic evolution. Let C0 = C þ DtC
�
, be the

adiabatic evolution of C after an infinitesimal time step. The

adiabatic evolution of Wmir
1 can be obtained from

Wmir
1 ðCÞ ¼

1

2

Z t

�t
dt0 _E

0

1ðC0ðt0jCÞÞ

¼ 1

2

Z t�Dt

�t�Dt

dt00 _E
0

1ðC0ðt00 þ DtjCÞÞ

¼ 1

2

Z t�Dt

�t�Dt

dt00 _E
0

1ðC0ðt00jC0ÞÞ

¼Wmir
1 ðC0Þ �

Dt

2
½ _E

0

1ðC0ðtjC0ÞÞ

� _E
0

1ðC0ð�tjC0ÞÞ�

¼Wmir
1 ðC0Þ � Dt

_E
0

1ðE1ðC0ÞÞ:

ð4:51Þ

Hence the adiabatic rate of change is7

_W
mir

1 ðCÞ ¼ _E
0

1ðE1ðCÞÞ; ð4:52Þ

which has even parity, as it ought. This result is exact for t in
the intermediate regime.

This result for the adiabatic evolution of Wmir
1 provides us

with a physical interpretation of the steady state probability,

eqn (4.41). The difficulty with heat flow is the lack of con-

served variables; the change in energy moment DE1 occurs

both internally by the adiabatic evolution of the isolated sub-

system, D0E1, and externally by exchange with the reservoir,

Ds(r)E1 = �DE1r. This is in contrast to the canonical Boltz-

mann distribution where the total energy is conserved, so that

DE0 = D0E0 þ Ds(r)E0 � DE0r, which is why the Boltzmann

exponent is DSr/kB =�b0E0. In the present case, the change in

entropy of the reservoirs is

DSr=kB ¼b0DE0r þ b1DE1r

¼� b0DE0 � b1½DE1 � D0E1�

� � b0DE0 � b1½DE1 � Dt
_E
0

1�

� � b0DE0 � b1½DE1 � DWmir
1 �:

ð4:53Þ

3596 | Phys. Chem. Chem. Phys., 2006, 8, 3585–3611 This journal is �c the Owner Societies 2006

Pu
bl

is
he

d 
on

 0
7 

Ju
ly

 2
00

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 d

i P
ad

ov
a 

on
 1

2/
23

/2
01

9 
9:

02
:4

5 
A

M
. 

View Article Online

https://doi.org/10.1039/b604284h


From the final approximate expression, we see that subtract-

ing the change in Wmir
1 from the total change in moment is

equivalent to identifying that part of the change in energy

moment that is due to the reservoir. It is only this external

influence that affects the reservoir entropy and contributes to

the steady state probability.

In section 4.6.2 below we show that the steady state prob-

ability distribution is approximately stationary during the

adiabatic evolution of the isolated sub-system. This confirms

the above interpretation that the exponent reflects the entropy

of the reservoirs only, and that the contribution from internal

changes of the sub-system have been correctly removed.

4.5.4 Relationship with Green–Kubo. We now show that

the steady state probability density, eqn (4.41), gives the

Green–Kubo expression for the thermal conductivity. Four-

ier’s law, eqn (4.27), gives the heat flux due to an applied

temperature gradient. Since the heat flux is the rate of change

of energy moment, the average of the latter in the steady state

can be used to obtain the thermal conductivity. Linearizing the

exponents for small temperature gradients, b1 { 1, we obtain

h _E
0

1ðCÞiss ¼
R
dCe�b0E0ðCÞe�b1E1ðCÞeb1W

mir
1
ðCÞ _E

0

1ðCÞR
dCe�b0E0ðCÞe�b1E1ðCÞeb1W

mir
1
ðCÞ

¼
R
dCe�b0E0ðCÞ½1� b1E1ðCÞ þ b1W

mir
1 ðCÞ� _E

0

1ðCÞR
dCe�b0E0ðCÞ½1� b1E1ðCÞ þ b1W

mir
1 ðCÞ�

¼ b1
R
dCe�b0E0ðCÞWmir

1 ðCÞ _E
0

1ðCÞR
dCe�b0E0ðCÞ

¼ b1 hWmir
1 ðCÞ _E

0

1ðCÞi0;

ð4:54Þ

Since _E0
1 is of odd parity, the integral of it times the two even

terms from the linearization of the exponents vanishes. The

integral over �b1E1(C) in the denominator vanishes because it

is odd in z.

Using the definition of the mirror work and Fourier’s law,

eqn (4.27), this gives the thermal conductivity as

lðtÞ ¼ 1

2VkBT
2
0

Z t

�t
dt0h _E

0

1ðC0ðt0jCÞÞ _E
0

1ðCÞi0

¼ 1

VkBT
2
0

Z t

0

dt0h _E
0

1ðC0ðt0jCÞÞ _E
0

1ðCÞi0 ð4:55Þ

The second equality follows because the time correlation

function of two quantities of the same parity is an even

function of time. In the intermediate regime, this may be

recognised as the Green–Kubo expression for the thermal

conductivity,11 which in turn is equivalent to the Onsager

expression for the transport coefficients.4

This result is a very stringent test of the present expression

for the steady state probability distribution, eqn (4.41). There

is one, and only one, exponent that is odd, linear in b1, and
that satisfies the Green–Kubo relation.

We can likewise test the even part of the probability by

taking the steady state average of an even function, namely E1.

Similar arguments show that

hE1(t)iss = �b1hE1(t)
2i0=S�1T�11 , (4.56)

which is in full agreement with the fluctuation expression for

the first entropy, eqn (4.16). This confirms that the even part of

the steady state probability distribution, eqn (4.41), is correct

since there is one, and only one, even exponent that is linear in

b1 that will yield this result.

We now consider similar analysis for the tentative steady

state probability, eqn (4.39). This will also yield the

Green–Kubo formula when the average of _E0
1 is taken, because

the odd parity part of that distribution is identical to the

mirror work and so it gives the same result as that obtained for

the steady state probability distribution. However, the part

with even parity is different and in this case one obtains

hE1ðtÞitent ¼� b1 hE1ðtÞE1ðt� tÞi0

¼� b1hE1ðtÞ2i0 þ b1thE1ðtÞE0
1

�
ðt;�tÞi0

�� b1hE1ðtÞ2i0 � b1t E1ðtÞE0
1

�
ðE1ðtÞÞ

* +
0

¼� b1ð1� tcÞhE1ðtÞ2i0;
ð4:57Þ

where eqn (4.46) for the most likely velocity has been used.

This differs from the correct result by the factor 1 � tc
compared to 1. This confirms that the tentative probability

distribution yields an average moment that, during the adia-

batic evolution to the present time, has decreased from what it

should be. Of course the term tc equals�t _E
0

1=E1, which we

have been assuming to be small for t in the intermediate

regime. Nevertheless the analysis does show the sensitivity of

the tentative probability distribution, eqn (4.39), to the value

chosen for t, and it does show the improvement offered by the

steady state probability distribution, eqn (4.41).

4.6. Microstate transitions

4.6.1 Transition probability. We now explore the nature of

the microscopic transitions in the steady state system. For

these it is essential to account for the stochastic perturbations

from the reservoirs. We consider the transition between the

microstates C - C00 in an infinitesimal time step Dt. This

comprises a deterministic transition C - C0 due to the internal

forces of the sub-system, followed by a stochastic transition

C0 - C00 due to the perturbations by the reservoir.

The deterministic transition is just the adiabatic evolution of

the isolated sub-system, C0 = C þ DtC
�
. In terms of the

conditional transition probability this is

Ld(C
0|C0) = d(C0 � C � DtC

�
) (4.58)

The stochastic transition probability can be written as the

product of an even and an odd function,

Ls(C
00|C0) = Le(C

00|C0)Lo(C
00|C0). (4.59)

The parity of a transition refers to the reversibility or irreversi-

bility of the transition. That is, even transition probabilities satisfy

Le(C
00|C0) = Le(C

0w|C00w), (4.60)

and odd transition probabilities satisfy

Lo(C
00|C0) = 1/Lo(C

0w|C00w). (4.61)
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We can use entropic arguments to obtain an expression for the

odd transition probability. The change in entropy of the

reservoirs during the stochastic transition C - C00 is

DS/kB = �b0DE0 � b1[DE1 � D0E1]

= �b0(E0
00 � E0) � b1(E1

00 � E1 � Dt
_E0
1)

= �b0(E0
00 � E0

0) � b1(E1
00 � E1

0). (4.62)

Here DE1 � E1
00 � E1 is the total change in moment, and

D0E1 � E1
0 � E1 is the deterministic change in moment. It is

only the stochastic part of the change in moment that is due to

perturbations by the reservoirs and that contributes to the

change in entropy of the reservoirs. Accordingly, we may take

the odd stochastic transition probability to be the exponential

of half the change in entropy,6

Lo(C
00|C0) = e�b0(E

00
0 � E0

0
)/2 e�b1(E

00
1 � E

0
1)/2 (4.63)

The reason for taking half the change in entropy is that when

multiplied by the even part of the probability density, this

gives an unconditional transition probability that obeys dy-

namic reversibility, Lo(C
00|C0)e�b0E

0
0 e�b1E

0
1 = e�b0(E

00
0 1 E

0
0)/2

e�b1(E
00
1 1 E

0
1)/2. Such stochastic transition probabilities were

originally used in equilibrium contexts.17,18

The even stochastic transition probability may be taken as

Le(C
00|C0) = YD(|C

00 � C0|). (4.64)

Here YD is a short ranged, even function, (such as a Heaviside

step function, or a Gaussian), with range D that represents the

strength of the stochastic perturbations from the reservoir. It is

normalized, and does not depend on the temperatures to

leading order.

It is possible to multiply the even stochastic transition

probability by a factor of eb1(W1
mir00 � W1

mir0
)/2. This does not

affect the normalization of YD to leading order. All of the

results given below would be unchanged if this factor were to

be added. This includes the microscopic transition theorem

established in ref. 6, which is independent of the even transi-

tion probability.

With these expressions, the stochastic conditional transition

probability is explicitly

Ls(C
00|C0)=YD(|C

00 � C0|) e�b0(E
00
0 � E

0
0)/2 e�b1(E1

00 � E
0
1)/2. (4.65)

The exponent is half the change in reservoir entropy during the

transition.

4.6.2 Stationary steady state probability. For steady heat

flow the probability density does not depend explicitly on time,

and so it must be stationary under the transition probability

given above. Under the adiabatic evolution for a time-step Dt

the probability density becomes

PðC0jDtÞ ¼PssðC0jb0; b1Þ

¼PssðC0jb0; b1Þ eb1Dt ½E0
1
ðC0Þ� _Wmir

1
ðC0Þ�:

ð4:66Þ

Hence the steady state probability distribution is preserved to

the extent that the exponent shown explicitly is zero. (To

leading order we can use C or C0 in this term.)

We have already seen that _Wmir
1 ðCÞ ¼ _E0

1ðE1ðCÞÞ. The over-
bar signifies the most likely state, and it is in such states that

the steady state probability is significantly greater than zero.

Conversely, states with _E0
1 a _E0

1 occur rarely, with the

probability getting smaller as the difference increases. (Fluc-

tuations away from equilibrium or the steady state are rela-

tively negligible.8) Hence in the most likely state the final term

vanishes, and for nearby states it is small. Accordingly the

present steady state probability density is almost stationary

during its adiabatic evolution.

During the stochastic step, the transition integral becomes

R
dC0LsðC00jC0ÞPssðC0jb0; b1Þeb1Dt½ _E

0
1ðC 0Þ� _W

mir
1 ðC0Þ�

¼
R
dC0YDðjC00 � C0jÞe�b0ðE000�E00Þ=2e�b1ðE001�E01Þ=2

� e�b0E
0
0e�b1E

0
1eb1W

mir0
1

Zss
eb1Dt ½ _E0

1
ðC 0Þ� _W

mir
1 ðC 0Þ�

¼ e�b0E
00
0 e�b1E

00
1 eb1W

mir00
1

Zss

R
dC0YDðjC00 � C0jÞ

� eb1ðW
mir0
1
�Wmir00

1
Þe�b0ðE

0
0
�E 0 0

0
Þ=2e�b1ðE

0
1
�E 0 0

1
Þ=2

� eb1Dt ½ _E
0
1ðC 0Þ� _W

mir
1 ðC 0Þ�

¼ PssðC00jb0; b1Þ
R
dC0LsðC0jC00Þ

� eb1ðW
mir0
1
�Wmir00

1
Þeb1Dt ½ _E

0
1ðC 0Þ� _W

mir
1 ðC 0Þ�

¼ PssðC00jb0; b1Þ:

ð4:67Þ

This is the required result which shows the stationarity of the

steady state probability under the present transition proba-

bility.

The final equality holds to order D2. The normalization of

the conditional transition probability,
R
dC0Ls(C

0|C00) = 1, is

unchanged to order D2 by the factor of eb1(W1
mir0 � W1

mir00
). We

have also neglected the term b1Dt[ _E0
1(C

0) � _Wmir
1 (C0)] on the

grounds that the fluctuations away from the most likely state

are relatively negligible in the thermodynamic limit.

4.6.3 Forward and reverse transitions. In the present case of

steady heat flow, the unconditional microscopic transition

probability is

PðC00  CjDtÞ ¼LsðC00jC0ÞPssðCjb0; b1Þ

¼YDðjC00 � C0jÞe�b0ðE
0 0
0
þE0Þ=2

� e�b1ðE
0 0
1
þE1�Dt _E1Þ=2eb1W

mir
1 =Zssðb0; b1Þ

¼YDðjC00 � C0jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PssðC00jb0; b1ÞPssðCjb0; b1Þ

p
� e�b1ðW

mir00
1
�Wmir

1
Þ=2eDtb1 _E

0
1 =2;

ð4:68Þ

for an infinitesimal Dt. The _E0
1 in the final term can be replaced

by ( _E000
1 þ _E0

1)/2 to this order.

We consider the forward transition, C - C0 - C00, and its

reverse C00w - C00 0w - Cw. Note that C00 0w a C0w, but that |C00 �
C0| = |Cw � C00 0w|. The ratio of the forward to the reverse
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transition probabilities is

PðC00  CjDtÞ
PðCy  C00yjDtÞ

¼ eb1ðW
mir
1
ðC00ÞþWmir

1
ðCÞÞeDtb1ð _E

0
1ðC00Þþ _E

0
1ðCÞÞ=2;

ð4:69Þ

the even terms cancelling. The exponent of the final term is

part of the change in reservoir entropy (the thermodynamic

work done) on the trajectory, eqn (4.62).

We now consider a trajectory [C] = {C0, C1,� � �,Cf}, over a

time interval tf = fDt, and its reverse, [Cz] = {Cw
f , C

w
f�1, � � �,Cw

0}.

The adiabatic change in E1 over the trajectory is

D0E1½C� ¼
Dt

2
½ _E

0

1ðC0Þ þ _E
0

1ðCf Þ� þ Dt

Xf�1
i¼1

_E
0

1ðCiÞ: ð4:70Þ

Clearly D0E1[C
z] = �D0E1[C]. In view of eqn (4.62), for large

fDt this gives the change in the reservoirs’ entropy over the

trajectory, DSr/kB = �b0DE0 � b1DE1 þ b1D
0E1 E b1D

0E1,

since the surviving term is the only one that grows with the

length of the trajectory.

The unconditional probability of the trajectory is

P½C� ¼
Yf
i¼1

YDðjCiþ1 � Ci
0jÞe�b0ðE0;i�E 00;i�1Þ=2

h
e
�b1ðE1;i�E 01;i�1Þ=2

i

�PssðC0jb0; b1Þ

¼
Yf
i¼1

YDðjCiþ1 � Ci
0jÞ½ �eb1D0E1=2e

�b1ðWmir
1;f
�Wmir

1;0
Þ=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PssðCf jb0; b1ÞPssðC0jb0; b1Þ

q
;

ð4:71Þ

since E01,i�1 = E1,i�1 þ Dt
_E1,i

0
�1. The exponent D0 _E1 should

really be replaced by D0E1 þ Dt[ _E0
1(C0) � _E0

1(Cf)]/2, but this

correction is negligible for large f, and in any case it is fixed up

by the ratio that is now taken.

The ratio of the probability of the forward and reverse

trajectory in the steady state is

P½C�
P½Cz�

¼eb1Wmir
1
ðCf Þeb1W

mir
1
ðC0Þeb1D

0E1½C�

�eb1D0E1 ½C�;

ð4:72Þ

the even terms cancelling. The final approximation is valid for

large tf, since the retained term scales with fDt. The final

exponent is the change in the entropy of the reservoirs, eqn

(4.62) in this limit. The result for the ratio of the probabilities

of the forward and reverse trajectories may be called the

reverse transition theorem.6

It is possible to consider trajectories that evolve to the

steady state rather than begin in the steady state. This provides

slightly neater forms for certain ratios in the short time limit,

even though arguably the results are less physically applicable.

We let the starting point of the trajectory be drawn from a

probability density with even parity. The most appropriate

density applies to the so-called static state,3

PstðCjb0; b1Þ ¼
e�b0E0ðCÞe�b1E1ðCÞ

Zstðb0; b1Þ
: ð4:73Þ

In this case the trajectory probability during the evolution to

the steady state is

Pst½C� ¼
Yf
i¼1
½YDðjCiþ1 � Ci

0jÞ�eb1D0E1=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PstðCf jb0; b1ÞPstðC0jb0; b1Þ

q
; ð4:74Þ

and the ratio of the forward and reverse trajectories is

Pst½C�
Pst½Cz�

¼ eb1D
0E1½C�: ð4:75Þ

The probability of observing the entropy of the reservoirs

change by DS over a period t is related to the probability of

observing the opposite change by

PðDSjb0; b1; tf ; Þ

¼
R
d½C�dðDS � DS½C�ÞP½C�

� k�1B

R
d½Cz�dðDS=kB � b1D

0E1½C�Þ

�P½Cz�eb1D0E1½C�

¼ eDS=kBPð�DSjb0;b1;tf Þ:

ð4:76Þ

(Using instead trajectories that begin and end with the static

probability distribution, we have the exact result, }st(D
0E1|b0,

b1, tf) = eb1D
0
E1 }st (�D0E1|b0, b1, tf).) This result says in

essence that the probability of a positive increase in entropy is

exponentially greater than the probability of a decrease in

entropy during heat flow. In essence this is the temperature

gradient version of the fluctuation theorem that was originally

derived by Evans et al. for mechanical work (see section 6.2

below).19,20 The present derivation for heat flow is based upon

the microscopic transition probability given by Attard.6

Closely related to the fluctuation theorem is the work

theorem due to Jarzynski.21 In this context we are motivated

to consider the average of the exponential of the negative of

the heat flux,

he�b1D0E1iss;tf ¼
R
d½C�e�b1D0E1 ½C�Pð½C�jb0; b1; tf Þ

¼
R
d½Cz�Pð½Cz�jb0; b1; tf Þ

� eb1ðW
mir
1
ðCf ÞþWmir

1
ðC0ÞÞ

�
R
dC
y
fPðC

y
f jb0; b1Þe

�b1Wmir
1
ðCy

f
Þ

�
R
dC
y
0PðC

y
0jb0; b1Þe�b1W

mir
1
ðCy

0
Þ

¼ Zstðb0; b1Þ
Zssðb0; b1Þ

� �2

:

ð4:77Þ

Here it has been assumed that the trajectory is long enough

that the ends are uncorrelated. This result shows that this

particular average is not extensive in time, (i.e. it does not scale

with tf). In essence the right hand side is the exponential of

twice the difference in free energies of the static and steady

state systems. If the trajectories were begun from the static

distribution, the right hand side would be unity.
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4.6.4 Second entropy. We now derive the relationship

between the steady state probability density and the second

entropy for heat flow. Three relevant quantities appear in the

steady state probability density, eqn (4.41): E1, E
þ
1 , and E�1 ,

since the mirror work term is Wmir
1 = (Eþ1 � E�1 )/2. Accord-

ingly, the steady state probability density really describes the

sequential transition, E�1 - E1 - Eþ1 , with each interval of

duration t. The exponent represents the reservoir contribution
to the total entropy, since a sub-system microstate, a point in

its phase space, has zero entropy. Hence the total second

entropy for this sequential transition is just the logarithm of

the sum over the macrostate of the weights of the microstates,

the latter being the unnormalised steady state probability,

S
ð2Þ
totalðE

þ
1 ;E1;E

�
1 jtÞ=kB

¼ ln
R
dC exp½�b0E0ðCÞ � b1E1ðCÞ�

þ b1fEþ1 ðCÞ � E�1 ðCÞg=2dðE1 � E1ðCÞÞ

� dðEþ1 � Eþ1 ðCÞÞdðE�1 � E�1 ðCÞÞ

¼ S
ð2Þ
0 ðEþ1 ;E1;E

�
1 jtÞ=kB

� b1E1 þ b1ðEþ1 � E�1 Þ=2:

ð4:78Þ

The second entropy of the isolated system during the adiabatic

sequential transition is

S
ð2Þ
0 ðEþ1 ;E1;E

�
1 jtÞ ¼

sss
2t
ðEþ1 � E1Þ2 þ

sss
2t
ðE1 � E�1 Þ

2

þ Sð1Þ

2
E2
1 ; t4tshort:

ð4:79Þ

This is eqn (3.11) applied to the present problem. The final

term can be replaced by the first or ordinary entropy, S(1)(E1),

which in turn to leading order can be replaced by [S(1)(E�1 ) þ
S(1)(Eþ1 )]/2 without changing the following results for the

coarse velocity over the entire interval.

The derivatives of the total second entropy are

@S
ð2Þ
total

@Eþ1
¼ sss

Eþ1 � E1

t
þ b1

2
; ð4:80Þ

@S
ð2Þ
total

@E�1
¼ �sss

E1 � E�1
t

� b1
2
; ð4:81Þ

and

@S
ð2Þ
total

@E1
¼ �sss

Eþ1 � E1

t
þ sss

E1 � E�1
t

� b1 þ Sð1ÞE1: ð4:82Þ

Maximizing the total second entropy by setting these deriva-

tives to zero, we see that the most likely moment is

�E1 = (S(1))�1 b1. (4.83)

and that the most likely flux is

Eþ1

o

¼ E�1
o

¼ � s�1ss

2
b1; ð4:84Þ

These agree with eqn (4.16) and (4.24). As mentioned above,

the second entropy form of the transport coefficient is related

to the thermal conductivity by sss = �1/2lVT2
0.

We may conclude two things from this analysis. First, the

present steady state probability distribution is entirely consistent

with the second entropy analysis of heat transport. This demon-

strates again the necessity of the mirror work term Wmir
1 . Second,

the steady state probability distribution really describes transitions

rather than phase space microstates per se, since the exponent is so

closely related to the second entropy. This surprising result

contrasts with equilibrium systems where it is the first entropy

or state weight that is relevant to the probability density.

5. Monte Carlo simulations of heat flow

The availability of a phase space probability distribution for

the steady state means that it is possible to develop Monte

Carlo algorithms for the computer simulation of non-equili-

brium systems. We give two algorithms here, one based on the

probability distribution and the Metropolis algorithm,7 and

the other based on the transition probability and the von

Neumann algorithm.6 Some aspects of the system geometry

and potential are common to both methods.

5.1. System details

A Lennard-Jones fluid was simulated, with the pair potential

cut and shifted at Rcut = 2.5. No tail correction was used. The

shift to make the potential zero at the cut-off is necessary for

consistency between the Monte Carlo and molecular dynamics

aspects of the computations.

All quantities were made dimensionless using the well-depth

eLJ, the diameter sLJ, and the time constant tLJ = O(mLJs
2
LJ/

eLJ), where mLJ is the mass. In addition, Boltzmann’s constant

was set equal to unity.

A spatial neighbor table was used with cubic cells of side-

length E 0.6.3 At the beginning of the simulation a list of

neighbor cells within the cut-off of each cell was calculated and

stored. The neighborhood volume composed of such small

neighbor cells can be made to closely approximate the cut-off

sphere. This reduces the enveloping neighborhood volume

from 27 large cubes, (each of size Rcut, neighborhood volume

27R3
cut), to approximately 667 small cubes giving a neighbor-

hood volume of the order of (4p/3)(Rcut þ 0.6)3. The number

of neighbors required for a force or potential calculation with

these small cells is almost a factor of three smaller than for the

conventional cells of length Rcut.

Both a uniform bulk fluid and an inhomogeneous fluid were

simulated. The latter was in the form of a slit pore, terminated in

the z-direction by uniform Lennard-Jones walls. The distance

between the walls for a given number of atoms was chosen so

that the uniform density in the center of the cell was equal to the

nominal bulk density. The effective width of the slit pore used to

calculate the volume of the sub-system was taken as the region

where the density was non-zero. For the bulk fluid in all directions,

and for the slit pore in the lateral directions, periodic boundary

conditions and the minimum image convention were used.

The energy per atom consists of kinetic energy, singlet, and

pair potential terms,

ei ¼
1

2m
pi � pi þ wðqizÞ þ

1

2

XN
j¼1

ðj 6¼iÞuðqijÞ; ð5:1Þ
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where w(z) is the wall-potential, (if present). In terms of this

the zeroth moment is just the total energy,

E0ðCÞ ¼
XN
i¼1

ei; ð5:2Þ

and the first moment is

E1ðCÞ ¼
XN
i¼1

qizei: ð5:3Þ

The adiabatic rate of change of the first energy moment is

_E
0

1ðCÞ ¼
XN
i¼1

_qiz ei þ qiz _ei; ð5:4Þ

where the velocity is _qiz = piz/mLJ. Using Hamilton’s equa-

tions, it is readily shown that

_ei ¼
�1
2

XN
j¼1

ðj 6¼iÞu0ðqijÞ
qij � ½pi þ pj �

mqij
: ð5:5Þ

This holds whether or not the singlet potential is present. In

the case of periodic boundary conditions, it is quite important

to use the minimum image convention for all the separations

that appear in this expression. This may be rewritten in the

convenient form6

_E
0

1 ¼
X
ia

kiapia=m; ð5:6Þ

where

ji ¼
ei
m

ẑ�
XN
j¼1

j 6¼iu0ðqijÞ
½qiz � qjz�
2mqij

qij : ð5:7Þ

The Monte Carlo algorithms require DE0, and DE1, and

D _E0
1. In attempting to move atom n in phase space, we identify

the n-dependent contribution to these formulae and only

calculate the change in this for each attempted move.

In calculating E1(t) on a trajectory, it is essential to integrate
_E0
1(t) over the trajectory rather than use the expression for

E1(C(t)) given above. This is because _E0
1 is insensitive to the

periodic boundary conditions, whereas E1 depends on whether

the coordinates of the atom are confined to the central cell, or

whether the itinerant coordinate is used, and problems arise in

both cases when the atom leaves the central cell on a trajec-

tory.

Because the starting position of each trajectory was taken

from a Boltzmann-weighted distribution in 6N-dimensional

phase space, the center of mass velocity of the system (the total

linear momentum) was generally non-zero. Prior to commen-

cing each molecular dynamics trajectory, the z-component of

the center of mass velocity was zeroed at constant kinetic

energy by shifting and rescaling the z-component of the

momenta. (Only the z-component of the first energy moment

was used.) It was found that a non-zero center of mass velocity

made a non-negligible contribution to the conductivity. Con-

ventional molecular dynamics simulations are performed with

zero center of mass velocity, which is of course the most

appropriate model of reality. For the bulk case the total

z-momentum was conserved at zero along the molecular

dynamics trajectory. For the inhomogeneous simulations,

the momentum during the adiabatic evolution was not con-

served due to collisions with the walls. In this case an addi-

tional external force was applied to each atom that was equal

and opposite to the net wall force per atom, which had the

effect of conserving the z-component of the total linear

momentum at zero along the molecular dynamics trajectory.

5.2. Metropolis algorithm

We performed umbrella sampling Monte Carlo simulations in

6N-dimensional phase space, where N = 120–500 atoms.7 We

used the Metropolis algorithm with umbrella sampling. The

weight density used was

o(C) = e�b0E0(C)e�b1E1(C)eab1
_E1
0
(C). (5.8)

We corrected for the umbrella weight used to generate the

configurations by using the exact steady state probability

density, eqn (4.41), to calculate the averages, (see below).

The final term obviously approximates b1W
mir
1 , but is about

a factor of 400 faster to evaluate. We fixed a at 0.08, although

it would be possible to optimize this choice, or to determine a
on the fly.5

A trial move of an atom consisted of a small displacement in

its position and momentum simultaneously. Step lengths of 0.9

in velocity and 0.09 in position gave an acceptance rate of

about 50%. A cycle consisted of one trial move of each atom.

We collected averages after every 50 cycles. For this we

required the mirror work which was obtained from the

adiabatic Hamiltonian trajectory generated forward and back-

ward in time, starting at the current configuration. We used a

second order integrator,

qnaðtþ DtÞ ¼qnaðtÞ þ Dt _qnaðtÞ þ
D2
t

2m
FnaðtÞ;

pnaðtþ DtÞ ¼pnaðtÞ þ
Dt

2
FnaðtÞ þ Fnaðtþ DtÞ½ �;

ð5:9Þ

where n labels the atom, a = x, y, or z labels the component,

and Fna(t) � Fna(q
N(t)) is the force, which does not depend

upon the momenta. Obviously one evaluates Fna(t þ Dt) after

evaluating the new positions and before evaluating the new

momenta. Typically, the time step was Dt = 10�3. The zeroth

energy moment in general increased by less than 1% over the

trajectory.

Labelling the current configuration by i, the trajectory is

C0(t | Ci) We calculated the running integral for Wmir
1 (Ci; t)

along the trajectory using both the trapezoidal rule and

Simpson’s rule, with indistinguishable results. We calculated

the average flux as a function of the time interval,

h _E
0

1it ¼
P

i
_E
0

1ðCiÞe�ab1 _E
0
1ðCiÞeb1W

mir
1
ðCi ;tÞP

i e
�ab1 _E

0
1ðCiÞeb1W

mir
1
ðCi ;tÞ

: ð5:10Þ

Notice how the umbrella weight used in the Metropolis

scheme is cancelled here. We obtained the thermal conductiv-

ity as a function of the time interval, l(t) = h _E0
1it/b1VkBT2

0.

Compared to implementing the steady state probability di-

rectly in the Metropolis algorithm, not only is the umbrella

method orders of magnitude faster in generating configura-

tions, but it also allows results as a function of t to be
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collected, and it reduces the correlation between consecutive,

costly trajectories, by inserting many cheap, umbrella steps. Of

the order of 50 000 trajectories were generated for each case

studied.

5.3. von Neumann algorithm

The transition probability described in section 4.6 provides a

basis for an alternative Monte Carlo algorithm that may be

called stochastic molecular dynamics.6,17,18 It avoids the ne-

cessity of full knowledge of the steady state probability

density, and it avoids having to calculate the mirror work,

which can be costly. Basically one follows a trajectory in time

in which deterministic Hamiltonian steps are interspersed with

stochastic Monte Carlo steps. That is, from the current con-

figuration C = C(t), one generates C0 using Hamilton’s

equations for a time step Dt, and then one generates C00

stochastically according to Ls and takes C(t þ Dt) = C00.

von Neumann’s algorithm for sampling a probability distribu-

tion may be used for the stochastic step.6,11 Un-weighted

averages over the trajectory are taken.

We have only tested this stochastic molecular dynamics

algorithm for heat flow in a rather limited sense.6 Instead of

using the adiabatic trajectory for the deterministic step, (i.e.

Hamilton’s equations for an isolated system), modified equa-

tions of motion were used that constrained the zeroth and first

energy moment to be constant. Although physically plausible,

this procedure is somewhat ad hoc and is not consistent with

the formal analysis of section 4.6. These deterministic equa-

tions were used in conjunction with the stochastic transition

probability given above in section 4.6.2. It was found that for

large stochastic step lengths the direction of the heat flux was

randomized, and consequently the thermal conductivity was

reduced. Several corrections for this effect were explored.6

5.4. Non-equilibrium molecular dynamics

Perhaps the most common computer simulation method for

non-equilibrium systems is the non-equilibrium molecular

dynamics (NEMD) method.22,23 This typically consists of

Hamilton’s equations of motion augmented with an artificial

force designed to mimic particular non-equilibrium fluxes, and

a constraint force or thermostat designed to keep the kinetic

energy or temperature constant. Here we give a brief deriva-

tion and critique of the main thrust of that method.

Following ref. 11, we consider a perturbation to the

Hamiltonian, F(t)A(C), switched on at a certain time,

FðtÞ ¼ F; t40;
0; to0:

�
ð5:11Þ

Let the Hamiltonian for the non-equilibrium state be repre-

sented by

Hne(C) = H0(C) þ F(t)A(C), (5.12)

in which case the non-equilibrium equations of motion are

_qia = pia/m þ F(t)Apia (5.13)

and

_pia = fia � F(t) Aqia, (5.14)

with the subscripts on the non-equilibrium potential denoting

a derivative. (A thermostat is generally also added.) The

function A has even parity so that the equations of motion

are time reversible. It is straightforward to show that at a given

point in phase space, the rate of change of the non-equilibrium

potential is the same in the non-equilibrium and the natural

system,

_A (C) = _A0(C). (5.15)

The average of an odd function of phase space at a time t>

0 after switching on the non-equilibrium perturbation, assum-

ing that the system is initially Boltzmann distributed, is

hBðtÞine ¼
R
dC1e

�bH0ðC1ÞBðCFðtjC1ÞÞR
dC1e

�bH0ðC1Þ

¼
R
dC1e

�bH0ðCFÞe�bF½AðCFÞ�AðC1Þ�BðCFÞR
dC1e

�bHFðCFÞebF½AðCFÞ�AðC1Þ�

¼�bF
R
dCFe�bH0ðCFÞ½AðCFÞ �AðC1Þ�BðCFÞR

dCFe�bHFðCFÞ

¼ � bFh½AðCFÞ �AðC1Þ�BðCFÞi0

�� bF
Z t

0

dt0h _Aðt0ÞBð0Þi0;

ð5:16Þ

where CF � CF(t|C1). This result uses the fact that the non-

equilibrium Hamiltonian is a constant on the non-equilibrium

trajectory, and that the Jacobean of the transformation along

a non-equilibrium trajectory is unity. It also linearizes every-

thing with respect to F, and neglects terms with total odd

parity.

The parity of the time correlation functions discussed in

section 2.4 has been used here. That discussion was predicated

on an even probability distribution and reversible equations of

motion. Hence those properties of the time correlation func-

tion also hold for the present case of the Boltzmann distribu-

tion and modified equations of motion.

There is an approximation implicit in the final line. The

subscript zero implies an average for an isolated system (i.e. on

an adiabatic or bare Hamiltonian trajectory), whereas the

actual trajectory used to obtain this result is the modified

one, CF(t|C1) a C0(t|C1). In so far as these are the same to

leading order, this difference may be neglected.

The choice of A, B and F is dictated by the Green–Kubo

relation for the particular flow of interest. For heat flow we

identify B(C) = _E0
1(C), _A(C) = � _E0

1(C), and F = T0/T1 =

b1/b0.
Depending on your point of view, it is either a strength or a

weakness of the NEMD method that it gives a uniform

structure for the non-equilibrium system, (e.g. for heat flow

the sub-system does not acquire the applied temperature

gradient, nor does it have gradients in energy or density).

On the one hand such imposed uniformity makes the simula-

tions compatible with periodic boundary conditions, and it

does not affect the dynamics in the linear regime. On the other

hand the incorrect structure precludes reliable results for the

dynamics in the non-linear regime when the two are coupled.
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It is possible to develop NEMD equations that do correctly

account for the structure by analyzing the linear response of

functions of opposite parity to that used above, as was done

above at the end of section 4.5.4.

In the practical implementation of the NEMD method, it is

usual to set the momentum derivative of the non-equilibrium

potential to zero, Apia = 0.22,24 Presumably the reason for

imposing this condition is that it preserves the classical

relationship between velocity and momentum, _qia = pia/m.

In view of this condition, the rate of change of the non-

equilibrium potential reduces to

_AðCÞ ¼
X
ia

Aqiapia=m; ðNEMDÞ: ð5:17Þ

The Green–Kubo result demands that this be equated to the

negative of the natural rate of change of the first energy

moment, eqn (5.6), which means that

Aqia = �kia, (NEMD). (5.18)

However, this leads to the contradiction that _A0(t) = � _E0
1(t),

but A0(t) a � _E0
1(t).

The problem arises because one does not have the freedom

to make the momentum derivative zero. One can see this from

the usual condition on second derivatives,

@A

@qia@pjg
¼ @A

@pjg@qia
: ð5:19Þ

From the fact that

@kia
@pjg
¼ dijdazpjg=m; ð5:20Þ

one concludes that the momentum derivative of the non-

equilibrium potential must be non-zero. It is in fact equal to

Apia ¼ �
@E1

@pia
¼ �qizpia=m: ð5:21Þ

This means that

Aqia = �kia þ qiz fia, (5.22)

where fi is the force on atom i. With these, _A0(C) = � _E0
1(C),

andA0(C) = �E0
1(C). Using these forces, the non-equilibrium

trajectory is properly derived from the non-equilibrium Ha-

miltonian, and the adiabatic incompressibility of phase space

is assured, r �C�F = 0.

5.5. Monte Carlo results

5.5.1 Structure. In Fig. 1 we show the profiles induced in a

bulk system by an applied temperature gradient. These Monte

Carlo results3 were obtained using the static probability dis-

tribution, eqn (4.73). Clearly the induced temperature is equal

to the applied temperature. Also, the slopes of the induced

density and energy profiles can be obtained from the suscept-

ibility, as one might expect since in the linear regime there is a

direct correspondence between the slopes and moments.3

We give the energy susceptibility in Fig. 2. This was again

obtained using the static probability distribution. In this case

the susceptibility was obtained directly from the ratio of the

induced energy moment to the applied temperature gradient,

eqn (4.16), and from the fluctuations, eqn (4.14), with indis-

tinguishable results. (In the latter formula E1 was replaced by

its departure from equilibrium, dE1 � E1 � hE1ist.) The line

passing through the points was obtained from bulk proper-

ties,3 which shows that the non-equilibrium structure is di-

rectly related to that of an equilibrium system.

5.5.2 Dynamics. In Fig. 3 we show the decay of the first

energy moment following a fluctuation.4 We induced the

fluctuation by sampling the static probability distribution,

eqn (4.73), which has no preferred direction in time, and we

used the configurations as starting points for independent

trajectories. We calculated the trajectories adiabatically for-

ward and backward in time. The point of the figure is that on

short time scales, t t tshort, the moment displays a quadratic

dependence on time, E1 (t) B t2, whereas on line time scales,

t \ tshort, it decays linearly in time, E1(t) B |t|. This is

consistent with conclusions drawn from the second entropy

analysis of fluctuations, sections 3.2 and 3.3.

We test in Fig. 4 the dependence of the thermal conductivity

on the time interval used to calculate Wmir
1 (C; t).7 These are

Monte Carlo simulations using the Metropolis algorithm,

umbrella sampling, and the steady state probability distribu-

tion, eqn (4.41). It can be seen that the thermal conductivity is

independent of the integration limit for Wmir
1 for t \ 1. This

asymptotic or plateau value is ‘the’ thermal conductivity. The

value of t required to reach the respective plateaus here appear

comparable to straight Green–Kubo equilibrium calculations,5

Fig. 1 Induced temperature (top), number density (middle), and

energy density (bottom) profiles for b1 = 0.0031 and T0 = 2, r =

0.5. The symbols are Monte Carlo results using the static probability

distribution, eqn (4.73), and the lines are either the applied tempera-

ture, or else the profiles predicted from the simulated susceptibility.3

Fig. 2 Susceptibility of the energy moment at T0 = 2. The symbols

are static Monte Carlo results3 and the curve is obtained from a local

thermodynamic approximation3 using the bulk susceptibilities from a

Lennard-Jones equation of state.39
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but the present steady state simulations used about one third

the number of trajectories for comparable statistical error.

In the text we assumed that the change in moment over the

relevant time scales was negligible, t| _E1| {|E1|. In the case of

r = 0.8 at the largest value of t in Fig. 2, hE1iss = �432, and
h _E1iss = 161, and so this assumption is valid in this case.

Indeed, the reason we made this assumption was that on long

time scales the moment must return to zero and the rate of

change of moment must begin to decrease. There is no

evidence of this occurring in any of the cases over the full

interval shown in Fig. 4.

In Table 1 we show the values of the relaxation time

calculated using eqn (4.49) and (4.50). Both the inertial time

and long time decrease with increasing density. This is in

agreement with the trend of the curves in Fig. 4. Indeed, the

actual estimates of the relaxation times in Table 1 are in semi-

quantitative agreement with the respective boundaries of the

plateaux in Fig. 4. The estimate of tlong, the upper limit on t
that may be used in the present theory, is perhaps a little

conservative.

In Fig. 5 we compare the thermal conductivity obtained

from non-equilibriumMonte Carlo simulations7 with previous

NEMD results.25,24 The good agreement between the two

approaches validates the present phase space probability dis-

tribution. Of course, since we showed analytically that the

present steady state probability gave the Green–Kubo formu-

la, the results in Fig. 3 test the simulation algorithm rather

than the probability distribution per se. The number of time

steps that we required for an error of about 0.1 was about 3 �
107, (typically 2 � 105 independent trajectories, each of about

75 time steps forward and backward to get into the inter-

mediate regime). This obviously depends upon the size of the

applied thermal gradient (the statistical error decreases with

increasing gradient), but appears comparable to that required

by NEMD simulations.24 No attempt was made to optimize

the present algorithm in terms of the number of Monte Carlo

cycles between trajectory evaluations or the value of the

umbrella parameter.

Fig. 5 also shows results for the thermal conductivity

obtained for the slit pore, where the simulation cell was

terminated by uniform Lennard-Jones walls. The results are

consistent with those obtained for a bulk system using periodic

boundary conditions. This indicates that the density inhomo-

geneity induced by the walls has little effect on the thermal

conductivity.

We give in Fig. 6 results for the thermal conductivity

obtained with the stochastic molecular dynamics algorithm.6

The three algorithms mentioned in the caption all used con-

strained equations of motion, _E0 = _E1 = 0, _E0
1 a 0, and the

stochastic transition probability of section 4.6. Algorithm A

made no further corrections, algorithm B made the stochastic

step at constant _E1
0 by an appropriate rotation of the new

Fig. 3 Molecular dynamics simulation of the decay forward and

backward in time of the fluctuation of the first energy moment of a

Lennard-Jones fluid (the central curve is the average moment, the

enveloping curves are estimated standard error, and the lines are best

fits). The starting positions of the adiabatic trajectories are obtained

from Monte Carlo sampling of the static probability distribution, eqn

(4.73). The density is 0.80, the temperature is T0 = 2, the initial

imposed thermal gradient is b1 = 0.02. Figure taken from ref. 4

(Copyright, American Institute of Physics, (2005)).

Fig. 4 The dependence of the thermal conductivity on the time

interval for the mirror work, Wmir
1 (C, t). The curves are l(t) =

h _E0
1(0)it /V kBT

0
2 b1 for densities of, from bottom to top, 0.3, 0.5, 0.6,

and 0.8, and T0 = 2. Figure taken from ref. 7 (Copyright, American

Institute of Physics, (2006)).

Table 1 Thermal conductivity and relaxation times for various
densities at T0 = 2. The standard error of the last few digits is in
parentheses. Data taken from ref. 7

r l tshort eqn (4.49) tlong eqn (4.50)

0.3 1.63(8) 0.404(19) 3.22(16)
0.5 2.78(13) 0.233(11) 5.31(34)
0.6 3.76(16) 0.197(9) 3.41(18)
0.8 7.34(18) 0.167(4) 1.36(3)

Fig. 5 Non-equilibrium Monte Carlo results for the thermal con-

ductivity (T0 = 2). The circles and squares are the present steady state

results for bulk and inhomogeneous systems, respectively (horizontally

offset by 
0.015 for clarity), and the triangles are NEMD results.24,25

Figure taken from ref. 7 (Copyright, American Institute of Physics,

(2006)).
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momenta, and algorithm C used an umbrella weight to

stochastically cancel the randomization of _E0
1 that occurs in

the bare algorithm; see ref. 6 for full details. We conclude from

the data in the figure that the stochastic molecular dynamics

algorithm works well for small Monte Carlo steps, but the

bare algorithm A underestimates the thermal conductivity for

large steps. Algorithms B and C both correct this deficiency.

In the light of these results, it would be worthwhile to

implement and test the stochastic molecular dynamics method

using the actual adiabatic equations of motion and the sto-

chastic transition probability of section 4.6. In this algorithm

one avoids the costly computation of the mirror work, and so

there is the possibility that it will prove more efficient compu-

tationally than the direct Monte Carlo approach.

6. Non-equilibrium mechanical work

An important class of non-equilibrium systems are those in

which work, either steady or varying, is performed on the sub-

system while it is in contact with a heat reservoir. Such work is

represented by a time-dependent Hamiltonian, Hm(C, t),

where m(t) is the work parameter. (For example, this could

represent the position of a piston, or the strength of an electric

field, etc.)

6.1. Phase space probability

We begin with the probability distribution proposed by Ya-

mada and Kawasaki.26,27 If the system were isolated from the

thermal reservoir during its evolution, and if the system were

Boltzmann distributed at t � t, then the probability distribu-

tion at time t would be

~PmðCjb; tÞ ¼ ~Z�1e�bHmðC� ;t�tÞ

¼ ~Z�1e�bH
ðC;tÞ
m eb

~WmðC;tÞ;

ð6:1Þ

where b = 1/kBT is the inverse temperature of the reservoir.

Here C_ = Cm(t � t|C, t) is the starting point of the adiabatic

trajectory, and the work done is W̃m (C, t) = Hm(C, t) �
Hm(C_, t � t). This result invokes Liouville’s theorem, namely

that the probability density is conserved on an adiabatic

trajectory.8 This expression, which is intended to represent

the probability of the phase point C at t, is just the analogue of

the tentative probability distribution discussed for steady heat

flow, eqn (4.39). Hence it suffers from the same deficiencies

identified in that case: since it does not take into account the

influence of the heat reservoir while the work is being per-

formed, the structure of the sub-system evolves adiabatically

away from the true non-equilibrium structure even while the

dynamics evolve to their correct non-equilibrium state. A

modified thermostatted form of the Yamada–Kawasaki dis-

tribution has been given, but it is said to be computationally

intractable.22,28,29 It is unclear whether artifacts are introduced

by the artificial thermostat. Based on calculations performed

with the Yamada–Kawasaki distribution, some have even

come to doubt the very existence of a non-equilibrium prob-

ability distribution.30–32

In view of these difficulties with the Yamada–Kawasaki

distribution and its modifications, one seeks a non-equilibrium

probability analogous to that described above for the case of

heat flow. Hence one requires ‘mirror work’ that has odd

parity. To obtain this one extends the work path into the

future by making it even about t,

mmir
t ðt0Þ �

mðt0Þ; t0  t;
mð2t� t0Þ; t04t:

�
ð6:2Þ

We denote the corresponding adiabatic trajectory that is at C

at time t by

Cmmir
t
ðt0jC; tÞ ¼ Cmðt0jC; tÞ; t0  t;

ðCmð2t� t0jCy; tÞÞy; t04t:

�
ð6:3Þ

One defines C
 (C) � Cmmir
t
(t 
 t|C, t), which have the property

C
 (Cw) = (C8(C))w.

With these the mirror work is7

Wmir
m ðC; tÞ ¼

1

2
Hmmir

t
ðCþ; tþ tÞ �Hmmir

t
ðC�; t� tÞ

h i

¼ 1

2

Z tþt

t�t
dt0 _Hmmir

t
ðCmmir

t
ðt0jC; tÞ; t0Þ

¼ 1

2

Z t

t�t
dt0½ _HmðCmðt0jC; tÞ; t0Þ

� _HmðCmðt0jCy; tÞ; t0Þ�:

ð6:4Þ

(In this section, _Hm means the adiabatic rate of change of the

Hamiltonian.) By construction, the mirror work has odd phase

space parity, Wmir
m (C, t) = �Wmir

m (Cw, t). With it the non-

equilibrium probability distribution for mechanical work is7

PmðCjb; tÞ ¼
e�bHmðC;tÞebW

mir
m ðC;tÞ

h3NN!Zmðb; tÞ
: ð6:5Þ

The probability distribution is normalized by Zm(b, t), which is

a time-dependent partition function whose logarithm gives the

non-equilibrium total entropy, which may be used as a gen-

erating function.

Fig. 6 Stochastic molecular dynamics results for the thermal con-

ductivity (r= 0.8, T0 = 2). The abscissa is the Monte Carlo time step,

DMC p vMCDt divided by the square root of the molecular dynamics

time step,
ffiffiffiffiffi
Dt

p
. All data are for a time step of Dt = 10�2, except for the

filled triangles, which have Dt = 5 � 10�3. The triangles are algorithm

A, the circles are algorithm B, and the crosses are algorithm C, (see

text). The total length of the error bar is twice the standard error on

the mean. The horizontal lines are an equilibrium molecular dynamics

result and error, 7:38 
 0.3.24 Figure taken from ref. 6 (Copyright,

American Institute of Physics, (2006)).
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We expect that on long time scales,

_Hmmir
t
ðCmmir

t
ðt0jC;tÞ;t0Þ 	 signðt0Þ _HmðtÞ; jt0j 	4 tshort; ð6:6Þ

where the most likely rate of doing work at time t appears.

This assumes that the change in energy is negligible on the

relevant time scales, tj _Hmj � jHmj. Since this asymptote is

odd in time, one concludes that the mirror work is indepen-

dent of t for t in the intermediate regime, and that Wmir
m is

dominated by the region t0 E t.

In view of this and the fact that dCm(t
0|C, t)/dt = 0, we find

that the rate of change of the mirror work along a Hamilto-

nian trajectory is

_Wmir
m ðC; tÞ ¼ _HmðtÞ ð6:7Þ

We conclude that the non-equilibrium probability distribution

is stationary during adiabatic evolution on the most likely

points of phase space.

6.2. Transition probability

We now analyze the time evolution of the probability dis-

tribution, including the stochastic perturbations from the

thermal reservoir. As above, a single prime is used to denote

the adiabatic development in time Dt, C - C0, and a double

prime to denote the final stochastic position due to the

influence of the reservoir, C0 - C00. The conditional transition

probability may be taken to be

Lm(C
00|C, t) = YD(|C

00 � C0|)e�b(H
00
m � H0

m)/2 (6.8)

This transition probability preserves the non-equilibrium

phase space probability density, eqn (6.5), during its time

evolution,

}m(C
00|b, t þ Dt) =

R
dCLm(C

00|C, t)}m(C|b, t). (6.9)

This result may be readily confirmed using the fact that H0
m �

Wmir0
m = Hm � Wmir

m , (at least for those phase points most

likely to occur), together with the usual normalization require-

ments on the transition probability.

The final, odd term in the transition probability is identical

to that given previously,6 and hence the microscopic transition

theorem is obeyed, (see eqn (9) and (11) of ref. 6), and it yields

the fluctuation theorem19,20 and the work theorem,21 (see

Section I.C of ref. 6), as we now show. The unconditional

microscopic transition probability is

PmðC00  Cjt;DtÞ ¼ LsðC00jC0ÞPmðCjb; tÞ

¼ YDðjC00 � C0jÞe�bðH00mþHmÞ=2

� ebDt
_HmðC;tÞ=2ebW

mir
m ðC;tÞ=Zmðb; tÞ

¼ YDðjC00 � C0jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðC00jb; tþ Dt; ½m�ÞPðCjb; t; ½m�Þ

p
� e�b½W

mir
m ðC00 ;tþDtÞ�Wmir

m ðC;tÞ�=2eDtb _HmðC;tÞ=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zmðb; tþ DtÞ=Zmðb; tÞ

q
;

ð6:10Þ

for an infinitesimal Dt. The _Hm can be replaced by

( _H00
m þ _Hm)/2 to this order.

We consider the forward transition, C - C0 - C00, and its

reverse C00w - C00 0w - Cw on the mirror path. (It’s necessary to

use the mirror path centered at t þ Dt because time goes from

t þ Dt - t þ 2Dt, and m(t þ Dt) - m(t)). The ratio of

the forward to the reverse transition probabilities is

PmðC00  Cjt;DtÞ
Pmmirr

tþDt
ðCy  C00yjtþ Dt;DtÞ

¼ eb½W
mir
m ðC00ÞþWmir

m ðCÞ�

� eDtb½ _HmðG00 ;tþDtÞþ _HmðC;tÞ�=2 Zmðb; tþ DtÞ
Zmðb; tÞ

;

ð6:11Þ

the even terms cancelling. The ratio of partition functions can

be written as the exponential of the change in free energy.

We now consider a trajectory [C] = {C0, C1, . . .,Cf}, at times

0,Dt,. . .,fDt, and its reverse, [Cz] = {Cw
f , C

w
f�1, . . .,Cw

0}. The work

done on the sub-system on the trajectory is just the total

adiabatic change in the Hamiltonian,

D0Hm½C� ¼
Dt

2
_H0
mðC0Þ þ _H0

mðCf Þ
h i

þ Dt

Xf�1
i¼1

_H0
mðCiÞ: ð6:12Þ

Clearly D0Hm[C
z] = �D0Hm[C]. In view of eqn (4.62), for

large fDt this gives the change in the reservoirs’ entropy over

the trajectory, DSr/kB = �bDHm þ bD0Hm E bD0Hm.

The unconditional probability of the trajectory is

Pm½C� ¼
Yf
i¼1

YDðjCiþ1 � C0ijÞe
�bðHm;i�H 0m;i�1Þ=2

h i

�PmðC0jb; 0Þ

¼
Yf
i¼1

YDðjCiþ1 � C0ijÞ
� 	

� eb1D
0Hm ½C�=2e

�bðWmir
m;f �W

mir
m;0 Þ=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PmðCf jb; tf ÞPmðC0jb; 0Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zmðb; tf Þ=Zmðb; 0Þ

q
;

ð6:13Þ

since H0
m,i�1 = Hm,i�1 þ Dt

_Hm,i�1. The boundary terms for

D0Hm has been neglected, which is valid for large f.

The ratio of the probability of the forward and reverse

trajectory is

Pm½C�
Pmmirr

tf

½Cz�
¼ ebW

mir
m ðCf ÞebW

mir
m ðC0Þ

� ebD
0Hm½C� Zmðb; tf Þ

Zmðb; 0Þ
: ð6:14Þ

This is the mechanical version of the reverse transition

theorem.6

It is possible to simplify these results for the case when it is

valid to draw the start and end point of the trajectories from a

probability density with even parity such as the Boltzmann

distribution,

PBðCjb; tÞ ¼
e�bHmðC;tÞ

ZBðb; mðtÞÞ
: ð6:15Þ
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In this case the trajectory probability is

PB½C� ¼
Yf
i¼1

YDðjCiþ1 � C0ijÞ
� 	

ebD
0Hm=2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PBðCf jb; tf ÞPBðC0jb; 0Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZBðb; tf Þ=ZBðb; 0Þ

q
;

ð6:16Þ

and the ratio of the forward and reverse trajectories is

PB½C�
PB½Cz�

¼ ebD
0Hm ½C� ZBðb; tf Þ

ZBðb; 0Þ
: ð6:17Þ

This modification of the termini of the trajectory is identical to

that assumed in the fluctuation19,20 and work21 theorems

discussed next. The type of work paths for which this mod-

ification is valid is discussed at the end of this section.

The probability of observing the entropy of the reservoir

change by DS over a period tf is related to the probability of

observing the opposite change by

PmðDSjb; tf Þ ¼
R
d½C�dðDS � DS½C�ÞP½C�

�k�1B

R
d½Cz�dðDS=kB � bD0Hm½C�Þ

�P½Cz�ebD0Hm ½C� Zmðb; tf Þ
Zmðb; 0Þ

¼eDS=kB Zmðb; tf Þ
Zmðb; 0Þ

Pmð�DSjb; tf Þ:

ð6:18Þ

(Using instead trajectories that begin and end with the Boltz-

mann distribution, we have the exact result, }B(D
0Hm|b, tf) =

ebD
0
Hm}B(�D0Hm|b, tf) ZB(b, tf)/ZB(b, 0). This result says in

essence that the probability of a positive increase in entropy is

exponentially greater than the probability of a decrease in

entropy during mechanical work. This is in essence the fluc-

tuation theorem that was originally derived by Evans et al.19,20

A derivation has also been given by Crooks,33,34 and the

theorem has been verified experimentally.35 The present deri-

vation is based upon the microscopic transition probability

given by Attard.6

For the case of the work theorem21 we consider the average

of the exponential of the negative of the heat flow,

he�bD0Hmi½m�;tf ¼
R
d½C�e�bD0Hm ½C�Pmð½C�jb; tf Þ

¼
R
d½Cz�Pmð½Cz�jb; tf ÞebðW

mir
m ðCf ÞþWmir

m ðC0ÞÞ

� Zmðb; tf Þ=Zmðb; 0Þ

�
R
dC
y
fPmðCyf jbÞe

�bWmir
m ðC

y
f
Þ
Zmðb; tf Þ

�
R
dC
y
0PmðCy0jbÞe�bW

mir
m ðC

y
0
Þ=Zmðb; 0Þ

¼ZBðb; mðtf ÞÞZBðb; mð0ÞÞ
Zmðb; 0Þ2

:

ð6:19Þ

Here it has been assumed that the trajectory is long enough

that the ends are uncorrelated. This result shows that this

particular average is not extensive in time, (i. e. it does not

scale with tf). If the termini of the trajectories are drawn from a

Boltzmann distribution, the result becomes

he�bD0HmiB;½m�;tf ¼
ZBðb; mðtf ÞÞ
ZBðb; mð0ÞÞ

¼ e�bDFðbÞ; ð6:20Þ

where the exponent is the difference between the Helmholtz

free energies of the system at the final and initial values of the

work parameter. This is Jarzynski’s work theorem in its

original form,21 which has been rederived in different fash-

ions20,36,37 and verified experimentally.38

When are the simplified results valid? If the work path has

buffer regions at its beginning and end during which the work

parameter is fixed for a time \ tshort, then the sub-system will

have equilibrated at the initial and final values of m in each

case. Hence the mirror work, which has odd parity, is on

average zero and can be neglected, and the probability dis-

tribution reduces to Boltzmann’s.

7. Non-equilibrium quantum statistical mechanics

We consider a quantum system with time-dependent, Hermi-

tian, Hamiltonian operator Ĥ(t). We can develop a theory for

non-equilibrium quantum statistical mechanics by analogy

with the classical case. In the quantum case it is the wave

functions c that are the microstates analogous to a point in

phase space. The complex conjugate c* plays the role of the

cf7.6onjugate point in phase space, since, according to Schro-

dinger, it has equal and opposite time derivative to c.
We define the mirror work operator,

Ŵmir(t) = [Ê1(t) � Ê� (t)]/2 (7.1)

where the past and future energy operators are

Ê
(t) = Ŷ(8t; t) Ĥmir
t (t 
 t)Ŷ(
t; t) (7.2)

and where the time-shift operator is

Ŷðt; tÞ ¼ exp
�i
�h

Z tþt

t

dt0Ĥ
mir

t ðt0Þ
� �

: ð7:3Þ

The mirror Hamiltonian operator has been continued into the

future,

Ĥ
mir

t ðt0Þ �
Hðt0Þ; t0  t;

Hð2t� t0Þ; t04t;

�
ð7:4Þ

and the manipulation of the operators derived from it is

facilitated by the symmetry about t, Ĥmir
t (t0) = Ĥmir

t (2t � t0).

With these definitions, the non-equilibrium density operator

for a sub-system of a thermal reservoir of inverse temperature

b is7

r̂ðtÞ ¼ 1

ZðtÞ exp� b½ĤðtÞ � Ŵ
mirðtÞ�; ð7:5Þ

where the normalization factor is Z(t) = TR{exp �b[Ĥ(t) �
ŵmir(t)]}. Accordingly, the average of an observable at time t is

hÔit = TR{r̂(t)Ô(t)}, (7.6)

and the present density operator can be said to provide a basis

for non-equilibrium quantum statistical mechanics.
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8. Selected applications

The theory for non-equilibrium statistical mechanics reviewed

here can be applied in a large number of practical situations,

including to the flow of heat that was treated in the text in

depth. However, the variety and range of time-dependent

phenomena are too numerous to cover in any detail. Prior

to concluding this review, however, it does seem appropriate

to survey two applications of the theory that may be of broad

interest, namely to non-equilibrium thermodynamics, and to

the origin and evolution of life.

8.1. Non-equilibrium thermodynamics

The establishment of thermodynamics as a discipline was the

great triumph of 19th century science. The power of thermo-

dynamics lies in the generality of the laws that form its basis.

From these few principles can be set the rules that bind all

physical phenomena.

Thermodynamics, however, has in a sense been superseded

by statistical mechanics. The thermodynamic laws are a con-

sequence of the statistical behavior of molecules rather than

the other way around. For this reasons violations of the

thermodynamic laws can occur at the molecular level,

although they become increasingly unlikely as the size of the

system is increased. Fluctuation theory itself is a violation of

the second law of thermodynamics, since obviously the transi-

tion away from equilibrium represents the spontaneous move-

ment of the system to a lower entropy state (see for example

section 4.6.3). The probability of such a violation is inversely

proportional to the exponential of the size of the system, which

shows why the laws of thermodynamics hold at the macro-

scopic level.

Because of the historical primacy of the laws of thermo-

dynamics, and because their very generality lies beyond the

details of specific molecular interactions, and because they are

valid on large-scales, it is of interest to enquire how they

should be modified or added to in the light of the present

theory for non-equilibrium statistical mechanics. It is empha-

sized however that the full non-equilibrium theory is the

mathematical formulation given above, and that the following

discussion is meant more to summarize and encapsulate those

equations than to provide a precise epistemological basis for

non-equilibrium thermodynamics.

Conventionally, entropy is introduced by the second law of

thermodynamics, which is about the direction in which

changes occur:

during spontaneous changes of an isolated system the entropy

increases.

Equilibrium may be defined as the relaxed or unconstrained

state, where no macroscopic changes in structure occur. The

second law implies that the equilibrium state is the state of

maximum entropy, and it provides a variational principle that

determines the physical state of the system. We can draw many

conclusions from the second law, including the concavity of

the entropy, the stability of the equilibrium state, and the high

probability of the equilibrium state. Similarly implicit is the

fact that the entropy is well-defined in the non-equilibrium

state (i.e. during the approach to equilibrium); such a con-

strained entropy and the trivially related constrained thermo-

dynamic potential may be calculated explicitly using statistical

mechanics.8

In the text we drew a distinction between the first and

second entropy. Hence in the light of the foregoing mathema-

tical analysis, we are inclined to restate the second law:

during spontaneous changes in the static structure of an isolated

system the first entropy increases.

Static structure means the spatial distribution of conserved

variables (energy, number, charge, volume, etc.) and includes

the moments of an isolated system, and also the related case of

exchange between a sub-system and a reservoir that comprise

an isolated total system. We would also stress that this second

law refers to the equilibrium state, and to the approach to the

equilibrium state, but it does not refer to the rate of such an

approach.

A non-equilibrium or dynamic corollary of the second law

can be formulated:

during spontaneous changes in the dynamic structure of an

isolated system the second entropy increases.

Dynamic structure here means fluxes in the conserved vari-

ables, such as the rate of change of their spatial distribution.

The steady state may be defined as the relaxed or uncon-

strained state where no macroscopic changes in flux occur. The

dynamic second law implies that the steady state is the state of

maximum second entropy. In so far as the second entropy is

an extensive function of the time interval over which it is

defined, then this is equivalent to the steady state being the

state that produces second entropy most rapidly.

This dynamic corollary to the second law then tells why a

flux develops and its direction, and it provides a variational

principle that determines the physical value of the flux when it

reaches the steady state. These fluxes are driven by gradients in

the entropy potential, which are the second entropy derivatives

with respect to the fluxes, and which may correspond to

spatially separated reservoirs with different values of the

conjugate thermodynamic field variables. Implicit in this

dynamic corollary of the second law of thermodynamics is

the concavity of the second entropy, the stability of the steady

state, the high probability of the steady state, and the well-

defined nature of the second entropy and related thermody-

namic potentials in the transition to the steady sate, and for

states with artificially constrained fluxes.

The dynamic second law is applicable in the transient regime

during the approach to the steady state following the switching

on of an external force or the development of a fluctuation.

The second entropy is perfectly well-defined in this regime, just

as the first entropy is well-defined during the approach to

equilibrium; in both cases the constraint formalism used here

and in ref. 8 may be used. This is also true for time varying

external thermodynamic or mechanical forces, where the un-

constrained system naturally varies over time, which is to say

that it is in a non-steady, non-equilibrium state. This physical

state also obeys a variational principle, namely the maximiza-

tion of the full second entropy, stotal(D
0x, Dxr, x|X, t, t),

without assuming extensivity in the time interval or a

3608 | Phys. Chem. Chem. Phys., 2006, 8, 3585–3611 This journal is �c the Owner Societies 2006
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quadratic form in the fluxes. Even more generally, one would

invoke a functional maximization over the path x(t) of

stotal(½ _x0�; ½ _xr�; xð0Þj½X�; t, ) to find the most likely state of

the transient system at any given time.

This point of the second entropy being a functional of the

path underscores the essential difference between the first and

second entropy. Describing the second entropy as the ‘dy-

namic’ entropy is a little misleading since the more precise

notion is that it describes the transition over time between

pairs of states (as treated in detail in the text), or more

generally a path of such transitions. It is true that for the

steady state the coarse velocity and the rate of second entropy

production are the most important quantities to emerge. But

even though these are dynamic quantities, it should be under-

stood that in the limit t - 0, the coarse velocity becomes the

instantaneous velocity. In this limit we only require the first

entropy, with ‘static structure’ redefined to include the instan-

taneous velocity of the constraints. The crucial difference then

is that the first entropy may refer to position and instanta-

neous velocity, but the second entropy refers to transitions

between pairs of states or a path of such transitions. This is the

sense in which ‘dynamic structure’ in the corollary to the

second law should be understood.

The word ‘structure’ in the restated second law hints at

order, and this is particularly pertinent in the case of fluxes. So

important is this particular consequence of the second entropy

that it arguably merits its own corollary:

an entropy potential gradient necessarily induces order in an

intervening conductor.

This order, which has both static and dynamic aspects, is the

most probable state of a sub-system with an imposed thermo-

dynamic gradient. In the case of heat flow treated in the text,

the static order in the sub-system was the induced energy

moment that matched the sub-system temperature gradient to

that imposed by the reservoir. The dynamic order was the

concerted motion of the atoms of the sub-system that con-

ducted heat between the reservoirs in a definite direction in

space and time. As we shall now see, this corollary to the

dynamic second law is of relevance to the origin of life and to

the direction of evolution.

8.2. Origin and evolution of life

The puzzle with life, and ecological and sociological systems

more generally, is of course that they appear to be most

unlikely from the point of view of random chance. They have

a high degree of order, and, moreover, they evolve into ever

more complex and ordered forms in apparent contradiction to

the conventional second law of thermodynamics. A number of

previous workers, including Prigogine, Kay, Swenson, and co-

workers,40–42 have noted that non-equilibrium systems orga-

nize themselves to increase the entropy of the universe, and

that this may provide the basis for life itself. Prigogine

explored dissipative structures that are formed and maintained

during energy exchange and which thereby dissipate heat and

create entropy. Swenson articulated the principle that ‘‘the

system will select the path or assembly of paths out of

otherwise available paths that minimizes the potential or

maximizes the entropy at the fastest rate given the con-

straints’’. This is similar to Kay who said ‘‘systems . . .away

from equilibrium . . .utilize all avenues available to counter the

applied gradients’’, and ‘‘the emergence of life hastens the

progression to equilibrium’’.

The present theory applied to the problem of life and

ecology reaches broadly similar conclusions from arguably a

more detailed and precise mathematical basis. The main

contribution of the present non-equilibrium theory is the

discovery of the second entropy and the proof that ordered

fluxes develop to maximize its rate of production. In contrast

earlier work focused on the conventional or first entropy and

asserted that the rate of its production was either minimal40,43

or maximal.41,42,44,45

The heat flow that was examined in detail here provides the

archetype of an entropy potential gradient, namely spatially

separated reservoirs in which the exchange of a conserved

quantity increases the entropy of the universe. The mediation

of a sub-system in this exchange, the intervening conductor,

necessarily leads to an ordering of the sub-system that in-

creases the rate of total second entropy production. The

ordering is both static, as the applied gradient is mirrored in

the sub-system, and dynamic, due to the ordered flow. The

entropy destruction due to the dynamic order increases line-

arly with time (in the steady state), but this is outweighed by

the linear increase in entropy of the reservoirs due to the flux

(see section 4.3.3 above). The optimum structural and dynamic

order of the sub-system maximizes the second entropy of the

universe. As such, this is a high probability state. Far from life

being improbable, we see that it is actually a most likely state

of the universe, and the evolution of life is in the direction of

increasing the rate of production of (second) entropy. More-

over, life, and ecosystems more generally, are actually stable,

provided that the entropy gradients that maintain them re-

main undiminished.

In summary, life mediates entropy production. There exist

on earth, and elsewhere in our universe, gradients in entropy

potential, such as mineral deposits, water pools, energy

sources, etc. Such segregated regions of differential composi-

tion arise from the usual thermodynamic fluctuations and are

not of themselves ordered. However, order necessarily is

induced by these according to the corollary of the dynamic

second law formulated above. The driving force for life is that

entropy is able to be produced, and the driving force for more

complex life is that entropy is able to be produced at a greater

rate.

As examples, two pieces of evidence can be offered. The

average surface temperature of the moon during its day is

107 1C,46 which is substantially higher than that of the earth.

Some of the decrease in the day-time temperature of the earth

may be attributed to our atmosphere and weather, which are

themselves ecosystems that have evolved to increase the rate of

entropy production. But it may be that biological activity has

also increased the rate of heat flow from the earth to space,

thereby lowering the temperature compared to the moon. This

is entirely consistent with the notion that an ordered sub-

system which increases the rate of entropy production of the

total system is actually a more probable state of the total

system than a disordered sub-system.

This journal is �c the Owner Societies 2006 Phys. Chem. Chem. Phys., 2006, 8, 3585–3611 | 3609

Pu
bl

is
he

d 
on

 0
7 

Ju
ly

 2
00

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 d

i P
ad

ov
a 

on
 1

2/
23

/2
01

9 
9:

02
:4

5 
A

M
. 

View Article Online

https://doi.org/10.1039/b604284h


The rôle of ecosystems in reducing surface temperature was

stressed by Schneider and Kay.41 They cited data of Luvall

and Holbo,47 who measured ecosystem radiation and found

that quarried and clear cut land was about 20 1C warmer than

plantation and immature natural forest, and about 25 1C

warmer than old growth forest. This again is consistent with

the idea that biological activity serves to increase the rate of

entropy production, in this case by facilitating the transfer of

energy that falls on earth from the sun out into space.

Schneider and Kay41 focus on the temperature gradient

between the earth and the sun as being the driving force for

plant life. It is worth noting that there is also a gradient in the

chemical potential of water between the surface of the earth,

where water exists as a liquid in the oceans and rivers, and the

atmosphere where it exists as an under-saturated vapor. Plants

facilitate the transport of water from the surface to the atmo-

sphere via respiration and transpiration, and this transport

reduces the gradient in chemical potential than would other-

wise be the case. This is especially true for higher plants such

as trees.

9. Conclusion

In this article we have presented a general theory for non-

equilibrium statistical mechanics. By ‘theory’ we mean an

explicit formula for the phase space probability distribution

for non-equilibrium systems. In the case of heat flow, the

probability density turned out to be surprisingly simple, with a

structural part that is the direct analogue of the Boltzmann

distribution. The dynamic part, the so-called mirror work,

depends on the direction of time. Such a time-dependence is

essential for a non-equilibrium system, and it provides the

necessary modification to the Boltzmann distribution. This

mirror work was generalized to give the probability distribu-

tion for the case of mechanical, time-dependent work, and for

non-equilibrium quantum systems.

Although the probability distribution has been given ex-

plicitly, the non-equilibrium theory is by no means complete.

Ascending from the base the foundations need to be secured

and the regime of validity identified. One open question is the

practical limitation of the present theory in terms of the time-

dependence of the non-equilibrium phenomenon. Is it re-

stricted to the steady state, the quasi-steady state (slow

changes in gradients or rates of doing work), or is it completely

general? Is it restricted to the linear regime, and to small

gradients? (Certainly formal expressions applicable in the non-

linear regime, and to short-wavelength variations, have been

given.)3,7 In terms of the stationarity of the probability

density, how important are fluctuations away from the most

likely velocity for the adiabatic evolution, and is it necessary to

modify the stochastic transition probability to account for

them? What is the precise relationship between the present

second entropy maximization approach and the least entropy

dissipation approach of Onsager and others for the transition

probability?2,48–50

A quick survey from the summit reveals a vista of non-

equilibrium applications with many enticing journeys proceed-

ing to different destinations. Further development of the

Monte Carlo algorithm and the stochastic molecular dynamics

algorithm is indicated, as well as a quantitative comparison of

their efficiency. Applications of the algorithms to specific

thermodynamic fluxes and types of mechanical work, and to

particular systems, also await. Beyond computer simulation,

the availability of a non-equilibrium probability density and

the associated entropy and free energy provides the opportu-

nity to develop non-equilibrium analytic and numeric techni-

ques such as already exist for equilibrium systems, (e.g.

diagrammatic expansions, integral equations, density func-

tionals, asymptotic analysis, etc.). Practical application of

the theory to technological and industrial processes, and to

laboratory measurements is called for, and experimental tests

along the lines of time-dependent nanoscopic work, either

mechanical or thermodynamic, should provide convincing

evidence for the theory. And for the bigger picture the

dynamic second law and its corollary should prove valuable

when applied to the origin and evolution of ecological and

biological systems.

Over time we expect to see further progress on the founda-

tions and applications of non-equilibrium statistical me-

chanics. The characteristic property of a non-equilibrium

system is its dependence on the direction of time: the future

beckons time’s arrow. The flow of time, or the flow of material

in time, increases the disorder of the universe, and it represents

a state of order that is developed and maintained in the

mediator of the flow. Arguably the rate of production of

entropy in the universe is accelerated by human society and

culture. Hopefully the present theory of non-equilibrium

statistical mechanics is a contribution to the evolution of

science toward greater order, rather than a manifestation of

the inevitable chaos that is our universal fate.
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