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Abstract
This review addresses recent developments in non-equilibrium statistical

physics. Focusing on phase transitions from � uctuating phases into absorbing
states, the universality class of directed percolation is investigated in detail. The
survey gives a general introduction to various lattice models of directed percola-
tion and studies their scaling properties, � eld-theoretic aspects, numerical tech-
niques, as well as possible experimental realizations. In addition, several examples
of absorbing-state transitions which do not belong to the directed percolation
universality class will be discussed. As a closely related technique, we investigate
the concept of damage spreading. It is shown that this technique is ambiguous to
some extent, making it impossible to de� ne chaotic and regular phases in
stochastic non-equilibrium systems. Finally, we discuss various classes of depin-
ning transitions in models for interface growth which are related to phase
transitions into absorbing states.
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1. Introduction
Random behaviour is a common feature of complex physical systems. Although

systems in nature generally evolve according to well-known physical laws, it is in
most cases impossible to describe them by means of ab initio methods since details of
the microscopic dynamics are not fully known. Instead, it is often a good
approximation to assume that the individual degrees of freedom behave randomly
according to certain probabilistic rules. F or this reason methods of statistical
mechanics become essential in order to study the physical properties of complex
systems. In this approach a physical system is described by a reduced set of
dynamical variables while the remaining degrees of freedom are considered as an
e� ective noise with a certain postulated distribution. The actual origin of the noise,
which may be related to chaotic motion, thermal interactions or even quantum-
mechanical � uctuations, is usually ignored. Thus, statistical mechanics deals with
stochastic models of systems that are much more complicated in reality.

A complete description of a stochastic model is provided by the probability
distribution Pt…s† to � nd the system at time t in a certain con� guration s. For
systems at thermal equilibrium this probability distribution is given by the stationary
Gibbs ensemble Peq…s† ¹ exp ‰¡H…s†=kBT Š, where H…s† denotes the microscopic
Hamiltonian [1]. In principle, the Gibbs ensemble allows us to compute the
expectation value of any time-independent observable by summing over all accessible
con� gurations of the system. However, in most cases it is very di� cult to perform the
con� gurational sum. In fact, although numerous exact solutions have been found [2],
the vast majority of stochastic models cannot yet be solved exactly. In order to
investigate such non-integrable systems, powerful approximation techniques such as
series expansions [3] and renormalization group methods [4] have been developed.
Thus, in equilibrium statistical mechanics, we have a well-established theoretical
framework at our disposal.

F rom the physical point of view it is particularly interesting to investigate
stochastic systems in which the microscopic degrees of freedom behave collectively
over large scales [5, 6]. Collective behaviour of this kind is usually observed when the
system undergoes a continuous phase transition. The best known example is the
order- disorder transition in the two-dimensional Ising model, where the typical size
of ordered domains diverges when the critical temperature T c is approached [7]. In
most cases the emerging long-range correlations are fully speci� ed by the symmetry
properties of the model under consideration and do not depend on details of the
microscopic interactions. This allows phase transitions to be categorized into
di� erent universality classes. The notion of universality was originally introduced
by experimentalists in order to describe the observation that several apparently
unrelated physical systems may be characterized by the same type of singular
behaviour near the transition. Since then universality became a paradigm of the
theory of equilibrium critical phenomena. As the number of possible universality
classes seems to be limited, it would be an important theoretical task to provide a
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complete classi� cation scheme, similar to the periodic table of elements. The most
remarkable breakthrough in this respect was the application of conformal � eld
theory to equilibrium critical phenomena [8- 10], leading to a classi� cation scheme of
continuous phase transitions in two dimensions.

In nature, however, thermal equilibrium is rather an exception than a rule. In
most cases the temporal evolution starts out from an initial state which is far away
from equilibrium. The relaxation of such a system towards its stationary state
depends on the speci� c dynamical properties and cannot be described within the
framework of equilibrium statistical mechanics. Instead it is necessary to deal with a
probabilistic model for the microscopic dynamics of the system. Assuming certain
transition probabilities, the time-dependent probability distribution P t…s† has to be
derived from a di� erential equation, the so-called F okker- Planck or master
equation. Non-equilibrium phenomena are also encountered if an external current
runs through the system, keeping it away from thermal equilibrium [11]. A simple
example of such a driven system is a resistor in an electric circuit. Although the
resistor eventually reaches a stationary state, its probability distribution will no
longer be given by the G ibbs ensemble. As a physical consequence the thermal noise
produced by the resistor is no longer characterized by a Gaussian distribution.
Similar non-equilibrium phenomena are observed in catalytic reactions, surface
growth, and many other phenomena with a � ow of energy or particles through
the system. Since non-equilibrium systems do not require detailed balance, they
exhibit a potentially richer behaviour than equilibrium systems. However, as their
probability distribution cannot be expressed solely in terms of an energy functional
H…s†, the master equation has to be solved, being usually a much more di� cult task.
Therefore, compared to equilibrium statistical mechanics, the theoretical under-
standing of non-equilibrium processes is still at its beginning.

The simplest non-equilibrium situation is encountered if a single or several
particles in a potential are subjected to a random force. Important examples are
the Kramers and the Smoluchowski equations describing the evolution of the
probability distribution for Brownian motion of classical particles in an external
� eld (for a review see [12]). But even more complicated systems, for example one-
dimensional tight-binding fermion systems as well as electrical lines of random
conductances or capacitances, can be described in terms of discrete single-particle
equations [13]. A more complex situation, on which we will focus in the present
work, emerges in stochastic lattice models with many interacting degrees of freedom.
A well-known example is the Glauber model [14] which describes the spin relaxation
of an Ising system towards the stationary state. The corresponding master equation
in one dimension was solved exactly by F elderhof [15], who mapped the time
evolution operator onto a quantum spin chain Hamiltonian which can be treated
by similar methods as in [16].

One motivation for today’s interest in particle hopping models originates in the
study of superionic conductors in the 1970s [17, 18]. In the superionic conductor
AgI, for example, the Ag‡ ions may be viewed as particles moving stochastically
through a lattice of I¡ ions. Each lattice site can be occupied by at most one Ag‡ ion,
i.e. the particles obey an exclusion principle. It was observed experimentally that
the conductivity of AgI changes abruptly when the temperature is increased,
indicating an underlying order- disorder phase transition of Ag‡ ions. Assuming
short-range interactions, this phase transition was explained in terms of a model for
di� using particles on a lattice [19]. Subsequently, particle hopping models have been
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generalized to so-called reaction- di� usion models by including various types of
particle reactions or external driving forces [20]. It should be noted that particles in a
reaction- di� usion model do not always represent physical particles. Moreover, the
reactions are not always of chemical nature. For example, in models for tra� c � ow
individual cars are considered as interacting particles [21]. Similarly, electronic
excitations of certain polymer chains may be viewed as particles subjected to a
stochastic temporal evolution [22].

The dynamic properties of a reaction- di� usion model on a lattice are fully
speci� ed by its master equation [23- 25]. In a few cases it is possible to solve the
master equation exactly. During the last decade there has been an enormous progress
in the � eld of exactly solvable non-equilibrium processes. This development was
mainly triggered by the observation that the Liouville operator of certain …1 ‡1†-
dimensional reaction- di� usion models is related to Hamiltonians of previously
known quantum spin systems. F or example, as � rst realized by Alexander and
Holstein [26], the symmetric exclusion process can be mapped exactly onto the
Schrödinger equation of a H eisenberg ferromagnet. This type of mapping was
extended to various other one-dimensional reaction- di� usion processes by Alcaraz
et al. [27], allowing exact methods of many-body quantum mechanics such as the
Bethe ansatz and free-fermion techniques to be applied in non-equilibrium
physics [28]. Moreover, novel algebraic techniques have been developed in which
the stationary state of certain reaction- di� usion models is expressed in terms of
products of non-commuting algebraic objects [29].

In spite of this remarkable progress, the majority of reaction- di� usion models
cannot be solved exactly. It is therefore necessary to use approximation techniques in
order to describe their essential properties. The oldest approximation method is the
law of mass action, where the reaction rate of two reactants is assumed to be
proportional to the product of their concentrations. This mean-� eld approach is
justi� ed if di� usive mixing of particles is much stronger than the in� uence of
correlations produced by the reactions. Mean-� eld techniques have been applied
successfully to a large variety of reaction- di� usion systems. The study of pattern
formation in nonlinear reaction- di� usion models, for example, is essentially based
on a mean-� eld approach [30]. However, as has already been realized by
Smoluchowski [31], � uctuations may be extremely important in low-dimensional
systems where the di� usive mixing is not strong enough [32]. F or example, if
particles of one species di� use and annihilate by the reaction A ‡ A ! é , the
standard mean-� eld approximation predicts an asymptotic decay of the particle
concentration as »… t† ¹ t¡1. In one dimension, however, the density is found to decay
as »… t† ¹ t¡1=2. This slow decay is due to � uctuations produced by the dynamics,
leading to spatial anticorrelations of the particles. The existence of such � uctuation
e� ects has been con� rmed experimentally by measuring the luminescence of
annihilating excitons on polymer chains [22].

As in equilibrium statistical mechanics, non-equilibrium phenomena are par-
ticularly interesting if the system undergoes a phase transition, leading to a collective
behaviour of the particles over long distances. There is a large variety of phenom-
enological non-equilibrium phase transitions in nature, ranging from morphological
transitions of growing surfaces [33] to tra� c jams [34]. It turns out that the concept
of universality, which has been very successful in the � eld of equilibrium critical
phenomena, can be applied to non-equilibrium phase transitions as well. However,
the universality classes of non-equilibrium critical phenomena are expected to be
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even more diverse as they are governed by various symmetry properties of the
evolution dynamics. On the other hand, the experimental evidence for universality of
non-equilibrium phase transitions is still very poor, calling for intensi� ed experi-
mental e� orts.

In the present work we will focus on non-equilibrium phase transitions in models
with so-called absorbing states, i.e. con� gurations that can be reached by the
dynamics but cannot be left. The most important universality class of absorbing-
state transitions is directed percolation (DP) [35]. This type of transition occurs, for
example, in models for the spreading of an infectious disease. In these models the
lattice sites are considered as individuals which can be healthy or infected. Infected
individuals may either recover by themselves or infect their nearest neighbours.
Depending on the infection rate, the spreading process may either survive or evolve
into a passive state where the infection is completely eliminated. In the limit of large
system sizes the two regimes of survival and extinction are separated by a continuous
phase transition. As in equilibrium statistical mechanics, the critical behaviour close
to the transition is characterized by diverging correlation lengths associated with
certain critical exponents. Similar spreading processes with the same exponents can
be observed in models for catalytic reactions, percolation in porous media, and even
in certain hadronic interactions. It turns out that all these phase transitions belong
generically to a single universality class, irrespective of microscopic details of their
dynamic rules. In view of its robustness, the DP class may therefore be as important
as the Ising universality class in equilibrium statistical mechanics. Amazingly,
directed percolation is one of a very few critical phenomena which cannot be solved
exactly in one spatial dimension. Although DP is easy to de� ne, its crit ical behaviour
is highly non-trivial. This is probably one of the reasons why DP continues to
fascinate theoretical physicists.

The present review addresses several aspects of non-equilibrium phase transi-
tion{. In the following section we introduce elementary concepts of non-equilibrium
statistical mechanics such as the master equation, reaction di� usion processes,
Monte Carlo simulations, as well as the most important analytical methods and
approximation techniques. The third section discusses the problem of directed
percolation, including a comprehensive introduction to DP lattice models, basic
scaling concepts, approximation techniques, as well as � eld-theoretic methods. In
view of the robustness of DP, it is particularly interesting to search for non-DP phase
transitions which usually emerge in the presence of additional symmetries. These
exceptional universality classes, which have attracted considerable attention during
the last few years, will be reviewed in section 4. Section 5 discusses a simulation
technique, called damage spreading, which has been used in the past to search for
chaotic behaviour in random processes. It is shown that this technique su� ers from
severe conceptual problems, making it impossible to de� ne chaotic phases. We also
discuss the critical behaviour of damage spreading transitions which are closely
related to phase transitions into absorbing states. Finally, we turn to depinning
transitions in models of growing interfaces which are related to non-equilibrium
phase transitions into absorbing states as well. As it is not intended to cover the
whole � eld of non-equilibrium critical phenomena, we will not address various
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related topics such as self-organized critical phenomena [36], modi� ed reaction-
di� usion processes [32], the dynamics of reacting fronts [37], driven di� usive
systems [11], and recent results on spontaneous symmetry breaking and phase
separation in one-dimensional systems [38]. F or further reading we will give
references to related � elds. Supplementary information concerning the de� nition
of tensor products, the derivation of the e� ective action of Reggeon � eld theory,
Wilson’s shell integration, and the one-loop integrals for DP are given in the
appendices A- D . For easy reference we also append a list of frequently used
symbols and abbreviations.

2. Stochastic many-particle systems
In this section we discuss elementary concepts of non-equilibrium statistical

mechanics. In order to introduce basic notions, we � rst consider the example of a
simple random walk. Turning to many-particle systems we introduce the asymmetric
exclusion process which is a model for biased di� usion of many particles on a one-
dimensional line. Moreover, we explain the standard mean � eld approach to
reaction- di� usion processes. In order to demonstrate the importance of � uctuations,
two simple lattice models with particle reactions will be discussed, namely coagula-
tion 2A ! A and pair annihilation 2A ! é . It turns out that in one dimension the
temporal evolution of these systems di� ers signi� cantly from the mean-� eld
prediction, proving that � uctuations may play an important role. Furthermore, we
review basic concepts of numerical simulation techniques comparing di� erent update
schemes. Finally we turn to certain analytical methods by which reaction di� usion
models can be solved exactly. In particular we discuss a recently introduced algebraic
technique which allows the stationary state of certain non-equilibrium models to be
expressed in terms of products of non-commutative operators.

2.1. The one-dimensional random walk
In order to introduce basic concepts of non-equilibrium statistical physics, let us

� rst consider a simple symmetric random walk on a one-dimensional line. The
‘con� guration’ of this dynamical system at time t is characterized by the position of
the walker s… t†. A random walk may be de� ned either on a continuous manifold or
on a lattice. If both position s and time t are discrete variables, an unbiased random
walk may be realized by the random process

s…t ‡1† ˆ s… t† ‡X… t†: …1†

In this expression X… t† ˆ §1 is a � uctuating random variable with correlations

hX… t†i ˆ 0; hX… t†X… t 0†i ˆ ¯t ;t 0 ; …2†

where h. . .i denotes the average over many realizations of randomness. While the
individual space- time trajectory of a random walker is not predictable, the
probability distribution P t…s† to � nd the walker after t time steps at position s
evolves deterministically according to the so-called master equation

P t‡1…s† ˆ 1
2…P t…s ¡ 1† ‡ P t…s ‡1††: …3†

Assuming the particle to be initially located at the origin P0…s† ˆ ¯s;0, this di� erence
equation is solved by
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P t…s† ˆ
1
2t

t

… t ‡ s†=2… †; if t ‡ s even,

0; if t ‡ s odd.

8
<

: …4†

If space and time are continuous, the motion of a random walker may be described
by a stochastic L angevin equation

@ts… t† ˆ ±… t† ; …5†

where, according to the central limit theorem, ±… t† is a Gaussian white noise
with zero mean and correlations h±… t†±… t 0†i ˆ G …̄ t ¡ t 0†. The Langevin equation
may be regarded as a continuum version of equation (2). Starting from the origin
s…0† ˆ 0 the mean square displacement of the random walker grows as
hs2… t†i ˆ

„ t
0 d t1

„ t
0 dt2h±… t1†±… t2†i ˆ Gt: The resulting probability distribution

P t…s† ˆ 1
2ºGt

exp ‰¡s2=…2Gt†Š …6†

is a solution of the Fokker- Planck equation [12]

@tPt…s† ˆ G
2

@2
s P t…s† ; …7†

which can be seen as a variant of the master equation in a continuum (3).
The example of a random walk is particularly simple as it involves only one

degree of freedom. In order to describe systems with many particles, it would seem
natural to introduce several degrees of freedom s1 ;s2 ; . . . ; where sn denotes the
position of the nth particle. However, this approach is restricted to systems with a
conserved number of particles. For systems with non-conserved particle number it is
more convenient to introduce local degrees of freedom for the number of particles
located at certain positions in space.

2.2. T he master equation
Stochastic systems with many particles are usually de� ned on a d-dimensional

Euclidean manifold representing the physical ‘space’. Attached to this manifold are
local degrees of freedom characterizing the con� guration of the system. Depending
on whether the spatial manifold is continuous or discrete, the local degrees of
freedom are introduced as continuous � elds or local variables residing at the lattice
sites. F urthermore, a time coordinate t is introduced which may be interpreted as an
additional dimension of the system. Therefore, stochastic models are said to be
de� ned in d ‡1 dimensions. Since t may be continuous or discontinuous, we have to
distinguish between models with asynchronous and synchronous dynamics.

2.2.1. Asynchronous dynamics
Stochastic models with continuous time evolve by asynchronous dynamics, i.e.

transitions from a state s into another state s 0 occur spontaneously at a given rate
ws!s 0 ¶ 0 per unit time. It can be shown that in the limit of very large systems sizes
the temporal evolution of the probability distribution Pt…s† evolves deterministically
according to a master equation with appropriate initial conditions [23- 25]. The
master equation is a linear partial di� erential equation describing the � ow of
probability into and away from a con� guration s:
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@

@t
Pt…s† ˆ

X

s 0

ws 0!sP t…s 0†
|‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚}

gain

¡
X

s 0

ws!s 0 P t…s†
|‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚}

loss

: …8†

The gain and loss terms balance one another so that the normalization
P

s Pt…s† ˆ 1
is conserved. Since the temporal change of P t…s† is fully determined by the actual
probability distribution at time t, the master equation describes a Markov process,
i.e. it has no intrinsic memory. Moreover, it is important to note that the coe� cients
ws!s 0 are rates rather than probabilities. Thus, they may be larger than 1 and can be
rescaled by changing the time scale.

Using a vector notation (see Appendix A) the master equation (8) may be
written as

@tjPti ˆ ¡LjP ti; …9†

where jP ti denotes a vector whose components are the probabilities P t…s†. The
Liouville operator L generates the temporal evolution and is de� ned through the
matrix elements

hs 0jLjsi ˆ ¡ws!s 0 ‡¯s;s 0

X

s 00

ws!s 00 : …10†

A formal solution of the master equation is given by jP ti ˆ exp …¡Lt†jP0i, where
jP0i denotes the initial probability distribution. Therefore, in order to determine
jP ti, the Liouville operator has to be diagonalized which is usually a non-trivial task.

Apart from very few exceptions, stochastic processes are irreversible and there-
fore not invariant under time reversal. Hence the Liouville operator L is generally
non-hermitean. Moreover, it may have complex conjugate eigenvalues, indicating
oscillatory behaviour. Oscillating modes are not only a mathematical artefact, but
can be observed experimentally in certain chemical reactions such as the Belousov-
Zhabotinski reaction [39]. Due to the positivity of rates, the real part of all
eigenvalues is non-negative, i.e. the amplitude of excited eigenmodes decays
exponentially in time. The spectrum of the Liouville operator includes at least one
zero mode LjPsi ˆ 0, representing the stationary state of the system. Moreover,
probability conservation can be expressed as h1jP ti ˆ 1, where h1j denotes the sum
vector over all con� gurations (cf. Appendix A). Consequently the Liouville operator
obeys the equation h1jL ˆ 0, i.e. the sum over each column of L vanishes.

2.2.2. Synchronous dynamics
If the time variable t is a discrete quantity, the model evolves by synchronous

dynamics, i.e. all lattice sites are simultaneously updated according to certain
transition probabilities ps!s 0 2 ‰0 ;1Š. The corresponding master equation is a linear
recurrence relation

P t‡1…s† ˆ P t…s† ‡
X

s 0

ps 0!sP t…s 0†
|‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚}

gain

¡
X

s 0

ps!s 0 P t…s†
|‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚}

loss

; …11†

which can be written in a compact form as a linear map

jP t‡1i ˆ T jP ti; …12†
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where T is the so-called transfer matrix. A formal solution is given by jPti ˆ T tjP0i.
As can be veri� ed easily, the conservation of probability h1jP ti ˆ 1 implies that
h1jT ˆ h1j, i.e. the sum over each column of the transfer matrix is equal to 1.

There has been a long debate which of the two update schemes is the more
‘realistic’ one. For many researchers models with uncorrelated spontaneous updates
appear to be more ‘natural’ than models with synchronous dynamics where all
particles move simultaneously according to an arti� cial clock cycle. On the other
hand, many computational physicists prefer stochastic cellular automata with
synchronous dynamics since they can be implemented e� ciently on parallel com-
puters. However, as a matter of fact, in both cases the dynamic rules are simpli� ed
descriptions of a much more complex physical process. Therefore, it would be
misleading to consider one of the two variants as being more ‘natural’ than the other.
Instead, the choice of the dynamic procedure should depend on the speci� c physical
system under consideration. Very often both variants display essentially the same
physical properties. In some cases, however, they lead to di� erent results. For
example, models for tra� c � ow with synchronous updates turn out to be more
realistic than random sequential ones. Another example is polynuclear growth (see
section 6.3), where a roughening transition occurs only when synchronous updates
are used.

2.3. Di� usion of many particles: the asymmetric exclusion process
One of the simplest stochastic many-particle models is the partially asymmetric

exclusion process on a one-dimensional chain with N sites [5]. In this model hard-
core particles move randomly to the right (left) at rate q (q¡1). An exclusion principle
is imposed, i.e. each lattice site may be occupied by at most one particle. Therefore,
attempted moves are rejected if the target site is already occupied. In the following
we assume closed boundary conditions, i.e. particles cannot leave or enter the system
at the ends of the chain. The con� guration s ˆ fs1 ;s2 ; . . . ;sN g of the system is given
in terms of local variables si, indicating presence (si ˆ 1) or absence (si ˆ 0) of a
particle at site i.

2.3.1. Exclusion process with asynchronous dynamics
Let us � rst consider the exclusion process with asynchronous dynamics. In this

case a pair of sites i and i ‡1 is randomly selected. If only one of the two sites is
occupied, the particle moves with probability q=…q ‡q¡1† to the right and with
probability q¡1=…q ‡ q¡1† to the left, as shown in � gure 1. Each update attempt
corresponds to a time increment of 1=…N…q ‡q¡1††. Thus, the transition rates are
de� ned by

ws!s 0 ˆ
XN ¡1

iˆ1

Yi¡1

jˆ1

¯sj ;s 0
j… † YN

jˆi‡2

¯sj ;s 0
j… †…q¯si ;1¯si‡1 ;0¯s 0

i ;0¯s 0
i‡1 ;1

‡q¡1¯si ;0¯si‡1 ;1¯s 0
i ;1¯s 0

i‡1 ;0†: …13†

The corresponding Liouville operator can be written as

L ˆ
XN ¡1

iˆ1

1 « 1 « . . . «Li«|‚‚{z‚‚}
ith position

. . . « 1 ˆ:
XN ¡1

iˆ1

Li ; …14†
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where 1 denotes a 2 £ 2 unit matrix and Li is a 4 £ 4 matrix generating particle
hopping between sites i and i ‡1. In the standard basis (see Appendix A) this matrix
is given by

Li ˆ

0 0 0 0

0 q¡1 ¡q 0

0 ¡q¡1 q 0

0 0 0 0

0
BBB@

1
CCCA: …15†

As can be veri� ed easily, a stationary state of the system is given (up to normal-
ization) by the tensor product

jPsi ˆ 1

1… †«
q¡1

q… †« . . . «
q¡N

qN… † ˆ
ON

jˆ1

q¡j

q j… †: …16†

Since the vector jPsi can be written as a tensor product, the local variables si are
completely uncorrelated. Such a state is said to have a product measure.

As the total number of particles is conserved in the asymmetric exclusion process,
the dynamics decomposes into independent sectors. In fact, the Liouville operator
commutes with the particle number operator

M ˆ
XN

iˆ1

mi ; mi ˆ 1 0

0 0… †: …17†

Obviously the vector jPsi is a superposition of solutions belonging to di� erent
sectors, i.e. it represents a whole ensemble of stationary states. To obtain a physically
meaningful solution for a given number of particles, the vector jPsi has to be
projected onto the corresponding sector. In this sector the stationary system
evolves through certain con� gurations with speci� c weights given by the normalized
components of the projected vector.

2.3.2. Exclusion process with synchronous dynamics
The asymmetric exclusion process with synchronous updates may be realized by

introducing two half time steps. In the � rst half time step the odd sublattice is
updated whereas the even sublattice is updated in the second half time step (see
� gure 1). N ote that the use of sublattice-parallel updates admits local dynamic
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Figure 1. The partially asymmetric exclusion process in one dimension with synchronous
(sublattice-parallel) and asynchronous (random-sequential) dynamics.



rules{. Assuming the number of sites N to be odd, the corresponding transfer matrix
reads

T ˆ …T 2 « T 4 « T 6 « . . . « T N ¡1†…T 1 « T 3 « T 5 « . . . « T N ¡2† ; …18†
where

T i ˆ 1
q ‡q¡1

q ‡ q¡1 0 0 0

0 q q 0

0 q¡1 q¡1 0

0 0 0 q ‡q¡1

0
BBB@

1
CCCA …19†

is the local hopping matrix. Again the product state (16) is a stationary eigenvector
of the transfer matrix. Thus, both the asynchronous and the synchronous exclusion
process have exactly the same stationary properties.

2.3.3. Asymmetric di� usion in a continuum
Let us � nally turn to asymmetric di� usion on a continuous manifold. In principle

it would be possible to trace trajectories of individual particles. H owever, it is much
more convenient to characterize the state of the system by a density � eld »…x; t†,
rendering the coarse-grained density of particles at position x at time t. The
Langevin equation of such a system may be written as

@t»…x; t† ˆ D‰»…x; t†Š ‡U‰»…x; t†Š ‡ ±…x; t† ; …20†

where D is a sum of linear di� erential operators describing spatial couplings, U a
potential for on-site particle interactions, and ±…x; t† a noise term taking the
stochastic nature of Brownian motion into account. Since particles do not interact
in the present case, the potential U vanishes. Moreover, as will be shown below, the
noise ±…x; t† is irrelevant on large scales and can be neglected. Thus, the resulting
Langevin equation reads

@t»…x; t† ˆ q ‡q¡1

2
@2

x »…x; t† ‡q ¡ q¡1

2
@x »…x; t†: …21†

The second term describes the bias of the di� usive motion which may be eliminated
in a co-moving frame. Notice that this equation is linear and does not incorporate
the exclusion principle. In a co-moving frame it reduces to the ordinary di� usion
equation.

The di� usion equation provides a simple example of dynamic scaling invariance.
As can be veri� ed easily, the equation @t»…x; t† ˆ Dr2

x »…x; t† is invariant under
rescaling of space and time

x ! Lx; t ! Lzt ; …22†

where z is the so-called dynamic exponent. Since space and time are di� erent in
nature, the exponent z is usually larger than 1. The value z ˆ 2 indicates di� usive
behaviour.
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2.4. Reaction- di� usion processes
Reaction- di� usion processes are stochastic models for chemical reactions in

which particles are predominantly transported by thermal di� usion. Usually a
chemical reaction in a solvent or on a catalytic surface consists of a complex
sequence of intermediate steps. In reaction- di� usion models these intermediate steps
are ignored and the reaction chain is replaced by simpli� ed probabilistic transition
rules. The involved atoms and molecules are interpreted as particles of several
species, represented by capital letters A ;B ;C ; . . . . These particles neither carry a
mass nor an internal momentum, instead the con� guration of a reaction- di� usion
model is completely speci� ed by the position of the particles. On a lattice with
exclusion principle such a con� guration can be expressed in terms of local variables
si ˆ 0;1;2;3; . . . ; representing a vacancy é and particles A ;B ;C ; . . . , respectively.
Sometimes it is even not necessary to keep track of all substances involved in a
chemical reaction. F or example, if a molecule of a gas phase is adsorbed at a catalytic
surface, this process may be e� ectively described by spontaneous particle creation
é ! A without modelling the explicit dynamics in the gas phase. Therefore, the
number of particles in reaction- di� usion models is generally not conserved.

Apart from spontaneous particle creation é ! A many other reactions are
possible. Unary reactions are spontaneous transitions of individual particles, the
most important examples being

A ! é self-destruction,
A ! 2A offspring production or decoagulation,
A ! B transmutation,
A ! A ‡B induced creation of particles.

On the other hand, binary reactions require two particles to meet at the same place
(or at neighbouring sites). H ere the most important examples are

2A ! é pair annihilation,
2A ! A coagulation (coalescence),
A ‡B ! é two-species annihilation,
A ‡B ! B induced adsorption of particles.

In addition, the particles may di� use with certain rates in the same way as in the
previously discussed exclusion process. A process is called di� usion-limited if
di� usion becomes dominant in the long-time limit, i.e. the di� usive moves become
much more frequent than reactions. This happens, for example, in reaction- di� usion
models with binary reactions when the particle density is very low. On the other
hand, if particle reactions become dominant after very long time, the process is called
reaction-limited.

In the following we will focus on simple reaction- di� usion models with only one
type of particle (see � gure 2). They can be considered as two-state models since each
site can either be occupied by a particle (A ) or be empty (é ). Examples include the
so-called coagulation model in which particles di� use at rate D, coagulate at rate ¶
and decoagulate at rate µ:

Aé $
D

é A ; AA !
¶

Aé ;é A ; Aé ;é A !
µ

AA : …23†

Using the same notation as in equation (15), the corresponding nearest-neighbour
transition matrix is given by
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Lcoag
i ˆ

0 0 0 0

0 D ‡µ ¡D ¡¶

0 ¡D D ‡µ ¡¶

0 ¡µ ¡µ 2¶

0
BBB@

1
CCCA: …24†

The special property of this model lies in the fact that the empty state cannot be
reached by the dynamic processes. An exact solution of the coagulation model will
be discussed in section 2.8.3.

Another important example is the annihilation model where particles di� use and
annihilate:

Aé $
D

é A ; AA !
¬

é é : …25†

The corresponding interaction matrix is given by

Lannh
i ˆ

0 0 0 ¡¬

0 D ¡D 0

0 ¡D D 0

0 0 0 ¬

0
BBB@

1
CCCA: …26†

In the annihilation model the number of particles is conserved modulo 2. As will be
shown in section 2.8.1, both models are equivalent and can be related by a similarity
transformation.

2.5. M ean-� eld approx imation
In many cases the macroscopic properties of a reaction- di� usion process can be

predicted by solving the corresponding mean-� eld theory. In chemistry the simplest
mean-� eld approximation is known as the ‘law of mass action’: F or a given
temperature the rate of a reaction is assumed to be proportional to the product of
concentrations of the reacting substances. This approach assumes that the particles
are homogeneously distributed. It therefore ignores any spatial correlations as well
as instabilities with respect to inhomogeneous perturbations. Thus, the homo-
geneous mean � eld approximation is expected to hold on scales where di� usive
mixing is strong enough to wipe out spatial structures. Especially in higher
dimensions, where di� usive mixing is more e� cient, the mean-� eld approximation
provides a good description. It becomes exact in in� nitely many dimensions, where
all particles can be considered as being neighboured.

The mean-� eld equations can be constructed directly by translating the reaction
scheme into a di� erential equation for gain and loss of the particle density »… t†. For
example, in the mean-� eld approximation of the coagulation model (23) the process
A !µ 2A takes place with a frequency proportional to µ»… t†, leading to an increase of
the particle density. Similarly, the coagulation process 2A !¶ A decreases the number
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of particles with a frequency proportional to ¶»2… t†. Ignoring di� usion, the resulting
mean-� eld equation reads

@t»… t† ˆ µ»… t† ¡ ¶»2… t† ; …27†
where µ and ¶ are the rates for decoagulation and coagulation, respectively. In
contrast to the master equation this di� erential equation is nonlinear. For µ > 0 it
has two � xed points, namely an unstable � xed point at » ˆ 0 and a stable � xed point
at » ˆ µ=¶. The physical meaning of the two � xed points is easy to understand. The
empty system remains empty, but as soon as we perturb the system by adding a few
particles, it quickly evolves towards a stationary active state with a certain average
concentration » > 0. This active state is then stable against perturbations (such as
adding or removing particles).

The mean-� eld equation (27) can also be used to predict dynamic properties of
the system. Starting from a fully occupied lattice »…0† ˆ 1 the time-dependent
solution is given by

»… t† ˆ µ

¶ ¡…¶ ¡ µ† exp …¡µt† : …28†

In the limit of a vanishing decoagulation rate µ ! 0, the two � xed points merge into
a marginal one. As in many physical systems this leads to a much slower dynamics.
In fact, for µ ˆ 0 equation (28) turns into

lim
µ!0

»… t† ˆ 1
1 ‡¶t

; …29†

i.e. the particle density decays asymptotically according to a power law as

»… t† ¹ t¡1: …30†
The stability of the mean-� eld solution with respect to inhomogeneous perturbations
may be studied by adding a term for di� usion

@t»…x; t† ˆ µ»…x; t† ¡ ¶»2…x; t† ‡Dr2»…x; t†: …31†
In the present case the di� usive term suppresses perturbations with short wavelength
and therefore stabilizes the homogeneous solutions. However, in certain chemical
reactions with several particle species such a di� usive term may have a destabilizing
in� uence. The study of mean-� eld instabilities is the starting point for the theory of
pattern formation which has become an important � eld of statistical physics [30]. A
very interesting application is the Belousov- Zhabotinski reaction [39] which
produces rotating spirals in a Petri dish.

It may be surprising that even simple reaction- di� usion processes are described
by nonlinear mean-� eld rate equations, whereas the corresponding master equation is
always linear. However, mean-� eld and Langevin equations are always de� ned in
terms of coarse-grained particle densities involving many local degrees of freedom.
These coarse-grained densities, which can be thought of as observables in con� g-
uration space, may evolve according to a nonlinear laws. A similar paradox occurs in
quantum physics: although the Schrödinger equation is strictly linear, most
observables evolve in a highly nonlinear way.

2.6. T he in� uence of � uctuations
Although the mean-� eld equation (31) includes a term for particle di� usion, it

still ignores � uctuation e� ects and spatial correlations. However, especially in low-
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dimensional systems, � uctuations may play an important role and are able to entirely
change the physical properties of a reaction- di� usion process.

In order to demonstrate the in� uence of � uctuations, let us consider the
coagulation process 2A ! A . The full Langevin equation for this process reads

@t»…x; t† ˆ ¡¶»2…x; t† ‡Dr2»…x; t† ‡ ±…x; t† ; …32†

where ±…x; t† is a noise term which accounts for the � uctuations of the particle
density at position x at time t. Clearly, the noise amplitude depends on the
magnitude of the density � eld »…x; t†. In particular, without any particles present,
there will be no � uctuations. According to the central limit theorem, the noise is
expected to be Gaussian with a squared amplitude proportional to the frequency of
events leading to a change of the particle number. Since the particle number only
� uctuates when two particles coagulate, this frequency should be proportional to
»2…x; t†. F ollowing these naive arguments, the noise correlations should be given by

h±…x; t†i ˆ 0 ;

h±…x; t†±…x 0 ; t 0†i ˆ G»2…x; t†¯d…x ¡ x 0† …̄ t ¡ t 0† ;

)

…33†

where G denotes the noise amplitude and d the spatial dimension. The next question
is to what extent the macroscopic behaviour of the system will be a� ected by the
noise. Typically there are three possible answers.

(1) The noise is irrelevant on large scales so that the macroscopic behaviour is
correctly described by the mean-� eld solution.

(2) The noise is relevant on large scales, leading to a macroscopic behaviour that
is di� erent from the mean-� eld prediction.

(3) The noise is marginal, producing (typically logarithmic) deviations from the
mean-� eld solution.

In order to � nd out whether the noise is relevant on large scale we need to introduce
the concept of renormalization [41]. The term ‘renormalization’ refers to various
theoretical methods investigating the scaling behaviour of physical systems under
coarse-graining of space and time. Roughly speaking, it describes how the par-
ameters of a system have to be adjusted under coarse-graining of length scales
without changing its physical properties. A � xed point of the renormalization � ow is
then associated with certain universal scaling laws of the system. The simplest
renormalization group (RG) scheme ignores the in� uence of � uctuations. This
approach is referred to as ‘mean-� eld renormalization’. Approaching the � xed point,
the noise amplitude may diverge, vanish or stay � nite, corresponding to the
classi� cation given above. Hence, by studying mean-� eld renormalization, we can
predict whether � uctuations are relevant or not.

In the mean-� eld approximation the Langevin equation (32) may be renorma-
lized by a scaling transformation

x ! Lx; t ! Lzt ; »…x; t† ! LÀ»…Lx;Lz t† ; …34†

where z denotes the dynamic exponent. The exponent À describes the scaling
properties of the density � eld itself. If the particles were distributed homogeneously,
the � eld would scale as an ordinary density, that is, with the exponent À ˆ ¡d .
However, in the coagulation process non-trivial correlations between particles lead
to a di� erent scaling dimension of the particle distribution. In fact, invariance of
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equations (32)- (33) under rescaling implies that z ˆ 2 and À ˆ ¡2. Therefore, the
noise amplitude scales as

G ! L1¡d=2G ; …35†

where d is the spatial dimension. H ence in one spatial dimension � uctuations are
relevant whereas they are marginal in two and irrelevant in d > 2 dimensions. The
value of d where the noise becomes marginal is denoted as the upper critical
dimension dc. F or the coagulation model the upper critical dimension is dc ˆ 2.
Above the critical dimension the mean-� eld approximation provides a correct
description, whereas for d < dc � uctuation e� ects have to be taken into account.
This can be done by using improved mean-� eld approaches, exact solutions, as well
as � eld-theoretic renormalization group techniques [42].

A systematic � eld-theoretic analysis of the coagulation process 2A ! A leads to
an unexpected result: the noise amplitude G in equation (33) turns out to be
negative [43]. Consequently, the noise ±…x; t† is imaginary . This result is rather
counterintuitive as we expect the noise to describe density � uctuations which, by
de� nition, are real. However, since the noise amplitude is a measure of annihilation
events, it is subjected to correlations that are produced by the annihilation process
itself. In one dimension these correlations are negative, i.e. particles avoid each
other. This simple example demonstrates that it can be dangerous to set up a
Langevin equation by considering the mean-� eld equation and adding a physically
reasonable noise � eld. Instead it is necessary to derive the Langevin equation directly
from the microscopic dynamics, as explained in [44].

2.7. Numerical simulations
To verify analytical results, it is often helpful to perform M onte Carlo

simulations. In order to demonstrate this numerical technique, let us again consider
the coagulation process 2A ! A on a one-dimensional chain (see � gure 3). For
simplicity we assume the rates for di� usion and coagulation to be equal. This ensures
that particles can move at constant rate irrespective of the state of the target site. If
the target site is empty, it will be occupied by the moving particle. On the other hand,
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Figure 3. Monte Carlo simulation of the …1 ‡ 1†-dimensional coagulation- di� usion model
A ‡ A ! A with random-sequential updates. The � gure shows an individual run
starting with a fully occupied lattice of 200 sites. As can be seen, the coagulation
process is di� usion-limited.



if the target site is already occupied, the two particles will coagulate into a single one.
Such a move from site i to site j may be realized by the pseudo code instruction

Move(i,j) f if (s[i]==1) f s[i]=0; s[j]=1; gg;

where s[i] denotes the occupation variable si ˆ 0 ;1 at site i. In one dimension
particles move randomly to the left and to the right. Thus a local update at sites
… i ; i ‡ 1† may be realized by the instruction

Update(i) f if (rnd(0,1)<0.5) Move(i,i+1);

else Move(i+1,i); g;

where rnd(0,1) returns a real random number from a � at distribution between
0 and 1. Since the coagulation model evolves by asynchronous dynamics it uses so-
called random-sequential updates, i.e. the update attempts take place at randomly
selected pairs of sites. A Monte Carlo sweep consists of N such update attempts:

for (i=1; i<=N; i++) Udpate(rndint(1,N-1));

where N denotes the lattice size and rndint(1,N-1) returns an integer random
number between 1 and N ¡ 1. Since on average each site is updated once, such a
sweep corresponds to a unit time step. It can be proven that the statistical ensemble
of space- time trajectories generated by random-sequential updates converges to the
solution of the master equation (8) in the limit N ! 1. The above update algorithm
can easily be generalized to more complicated reaction schemes and higher
dimensional lattices.

The coagulation process with synchronous updates may be simulated by using
parallel updates on alternating sublattices:

for (i=1; i<=N-1; i+=2) Update(i);

for (i=2; i<=N-2; i+=2) Update(i);

In Monte Carlo simulations most of the CPU time is consumed for generating
random numbers. Therefore, models with parallel updates are usually more e� cient
since it is not necessary to determine random positions for the updates. In addition,
models with parallel updates can be implemented easily on computers with parallel
architecture [45].

F igure 4 shows the particle density as a function of time for the coagulation
model with random-sequential updates and closed boundary conditions in various
dimensions. The particle concentration is averaged over 104 independent runs and
plotted in a double-logarithmic representation, where straight lines indicate power-
law behaviour. As expected, the mean-� eld prediction »… t† ¹ 1=t is reproduced in
d > 2 dimensions. In one dimension, however, the graph suggests the density to
decay as

»… t† ¹ t¡1=2 …d ˆ 1†: …36†

Thus, the simulation result demonstrates that � uctuation e� ects can change the
asymptotic behaviour (an exact solution will be discussed in section 2.8.3). At the
critical dimension d ˆ dc ˆ 2 the density »… t† deviates slightly from the mean-� eld
prediction, indicating logarithmic corrections. In fact, as can be shown by a � eld-
theoretic analysis [44], the density decays asymptotically as
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»… t† ¹
t¡d=2 ; for d < 2 ;

t¡1 ln t ; for d ˆ dc ˆ 2 ;

t¡1 ; for d > 2:

8
><
>:

…37†

2.8. Exact results
2.8.1. Equivalence of annihilation and coagulation processes

Sometimes it is possible to relate di� erent stochastic processes by an exact
similarity transformation [46- 48]. F or example, the coagulation process 2A ! A
and the annihilation process 2A ! é de� ned in section 2.4 are fully equivalent if
their rates are tuned appropriately. More precisely, for a particular choice of the
rates it is possible to � nd a similarity transformation U such that

Lcoag ˆ ULannhU¡1 ; …38†

where we assume the chains to have closed ends, i.e.

Lcoag ˆ
XN ¡1

iˆ1

Lcoag
i ; Lannh ˆ

XN ¡1

iˆ1

Lannh
i : …39†

Since Lcoag and Lannh are non-hermitean operators, the similarity transformation U is
not orthogonal. However, if U exists, the two operators will have the same spectrum
of eigenvalues. As can be veri� ed easily, the local operators Lcoag

i and Lannh
i have the

eigenvalues f0 ;0 ;2D ‡µ;2¶ ‡ µg and f0 ;0 ;2D ;ag, respectively. Therefore, choosing
the rates

D ˆ ¶ ˆ 1 ; ¬ ˆ 2 ; µ ˆ 0 ; …40†

both operators obtain the same spectrum f0;0;1;1g. Moreover, it can be shown that
they both obey the same commutation relations, namely the so-called Hecke
algebra [49, 50]

H. Hinrichsen834

Figure 4. Monte Carlo simulation of the coagulation- di� usion model. Left: decay of the
particle density »…t† measured in a system with 105 sites in one, two, and three spatial
dimensions, averaged over 104 independent runs. The dashed lines indicate the slopes
¡1=2 and ¡1, respectively. Right: t»… t† versus t, illustrating logarithmic corrections in
d ˆ 2 dimensions.



L2
i ˆ Li ;

LiLi‡1Li ¡ Li‡1LiLi‡1 ˆ 2…Li ¡ Li‡1† ;

‰Li ;Lj Š ˆ 0 ; for … ji ¡ jj ¶ 2†:

9
>>=
>>;

…41†

Since this algebra generates the spectrum of L, we can conclude that the spectra of
Lcoag and Lannh coincide for an arbitrary number of sites. Obviously, the equivalence
of the spectra is a necessary condition for the existence of a similarity transformation
between the two systems. In the present case it is even possible to compute the
similarity transformation explicitly. It turns out that U can be expressed in terms of
local tensor products (see Appendix A)

U ˆ u « u « . . . « u ˆ
ON

iˆ1

u ˆ u«N ; …42†

where

u ˆ
1 ¡1

0 2… †; u¡1 ˆ
1 1=2

0 1=2… †: …43†

Consequently the n-point density correlation functions of both models are related by

hsj1 sj2 ¢ ¢ ¢ sjn i
coag ˆ 2nhsj1 sj2 ¢ ¢ ¢ sjni

annh
: …44†

In particular, the particle densities in both models di� er by a factor of 2:

»coag… t† ˆ 2»annh… t†:

It should be noted that only a subset of initial conditions in the coagulation model
can be mapped onto physically meaningful initial conditions in the annihilation
model (see [51]).

2.8.2. Exact mapping between equilibrium and non-equilibrium systems
A remarkable progress has been achieved by realizing that certain non-

equilibrium models can be mapped onto well-studied integrable equilibrium models.
More speci� cally, it has been shown that the Liouville operator L of a non-
equilibrium model may be related to the Hamiltonian H of an integrable quantum
spin system by similarity transformation [15]. This allows the non-equilibrium model
to be solved by exact techniques of equilibrium statistical mechanics such as free-
fermion diagonalization, the Bethe ansatz, or other algebraic methods [2]. For
example, the exclusion process can be mapped onto the XXZ quantum chain [18,
26, 52], whereas the coagulation- decoagulation process is related to the XY chain in
a magnetic � eld [53- 55]. Exact mappings were also found for higher spin
analogues [56]. A complete summary of the known results can be found in [28].

In order to demonstrate this technique, let us consider the partially asymmetric
exclusion process in one spatial dimension (see section 2.3.1). As will be shown in the
following, this model is related to the quantum spin Hamiltonian of the ferromag-
netic XXZ Heisenberg quantum chain with open boundary conditions
H ˆ PN ¡1

iˆ1 Hi, where

Hi ˆ ¡ 1
2

¼x
i ¼x

i‡1 ‡¼
y
i ¼

y
i‡1 ‡ q ‡q¡1

2
…¼ z

i ¼ z
i‡1 ¡ 1† ‡ q ¡ q¡1

2
…¼ z

i ¡ ¼ z
i‡1†… †: …45†
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This quantum chain Hamiltonian generates translations in the corresponding two-
dimensional XXZ model in a strongly anisotropic scaling limit. As can be veri� ed
easily, the Hamiltonian is non-hermitean for q 6ˆ 1. U sing the standard basis of Pauli
matrices

¼x ˆ 0 1
1 0… †; ¼ y ˆ 0 ¡i

i 0… †;

and

¼z ˆ 1 0
0 ¡1… †

the interaction matrix is given by

Hi ˆ

0 0 0 0
0 q¡1 ¡1 0
0 ¡1 q 0
0 0 0 0

0
BBB@

1
CCCA: …46†

The XXZ Heisenberg chain is integrable by means of Bethe ansatz methods [28]. The
integrability is closely related to two di� erent algebraic structures. On the one hand,
the Hamiltonian (45) commutes with the generators K ;S § of the quantum algebra
Uq‰SU…2†Š (see [58])

KS §K ¡1 ˆ qS § ; ‰S ‡;S ¡Š ˆ K 2 ¡ K ¡2

q ¡ q¡1 ; …47†

where

K ˆ …q¼z =2†«N
; S § ˆ

XN

kˆ1

…q¼z =2†«…k ¡1† « ¼§ « …q¡¼z =2†«…N ¡k†
: …48†

Roughly speaking, the quantum group symmetry determines the degeneracies of
the eigenvalues of H. On the other hand, the generators Hi are a representation
of the Temperley- Lieb algebra [59]

H2
i ˆ …q ‡ q¡1†Hi ;

Hi ˆ HiHi§1Hi ;

‰Hi ;HjŠ ˆ 0for ji ¡ jj ¶ 2:

9
>>=
>>;

…49†

This algebra determines the actual numerical value of the energy levels. As realized
by Alcaraz and Rittenberg [56], the same commutation relations are satis� ed by the
transition matrix Li of the asymmetric exclusion process in equation (15). In fact, it
can be shown that the XXZ chain and the exclusion process with ¬ ˆ  ˆ 0 are
related by a similarity transformation L ˆ UHU ¡1, where U can be written as a
tensor product of local transformations

U ˆ 1 0

0 q… †«
1 0

0 q2… †« . . . «
1 0

0 qN… † ˆ
ON

iˆ1

1 0

0 qi… †: …50†

In order to illustrate how symmetries of the equilibrium model translate into physical
properties of the stochastic process, let us consider the quantum group symmetry of
the XXZ model. Regarding the exclusion process this symmetry emerges as a
conservation of the total number of particles n. The generators S § act as ladder
operators between di� erent sectors with a � xed number of particles. The diagonal
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operator K is proportional to q¡n, weighting the sectors as in a grand-canonical
ensemble, where q plays the role of a fugacity. The partially asymmetric exclusion
process is therefore a physical realization of a quantum group symmetry with a real-
valued deformation parameter q.

A similar mapping relates the coagulation model 2A ! A and the ferromagnetic
XY quantum chain in a magnetic � eld, which is de� ned by the interaction matrix

Hi ˆ ¡1
2…¼ x

i ¼ x
i‡1 ‡¼

y
i ¼

y
i‡1 ‡¼ z

i ‡¼ z
i‡1 ¡ 2†: …51†

In fact, it can be easily veri� ed that the operators Hi satisfy the Hecke algebra (45).
The XY chain is exactly solvable in terms of free fermions [16]. The integrability of
the model is closely related to a SUq…1j1† quantum group symmetry. In the XY chain
this symmetry shows up as a fermionic zero mode, leading to two-fold degenerate
energy levels. In the coagulation model this symmetry emerges as a state without
particles that can neither be reached nor left by the dynamics. In the (equivalent)
annihilation model the symmetry appears as a parity conservation law.

It should be noted that reaction- di� usion models are usually related to
ferromagnetic quantum chains, the reason being that the di� usion process always
corresponds to a ferromagnetic interaction in the quantum spin model.

2.8.3. Interparticle distribution functions
Even if a stochastic model can be mapped onto a known equilibrium system by a

similarity transformation, it is often technically di� cult to derive physical quantities
such as density pro� les and correlation functions [60]. For models with an under-
lying fermionic symmetry an alternative approach has been developed which does
not explicitly use a similarity transformation. Instead it expresses the state of a model
in terms of so-called interparticle distribution functions (IPDF) [61- 63]. Consider, for
example, the coagulation-di� usion process with asynchronous dynamics on an
in� nite chain where particles coagulate …A ‡ A ! A† and di� use at unit rates. Let
I` be the probability that an arbitrarily chosen interval of ` sites contains no
particles. In terms of these empty-interval probabilities the master equation can be
written in a particularly simple form. Since I` ¡ I`‡1 is the probability to � nd a
particle at a neighbouring site next to the interval of length `, it is possible to rewrite
di� usion and coagulation in terms of gain and loss processes (see � gure 5)

@tI`… t† ˆ I`¡1… t† ¡ I`… t†|‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚}
gain

¡ I`… t† ‡ I`‡1… t†|‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚}
loss

…52†

with I0… t† ² 1. It is important to note that this particularly simple form requires the
rates for di� usion and coagulation to be identical. This ensures that the gain
processes do not depend on whether the target site is already occupied by a particle.
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If the two rates are di� erent, higher-order probabilities for several adjacent intervals
have to be included, resulting in a coupled hierarchy of equations. The IPDF method
exploits the fact that this complicated hierarchy of equations decouples for a
particular choice of the rates.

By solving the above equation we can compute the particle density »… t† which is
given by the probability for an empty interval of length 1 to be absent, i.e.

»… t† ˆ 1 ¡ I1… t†: …53†

In order to determine the asymptotic behaviour of »… t† let us consider the continuum
limit of equation (52)

…@t ¡ @2
` † I…`; t† ˆ 0 ; I…0 ; t† ˆ 1 ; …54†

where »… t† ˆ @`I…`; t†j`ˆ0. This equation has the solution I…`; t† ˆ 1 ¡ erf …x =t1=2†. In
the long time limit, the particle density therefore decays algebraically as

»… t† ¹ t¡1=2 ; …55†

con� rming the numerical result of section 2.7. It is interesting to compare this result
with the mean-� eld approximation (29) which leads to the incorrect result »… t† ¹ t¡1.
Therefore, the above exact solution demonstrates that � uctuations may in� uence the
entire temporal evolution of a stochastic process.

The IPDF technique [61, 63] was extended to the coagulation- decoagulation
model by including the inverse reaction A ! A ‡A . Other exact solutions revealed
phenomena such as anomalous kinetics, critical ordering, non-equilibrium dynamic
phase transitions, as well as the existence of Fisher waves [64- 68]. The IPDF
technique was also used to study the � nite-size scaling behaviour of coagulation
processes [54, 69]. Even anisotropic systems [55] and models with homogeneous or
localized particle input [65, 70] have been solved. N evertheless the IPDF method is a
rather special technique which seems to be restricted to models with an underlying
fermionic symmetry.

2.9. Experimental veri� cation of � uctuation e� ects
The preceding exact calculation proves that the particle concentration in a one-

dimensional coagulation process decays as »… t† ¹ t¡1=2. This result di� ers signi� -
cantly from the mean-� eld prediction »… t† ¹ 1=t. Therefore, the coagulation model
provides one of the simplest examples where � uctuation e� ects change the entire
temporal behaviour of a reaction- di� usion process.

It is quite remarkable that this result could be veri� ed experimentally by ana-
lysing the kinetics of laser-induced excitons on tetramethylammonium manganese
trichloride (TMMC) [22, 71]. TMM C is a crystal consisting of parallel manganese
chloride chains. Laser-induced electronic excitations of the Mn2‡ ions, so-called
excitons, migrate along the chain and may be interpreted as quasi-particles. The
chains are separated by large tetramethylammonium ions so that the exchange of
excitons between di� erent chains is suppressed by a factor of 104. Therefore, the
polymer chains can be considered as one-dimensional systems. Because of exciton-
phonon induced lattice distortions the motion of excitons is di� usive. Moreover,
when two excitons meet at the same lattice site, the Mn2‡ ion is excited to twice the
excitation energy. Subsequently, the ion relaxes back to a simply excited state by the
emission of phonons. Thus, the fusion of excitons can be viewed as a coagulation
process 2A ! A‡heat on a one-dimensional lattice.
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The concentration of quasiparticles can be measured indirectly by detecting the
luminescence intensity I… t† which is proportional to the number of excitons.
Equation (52) predicts that I…t† ’ I…0†=…1 ‡¬t¯†, where ¬ � xes the time scale and
¯ ˆ 1=2. This equation can be rewritten as

log
I…0†
I… t† ¡ 1

µ ¶
ˆ ¯ log t ‡ log ¬: …56†

The experimental results are shown in � gure 6. The best � ts according to
equation (56) yield estimates of about ¯ ˆ 0:48…3†, being in perfect agreement with
the theoretical prediction ¯ ˆ 1=2. In other experiments the polymer chains are
con� ned to small pores. Here the excitons perform both annihilation and co-
agulation processes. The estimates ¯ ˆ 0:55…4† [72] and ¯ ˆ 0:47…3† [73] are again
in agreement with the theoretical result.

To summarize, the experimental investigation of excitons on polymer chains
con� rms that the concept of stochastic reaction- di� usion processes is well justi� ed in
order to quantitatively predict the behaviour of certain complex systems. In
addition, these experiments prove that � uctuation e� ects do exist in nature and
may change the physical properties of the system in agreement with the theoretical
prediction.

2.10. Dynamic processes approaching thermal equilibrium
Stochastic dynamic processes also play an important role in the context of

equilibrium models. As outlined in section 1, equilibrium statistical mechanics deals
with many-particle systems in contact with a thermal reservoir (heat bath) of
temperature T . In the long-time limit such a system approaches a statistically
stationary state where it evolves through certain con� gurations according to a
well-de� ned probability distribution Peq…s†. The key property of equilibrium models
is the existence of an energy functional H associating each con� guration s with a
certain energy H…s†. The equilibrium distribution Peq…s† is then given by the
canonical ensemble [1]
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Figure 6. Decay of the luminescence of TMMC after excitation by a laser pulse for various
energies (� gure reprinted from [71]). The straight lines are best � ts to equation (56).



Peq…s† ˆ 1
Z

exp …¡H…s†=kBT † ; …57†

where T is the temperature, kB the Boltzmann constant, and Z the partition sum.
This probability distribution can be used to determine averages of certain macro-
scopic observables by summing over all accessible states. It is important to note that
equilibrium statistical mechanics does not involve any dynamical aspect. In other
words, it is irrelevant how the system evolves through di� erent con� gurations, one is
only interested in the relative frequency of certain con� gurations to be visited in the
stationary state.

Although there is no ‘time’ in equilibrium statistical physics, one may use
dynamic random processes as a tool to generate the equilibrium ensemble Peq…s†
of a particular equilibrium model. More precisely, such a dynamic process evolves
into a stationary state P1…s† :ˆ limt!1 P t…s† which coincides with the equilibrium
ensemble Peq…s†. Generally there is a large variety of dynamic random processes that
can be used to generate the stationary ensemble of a particular equilibrium model.
Let us, for example, consider the ferromagnetic Ising model on a d-dimensional
square lattice [7]. Its energy functional is given by

H…¼† ˆ ¡J
X

hi; ji
¼i¼j ; …58†

where the sum runs over pairs of adjacent sites, J is a coupling constant, and ¼i ˆ §1
denotes the local spin at site i. The equilibrium ensemble of the Ising model may be
generated by a dynamic process with synchronous dynamics mimicking the contact
of the system with a thermal reservoir. These dynamic rules—usually referred to as
heat bath dynamics—are de� ned through the transition probabilities

p¼!¼ 0 ˆ
Y

i

pi…¼† ; pi…¼† ˆ exp ‰hi…¼†Š
exp ‰hi…¼†Š ‡ exp ‰¡hi…¼†Š ; hi…¼† ˆ 1

kBT

X

j

¼j ; …59†

where ¼ denotes the actual state of the model and j runs over the nearest neighbours
of i. In order to verify the coincidence of the stationary distribution P1…¼† and the
equilibrium ensemble of the Ising model, it is su� cient to prove that the dynamic
processes are ergodic and obey detailed balance

Peq…¼†p¼!¼ 0 ˆ Peq…¼ 0†p¼ 0!¼: …60†

Detailed balance means that the probability currents between two states are exactly
equal in both directions, i.e. the currents cancel each other in the stationary state.
Heat bath dynamics is only one out of in� nitely many dynamic processes generat-
ing the Ising equilibrium ensemble. Examples include Glauber, Metropolis and
Kawasaki dynamics, as well as the Swendsen- Wang and Wolf cluster algorithms.
Although these stochastic models have very di� erent dynamic properties, they all
evolve towards the same stationary state which is just the equilibrium state of the
Ising model.

2.11. M atrix product states
F or the majority of reaction- di� usion models it is quite di� cult or even

impossible to solve the master equation analytically. In some cases, however, it is
still possible to compute the stationary state of the system. In recent years a powerful
algebraic approach has been developed by which n-point correlation functions of
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certain non-equilibrium systems can be computed exactly (see [29] for a general
review). This approach generalizes states with product measure to so-called matrix
product states (MPS) by replacing real-valued probabilities with non-commutative
operators. Representing these operators in terms of matrices it is possible to compute
correlation functions by evaluating certain matrix products.

2.11.1. M PS for the exclusion process
In order to introduce the matrix product technique, let us consider the partially

asymmetric exclusion process in one spatial dimension with asynchronous dynamics
and particle adsorption (desorption) at the left (right) boundary (see � gure 7). The
Liouville operator of this system is given by

L ˆ S1 ‡SN ‡
XN ¡1

iˆ1

Li ; …61†

where Li describes the hopping in the bulk while S1 and SN are the surface
contributions for adsorption and desorption, respectively. In the standard basis
(see Appendix A), these operators read

Li ˆ

0 0 0 0

0 q¡1 ¡q 0

0 ¡q¡1 q 0

0 0 0 0

0
BBB@

1
CCCA; S1 ˆ ¬ 0

¡¬ 0… †; SN ˆ 0 ¡

0 … †: …62†

The partially asymmetic exclusion process with particle input and output is par-
ticularly interesting in the presence of a current, that is, for q 6ˆ 1. Depending on ¬
and  , the system is in a phase of low, high, or maximal density (see � gure 7). It
seems to be quite surprising that this simple model could be solved only a few years
ago by recursion techniques [74, 75] and, at the same time, by using the matrix
product method [57, 76].

The solution is particularly simple along the coexistence line between the high
and low density phases ¬ ‡  ˆ q ¡ q¡1. Here the stationary state jPsi may be
written as
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Figure 7. The partially asymmetric exclusion process with particle adsorption and
desorption at the boundaries. Left: particles adsorb at the left boundary at rate ¬,
perform a biased random walk in the bulk of the chain, and � nally desorb from site
N at rate  . R ight: phase diagram for the totally asymmetric exclusion process,
denoting the low (LD), high (HD) and maximal (MAX) density phases. Analogous
phase diagrams for partial asymmetry were obtained in [57].



jPsi ˆ 1
Z

e
d… †« . . . « e

d… † ˆ e
d… †«N

; …63†

where e ˆ 1=¬ and d ˆ 1= . This state has a product measure, i.e. all spatial
correlations vanish. The constant Z ˆ …e ‡d†N normalizes the probability distri-
bution. The stationarity LjPsi ˆ 0 can be veri� ed by proving the relations

S1

e

d…† ˆ
1

¡1… †; SN

e

d…† ˆ ¡
1

¡1… †;

Li

e

d…†«
e

d…†
" #

ˆ ¡
1

¡1… †«
e

d…†‡
e

d…†«
1

¡1… †;

9
>>>>>>=
>>>>>>;

…64†

which provide the following cancellation mechanism: � rst the action of S1 generates
a factor

1

¡1… †
at the leftmost position in the product (63). This factor is then commuted to the right
by successive action of L1 ; . . . ;LN ¡1 until it is adsorbed at the right boundary by the
action of SN . This cancellation mechanism proves that the homogeneous product
state (63) is stationary along the coexistence line ¬ ‡  ˆ q ¡ q¡1.

F or ¬ ‡  6ˆ q ¡ q¡1 the stationary state no longer has the form of a simple
product state. However, as will be shown below, it can be expressed as a matrix
product state. To this end we replace the probabilities e and d in equation (63) by
non-commutative operators E and D. These operators act in an aux iliary space
which is di� erent from the con� gurational vector space of the lattice model.
Introducing boundary vectors hW j and jV i with hW jV i 6ˆ 0 a matrix product state
may be written as

jPsi ˆ 1
Z

hW j E
D… †«N

jV i: …65†

Notice that hW j and jV i are vectors in the auxiliary space while jPsi denotes the
stationary probability distribution in con� guration space. By selecting the matrix
element hW j . . . jV i, products of the operators can be mapped to real-valued
probabilities{. The normalization constant is given by Z ˆ hW jCN jV i, where
C ˆ D ‡ E . The cancellation mechanism

hW jS1

E

D… † ˆ hW j
1

¡1… †; SN

E

D… †jV i ˆ ¡
1

¡1… †jV i;

Li

E

D… †«
E

D… †
" #

ˆ ¡
1

¡1… †«
E

D… †‡
E

D… †«
1

¡1… †;

9
>>>>>>=
>>>>>>;

…66†
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is the same as in equation (64), leading to the algebra

DE ˆ D ‡E …67†
and the boundary conditions

hW jE ˆ ¬¡1hW j; DjV i ˆ  ¡1jV i: …68†

This ansatz is not restricted to the exclusion process but can be applied to any
reaction- di� usion process with random-sequential updates. It converts the dynamic
rules of the model into a set of algebraic relations and boundary conditions. The
problem of calculating the stationary state is then shifted to the problem of � nding a
matrix representation of the algebra. In the present case the quadratic algebra (67)
can be mapped onto a bosonic algebra for which an in� nite-dimensional matrix
representation exists [76]. F or particular values of ¬ and  , however, there are also
� nite-dimensional representations [77, 78]. F or example, along the coexistence line
¬ ‡  ˆ q ¡ q¡1 the product state (63) is nothing but a one-dimensional representa-
tion of the algebra. Moreover, it can be shown that for ¬ ‡  ‡ ¬ q ˆ q ‡ q¡1 a
two-dimensional matrix representation is given by

E ˆ

1
¬

0

1
1 ‡ ¬q

¬q2

0
BB@

1
CCA; D ˆ

1


¡1

0
1 ‡  q

 q2

0
BB@

1
CCA; hW j ˆ …1 0† ; jV i ˆ 1

0… †: …69†

F or a given matrix representation the stationary particle concentration pro� le »stat
i

can be computed by evaluating the matrix product

»stat
i ˆ hW jC i¡1DCN ¡ijV i

hW jCN jV i : …70†

In the case of the above 2 £ 2 representation we obtain the exact result

»stat
i ˆ

1
¬q

¶N ¡1
1 ¡ ¬q

 2…1 ‡¬q† ¶N ¡1
2 ‡¶i¡1

1 ¶N ¡i
2

 …1 ‡¬q†
¬q

¶N
1 ¡ ¬q

 …1 ‡¬q† ¶N
2

; …71†

where

¶1 ˆ q ¡ q¡1

¬ …1 ‡¬q† ; ¶2 ˆ q ¡ q¡1

¬ …1 ‡  q† …72†

are the eigenvalues of C . The density pro� le is shown in � gure 8 for various values
of ¬, visualizing the transition between the low and the high density phase. Similarly,
one can compute two-point correlation functions

hsisji ˆ hW jC i¡1DC j¡i¡1DC N ¡jjV i
hW jCN jV i : …73†

In this expression the matrix C plays the role of a transfer matrix between the sites i
and j. Therefore, the long-distance behaviour of correlation functions in the bulk will
be governed by the largest eigenvalue of C . In particular, for any � nite-dimensional
representation of the algebra, the correlation functions in the stationary state will
decay exponentially. Only in� nite-dimensional representations can lead to long-
range correlations with power-law decay in the stationary state.
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It is also possible to apply the matrix product technique to the totally asymmetric
exclusion process with sublattice-parallel updates [79- 81], where a di� erent cancella-
tion mechanism is needed [82- 85]. Recently, the matrix product method could even
be extended to the case of fully parallel updates [40].

2.11.2. M PS for models with particle reactions
Most models which have been solved so far by using the matrix product method

are di� usive systems, i.e. they describe stochastic transport of particles. Up to now
only one exception is known where particles react with each other, namely the
anisotropic decoagulation model with closed boundary conditions and random
sequential updates. As will be explained in the following, this model exhibits a
boundary-induced phase transition and can be solved by using a generalized matrix
product ansatz [86]. The anisotropic decoagulation model is de� ned by the following
dynamic rules:

diffusion: é A!
q

Aé ; Aé !
q¡1

é A ;

coagulation: AA!
q

Aé ; AA !
q¡1

é A ;

decoagulation: é A!
µq

AA ; Aé !
µq¡1

AA :

The corresponding Liouville operator reads

Li ˆ

0 0 0 0

0 …µ ‡1†q ¡q¡1 ¡q¡1

0 ¡q …µ ‡1†q¡1 ¡q

0 ¡µq ¡µq¡1 q ‡ q¡1

0
BBB@

1
CCCA: …74†
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Figure 8. Exact stationary density pro� le for the partially asymmetric exclusion process with
particle adsorption and desorption at the boundaries for q ˆ 2 and N ˆ 100 in the
low density phase ¬ ˆ 0:45, along the coexistence line ¬ ˆ 0:5, and in the high
density phase ¬ ˆ 0:55.



Thus, the model is controlled by two parameters, namely the anisotropy q and the
decoagulation rate µ. The phase diagram displays two phases, a low-density phase
for µ < q2 ¡ 1 and a high-density phase for µ > q2 ¡ 1. F rom the physical point of
view these phases are di� erent from those observed in the asymmetric exclusion
process since here the number of particles is not conserved. Notice that the rates for
di� usion and coagulation coincide. Moreover, all reactions have the same bias. This
special choice ensures that the model is integrable. Various exact results have been
obtained by using IPDF and free-fermion techniques [27, 54, 64, 87]. At the critical
point µc ˆ q2 ¡ 1, the relaxational spectrum becomes massless and algebraic long-
range correlations can be observed [55].

In order to express the stationary state of the model as a matrix product state of
the form (65), the cancellation mechanism of equation (66) has to be generalized.
This can be achieved by replacing the vector

1

¡1… †
by

-E
-D… †

where -E and -D are two additional operators acting in the auxiliary space. The
generalized cancellation mechanism reads

hW jS1

E

D… † ˆ hW j
-E
-D… †; SN

E

D… †jV i ˆ ¡
-E
-D… †jV i;

Li

E

D… †«
E

D… †
" #

ˆ ¡
-E
-D… †«

E

D… †‡
E

D… †«
-E
-D… †:

9
>>>>>=
>>>>>;

…75†

This ansatz leads to the bulk algebra

0 ˆ E -E ¡ -EE ;

…µ ‡1†qED ¡ q¡1DE ¡ q¡1DD ˆ E -D ¡ -ED ;

¡qED ‡…µ ‡1†q¡1DE ¡ qDD ˆ D -E ¡ -DE ;

¡µqED ¡ µq¡1DE ‡…q ‡q¡1†DD ˆ D -D ¡ -DD ;

9
>>>>>>=
>>>>>>;

…76†

and the boundary conditions

hW j -E ˆ hW j -D ˆ -E jV i ˆ -DjV i ˆ 0: …77†

A trivial one-dimensional representation of this algebra is given by E ˆ C ˆ 1 ;
-E ˆ -C ˆ 0, describing a system without particles. In the symmetric case q ˆ 1 there

is another one-dimensional representation E ˆ 1, C ˆ ® 2, -E ˆ -C ˆ 0, corresponding
to a homogeneous product state with particle density » ˆ µ=…1 ‡µ†. F or q 6ˆ 1 and
µ 6ˆ q2 ¡ 1 we � nd the four-dimensional representation
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E ˆ

q¡2 q2 ¡® ¡2 q2 ¡ 1 q2…1 ¡® 2†
0 ® ¡2 0 ® 2 ¡ q2

0 0 1 ® 2…q2 ¡ 1†
0 0 0 q2

0
BBBBB@

1
CCCCCA

; C ˆ

q¡2 0 0 0

0 1 0 0

0 0 ® 2 0

0 0 0 q2

0
BBBBB@

1
CCCCCA

;

hW j ˆ 1
1 ¡ q2® 2 ; 0 ;

q2

q2®2 ¡ 1
;

a…q2 ¡ q¡2†…®2 ¡ q2†® 2 ¡ q2®2

…® 2 ¡ 1†…q2 ‡1†… †;

jV i ˆ b…q4 ¡ 1†…q2® 2 ¡ 1† ‡q4

q2 ‡1
; 0 ;

q2…® 2 ¡ 1†
® 2 ¡ q2 ;

…® 2 ¡ 1†q2

® 4 ¡® 2q2… †:

9
>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

…78†

Using this representation, it is easy to compute the stationary particle density

»stat
j ˆ ® 2N……®2 ¡ 1† ‡…q2 ¡ 1†® 2…q®†¡2j† ¡ q2N……® 2 ¡ 1†q2¡4j ‡…q2 ¡ 1†…q=®†¡2j†

® 2…® 2N ‡® ¡2N ¡ q2N ¡ q¡2N † ;

…79†

which is in agreement with the result obtained by using the IPDF method [55]. For
µ 6ˆ q2 ¡ 1 a similar four-dimensional matrix representation can be constructed.

In the thermodynamic limit the anisotropic coagulation model exhibits a � rst-
order phase transition (see � gure 9). If the decoagulation rate µ is small enough, the
particles are swept towards one of the boundaries where they coagulate. The
stationary particle density is therefore zero in the thermodynamic limit. Increasing
µ this region grows until its size diverges at a critical value µc ˆ q2 ¡ 1. Above µc the
decoagulation process is strong enough to maintain a non-vanishing density of
particles in the bulk. It should be emphasized that this type of phase transition is
induced by the boundaries. In particular, there is no such transition if periodic
boundary conditions are used.

The matrix product technique has also been applied to various other systems
such as valence-bond-state models [88], spin-one quantum antiferromagnets [89, 90],
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Figure 9. The anisotropic coagulation- decoagulation model with bias q ˆ 2. Left: density
pro� les in a system with N ˆ 250 sites for various values of the decoagulation rate µ.
R ight: density of particles averaged over the entire system as a function of µ for
various system sizes, illustrating the � rst-order phase transition.



hard-core di� usion of oppositely charged particles [91], systems with � xed [92] or
moving impurities [93, 94], as well as n-state di� usion processes [95, 96]. Further-
more, a dynamic matrix product ansatz has been introduced by which time-
dependent properties of the exclusion process can be described [97, 98]. Although
the full range of possible applications is not yet known, the matrix product technique
seems to be limited to a few classes of models. By de� nition the method is restricted
to one-dimensional systems. Moreover, there seems to be a subtle connection
between matrix product states and integrability. This connection is not yet fully
understood. In [99] it was shown that the stationary state of any reaction- di� usion
model can be expressed in terms of a MPS. However, in this generic case the
corresponding matrix representation depends on the system size and is therefore
useless from the practical point of view. A systematic classi� cation scheme for matrix
product states is not yet known. In this context it is interesting to note that the
method of dynamic density matrix renormalization allows � nite-dimensional matrix
representation to be detected. As shown in [100], the existence of a � nite-dimensional
MPS is indicated by the fact that the density matrix has only a � nite number of non-
vanishing eigenvalues. Thus, by scanning the spectrum over a certain range of the
system’s parameter space, it is possible to search systematically for � nite-dimensional
matrix product representations.

3. Directed percolation
Spreading processes are encountered in many di� erent situations in nature as

diverse as epidemics [101], forest � res [102], and transport in random media [103,
104]. Spreading phenomena are usually characterized by two competing processes.
F or example, in an infectious disease the spreading agent (bacteria) may multiply
and infect neighbouring individuals. On the other hand, infected individuals may
recover, decreasing the total amount of the spreading agent. Depending on the
relative rates for infection and recovery, two di� erent situations may emerge. If the
infection process dominates, the epidemic disease will spread over the entire
population, approaching a stationary state in which infection and recovery balance
one another. H owever, if recovery dominates, the total amount of the spreading
agent continues to decrease and eventually vanishes.

Theoretical interest in models for spreading stems mainly from the emerging
phase transition between survival and extinction. The simplest model exhibiting such
a transition is directed percolation (D P){. In DP sites of a lattice can either be active
(infected) or inactive (healthy). Depending on a parameter controlling the balance
between infection and recovery, activity may either spread over the entire system or
die out after some time. In the latter case the system becomes trapped in a completely
inactive state, the so-called absorbing state of the model. Since the absorbing state
can only be reached but not be left, it is impossible to obey detailed balance, i.e. DP
is a non-equilibrium process. The transition between the active and the inactive
phase is continuous and characterized by universal critical behaviour.
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In many respects, the non-equilibrium critical behaviour of DP is similar to that
of equilibrium models. In particular, it is possible to use the concept of scale
invariance and to identify various critical exponents. As in equilibrium statistical
mechanics, these exponents allow phase transitions of di� erent lattice models to be
categorized into universality classes. As we will see below, DP is a fundamental class
of non-equilibrium phase transitions, playing a similar role as the Ising universality
class in equilibrium statistical mechanics. Although DP is very robust and easy to
simulate, its critical behaviour turns out to be highly non-trivial. This is what makes
DP so fascinating.

In this section we give a general introduction to DP, discussing the most
important lattice models, basic scaling concepts, � nite-size properties, as well as
mean-� eld approaches. We also summarize various approximation techniques such
Monte Carlo simulations, series expansions, and numerical diagonalization. Intro-
ducing basic � eld-theoretic methods we discuss the critical behaviour of DP at
surfaces, the early-time behaviour, the in� uence of fractal initial conditions,
persistence probabilities, and the in� uence of quenched disorder. F inally we review
possible experimental realizations of DP and discuss the question why it is so di� cult
to verify the critical exponents in experiments.

3.1. Directed percolation as a spreading process
3.1.1. From isotropic to directed percolation

Although DP is often regarded as a dynamic process, it was originally de� ned as
a geometric model for connectivity in random media which generalizes isotropic
(undirected) percolation [108, 109]. Such a random medium could be a porous rock
in which neighbouring pores are connected by channels of varying permeability. An
important question in geology would be how deep the water can penetrate into the
rock.

In ordinary percolation the water propagates isotropically in all directions of
space. One of the simplest models for isotropic percolation is bond percolation on a
d-dimensional square lattice, as shown in the left part of � gure 10. In this model the
channels of the porous medium are represented by bonds between adjacent sites of a
square lattice which are open with probability p and otherwise closed{. F or
simplicity it is assumed that the states of di� erent bonds are uncorrelated. Clearly,
if p is su� ciently large, the water will percolate through the medium over arbitrarily
long distances. However, if p is small enough, the penetration depth is expected to be
� nite so that large volumes of the material will be impermeable. Both regimes are
separated by a continuous phase transition.

The left part in � gure 10 shows a typical con� guration of open and closed bonds
in two dimensions. As can be seen, each site generates a certain cluster of connected
sites corresponding to the maximal spreading range if the water was injected into a
single pore. The site from where the cluster is generated is called the origin of the
cluster. The size (or mass) of a cluster is de� ned as the number of connected sites.
Notice that di� erent origins may generate the same cluster. Consequently the whole
lattice decomposes into a set of disjoint clusters.
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{ Alternatively, we could have blocked sites instead of bonds with a certain probability. The
resulting model, called site percolation, exhibits the same type of universa l critical behaviou r at the
transition.



Directed percolation, introduced in 1957 by Broadbent and Hammersley [110], is
an anisotropic variant of isotropic percolation. As shown in the right part of
� gure 10, this variant introduces a speci� c direction in space. The channels (bonds)
function as ‘valves’ in a way that the spreading agent can only percolate along the
given direction, as indicated by the arrows. F or example, we may think of a porous
medium in a gravitational � eld that forces the water to propagate downwards{.
Thus, � lling in the spreading agent at a particular site, the resulting cluster of wet
sites is a subset of the corresponding cluster in the isotropic case (see � gure 10). Since
in DP each site generates an individual cluster, a decomposition of the lattice into
disjoint clusters is no longer possible. As in the case of isotropic percolation, DP
exhibits a continuous phase transition.

The phase transitions of isotropic and directed percolation are similar in many
respects. They both can be characterized by an order parameter P1 which is de� ned
as the probability that a randomly selected site generates an in� nite cluster. If P1
is � nite, the spreading agent is able to percolate over arbitrarily long distances
wherefore the system is said to be in the wet phase. If P1 vanishes, the system is in
the so-called dry phase where the spreading range is � nite. Both isotropic and
directed percolation are trivial in one dimension: since an in� nite cluster on a line
requires all bonds to be open, the wet phase consists of a single point p ˆ 1.
Another trivial case is the limit of in� nitely many dimensions. Since each site is
connected with in� nitely many neighbours, an in� nite cluster will be generated for
any p > 0. Consequently the inactive phase consists of single point in phase space,
namely p ˆ 0. In � nite dimensions 2 µ d < 1 there is a continuous phase transition
separating the wet phase from the dry phase at some critical value 0 < pc < 1. In the
supercritical phase p > pc the medium is permeable (P1 > 0) while in the subcritical
phase p < pc the medium becomes impermeable (P1 ˆ 0). As expected, the critical
threshold pc for directed percolation is larger than in the isotropic case.
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Figure 10. Isotropic and directed bond percolation on a diagonal square lattice with free
boundary conditions. Open (closed) bonds are represented by solid (dotted) lines. In
both cases a cluster, indicated by bold lines, is generated from the lattice site in the
centre. In the directed case the spreading agent is restricted to follow the sense of the
arrows, leading to a directed cluster of connected sites.

{ This assumption is highly idealized since water is a conserved quantity. Moreover , the water can
even � ow against the gravity � eld (see section 3.9.3).



Although isotropic and directed percolation have several common features, their
critical behaviour near the phase transition turns out to be di� erent. In the isotropic
case, the critical properties are in all directions the same (apart from lattice e� ects
which are usually irrelevant on large scales) and hence the emerging long-range
correlations are rotationally invariant. Because of a duality symmetry, the critical
point of isotropic bond percolation is pc ˆ 1=2 [109]. Moreover, the critical
exponents are given by simple rational numbers. Contrarily, the critical properties
of DP re� ect the anisotropy in space, leading to di� erent critical exponents. In
contrast to the isotropic case, the numerical values of the critical point and the
exponents of DP are not yet known analytically and seem to be given by irrational
numbers (see section 3.4).

3.1.2. Interpretation of directed percolation as a dynamic process
Regarding the given direction as ‘time’, directed percolation may be interpreted

as a d+ 1-dimensional dynamic process that describes the spreading of some non-
conserved agent{. F or example, as already mentioned before, DP may be viewed as a
simple model for epidemic spreading of some infectious disease without
immunization [111]. In recent years the dynamic interpretation has become increas-
ingly popular, partly because the time-dependent formulation is the natural
realization of D P on a computer. In what follows we will adopt the dynamic
interpretation. However, one should keep in mind that the geometric de� nition in
terms of directed paths is fully equivalent.

The dynamic interpretation of DP is illustrated in � gure 11, where the lattice sites
of a …1 ‡1†-dimensional directed bond percolation process are enumerated horizon-
tally by a spatial coordinate i and vertically by a discrete time variable t. Since we use
a diagonal square lattice, odd and even time steps have to be distinguished. A local
binary variable si… t† is attached to each site. si ˆ 1 means that the site is active
(occupied, wet) while si ˆ 0 denotes an inactive (empty, dry) site. The set s ˆ fsig at
a given time t speci� es the con� guration of the system.

F or a given con� guration at time t, the next con� guration at time t ‡1 can be
determined as follows. F or each pair of bonds between the sites … i § 1 ; t† and
… i ; t ‡1† two random number z§

i 2 …0 ;1† are generated. A bond is considered to
be open (with probability p) if z§

i < p, leading to the update rule

si… t ‡1† ˆ
1 ; if si¡1… t† ˆ 1 and z¡

i < p ;

1 ; if si‡1… t† ˆ 1 and z‡
i < p ;

0 ; otherwise:

8
><
>:

…80†

Thus, directed bond percolation can be considered as a Markov process with parallel
dynamics. As in any dynamic system, we have to specify the initial state. Common
initial states are the fully occupied lattice, random initial conditions, and con� gura-
tions with a single particle at the origin (also called ‘active seed’).

Even very simple numerical simulations demonstrate that the temporal
evolution of a DP process changes signi� cantly at the phase transition. Typical
space- time histories for random initial conditions are shown in the upper part of
� gure 12. F or p < pc the number of particles decreases exponentially until the
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{ Note that DP di� ers from ‘dynamic percolation’ which is used as an epidemic process with
immunization (see section 3.8.7).



system reaches the absorbing state, whereas for p > pc the average particle number
saturates at some constant value. At the critical point the mean particle number
decays very slowly and the emerging clusters of active sites remind of fractal
structures. A similar behaviour can be observed if the DP process starts from a
single seed (see lower part of � gure 12). F or p < pc the average number of
particles � rst grows for a short time and then decays exponentially. F or p > pc

there is a � nite probability that the resulting cluster is in� nite. In this case activity
spreads within a certain triangular region, the so-called spreading cone. At p ˆ pc

a critical cluster is generated from a single seed, whose scaling properties will be
discussed in section 3.3.

It is often helpful to regard DP as a reaction- di� usion process of interacting
particles. Associating active sites with particles A and inactive sites with vacancies é ,
a DP process corresponds to the reaction- di� usion scheme

self-destruction: A ! é ;

diffusion: é ‡A ! A ‡é ;

offspring production: A ! 2A ;

coagulation: 2A ! A :

9
>>>=
>>>;

…81†
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Figure 11. Directed bond percolation in 1 ‡ 1 dimensions interpreted as a time-dependent
stochastic process. Open (closed) bonds are indicated by solid (dashed) lines. F illed
(hollow) circles denote active (inactive) sites. The con� guration of the horizontal row
at t ˆ 0 is the initial state. Starting from a fully occupied initial state the model
‘evolves’ through intermediate con� gurations according to the dynamic rules of
equation (80) and reaches a � nal state at t ˆ 3.
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Figure 12. Directed bond percolation in 1 ‡ 1 dimensions starting from random initial
conditions (top) and from a single active seed (bottom). Each horizontal row of pixels
represents four updates. As can be seen, critical DP is a reaction-limited process.



To understand this reaction- di� usion scheme, let us again consider the example of
directed bond percolation. Depending on the con� guration of the bonds, each active
site (particle) may activate two neighbouring sites of the subsequent row (next time
step). If both bonds are closed, the particle self-destructs. If only one bond is open,
the particle will di� use to the left or to the right with equal probability, whereas an
o� spring is produced when both bonds are open. On the other hand, if two particles
reach the same target site, they coalesce into a single particle, giving rise to the
reaction 2A ! A . This process limits the maximal density of active sites. In fact, as
will be shown below, the coagulation process is the essential nonlinear ingredient of
DP. In ‘fermionic’ models with an exclusion principle it is automatically included.
However, in ‘bosonic’ models allowing for an in� nite number of particles per site one
would have to add this process explicitly.

3.2. L attice models for directed percolation
In the literature there is a vast variety of DP models following the spirit of the

above reaction- di� usion scheme. As we will see below, they all exhibit the same type
of critical behaviour at the transition. The common feature of all these models is the
existence of an absorbing state, i.e. a con� guration that the model can reach but from
where it cannot escape. In most cases, the absorbing state is just the empty lattice.
The existence of an absorbing state implies that certain microscopic processes are
forbidden (for example, spontaneous creation of particles é ! A ). In the sequel we
will discuss three examples, namely the Domany- Kinzel cellular automaton, the
contact process, and the Zi� - G ulari- Barshad model for heterogeneous catalysis.

3.2.1. The Domany- Kinzel cellular automaton
Cellular automata are algorithms that map a con� guration of a lattice onto a new

con� guration. The automaton evolves in time by iteration of the map. Thus, the time
variable t is discrete. Usually the map can be decomposed into independent local
updates. Since these updates can be processed simultaneously, cellular automata can
e� ciently be implemented on parallel computers. Depending on the type of updates,
we distinguish between deterministic and stochastic cellular automata. A general
classi� cation of stochastic cellular automata was presented by Wolfram [112].

Various stochastic cellular automata are known to exhibit a DP transition from a
� uctuating phase into an absorbing state. One of the simplest models in this class
is the …1 ‡ 1†-dimensional D omany- Kinzel (DK) model [105, 113]. It is de� ned on
a diagonal square lattice and evolves by parallel updates according to certain
conditional transition probabilities P‰si… t ‡1†jsi¡1… t† ;si‡1… t†Š. These probabilities
depend on two parameters and are de� ned by

P‰1j0 ;0Š ˆ 0 ;

P‰1j0 ;1Š ˆ P‰1j1 ;0Š ˆ p1 ;

P‰1j1 ;1Š ˆ p2 ;

9
>>=
>>;

…82†

where P‰0j¢; ¢Š ˆ 1 ¡ P‰1j¢; ¢Š. The corresponding update scheme may be realized by
the following algorithm (see � gure 13): for each site i we generate a uniformly
distributed random number zi… t† 2 …0 ;1† and set
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si… t ‡ 1† ˆ

1 ; if si¡1… t† 6ˆ si‡1… t† and zi… t† < p1 ;

1 ; if si¡1… t† ˆ si‡1… t† ˆ 1 and z i… t† < p2 ;

0 ; otherwise:

8
>><
>>:

g …83†

In contrast to directed bond percolation, the DK model depends on two percolation
probabilities p1 and p2. The corresponding phase diagram is shown in � gure 14. It
comprises an active and an inactive phase, separated by a phase transition line (the
solid line in the � gure). In the active phase a � uctuating steady state exists on the
in� nite lattice, whereas in the inactive phase the model always reaches the absorbing
state. The DK model includes three special cases. The previously discussed case of
directed bond percolation corresponds to the choice p1 ˆ p and p2 ˆ p…2 ¡ p†.
Another special case is directed site percolation [35], corresponding to the choice
p1 ˆ p2 ˆ p. The third special case p2 ˆ 0 is equivalent to the rule ‘W18’ of
Wolfram’s classi� cation scheme [112]. Numerical estimates for the corresponding
critical points are summarized in table 1.

There is strong numerical evidence that the critical behaviour along the whole
phase transition line (except for its upper terminal point) is that of D P. This means
that all these transition points exhibit the same type of long-range correlations. The
short-range correlations, however, are non-universal and may change when moving
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Figure 14. Phase diagram of the Domany- Kinzel model.



along the phase transition line. In order to understand the signi� cance of short-range
correlations from the physical point of view, let us consider spatial con� gurations
(snapshots) of a critical DP cluster. Such con� gurations are typically characterized
by localized spots of activity separated by large voids in between. Approaching the
phase transition line the average size of inactive voids diverges, whereas the mean
size of active spots remains � nite and converges to a certain value hS acti. By moving
along the transition line of the DK model the asymptotic average size hS acti of active
spots varies. As shown in � gure 15, it is minimal for p2 ˆ 0, grows monotonically
with p2, and � nally diverges at the terminal point p2 ˆ 1, where the system crosses
over to a di� erent type of critical behaviour. Thus, by moving along the phase
transition line the non-universal short-range properties change while the long-range
properties remain una� ected.

The exceptional behaviour at the upper terminal point of the phase transition line
is due to an additional symmetry between active and inactive sites along the line
p2 ˆ 1 [35]. Here the DK model has two symmetric absorbing states, namely the
empty and the fully occupied lattice. As the corresponding symmetry transformation
maps p1 to 1 ¡ p1, the phase transition line must end in the terminal point
…p1 ;p2† ˆ …1=2 ;1†. As shown in the corresponding inset of � gure 15, the resulting
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Table 1. Special transition points in the …1 ‡ 1†-dimensional Domany-
Kinzel model.

Transition point p1;c p2;c Ref.

Wolfram rule 18 0.801(2) 0 [114]
site DP 0.705 489(4) 0.705 489(4) [115]
bond DP 0.644 700 1(1) 0.873 762 0(2) [116]
compact DP 1/2 1 [35]
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Figure 15. Numerical estimates for the average size of active spots hS act i in the Domany-
Kinzel model measured along the phase transition line. The insets show typical
clusters for three special cases discussed in the text.



clusters of active sites are compact. Therefore, this special case is referred to as
compact directed percolation (CD P) [117]. Unfortunately this expression is mislead-
ing since CDP stands for a universality class which is completely di� erent from DP.
As can be veri� ed easily, the D K model at the terminal point is equivalent to the
…1 ‡1†-dimensional voter model [5] or the Glauber- Ising model at zero temperature.
Alternatively, one may describe CD P as a pair-annihilation process of di� using
kinks separating inactive and active domains (cf. section 2.4). We may therefore
identify the critical behaviour of CDP with the exactly solvable universality class of
di� using- annihilating random walks [44]. We will come back to CDP in section 3.8.8.

In more than one spatial dimension the DK model may be de� ned by local
updates with conditional probabilities P…si… t ‡1†jni… t†† depending on the number
ni… t† ˆ P

j2hii sj… t† of active neighbouring sites. Thus, the model is controlled by 2d
parameters p1 ; . . . ;p2d :

P‰1j0Š ˆ 0 ;

P‰1jnŠ ˆ pn …1 µ n µ 2d†:

)

…84†

Notice that for d ˆ 1 this de� nition is compatible with the usual de� nition of the DK
model in equation (82). The special case of directed bond percolation corresponds to
the choice pn ˆ 1 ¡…1 ¡ p†n while for equal parameters pn ˆ p one obtains directed
site percolation in d+ 1 dimensions.

3.2.2. T he contact process
Another important lattice model for DP is the contact process. In contrast to

cellular automata this model uses asynchronous updates. The contact process was
� rst introduced by Harris [111] as a model for epidemic spreading without
immunization (for a review see [107]). Here the lattice sites represent infected and
healthy individuals. Infected individuals can either heal themselves or infect their
nearest neighbours. Depending on the relative rates of infection and recovery, the
epidemic disease may either spread over the whole population or vanish after some
time. In contrast to the DK model, infection and healing processes are assumed to
occur spontaneously without correlation in space and time, i.e. spatially separated
processes are not synchronized. To mimic this kind of asynchronous dynamics, the
contact process uses random sequential instead of parallel updates (cf. section 2.2).

The contact process is de� ned on a d-dimensional square lattice whose sites can
be either active (si… t† ˆ 1) or inactive (si… t† ˆ 0). F or each attempted update a site i is
selected at random. Depending on its state si… t† and the number of active neighbours
ni… t† ˆ P

j2hii sj… t† a new value si… t ‡dt† ˆ 0 ;1 is assigned according to certain
transition rates w‰si… t† ! si… t ‡ dt† ;ni… t†Š. In the standard contact process these rates
are de� ned by

w‰0 ! 1 ;nŠ ˆ ¶n=2d ;

w‰1 ! 0 ;nŠ ˆ 1:

)

…85†

Here the parameter ¶ controls the infection rate and plays the role of the percolation
probability. For the …1 ‡1†-dimensional case the dynamic processes are sketched in
the upper row of � gure 16. Monte Carlo simulations and series expansions suggest
that the phase transition in 1 ‡1 dimensions takes place at the critical point
¶c ’ 3:297 85…8† [118- 120].
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Whereas computational physicists often prefer the D K model for simulations, the
contact process is more popular in the mathematical community because it is easy to
write down the corresponding master equation. F ollowing the notation of section 2.2,
the master equation of the …1 ‡ 1†-dimensional contact process with periodic
boundary conditions is given by

@tP t…s1 ; . . . ; sN † ˆ
XN

iˆ1

…2si ¡ 1†f¶si¡1Pt…s1 ; . . . ; si¡2 ;1 ;0 ;si‡1 ; . . . ;sN †

‡¶si‡1P t…s1 ; . . . ;si¡1 ;0 ;1 ;si‡2 ; . . . ; sN †
¡ P t…s1 ; . . . ;si¡1 ;1 ;si‡1 ; . . . ;sN †g; …86†

where Pt…s1 ; . . . ;sN † denotes the probability to � nd the system at time t in the
con� guration fs1 ; . . . ;sN g. As can be seen, the master equation involves only two-site
interactions, as illustrated in the lower row of � gure 16. Using the vector notation of
equation (9) the corresponding Liouville operator LCP ˆ

P
i Li is given by

Li…¶† ˆ 1
2

0 ¡1 ¡1 0
0 1 ‡¶ 0 ¡1
0 0 1 ‡¶ ¡1
0 ¡¶ ¡¶ 2

0
BB@

1
CCA: …87†

Notice that this operator does not satisfy simple algebraic relations as in
equation (41), indicating that DP is a highly non-integrable process. F inite-size
spectra of LCP will be analysed in section 3.4.4.

3.2.3. The Z i� - Gulari- Barshad model for heterogeneous catalysis
Many catalytic reactions such as the oxidation of carbon monoxide on a

platinum surface mimic the reaction scheme of directed percolation. The key
property of these reactions is the existence of catalytically poisoned states where
the system becomes trapped in a frozen state. Thus, poisoned states play the role of
absorbing con� gurations. A simple model for surface catalysis of the chemical
reaction CO ‡O ! CO2 was introduced in 1986 by Zi� et al. (ZGB) [121]. The
model describes a gas composed of CO and O2 molecules with � xed concentrations
y and 1 ¡ y, respectively, which is brought into contact with a catalytic material.
The catalytic surface is represented by a square lattice whose sites can be either
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Figure 16. Stochastic processes in the …1 ‡ 1†-dimensional contact process. Infected sites
(bold dots) infect their neighbours at rate ¶=2 and recover at rate 1. The upper part
shows the de� nition of the rules according to equation (85). The lower part shows an
equivalent de� nition as a two-site process (see text).



vacant (é ), occupied by a CO molecule, or occupied by an O atom. The ZGB model
evolves by random sequential updates according to the following probabilistic rules.

(1) CO molecules � ll any vacant site at rate y.
(2) O2 molecules dissociate on the surface into two O atoms and � ll pairs of

adjacent vacant sites at rate 1 ¡ y.
(3) Neighbouring CO molecules and O atoms recombine instantaneously to CO2

and desorb from the surface, leaving two vacancies behind.

On the lattice the three processes correspond to the reaction scheme

é ! CO at rate y ;

é ‡é ! O ‡O at rate 1 ¡ y ;

O ‡CO ! é ‡é at rate 1:

9
>>=
>>;

…88†

Clearly, this reaction is irreversible and thus the dynamic processes do not obey
detailed balance. Moreover, if the whole lattice is covered either with pure CO or O,
the system is trapped in a poisoned absorbing state. As shown in � gure 17, the ZG B
model can be in three di� erent phases. F or y < y1 ’ 0:389 the system evolves into
the O-poisoned state whereas for y > y2 ’ 0:525 it always reaches the CO-poisoned
state. In between the model is catalytically active. The model exhibits two di� erent
phase transitions, a continuous one at y ˆ y1 and a discontinuous one at y ˆ y2.
Grinstein et al. [122] expected the continuous transition to belong to the DP
universality class. In order to verify this hypothesis, extensive numerical simulations
were performed. Initially it was believed that the critical exponents were di� erent
from those of DP [123], while later the transition at y ˆ y1 was found to belong to
DP [124]. Very precise estimates of the critical exponents were recently obtained in
[125], con� rming the existence of a DP transition in the ZGB model. DP exponents
were also obtained in a simpli� ed version of the ZG B model [126]. However, so far it
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adsorption rate y.



has been impossible to observe DP exponents in experiments. We will come back to
this problem in section 3.9.

3.3. Phenomenological scaling theory
In equilibrium statistical physics continuous phase transitions are usually

characterized by universal scaling laws. F or example, the magnetization order
parameter in the ordered phase of the two-dimensional Ising models vanishes close
to the critical point as jT ¡ T cj , where  is a universal exponent. Similarly the
correlation length ¹, which is the characteristic macroscopic length scale of the
model, diverges as ¹ ¹ jT ¡ T cj¡¸ . At the critical point the correlation length is
in� nite, i.e. there is no macroscopic length scale in the system. As a consequence, the
system is invariant under suitable scaling transformations. It turns out that a very
similar picture emerges in the non-equilibrium case. In the following we introduce a
phenomenological scaling theory that can be applied to DP and other types of phase
transitions into absorbing states.

3.3.1. The critical exponents  , ¸? and ¸k
The order parameter of a spreading process is the density of active sites

»… t† ˆ 1
N

X

i

si… t†
* +

; …89†

where h. . .i denotes the ensemble average. Let us � rst consider the case of an in� nite
system. In the active phase »… t† decays and eventually saturates at some stationary
value »stat . The stationary density varies continuously with p ¡ pc and vanishes at the
critical point (see � gure 18). Close to the transition the order parameter varies
according to a power law

»stat ¹ …p ¡ pc† ; …90†
where  is the critical exponent associated with the particle density. In a double-
logarithmic representation the power-law behaviour manifests itself as a straight line
with slope  . As can be seen in � gure 18, the value of  depends on the
dimensionality of the system. The numerical value  ’ 0:277 in 1 ‡1 dimensions
is comparatively small, indicating a signi� cant change of »stat near the transition. In
2 ‡1 dimensions a larger value  ’ 0:58 is observed.
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In addition, spreading processes are characterized by certain correlation lengths.
In contrast to equilibrium models without any dynamical aspect, non-equilibrium
critical phenomena involve ‘time’ as an additional dimension. Since ‘time’ and
‘space’ are di� erent in character, we have to distinguish spatial and temporal
properties, denoting them by the indices ? and k, respectively. In fact, non-
equilibrium phase transitions are usually characterized by two independent correla-
tion lengths, namely a spatial length scale ¹? and a temporal length scale ¹k. Close to
the transition, these length scales are expected to diverge as

¹? ¹ j p ¡ pcj¡¸? ; ¹k ¹ j p ¡ pcj¡¸k …91†

with generally di� erent crit ical exponents ¸? and ¸k. In the scaling regime the two
correlation lengths are related by ¹k ¹ ¹z

?, where z ˆ ¸k=¸? is the so-called dynamic
exponent. In many models the triplet ( , ¸?, ¸k) is the fundamental set of bulk
exponents that labels the universality class. Other critical exponents are usually
related to these three exponents by simple scaling relations (see below). Non-
equilibrium phase transitions in di� erent physical systems are believed to belong
to the same universality class if their critical exponents coincide{. In fact, the DK
model, the contact process, the ZGB model, and a vast variety of other DP models
are characterized by the same triplet of exponents.

F igure 19 illustrates the physical meaning of the correlation lengths ¹? and ¹k. As
in equilibrium statistical mechanics, they are present below and above the critical
point. In the inactive phase, clusters originating from a single seed have the typical
form of a droplet (panel (a)). Averaging over many independent realizations the
lateral size and the lifetime of such droplets are proportional to ¹? and ¹k,
respectively. Above criticality the surviving clusters grow within a spreading cone
(panel (b)) whose opening angle is determined by the ratio ¹?=¹k. The correlation
lengths can also be seen if homogeneous initial conditions are used. In the inactive
phase the scaling length ¹k plays the role of a typical decay time (panel (c)), while in
the stationary state of the active phase the correlation lengths appear as the average
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Figure 19. Interpretation of the correlation lengths ¹? and ¹k in an almost critical …1 ‡ 1†-
dimensional DP process below (left) and above criticality (right). In panels (a) and (b)
a cluster is grown from a single active seed while in panel (c) a fully occupied lattice
is used as the initial state. Panel (d) shows a stationary DP process in the active
phase. The indicated length scales ¹? and ¹k must be interpreted as averages over
many independent realizations.



sizes of inactive islands (panel (d)). This interpretation can be easily generalized to
higher dimensions.

As suggested by the scaling properties of the density (90) and the correlation
lengths (91), a spreading process should be invariant under dilatation x ! Lx
accompanied by an appropriate rescaling of time and the deviation from criticality
D ˆ p ¡ pc:

x ! Lx; t ! Lz t ; D ! L¡1=¸? D ; » ! L¡ =¸? »: …92†
This allows scale-invariant combinations to be constructed such as t=x z , Dt1=¸k and
Dx1=¸? . As we will see below, universal scaling functions can only depend on such
scale-invariant ratios.

3.3.2. Scaling theory for phase transitions into absorbing states
So far we have seen that the stationary density in the active phase scales as

»stat ¹ D , where D ˆ p ¡ pc denotes the distance from the critical point. A very
similar quantity is the ultimate survival probability P1 that a randomly chosen site
belongs to an in� nite cluster (cf. section 3.1). In the active phase this probability is
� nite and scales as

P1 ¹ D 0 …93†
with some critical exponent  0. Although  and  0 coincide in the case of DP, they
may be di� erent in more general contexts, for example, in models with many
absorbing states. Therefore, phase transitions into absorbing states are generally
described by four exponents  ,  0, ¸?, and ¸k. The di� erent roles of  and  0 become
apparent in a � eld-theoretic formulation (see section 3.5). It turns out that  is
associated with the particle annihilation operator. Therefore, this exponent emerges
whenever a particle density is ‘measured’ in some � nal state. The exponent  0, on the
other hand, is associated with the creation of particles and thus plays a role whenever
particles are ‘introduced’. This happens, for example, if an initial con� guration is
speci� ed. In correlation functions, which involve creation as well as annihilation
operators, both exponents are expected to appear.

Turning to time-dependent scaling properties in an in� nitely large system, there
are two important complementary quantities, namely the particle density »… t†
starting from a fully occupied lattice, and the survival probability P… t† that a cluster
grown from a single seed is still active after t time steps. F ollowing the usual scaling
concept of equilibrium statistical mechanics, both quantities are expected to scale as

»… t† ’ t¡¬f…Dt1=¸k† ; P… t† ’ t¡¯g…Dt1=¸k† ; …94†
where ¬ and ¯ are certain critical exponents for decay and survival, respectively
[127, 128]. f and g are universal scaling functions, i.e. they have the same functional
form in all DP models. F or small arguments they both tend to a constant, whereas
for large arguments they scale in a way that the time dependence drops out:

f…±† ¹ ±¬¸k ; g…±† ¹ ±¯¸k …± ! 1†: …95†
In the active phase the two quantities therefore saturate at »stat ˆ »…1† ¹ D¬¸k and
P1 ˆ P…1† ¹ D¯¸k . Comparison with equations (90) and (93) yields

¬ ˆ  =¸k ; ¯ ˆ  0=¸k: …96†

An important quantity that combines both creation and annihilation of particles is
the pair connectedness function c…x 0 ; t 0 ;x; t†, which is de� ned as the probability that
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the sites …x 0 ; t 0† and …x; t† are connected by a directed path of open bonds. Since the
pair connectedness function is translationally invariant in space and time, we may
also write c…x 0 ; t 0 ;x; t† ² c…x ¡ x 0 ; t ¡ t 0†. Starting from an initial condition with a
single active site at the origin x 0 ˆ 0, the pair connectedness function c…x; t† is just
the density of active sites in the resulting clusters averaged over many realizations of
randomness. Because of scaling invariance, the pair connectedness function c…x; t†
obeys the scaling form [127]

c…x; t† ¹ t³¡d=zF…x=t1=z ;Dt1=¸k† ; …97†

where d denotes the spatial dimension and z ˆ ¸k=¸?. The so-called critical initial slip
exponent ³ describes the growth of the average number of particles as a function of
time (see section 3.6.3). In order to determine ³ we note that in the active phase D > 0
surviving clusters will create an average density »stat ¹ D in the interior of the
spreading cone (cf. panel (b) of � gure 19). Thus the autocorrelation function c…0; t†
should saturate at the value

c…0 ;1† ˆ lim
t!1

c…0 ; t† ¹ D ‡ 0
: …98†

On the other hand, the scaling form (97) implies that c…0; t† saturates in the active
phase at a constant with the scaling behaviour{

c…0 ;1† ¹ D¸k…d=z¡³†: …99†

Comparing the two expressions we obtain the generalized hyperscaling relation [129]
for phase transitions into absorbing states

³ ¡ d
z

ˆ ¡  ‡  0

¸k
: …100†

It should be noted that the scaling argument (98) relies on the assumption that the
cluster spreads around the origin, i.e. the spreading cone surrounds the origin. In
su� ciently high spatial dimensions, however, the cone becomes sparse and di� uses
away from the origin so that the autocorrelation function c…0 ;1† vanishes. For
example, in a DP process this happens above the upper critical dimension dc ˆ 4. In
fact, the generalized hyperscaling relation (100) turns out to be valid only below the
upper critical dimension of the spreading process under consideration.

The scaling theory outlined above assumes the system size to be in� nite. For
� nite system sizes the scaling functions also depend on the invariant ratio
¹d

?=N ˆ td=z =N , where N ˆ L d is the total number of sites. The generalized scaling
forms read

»… t† ¹ t¡ =¸k f…Dt1=¸k ; td=z =N † ; …101†

P… t† ¹ t¡ 0 =¸k g…Dt1=¸k ; td=z =N † ; …102†

c…x; t† ¹ t¡… ‡ 0†=¸k F…x =t1=z ;Dt1=¸k ; td=z =N †: …103†
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3.3.3. Derived scaling properties
The scaling behaviour of various other quantities can be derived directly from the

scaling relations (101)- (103). F or example, the mean cluster mass M is given by the
total integral of the pair connectedness function

M ˆ
…

ddx
…1

0
dt c…x; t†: …104†

Inserting the scaling relation (97) and substituting the scaling variables we obtain a
scaling law for the average cluster mass measured in an in� nite system below
criticality:

M ¹
…

dd x
…1

0
dt t³¡d=zF…x =t1=z ;Dt1=¸k† ¹ jDj¡¸k…1‡³† : …105†

Similarly, the mean survival time T , the mean spatial volume V and the mean size S of
a cluster in the inactive phase are given by

T ˆ
…

dtP… t† ˆ
…

dtt¡¯G…Dt1=¸k† ¹ jDj¡¸k…1¡¯† ; …106†

V ˆ
…

dtP… t†td=z¡1 ˆ
…

dttd=z¡¯¡1G…Dt1=¸k† ¹ jDj¡¸k…d=z¡¯† ; …107†

S ˆ
…

dtP… t†td=z ˆ
…

dttd=z¡¯G…Dt1=¸k† ¹ jDj¡¸k…d=z‡1¡¯† : …108†

F or these quantities, we obtain the following scaling relations:

M ¹ jDj¡® ; ® ˆ ¸k…1 ‡³† ˆ ¸k ‡d¸? ¡  ¡  0 ; …109†

T ¹ jDj¡½ ; ½ ˆ ¸k…1 ¡ ¯† ˆ ¸k ¡  0 ; …110†

V ¹ jDj¡v
; v ˆ ¸k…d=z ¡ ¯† ˆ d¸? ¡  0 ; …111†

S ¹ jDj¡¼ ; ¼ ˆ ¸k…d=z ‡ 1 ¡ ¯† ˆ ¸k ‡ d¸? ¡  0: …112†

3.3.4. Spreading processes in an ex ternal � eld
Let us � nally consider a spreading process in an external � eld h. Using the

particle interpretation, such a � eld may be realized by spontaneous creation of
particles é ! A at rate h during the temporal evolution. Clearly, spontaneous
particle creation destroys the absorbing state and therefore the transition itself.
That is, the external � eld drives the system away from criticality. For small h the
resulting distance from criticality obeys certain scaling laws.

In principle the presence of an external � eld requires one to introduce another
independent critical exponent for the coupling constant. In the case of DP, however,
this exponent is not independent, it is rather identical with the mean cluster size
exponent ® . To understand this relation, let us consider the stationary state of a
subcritical DP process in the presence of a weak � eld. Obviously, a site can only
become active if it is connected with at least one other site backwards in time where a
particle was spontaneously created by the external � eld. Since the number of such
sites is equal to the cluster size, the probability to become active is given by
»stat ¹ 1 ¡ …1 ¡ h†M …D†. For weak � elds, the stationary density is therefore linear in h:

»stat ¹ hM …D† …D < 0†: …113†
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Consequently, the susceptibility of a supercritical DP process scales as

À ˆ @

@h
»stat ¹ jDj¡® : …114†

Invariance under rescaling (92) requires the external � eld to change as

h ! L 0 =¸? ¡z¡d h ˆ L¡¼=¸? h: …115†
Thus, at criticality the stationary response of a DP process is given by

»stat ¹ h =¼: …116†
More generally, we may extend the scaling forms (101)- (103) by including the scale-
invariant argument ht¼=¸k . For example, the density »… t† evolves as

»… t† ¹ t¡ =¸k f …Dt1=¸k ; td=z=N ;ht¼=¸k†: …117†

3.3.5. T ime reversal symmetry of directed percolation
As shown in [127], a special symmetry of DP under time reversal implies the

additional scaling relation
 ˆ  0: …118†

This is the reason why DP is characterized by only three instead of four critical
exponents. In order to understand this duality symmetry from the physical point of
view, let us consider the special case of directed bond percolation. By reversing the
arrows shown in the right part of � gure 10 one obtains a directed bond percolation
process that evolves ‘backwards’ in time. Obviously, the reversed process follows
exactly the same probabilistic rules as the original one. Moreover, if two sites were
connected by a directed path in the original process, they will also be connected in
the reversed process. Hence, if the reversed process was started from a fully occupied
lattice at t > 0, the resulting active sites at t ˆ 0 would be precisely those sites
which— in the original process—would generate clusters that are still alive at time t.
Therefore, in the case of directed bond percolation we obtain

P… t† ˆ »…t† ; …119†
i.e. the survival probability of a single seed P… t† is exactly equal to the density of
active sites »… t† in a DP process starting with a fully occupied lattice. Thus, in the
active phase the two quantities saturate at the same value P1 ˆ »stat wherefore the
corresponding critical exponents  and  0 have to be identical. It should be
emphasized that this time reversal symmetry of D P is non-trivial and does not hold
for other systems such as models with several absorbing states [129] or spreading
processes with a � uctuating background [130]. Together with equation (118) the
generalized hyperscaling relation (100) reduces to the DP hyperscaling relation

³ ˆ d=z ¡ 2¯ ˆ d¸? ¡ 2

¸k
: …120†

Consequently, the autocorrelation function c…0; t† for DP saturates in the active
phase at the value c…0 ;1† ¹ D2 .

3.3.6. T he DP conjecture
One of the most fascinating properties of DP models is their robustness with

respect to the microscopic dynamic rules. In fact, the DP class covers a wide range of
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models. It includes, for example, the vast majority of spreading models such as the
contact process [5, 131], epidemic spreading without immunization [132], and forest
� re models [102, 133, 134]. Moreover, the DP class includes models for catalytic
reactions [121, 135, 136], interacting particles [137], as well as branching-annihilating
random walks with odd number of o� spring [138- 140]. Furthermore, certain growth
processes [141, 142] and coupled map lattices with asynchronous updates [143]
display DP behaviour. In fact, this list is far from being complete.

The variety and robustness of DP models led Janssen and Grassberger to the
conjecture that a model should belong to the DP universality class if the following
conditions hold [144, 145].

(1) The model displays a continuous phase transition from a � uctuating active
phase into a unique absorbing state.

(2) The transition is characterized by a positive one-component order parameter.
(3) The dynamic rules involve only short-range processes.
(4) The system has no special attributes such as additional symmetries or

quenched randomness.

Although this conjecture has not yet been proven rigorously, it is highly supported
by numerical evidence. In fact, DP seems to be even more general and may be
identi� ed in systems that violate some of the four conditions, for example in certain
models with non-unique [146- 149] or � uctuating passive states [129]. Even compli-
cated spreading processes with several spreading agents and multicomponent order
parameters were shown to exhibit D P behaviour [122, 124, 146, 150- 153]. Some
models with in� nitely many absorbing states, that were initially thought to belong to
di� erent universality classes, were later found to be in the DP class as well (see
section 3.8.6). N ot only the bulk exponents  ;¸? ;¸k are universal but also other
quantities as, for example, scaling functions and higher moments of the order
parameter [120].

It is remarkable that DP is one of very few critical phenomena in 1 ‡1
dimensions which has not yet been solved exactly. Despite its simplicity and
robustness it seems to be impossible to compute the critical exponents exactly. In
fact, the numerical estimates suggest that the critical exponents are given by
irrational numbers rather than simple rational values. The lack of analytical results
may be related to the fact that DP—in contrast to ordinary (isotropic) percolation—
is not conformally invariant since there is no symmetry between ‘space’ and ‘time’.
Attempts to replace conformal invariance by an anisotropic scaling theory have not
yet been successfully applied to DP [154].

Only few exceptions of DP are known so far. They all violate at least one of the
four conditions listed above. F or example, a di� erent universality class emerges
when the system has two or more symmetric absorbing states (see section 4.2).
Another example is the activated random walk model with a conserved order
parameter (see section 4.3) Di� erent universal properties are also encountered in
models where activity spreads over long distances by Lévy � ights (see section 4.1).

3.4. Estimation of the critical exponents
Directed percolation is one of very few critical phenomena whose critical

exponents in 1 ‡1 dimensions are not known exactly. However, thanks to extensive
numerical simulations, transfer matrix techniques, series expansions, and � eld-
theoretical calculations the critical exponents have been estimated in various
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dimensions to an extremely high accuracy. This subsection brie� y summarizes the
available methods and the most precise estimates.

3.4.1. M ean-� eld approx imation
In order to estimate the critical exponents  , ¸? and ¸k of directed percolation, let

us � rst consider a simple mean-� eld (MF) approximation. Denoting by »… t† the
density of active sites at time t averaged over the entire system, the MF rate equation
for the contact process (85) reads

@t»… t† ˆ …¶ ¡ 1†»… t† ¡ ¶»2… t†: …121†
This equation has two stationary solutions, namely »stat ˆ 0 and »stat ˆ …¶ ¡ 1†=¶.
Hence the mean-� eld crit ical point is ¶c ˆ 1. The solution »stat ˆ 0 represents the
absorbing state from where the system cannot escape. In the inactive phase ¶ < ¶c

the absorbing state is stable while the other solution with negative density is
unphysical. In the active phase ¶ > ¶c the absorbing state becomes unstable
against small perturbations while the second solution represents a stable active
state. Near criticality the stationary density vanishes linearly as »stat ¹ ¶ ¡ ¶c.
Therefore, the mean-� eld density exponent is given by  MF ˆ 1. On the other hand,
equation (121) implies the density decays in the inactive phase asymptotically as
»… t† ¹ exp …¡j¶ ¡ ¶cjt† ¹ exp …¡t=¹k†, hence ¹k ¹ j¶ ¡ ¶cj¡1 and ¸k

MF ˆ 1.
In order to determine the spatial scaling exponent ¸MF

? , the mean-� eld rate
equation (121) has to be extended by a term for particle di� usion

@t»…x; t† ˆ D»…x; t† ¡ ¶»2…x; t† ‡Dr2»…x; t† ; …122†
where D is the di� usion constant and D ˆ ¶ ¡ ¶c is the deviation from criticality. In
a lattice model this term corresponds to nearest-neighbour interactions. According
to equation (94) the density »…x; t† changes under rescaling (92) as

»…x; t† ! L¡ =¸? »…Lx;Lz t†: …123†
Simple dimensional analysis shows that equation (122) is invariant under rescaling if

 MF ˆ 1 ; ¸MF
? ˆ 1

2; ¸k
MF ˆ 1: …124†

The above mean-� eld approximation becomes exact in the limit of in� nitely many
dimensions. In a � nite-dimensional contact process it is not clear whether the mean-
� eld approximation still applies, it is even not obvious that a continuous phase
transition still exists. However, Liggett [5] was able to rigorously prove the existence
of a phase transition for a contact process in d ¶ 1 dimensions. As will be shown
below, the mean-� eld exponents turn out to be exact for d ¶ 4, where dc ˆ 4 is the
upper critical dimension of DP. Note that the mean-� eld exponents satisfy the
hyperscaling relation (120) precisely in d ˆ 4 dimensions.

In order to go beyond the standard mean-� eld approximation in low-dimensional
systems spatial correlations have to be taken into account. An improved mean-� eld
approximation for the contact process in 1 ‡ 1 dimensions was developed by
Ben-N aim and K rapivsky [155], who expressed the temporal evolution of empty
intervals on the lattice by an in� nite hierarchy of di� erential equations. This
approach is very similar to the IPDF technique introduced in section 2.8.3.
Approximating the probability to � nd pairs of neighbouring empty intervals by
the product of single-interval probabilities, they derived a set of equations which can
be solved exactly. In this approximation the critical exponents are given by  ˆ 1

2,
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¸? ˆ 1 and ¸k ˆ z ˆ 3
2. Ódor could improve these estimates by using a generalized

mean-� eld approximation combined with coherent anomaly techniques [156], reach-
ing an accuracy of almost 1% .

3.4.2. M onte Carlo simulations with homogeneous initial conditions
In order to study non-equilibrium phase transitions quantitatively, numerical

techniques such as M onte Carlo simulations have become an important tool.
Because of the steadily growing computer capacity the critical exponents can
nowadays be estimated within a few per cent, in some cases even up to four digits.
F urther progress is expected as reaction- di� usion models can easily be simulated on
parallel computers with a large number of simple processors [45].

The simplest numerical method that allows the critical exponents to be estimated
is a Monte Carlo (MC) simulation starting with a fully occupied lattice. This
technique is based on the scaling properties of equation (101). In a � rst series of
simulations the critical percolation threshold has to be determined by measuring
deviations from the asymptotic power-law decay »… t† ¹ t¡¯ in a su� ciently large
system. To this end »… t† is plotted versus t in a double-logarithmic graph (see
� gure 20 (a)). Positive (negative) curvature for large t indicates that the system is
still in the active (inactive) phase. It should be carefully analysed to what extent
the estimate depends on the system size used in the simulation. If � nite-size e� ects
play a role, extrapolation techniques should be used in order to improve the
estimate [157].

Having determined pc and ¯ the exponent  may be estimated by measuring the
stationary density of active sites »stat ¹ D in the active phase. However, this type of
estimate is known to be quite inaccurate since the equilibration time to reach the
stationary state grows rapidly as the critical point is approached. This critical slowing
down can be controlled by plotting »… t†t¯ versus tD¸k for di� erent values of D and
tuning ¸k in a way that all curves collapse (see � gure 20 (b)). The exponent  is then
given by  ˆ ¯¸k. F inally, the exponent ¸? can be determined by � nite-size
simulations. According to equation (101), »… t†t¯ has to be plotted against t=N z=d

for various system sizes (see � gure 20 (c)). By tuning z the data points collapse onto a
single curve which gives an estimate for ¸? ˆ ¸k=z.
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Figure 20. Ordinary Monte Carlo simulations of a …1 ‡ 1†-dimensional directed bond
percolation process starting from a fully occupied lattice. Part (a) shows the particle
density as a function of time and demonstrates the determination of the critical point.
Parts (b) and (c) show data collapses for o� -critical and � nite-size simulations,
respectively (see text).



3.4.3. M onte Carlo simulations with localized initial conditions
More accurate estimates for the critical exponents can be obtained by dynamic

simulations starting from a single particle (active seed) [127]. This technique exploits
the scaling properties of the pair-connectedness function c…x; t†. Starting from a
single particle, one measures the survival probability P… t†, the number of active sites
N… t†, and the mean square of spreading from the origin R 2… t† averaged over
surviving runs. According to equations (102) and (103) these quantities obey the
scaling forms

P… t† ’ t¡¯g…Dt1=¸k ; td=z =N † ; …125†

N… t† ˆ
…

dd xc…x; t† ’ t³ -F…Dt1=¸k ; td=z =N †; …126†

R 2… t† ˆ hx2… t†i ˆ 1
N… t†

…
dd x x2c…x; t† ’ t2=z ~F…Dt1=¸k ; td=z =N †: …127†

At criticality, they are expected to display asymptotic power laws

P… t† ¹ t¡¯ ; N… t† ¹ t³ ; R 2… t† ¹ t2=z ; …128†

i.e. they show straight lines in double logarithmic plots. O� criticality, the lines are
curved, allowing a precise determination of the percolation threshold pc. Technically
it is often useful to consider local slopes of these curves by introducing e� ective
exponents

¡ …̄ t† ˆ log10 …P… t†=P… t=b††
log10 b

…129†

and similarly ³… t† and 2=z… t†, where log10 b is the distance used for estimating the
slope. Plotting the local slopes as functions of 1=t, the curves may be extrapolated to
t ! 1, as illustrated in � gure 21. The same method works also in higher dimensional
systems [158]. In order to improve the estimates, it is useful to eliminate the
curvature of the data points at criticality by plotting the quantities (128) against
1=t¯ instead of 1=t.

Since the spatial size of the growing cluster at a given time is � nite, the simulation
can be accelerated considerably by storing the coordinates of active particles in a
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dynamically generated list. Especially at criticality, where the density of particles is
low, such algorithms are much more e� cient. Moreover, � nite-size e� ects are
eliminated completely.

3.4.4. Numerical diagonalization
The critical exponents may also be approximated by numerical diagonalization

of the evolution operator. Although the resulting estimates are usually less accurate
than those obtained by other methods, this technique is of conceptual interest. Let
us, for example, consider the …1 ‡1†-dimensional contact process on a � nite lattice
with N sites and periodic boundary conditions which is de� ned by the Liouville
operator (87). Solving the eigenvalue problem

LCP…¶†jÁii ˆ ·ijÁii …130†

we obtain a spectrum of eigenvalues f·ig, as shown in the left panel of � gure 22. As
in all reaction- di� usion models, the lowest eigenvalue ·0 vanishes. The correspond-
ing stationary state jÁ0i is the absorbing state of the contact process. The other
eigenvectors represent the relaxational modes of the system. As can be seen in
� gure 22, all of them have a short lifetime except for the � rst excited state jÁ1i whose
eigenvalue ·1 tends to zero as ¶ increases. This eigenvector represents the active state
of the system. In � nite systems there is always a � nite probability to reach the
absorbing state, hence ·1 > 0. In in� nite systems, however, this eigenvalue decreases
with ¶ and vanishes at the crit ical point. Since the amplitude of jÁ1i decays in the
inactive phase as exp …¡·1t†, we may identify ·¡1

1 with the temporal scaling length ¹k.
In an in� nite system we therefore expect ·1 to decrease as ·1 ¹ j¶ ¡ ¶cj¸k for ¶ < ¶c

and to vanish for ¶ > ¶c. The corresponding scaling form reads

·1 ¹ N ¡z=d h…DN 1=d¸?† ; …131†

where D ˆ ¶ ¡ ¶c. Thus, by plotting ·1N z=d against DN 1=d¸? , the exponents z and
¸? can be determined by data collapse, as demonstrated in the right panel of
� gure 22. In order to determine the exponent  , it would be necessary to analyse the
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components of the eigenvector jÁ1i with respect to the particle density in the active
phase. A similar analysis of D P models with parallel updates, which are de� ned by
transfer matrices instead of Liouville operators, can be found in [159].

3.4.5. Density matrix renormalization group methods
The method of numerical diagonalization can be improved considerably by using

density matrix renormalization group (DMRG) techniques. The concept of DMRG
was introduced in 1992 by White [160] in the context of equilibrium statistical
physics as a tool for the diagonalization of quantum spin chains. The main idea is to
prolongate a given spin chain by inserting additional spins and to reduce the
resulting con� guration space by a suitable projection mechanism, keeping only the
most relevant eigenstates. This renormalization procedure is then repeated many
times and the spectrum of the iterated Hamiltonian is analysed. Recently DMRG
techniques have also been applied to various …1 ‡1†-dimensional non-equilibrium
systems [161- 163] (see [100] for a general overview). The method yields surprisingly
accurate results. F or example, Carlon et al. [162] were able to estimate the critical
exponents of DP by  =¸? ˆ 0:249…3†, ¸? ˆ 1:08…2† and z ˆ 1:580…1†, deviating from
the currently accepted values by less than 1:5% .

3.4.6. Series expansions
The most precise estimates of the DP exponents in 1 ‡1 dimensions have been

obtained by series expansions [119]. This technique is very similar to low- or high-
temperature expansions in equilibrium statistical physics. As an example let us
consider the …1 ‡1†-dimensional contact process. Its Liouville operator (87) may be
separated into two parts L…¶† ˆ L0 ‡¶L1, where L0 and L1 describe spontaneous
self-destruction A ! é and o� spring production A ! 2A , respectively. The basic
idea is to regard ¶ as a small perturbation and to express physical quantities as power
series in ¶. To this end it is useful to introduce the Laplace transform of the
probability distribution jP ti and to expand it in powers of ¶:

j ~P…s†i ˆ
…1

0
d t exp …¡st†jP ti ˆ

X1

nˆ0

¶nj ~Pn…s†i: …132†

By applying L…¶† from the left one can easily derive the recursion relation

…s ¡ L0†j ~Pn…s† ˆ
jP0i; if n ˆ 0;

L1j ~Pn¡1…s†i ; if n ¶ 1;

©
…133†

where jP0i denotes the initial particle con� guration. Hence, if the process started
from a con� guration with a single particle, the vector j ~Pn…s†i describes an ensemble
of con� gurations with at most n particles. It is therefore possible to explicitly
construct the vectors j ~Pn…s†i, as described in detail in [119].

The above expansion allows the temporal integral of any observable
X… t† ˆ h1jX jP ti to be expressed as a power series in ¶ (for notations see
Appendix A):

…1

0
dtX… t† ˆ lim

s!0
h1jX j ~P…s†i ˆ

X1

nˆ0

¶n lim
s!0

h1jX j ~Pn…s†i: …134†
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Let us, for example, consider the survival probability P… t† that the system has not yet
reached the absorbing state at time t (cf. equation (94)). Using the vector formalism
this quantity may be written as

P… t† ˆ 1 ¡ h0jP ti ˆ h1jP ti ¡ h0jP ti; …135†

where h0j ˆ …1 ;0 ;0 ; . . . ;0† denotes the absorbing state. The critical exponents can be
estimated as follows. On the one hand, the mean survival time T of clusters in the
inactive phase can be expanded in powers of ¶ by

T ˆ
…1

0
dtP… t† ˆ

X1

nˆ0

¶n lim
s!0

…h1j ~Pn…s†i ¡ h0j ~Pn…s†i†: …136†

On the other hand, according to equation (110) we have T ¹ …¡D† 0 ¡¸k so that

d
d¶

ln T ’
¸k ¡  0

¶c ¡ ¶
‡ const: …137†

Therefore, in order to estimate ¶c and  ¡ ¸k, three steps have to be taken. At � rst,
the vectors j ~Pn…s†i have to be determined by iterating equation (133) up to order
nmax. Although this recursion relation is quite complicated, it is still simple enough to
be implemented on a computer (for example, in [119] the iteration was carried out up
to order nmax ˆ 24). Next, one has to express T as a power series in ¶. F inally, ¶c and
 ¡ ¸k can be estimated by determining the location and the amplitude of the
singularity in equation (137) and by using a Padé approximation [3]. Since the
singularity is approached from the inactive phase, we are dealing with a subcritical
expansion. Similarly one may also consider the supercritical case by expanding
L…·† ˆ ·L0 ‡ L1 in powers of ·.

A general review on series expansion can be found in [3]. Series expansions were
applied to …1 ‡1†-dimensional DP � rst in [164], where the critical exponents could
be determined with a relative accuracy of about 10¡3. Re� ned simulations [165] led
the authors to the conjecture that the DP exponents should be given by the rational
values  ˆ 199=720, ¸? ˆ 26=15 and ¸k ˆ 79=72. In a sequence of papers [116, 119,
166, 167] the error margins could be further reduced down to 10¡4 . . . 10¡5. These
improved estimates showed that the conjectured rational values were incorrect,
indicating that the critical exponents of DP could be given by irrational numbers.
This should be taken as a warning that critical exponents of non-integrable systems
are usually not given by simple rational values. Currently, the most precise estimates
are given in [168]. Series expansions for DP were also performed in two spatial
dimensions [169]. In addition, the exponents were found to be independent of the
type of lattice under consideration. F or easy reference we listed the most precise
estimates in table 2.

3.4.7. Field-theoretical approx imations
By a � eld-theoretical renormalization group calculation (see section 3.5) it is

possible to compute � uctuation corrections of the critical exponents close to the
upper critical dimension dc ˆ 4 in powers of ° ˆ dc ¡ d . In a two-loop approxi-
mation [144, 171] these corrections are given by
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 ˆ 1 ¡ °=6 ‡ 11
12

¡
53
6

ln
4
3… †…°=12†2 ‡ 0…°3† ;

¸? ˆ 1
2 ‡ °=16 ‡ 107

32
¡

17
16

ln
4
3… †…°=12†2 ‡0…°3† ;

¸k ˆ 1 ‡ °=12 ‡ 109
24

¡
55
12

ln
4
3… †…°=12†2 ‡0…°3†:

9
>>>>>>>>=
>>>>>>>>;

…138†

F or d µ 2 these approximations are quite inaccurate. However, in three spatial
dimensions, where numerical simulations and series expansions are di� cult to
perform, the two-loop approximations are regarded as the most precise estimates
available.

3.5. Field-theoretic formulation of directed percolation
The robustness of the DP universality class can be partly understood by studying

the corresponding � eld theory. It is interesting to note that the � eld theory of D P was
� rst discovered in a quite di� erent � eld of physics, namely in the context of hadronic
interactions at ultra-relativistic energies. In order to predict the cross-sections of such
particles at high energies quantitatively, a � eld-theoretic approach, called Reggeon
� eld theory , was developed in the 1970s (see [172- 177], a general review is given
in [178]). Surprisingly it took almost another ten years to realize that Reggeon � eld
theory was nothing but a � eld-theoretic realization of the contact process [179- 181],
sometimes also called Gribov process [182, 183]. In the following we sketch the main
ideas of a � eld-theoretic approach to DP.

3.5.1. T he DP Langevin equation
The Langevin equation of motion for directed percolation can be derived directly

from the master equation for the contact process [144] and reads

@t»…x ; t† ˆ µ»…x; t† ¡ ¶»2…x; t† ‡Dr2»…x; t† ‡ ±…x; t†: …139†

It di� ers from the mean-� eld equation (122) by a density-dependent G aussian noise
� eld ±…x; t†, which is de� ned by its correlations
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Table 2. Estimates for the critical exponents of directed percolation obtained by mean � eld
(MF), improved mean � eld (IMF), numerical, as well as � eld-theoretical methods.

critical IMF d ˆ 1 d ˆ 2 d ˆ 3 d ˆ 4 ¡ °
exponent MF [155] [168] [125] [170] [171]

 1 1/2 0.276 486 (8) 0.584(4) 0.81(1) 1 ¡ °=6 ¡ 0:011 28°2

¸? 1/2 1 1.096 854 (4) 0.734(4) 0.581(5) 1=2 ‡ °=16 ‡ 0:021 10°2

¸k 1 3/2 1.733 847 (6) 1.295(6) 1.105(5) 1 ‡ °=12 ‡ 0:022 38°2

z 2 3/2 1.580 745 (10) 1.76(3) 1.90(1) 2 ¡ °=12 ¡ 0:029 21°2

¯ 1 1/2 0.159 464 (6) 0.451 0.73 1 ¡ °=4 ¡ 0:012 83°2

³ 0 1/2 0.313 686 (8) 0.230 0.12 °=12 ‡ 0:037 51°2

® 1 3/2 2.277 730 (5) 1.60 1.25 1 ‡ °=6 ‡ 0:066 83°2

¾ 1 1/2 0.820 37 (1) 0.88 0.94 1 ¡ °=12 ‡ 0:033 17°2

¼ 2 2 2.554 216 (13) 2.18 2.04 2 ‡ °2=18



h±…x; t†i ˆ 0 ;

h±…x; t†±…x 0 ; t 0†i ˆ G»…x ; t†¯d…x ¡ x 0†¯… t ¡ t 0†:

)

…140†

Since the amplitude of ±…x; t† is proportional to ‰»…x; t†Š1=2, the noise is said to be
multiplicative. This ensures that the absorbing state »…x; t† ˆ 0 does not � uctuate.
The square-root behaviour stems from the de� nition of »…x; t† as a coarse-grained
density of active sites averaged over some mesoscopic box size. Only active sites in
this box give rise to � uctuations of the density, generating a bounded uncorrelated
noise. The noise � eld ±…x; t† can be viewed as the sum of all these noise contributions
in the box. According to the central limit theorem, if the number of particles in the
box is su� ciently high, ±…x; t† tends to a G aussian distribution with an amplitude
proportional to the square root of the number of active sites in the box. This type of
noise has to be distinguished from other non-equilibrium systems with multiplicative
noise where the noise amplitude is proportional to the � eld »…x; t† itself without
square root [184, 185]. These systems do not belong to the DP class, rather they are
related to the K PZ universality class [186]. The DP Langevin equation was also
tested numerically in [187], con� rming that the crit ical exponents are in agreement
with those of ordinary DP lattice models. Note that in contrast to the annihilation
process discussed in section 2.6, the noise (140) is real due to positive density
correlations in the bulk.

The Langevin equation (139) can be seen as a minimal equation needed to
describe DP. It may also include higher order terms such as »3…x; t† or r4»…x; t†, but
these contributions turn out to be irrelevant under renormalization group trans-
formations. The same applies to higher-order contributions to the noise. These
additional terms account for (non-universal) short-range correlations while they are
irrelevant on large scales. In fact, the robustness of DP originates in the irrelevance
of higher-order terms in the Langevin equation.

3.5.2. Relation to Reggeon � eld theory
In � eld-theoretic calculations it is often more convenient to characterize the

dynamic system by a partition sum Z . The sum is carried out over all realizations of
the � eld ¿…x; t† ˆ »…x; t† and the noise ±…x; t†, weighted by an appropriate e� ective
action. More precisely, the partition sum is de� ned as the integral over all
realizations of the � eld ¿…x ; t† and the noise ±…x; t† which satisfy the Langevin
equation. Therefore, we may write the integrand as a ¯-function with equation (139)
as its argument:

Z ¹
…

D±P‰±Š
…

D¿I ‰¿Š¯ @t¿ ¡ Dr2¿ ¡ µ¿ ‡¶¿2 ¡ ±… †: …141†

Here D± and D¿ denote functional integration, P‰±Š is the probability distribution
of the noise � eld, and I ‰¿Š stands for an appropriate Jacobian which turns out to be
irrelevant in the present problem. As shown in Appendix B, it is possible to
integrate the noise by introducing a Martin- Siggia- Rosen response � eld ~¿…x; t†.
The resulting action S ˆ S 0 ‡S int with

S 0‰¿; ~¿Š ˆ
…

ddx dt ~¿…x; t†…½@t ¡ Dr2 ¡ µ†¿…x; t† ; …142†

S int‰¿; ~¿Š ˆ G
2

…
dd x dt ~¿…x; t†…¿…x; t† ¡ ~¿…x; t††¿…x; t† ; …143†
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is the e� ective action of Reggeon � eld theory [178]. In momentum space it may also
be written as

S 0‰¿; ~¿Š ˆ
…

dk!
~¿…¡k ;¡!†…¡i½! ‡ Dk2 ¡ µ†¿…k ;!† …144†

S int‰¿; ~¿Š ˆ G
2

…
dk!

…
dk 0! 0 ¿…¡k ;¡!† ~¿…¡k 0

; ¡!
0†

£ ‰¿…k ‡k 0 ;! ‡! 0† ¡ ~¿…k ‡ k 0 ;! ‡! 0†Š; …145†

where dk! ˆ …2º†¡d¡1ddk d!. F ormally the free part of the action can be expressed
as

S 0‰¿; ~¿Š ˆ 1
2

…
dk! U …¡k ;¡!†S0…k ;!† U …k ;!†;

S0…k ;!† ˆ
0 Dk2 ¡ µ ‡ i½!

Dk2 ¡ µ ¡ i½! 0… †;

9
>>>>=
>>>>;

…146†

where U ˆ …¿; ~¿†. Introducing external currents J…k ;!† and ~J…k ;!† we can rewrite
the partition sum as

Z ‰J ; ~J Š ¹
…

D¿D ~¿I 0‰¿; ~¿Š exp ¡S 0‰¿; ~¿Š ¡ S int‰¿; ~¿Š ‡
…

dd x dt…J ¿ ‡ ~J ~¿†… †
¹ exp ¡Lint

¯

¯J
;

¯

¯ ~J

µ ¶

… † exp
1
2

…
dk!J…¡k ;¡!†G0…k ;!†J…k ;!†… †; …147†

where the free propagator G0 ˆ S¡1
0 is given by

G0…k ;!† ˆ
0 G0…k ;!†

G0…¡k ;¡!† 0… † …148†

with G0…k ;!† ˆ …Dk2 ¡ µ ¡ i½!†¡1. Because of G0…q ;!† 6ˆ G0…q ;¡!† D P is an
irreversible process.

3.5.3. Cluster backbone and Feynman diagrams
Before turning to � eld-theoretic renormalization group techniques let us discuss

the physical meaning of F eynman diagrams in directed percolation. The full
propagator of the � eld theory is the pair connectedness function c…x 0 ; t 0 ;x; t† which
is de� ned as the probability that two sites …x 0 ; t 0† and …x; t† are connected by a
directed path of open bonds (see section 3.3.2). In a given realization of open and
closed bonds there may be several possible directed paths connecting the two sites, as
illustrated in � gure 23. The union of all possible paths constitutes the so-called
backbone of the pair connectedness function [188]. More precisely, the backbone
consists of all sites that are connected with the sites …x 0 ; t 0† and …x; t† by a directed
walk, i.e. we cut o� all dangling ends of the cluster. From the topological point of
view the backbone is a directed graph consisting of branching and merging lines.
Because of the duality symmetry (119), it is statistically invariant under time reversal.

In principle the full propagator is given by a weighted sum over all possible
backbone con� gurations. F luctuation e� ects are mainly due to the in� uence of
closed loops. Above the upper critical dimension dc ˆ 4 the degree of spatial freedom
for propagating lines is so high that the probability to merge tends to zero. Thus, the
contribution of closed loops can be neglected and hence the full propagator is
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e� ectively described by the free propagator. Below the critical dimension, however,
loops occur more frequently and begin to play a signi� cant role (see � gure 23).

The loops of the backbone may be associated with the Feynman diagrams of
Reggeon � eld theory. As shown in � gures 24 (a)- (c), the backbone can be
decomposed into three elementary components. The arrow stands for the free
propagator (148) while the diagrams for branching and merging represent the
cubic vertices in equation (143), associated with the weights §G=2. Because of
self-destruction A ! é , free paths have a � nite lifetime, as expressed by the bare
mass µ of the free propagator. Consequently, the paths in a given con� guration of
the backbone have to be weighted by their length. Moreover, each closed loop carries
a weight ¡G2=4.

The negative sign for the weight of closed loops can be explained as follows. The
pair connectedness function is the sum over all backbone con� gurations b connect-
ing the sites …x 0 ; t 0† and …x; t† weighted by their probability Pb:

c…x 0 ; t 0 ;x; t† ˆ
X

b

Pb: …149†

In order to � nd a recurrence relation for the probability Pb, let us consider directed
bond percolation on a lattice. Obviously, Pb is the weighted sum over all lattice
con� gurations compatible with the backbone con� guration b. The backbone itself
contributes with a factor pnb , where p is the percolation probability and nb denotes
the number of bonds occupied by the backbone b. Another factor comes from the
bonds outside the backbone. This factor can be expressed as the probability that b is
not contained in a larger backbone b 0. Thus, Pb satis� es the recurrence relation
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Figure 23. Critical DP cluster (grey) and the backbone of the pair connectedness function
c…x 0 ; t 0 ;x; t†, illustrating the physical meaning of Feynman diagrams in directed
percolation.

F igure 24. Feynman diagrams of directed percolation. Left: elementary components of the
backbone: (a) free propagator, (b) branching vertex and (c) merging vertex. Right:
one-loop diagrams for (d ) propagator renormalization and (e) and ( f ) vertex
renormalization.



Pb ˆ pnb 1 ¡ p¡nb
X

b 0 ;b»b 0

Pb 0… †: …150†

Since b 0 always contains more loops than b, this relation can be used to expand the
pair connectedness function (149) in the number of loops. As can be easily veri� ed,
the one-loop correction carries a negative sign. More generally, it is possible to show
by an inclusion- exclusion argument that each closed loop contributes with a
negative weight. An analogous proof for isotropic percolation is explained in detail
in the review article by Essam [108].

Thus, apart from the negative weight of closed loops, the backbone may be
interpreted as a graph consisting of Feynman diagrams. This interpretation is
possible because in a DP process the � eld ¿…x; t† represents the local density of
particles. It should be noted that this is not always true. Moreover, various authors
prefer to shift the � eld ¿ by its mean-� eld expectation value so that the interpretation
as a density is no longer valid. For this reason we will continue to use the unshifted
� elds ¿ and ~¿.

3.5.4. One-loop approx imation
Slightly below the upper critical dimension one-loop diagrams start to contribute

to the full propagator while higher-order diagrams are still strongly suppressed. In
this regime the DP process can be approximated by neglecting higher-order loop
diagrams. The resulting propagator consists of a sum over n concatenated one-loop
diagrams with n running from zero to in� nity. In momentum space the correspond-
ing expression can be written as a simple geometric series. By carrying out the
integration one obtains an ultraviolet-divergent expression. Hence, in order to
regularize the propagator, an upper cut-o� O has to be introduced in momentum
space. Physically this upper cut-o� corresponds to the lattice spacing of the DP
model. In other words, DP needs a lattice; there is no continuum theory of DP.

In order to approximate the critical exponents, we use Wilson’s renormalization
group scheme [189] which consists of two steps (see � gure 25). At � rst the theory is
coarse-grained by a scaling transformation x ! Lx with L < 1, leading to a change
of the coe� cients in the e� ective action and a dilatation of momentum space
(including the cut-o� O). In the second step the short-range � uctuations are
integrated out in a momentum shell. This can be done by evaluating the Feynman
diagrams in the range O µ k µ O=L and absorbing the resulting contributions in the
coe� cients. The total change of the coe� cients determines the RG � ow and
therefore the critical exponents.
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Figure 25. Wilson’s renormalization group. Step 1: scaling transformation in momentum
space. Step 2: integration in a momentum shell (shaded region).



Let us � rst consider the scaling transformation. Because of the time reversal
symmetry of D P (see section 3.3.5) the action S is invariant under the replacement

¿…x; t† ! ¡~¿…x; ¡t† ; ~¿…x; t† ! ¡¿…x ;¡t† ; …151†

implying that ¿ and ~¿ have exactly the same scaling behaviour:

x ! Lx ; t ! Lzt ; ¿…x; t† ! LÀ¿…Lx;Lz t† ; ~¿…x; t† ! LÀ ~¿…Lx;Lzt†: …152†

Under this scaling transformation the e� ective action (142)- (143) turns into

S 0‰¿; ~¿Š ˆ
…

dd x dt ~¿…x; t† ½L2À‡d
|‚‚‚{z‚‚‚}

½ 0

@t ¡ DL2À‡d‡z¡2
|‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚}

D 0

r2 ¡ µL2À‡d‡z
|‚‚‚‚‚‚{z‚‚‚‚‚‚}

µ 0… †¿…x; t† ;

S int‰¿; ~¿Š ˆ 1
2

…
ddx dt GL3À‡d‡z

|‚‚‚‚‚‚{z‚‚‚‚‚‚}
G 0

¿…x; t† ~¿…x; t†…¿… ; t† ¡ ~¿… ; t††:

9
>>>>>=
>>>>>;

…153†

Thus, for an in� nitesimal dilatation L ˆ 1 ‡ l, the four coe� cients rescale as

½ 0 ˆ ‰1 ‡ l…2À ‡d†Š½;

D 0 ˆ ‰1 ‡ l…2À ‡d ‡ z ¡ 2†ŠD ;

µ
0 ˆ ‰1 ‡ l…2À ‡d ‡ z†Šµ;

G 0 ˆ ‰1 ‡ l…3À ‡d ‡ z†ŠG:

9
>>>>>=
>>>>>;

…154†

In the second step of Wilson’s RG procedure the one-loop diagrams are integrated in
a momentum shell. The propagator is renormalized by diagram (d) in � gure 24

G¡1
0 …k ;!† 00 ˆ G¡1

0 …k ;!† ¡ G2

2

…

>

dk 0! 0 G0
k
2

‡ k 0 ;
!

2
‡! 0… †G0

k
2

¡ k 0 ;
!

2
¡ ! 0… †; …155†

where ‘>’ denotes integration in the momentum shell O µ k µ O=L. This equation
can be rewritten as

µ 00 ¡ D 00k2 ‡ i½ 00! ˆ µ 0 ¡ D 0k2 ‡ i½ 0! ¡ G 02

2
J P ; …156†

where J P denotes the integral in equation (155). Integrating J P and expanding the
result to the lowest order in k and ! yields the series (see Appendix D)

J P ˆ lKdOd

2½

1

O2D ¡ µ
¡ O2D

4…O2D ¡ µ†2 k2 ‡ i½

2…O2D ¡ µ†2 ! ‡ . . .… †: …157†

Therefore, the coe� cients in equation (156) are renormalized to one-loop order by

½ 00 ˆ ½ 0 ¡ G2lKd

8…O2D ¡ µ†2 ;

D 00 ˆ D 0 ¡ G2lKdO2D

16½…O2D ¡ µ†2 ;

µ 00 ˆ µ 0 ¡ G2lKd

4½…O2D ¡ µ†
:

9
>>>>>>>>>>=
>>>>>>>>>>;

…158†
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F inally, we have to renormalize the coupling constant G. Because of the duality
symmetry (119) the cubic vertices renormalize identically (see diagrams (e) and ( f ) in
� gure 24). For the cubic vertices it is su� cient to carry out the integration at
k ˆ ! ˆ 0:

G 00 ˆ G 0 ¡ 2G3
…

>

dk!G2
0…k ;!†G0…¡k ;¡!† ˆ G 0 ¡

lG3Kd

2½…O2D ¡ µ†2 : …159†

Adding the changes of the coe� cients under rescaling (154) and the subsequent shell
integration (158)- (159) we obtain the RG � ow equations

@l½ ˆ ½ 2À ‡ d ¡ G2KdOd

8½…DO2 ¡ µ†2… †;

@lD ˆ D 2À ‡d ‡ z ¡ 2 ¡ G2KdOd

16½…DO2 ¡ µ†2… †;

@lµ ˆ µ 2À ‡ d ‡ z ¡ G2KdOd

4µ½…DO2 ¡ µ†… †;

@lG ˆ G 3À ‡d ‡ z ¡ G2KdOd

2½…DO2 ¡ µ†2… †:

9
>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

…160†

Two scaling combinations appear in these equations, namely

S 1 ˆ G2KdOd

16½…DO2 ¡ µ†2 ; S 2 ˆ G2KdOd

4µ½…DO2 ¡ µ†
: …161†

Two of the four parameters ½;D ;µ;G can be chosen freely{. H ere we � x the
coe� cients of the spatial and temporal derivatives, i.e. we require ½ and D to be
invariant under RG transformations. Thus the � rst two equations read

4 ¡ ° ‡2À ¡ 2S 1 ˆ 0 ; 2 ¡ ° ‡ 2À ‡ z ¡ S 1 ˆ 0 ; …162†

where d ˆ 4 ¡ °. The RG � ow is then described by two di� erential equations:

@lµ ˆ µ…4 ¡ ° ‡ 2À ‡ z ¡ S 2† ˆ µ…2 ‡ S 1 ¡ S 2† ;

@lG ˆ G…4 ¡ ° ‡ 3À ‡ z ¡ 8S 1† ˆ G…°=2 ¡ 6S 1†:

)

…163†

At the � xed point …S ¤
1 ;S ¤

2†, µ and G are invariant under RG transformations, i.e.
2 ‡S ¤

1 ¡ S ¤
2 ˆ 0 and °=2 ¡ 6S ¤

1 ˆ 0. Therefore, the � xed point is located at

S ¤
1 ˆ °=12 ; S ¤

2 ˆ 2 ‡ °=12: …164†

Inserting this solution into equation (162) we obtain two of the three critical
exponents, namely À ˆ ¡2 ‡7°=12 and z ˆ 2 ¡ °=12. The third exponent can be
determined by investigating the RG � ow in the vicinity of the � xed point. Because of
equation (161), the � xed point values for µ and G are given by
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µ¤ ˆ 4DO2°

24 ‡5°
ˆ DO2

6
° ‡0…°2† ; …165†

G2¤ ˆ…2D…24 ‡ °†
24 ‡5° … °½

3Kd
†1=2†2

ˆ 4D2½

3Kd
° ‡ 0…°2† ; …166†

where we assumed that Od ’ O4. Close to the � xed point, the RG � ow in
equation (163) can be linearized. As shown in � gure 26, the � ow is attractive along
the dashed line and repulsive elsewhere. To � rst order in ° the corresponding
Jacobian is triangular. Hence its eigenvalues are given by the diagonal elements

@µµ…2 ‡ S 1 ¡ S 2†jµˆµ¤ ;GˆG¤ ˆ 2 ¡ °=4 ‡0…°2† ;

@GG…°=2 ¡ 6S 1†jµˆµ¤ ;GˆG¤ ˆ ¡° ‡0…°2†:

9
=

; …167†

The positive eigenvalue corresponds to the repulsive eigenvector (dotted line in
� gure 26). Since the parameter µ plays the role of the reduced percolation probability
p ¡ pc, this eigenvalue is equal to ¸?

¡1, rendering the third critical exponent. Because
of À ˆ ¡ =¸? and z ˆ ¸jj=¸? we thus obtain the critical exponents

 ˆ 1 ¡ °=6 ‡0…°2† ;

¸? ˆ 1=2 ‡ °=16 ‡0…°2† ;

¸jj ˆ 1 ‡ °=12 ‡ 0…°2†:

9
>>=
>>;

…168†

A two-loop approximation of these exponents (see equation (138)) can be found in
[171]. Although the two-loop result is quite accurate in 3 ‡1 dimensions, it cannot
compete with numerical methods in lower dimensions. F or example, in 1 ‡1
dimensions the approximation for the density exponent  di� ers from the known
numerical value by more than 40% . Even one-dimensional fermionic � eld theories,
which have been introduced recently in [190], turn out to be inaccurate. Therefore,
regarding quantitative results, � eld-theoretic methods are only of limited interest.
However, in many cases they are extremely useful to understand essential universal
properties of the system. F or example, various scaling relations can only be proven
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Figure 26. Linearized RG � ow near the � xed point of directed percolation. To reach the
� xed point, the system has to be on the dashed line, i.e. there is one parameter in the
model which has to be tuned to criticality.



by means of � eld-theoretic considerations. In fact, the � eld-theoretic renormalization
group is one of the most powerful tools of non-equilibrium statistical mechanics.

3.6. Surface critical behaviour
As in equilibrium statistical mechanics, non-equilibrium critical phenomena

depend crucially on the boundary conditions of the system. Because of long-range
correlations, the choice of the boundary conditions may a� ect the physical proper-
ties of the entire system.

The critical behaviour at surfaces of equilibrium models has been studied
extensively (for a review see Iglói et al. [191]). As suggested by Cardy [192], surface
critical phenomena may be described by introducing an additional surface exponent
for the order parameter � eld which is generally independent of the other bulk
exponents. A similar picture emerges in non-equilibrium statistical physics. H ow-
ever, since in this case there is no symmetry between space and time, we have to
distinguish between spatial, temporal and mixed surfaces. The simplest example of a
spatial surface is a semi-in� nite system with a wall. Close to the wall the scaling
behaviour of the order parameter is characterized by a surface critical exponent  s

whose value depends on the type of boundary condition. The most important
example of a temporal surface is the initial state of a non-equilibrium system. As
shown below, correlations in the initial state may in fact change the entire evolution
of a stochastic process. F inally, we will consider systems with mixed boundary
conditions such as D P in a parabola-shaped space- time geometry. Mixed boundary
conditions may be viewed as moving boundaries, i.e. the system size varies with time.

3.6.1. DP with an absorbing wall
In DP an absorbing wall may be introduced by cutting all bonds crossing a given

(d ¡ 1)-dimensional hyperplane in space (see � gure 27). Hence for p > pc the
stationary density of active sites close to the wall »stat

s is expected to be smaller than
the density in the bulk. In fact, the density at the wall is found to scale as

»stat
s ¹…p ¡ pc† s …169†
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Figure 27. (a) Schematic drawing of a DP cluster. (b) The same cluster with an absorbing
bounda ry. (c) The same cluster in a parabola-shaped geometry.



with a surface critical exponent  s >  . The problem of an absorbing wall was � rst
studied in the simpler case of CDP where a surface exponent  CDP

s ˆ 2 was
found [193, 194]. In a series of papers this scaling theory was later applied to DP
with an absorbing wall [195- 198] (for a review see [199]). By means of series
expansions and numerical simulations it was observed that the mean survival time
T of a cluster in the inactive phase next to the wall scales as T ¹ D¡½s , where D
denotes the distance from criticality. In 1 ‡ 1 dimensions the exponent ½s was
estimated by 1:000 2…3†, leading to the remarkable conjecture  s ˆ ¸k ¡ 1 [196].
However, very recent series expansions favour the value 1:000 14…2† 6ˆ 1, disproving
the conjecture [200]. In fact, in view of dimensional analysis it seems to be unlikely
that  s and ¸k are related by a simple linear scaling relation. Moreover, in 2 ‡1
dimensions the numerical value ½s ˆ 0:26…2† cannot be simply related to the other
exponents. Similarly, the � eld-theoretic one-loop result [198]

½s ˆ ¡1=2 ‡11°=48 ‡0…°2† ;  s ˆ 3=2 ¡ 7°=48 ‡0…°2† …170†

indicates that the surface exponent is generally independent of the other
exponents (168).

The � eld-theoretic analysis was also extended to DP with an absorbing edge [198].
A closely related application is the study of spreading processes in narrow
channels [201]. It is also interesting to study DP with an active wall. This case is
related to the problem of local persistence and will be discussed below.

3.6.2. DP clusters in a parabola
Several years before the problem of an absorbing wall was investigated, Kaiser

and Turban considered the much more complicated problem of DP in a parabola-
shaped geometry [202, 203]. Assuming an absorbing boundary of the form
x ˆ §ct¼ they proposed a general scaling theory. It is based on the observation
that the width c of the parabola c scales as c ! Lz¼¡1c under rescaling (92).
Therefore, the boundary is relevant for ¼ > 1=z and irrelevant otherwise. To
implement this scaling theory, the scaling forms (101)- (102) have to be extended
by an invariant argument of the form t¼¡d=z =c. The survival probability of a cluster
(102), for example, has to be generalized by

P… t† ¹ t¡¯g…Dt1=¸k ; td=z =N ; t¼¡d=z=c†: …171†

This scaling form is supported by numerical results and a mean-� eld
approximation [203]. The authors also derived a conjecture for the fractal
dimensions

dk…¼† ˆ 1 ¡ z¼…dk ¡ 1† ; d?…¼† ˆ dk…¼†=¼; …172†

where dk ˆ …  ‡®†=¸k.

3.6.3. Early-time behaviour and critical initial slip
In section (3.4) we reviewed two Monte Carlo techniques for systems with phase

transitions into absorbing states which di� er in their initial state. In simulations
starting with a fully occupied lattice the particle density at criticality decreases as
»… t† ¹ t¡ =¸k . On the other hand, in dynamic simulations starting from a single
particle (active seed), we observe an increase of the average number of particles as
N… t† ¹ t³. In general the exponent ³ is independent from the bulk exponents
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 ; ¸? ; ¸k. In the case of DP, however, the duality symmetry under time reversal (see
equation (119)) implies the additional hyperscaling relation

³ ˆ …d¸? ¡ 2 †=¸k: …173†

An interesting crossover phenomenon between initial increase and asymptotic decay
of the number of particles emerges when a critical spreading process starts with a
low-density distribution of active sites. Figure 28 (a) shows the temporal behaviour
of the density of active sites »… t† for various initial densities »0. The density � rst
increases as »… t† ¹ t³ until it reaches a maximum value at time tc when it crosses over
to the usual asymptotic decay »…t† ¹ t¡ =¸k . This phenomenon is sometimes referred
to as the critical initial slip of non-equilibrium systems. As can be seen in � gure 28 (a),
the curves converge to a single one after su� ciently long time when the memory of
the initial condition is lost. The crossover time tc depends on the initial density »0

and scales as

tc ¹ »
¡1=… =¸k ‡³†
0 : …174†

In � nite-size systems near criticality the critical initial slip may be described by
adding the scale-invariant argument »0t  =¸k‡³ to the scaling form (101), i.e.

»… t† ¹ t¡ =¸k f …Dt1=¸k ; td=z =N ;»0t =¸k ‡³†: …175†

The scaling function f behaves asymptotically as f …0 ;0 ;u† ¹ u for u ! 0 and
f …0 ;0 ;u† ˆ const for u ! 1. To verify this scaling form at criticality, we have
plotted »… t†t¯ versus »0t¯‡³ in � gure 28 (b). As can be seen, we obtain a convincing
data collapse.

The critical initial slip in a DP process can be interpreted as follows. In a low-
density initial state the active sites are separated by empty intervals of a certain
average size ¹0. As time evolves, they generate individual clusters of connected sites
(see section 3.1). Initially these clusters are spatially separated; they do not interact
and the particle number therefore increases as t³. Only a fraction t¡¯ of these clusters
survives, each of them spanning a volume of ¹d

?. These surviving clusters start
touching each other when ¹d

? ¹ »¡1
0 t¯

c . Therefore, we expect the crossover to take
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Figure 28. ‘Critical initial slip’ of the particle density measured in a …1 ‡ 1†-dimensional
directed bond percolation process at criticality on a lattice with 104 sites. (a) Particle
density »… t† for various initial densities »0 as a function of time. The dashed lines
indicate the slopes ‡³ and ¡¯. (b) Data collapse of the same data according to
equation (175).



place at tc ¹ »
1=…¯¡d=z†
0 . Insertion of the DP hyperscaling relation (173) leads to

equation (174). It is worth mentioning that dynamic simulations starting from a
single particle represent the limit »0 ! 0. In this case tc diverges and the critical
initial slip extends to the entire temporal evolution of the system.

3.6.4. Correlated initial conditions
The previously discussed early-time behaviour shows that initial states with

short-range correlations may a� ect the temporal evolution of a DP process for a
limited time until the system crosses over to the usual decay of the particle density.
Let us now turn to initial states with long-range correlations of the form

hsisi‡ri ¹ r¼¡d ; …176†

where 0 µ ¼ µ d controls the power-law decay of the correlations on large scales. In
one dimension such states can be generated by creating uncorrelated empty
intervals{ of length ` which are algebraically distributed as P…`† ¹ `¡1¡¼. There
are, however, many possibilities to create such states because higher order correla-
tions can be chosen freely. Apart from cut-o� s, the resulting particle con� gurations
do not exhibit a speci� c length scale ¹0, instead they are characterized by a fractal
dimension df ˆ ¼. It turns out that long-range correlations may change the entire
temporal evolution of a DP process (similar phenomena can be observed in other
non-equilibrium critical systems such as in the annihilation model [205]).

F or ¼ ˆ d the particles are homogeneously distributed, leading to the usual long-
time behaviour »… t† ¹ t¡ =¸k . F or ¼ ! 0 the fractal dimension tends to zero,
corresponding to isolated particles where we expect the density to increase a
»… t† ¹ t³. In between numerical simulations suggest that the decay exponent changes
continuously by

»… t† ¹ »0t¬…¼† ; ¬…¼† ˆ
³; for ¼ µ ¼c ;

1
z
…d ¡ ¼ ¡  =¸?† ; for ¼ > ¼c ;

8
<

: …177†

where ¼c ˆ  =¸? plays a role of a critical threshold above which correlations in the
initial state become relevant (see � gure 29). Below ¼c the initial distribution of
particles is so sparse that interactions between growing clusters turn out to be
irrelevant.

The numerical result can be proven by a simple � eld-theoretic calculation [204].
In order to take the initial state into account, the � eld-theoretic action (142)- (143)
has to be extended by the term

S ic ˆ ·

…
dd x ~¿…x;0†¿0…x†: …178†

Here the initial particle distribution is represented by a � eld ¿0…x† that is coupled to
the ‘creation operator’ ~¿ at time t ˆ 0 via a coupling constant ·. The scaling
behaviour of ¿0…x† depends on the fractal dimension. Obviously, homogeneous
initial conditions ¿0…x† ˆ const are invariant under rescaling, whereas a fully
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localized initial condition ¿0…x† ˆ ¯d…x† has the scaling dimension ¡d . Therefore,
the initial density should scale as

¿0…x† ! Ldf ¡d¿0…x† ˆ L¼¡d¿0…x†: …179†
It is easy to verify that the contribution S ic does not lead to additional loop
corrections in the � eld theory. Therefore, the coupling between the system and the
initial condition will not be renormalized. Moreover, it can be shown that higher-
order contributions of the form ~¿k…x;0†¿0…x† with k > 1 are irrelevant under
renormalization [130, 204]. Consequently, the coupling constant · scales as

· ! L¼‡À·; …180†

where À ˆ ¡ =¸?. Hence the correlations in the initial state are relevant if
¼ > ¼c ˆ  =¸?. Scaling invariance of the expression »… t† ¹ »0t¬…¼† implies that
¬z ˆ d ¡ ¼ ‡À, completing the proof of equation (177).

Interestingly, the above calculation does not depend on the speci� c form of
correlations in the initial state but only on the scaling dimension of the distribution.
That is, no matter how the particles are distributed—as long as the distribution
scales as in equation (179), the particle density decays according to the scaling
form (177). Moreover, it is interesting to note that a critical DP process itself
generates two-point correlations hsisi‡ri ¹ r¡ =¸? , corresponding to the ‘natural’
fractal dimension df ;? ˆ d ¡  =¸?. Therefore, choosing ‘natural’ correlations
¼ ˆ d ¡  =¸? the number of particles remains almost constant (see dashed lines in
� gure 29). Similar phenomena have been observed in the Glauber- Ising model with
correlated initial conditions [206].

3.6.5. Persistence probability in a DP process
In the past few years it has been realized that certain � rst passage quantities of

critical non-equilibrium processes exhibit a power-law decay with non-trivial
exponents. One of these quantities is the local persistence probability P l… t†, de� ned
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Figure 29. Correlated initial conditions in a DP process. Numerical estimates for the
exponents ¬…¼† in one spatial dimension. The theoretical prediction (177) is shown by
the solid line. The dashed line indicates the ‘natural’ correlations of DP.



as the probability that a local variable si… t† at a given site i does not change its state
until time t during the temporal evolution. In various systems it was found that

P l… t† ¹ t¡³l ; …181†
where ³l is the so-called local persistence exponent [207- 213]. A similar quantity, the
global persistence probability Pg… t†, which is de� ned as the probability that the
global order parameter does not change its sign up to time t, is also found to decay as
a power law with a global persistence exponent ³g [214- 216]. In general the exponents
³l and ³g are di� erent and independent of the usual scaling exponents. Since the
persistence probabilities depend on the history of evolution as a whole{, it is
generally hard to determine these exponents analytically. In fact, only a few exact
results have been obtained so far [208, 210, 216]. Persistence exponents are known to
exhibit certain universal properties. F or example, the local persistence exponent of
the two-dimensional Glauber model in the ordered phase T < T c does not depend
on T [217- 219], whereas it is non-universal with respect to the initial magnetiz-
ation [210]. Most researchers believe that persistence exponents are to some extent
‘less universal’ than ordinary bulk exponents.

In a DP process the local persistence probability P l… t† may be de� ned as the
probability that a particular site never becomes active up to time t. Numerical
simulations suggest that the local persistence exponent is given by

³l ˆ 1:50…1† …182†
independent of the initial density of active sites [220] . Moreover, the numerical data
are in agreement with the scaling form

P l… t ;N ;D† ¹ t¡³l f …Dt1=¸k ;N ¡z=d t† ; …183†
where D ˆ p ¡ pc denotes the distance from criticality. The local persistence
probability can also be related to certain return probabilities in a DP process
with an absorbing boundary or an active source [220]. Similar measurements of
the global persistence probability Pg… t† suggest that ³g > ³l in agreement with
recent � eld-theoretic results [221].

3.7. The in� uence of quenched disorder
In D P models it is usually assumed that the percolation probability does not vary

in space and time. H owever, in realistic spreading processes the rate for o� spring
production is not homogeneous, rather it � uctuates in space and time. F or example,
the local density of open channels in a porous rock will vary because of
inhomogeneities of the material. Similarly, most spreading processes take place in
inhomogeneous environments. It is therefore important to investigate how quenched
disorder a� ects the critical properties of a spreading process. It turns out that even
weak disorder may a� ect or even destroy the critical behaviour of DP.

In the DP Langevin equation (241) the parameter µ plays the role of the
percolation probability. Quenched disorder may be introduced by random variations
of µ, i.e. by adding another Gaussian noise � eld ²:

µ ! µ ‡ ²…x; t†: …184†
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Thus, the resulting Langevin equation reads

@t»…x; t† ˆ µ»…x; t† ¡ L»2…x; t† ‡ Dr2»…x; t† ‡ ±…x; t† ‡»…x; t†²…x; t†: …185†
The noise ² is quenched in the sense that quantities like the particle density are
averaged over many independent realizations of the intrinsic noise ± while the
disorder � eld ² is kept � xed. In the following we distinguish three di� erent types of
quenched disorder, namely spatially, temporally quenched and spatio-temporally
quenched disorder. The three variants of quenched disorder di� er in how far they
a� ect the critical behaviour of DP.

3.7.1. Spatially quenched disorder
F or spatially quenched disorder, the disorder � eld ² is de� ned through the

correlations

²…x†²…x 0† ˆ ®¯d…x ¡ x 0† ; …186†

where the bar denotes the average over many independent realizations of the
disorder � eld (in contrast to the ensemble average h. . .i over realizations of the
intrinsic noise ±). The parameter ® is an amplitude controlling the intensity of
disorder. In order to � nd out whether this type of noise a� ects the critical behaviour
of DP, let us again consider the properties of the Langevin equation under rescaling.
At the critical dimension dc ˆ 4 the additional term »² scales as

»² ! L¡dc=2¡À»²; …187†

i.e. spatially quenched disorder is a marginal perturbation. Therefore, it may
seriously a� ect the critical behaviour at the transition. The same result is obtained
by considering the � eld-theoretic action. Without quenched noise, DP is described by
the action of Reggeon � eld theory (see section 3.5.2)

S ˆ
…

dd x dt ~¿ @t ¡ µ ¡ Dr2 ‡G
2

…¿ ¡ ~¿†
µ ¶

¿; …188†

where ¿…x; t† represents the local particle density while ~¿…x; t† denotes the M artin-
Siggia- Rosen response � eld. As shown by Janssen [222], spatially quenched noise
can be taken into account by adding the term

S ! S ‡®

…
dd x

…
dt ~¿¿

µ ¶2

: …189†

By simple power counting one can prove that this additional term is indeed a
marginal perturbation. Janssen showed by a � eld-theoretic analysis that the stable
� xed point is shifted to an unphysical region, leading to runaway solutions of the
� ow equations in the physical region of interest. Therefore, spatially quenched
disorder is expected to crucially disturb the critical behaviour of D P. The � ndings are
in agreement with earlier numerical results by Moreira and Dickman [223] who
reported non-universal logarithmic behaviour instead of power laws. Later Ca� ero
et al. [224] showed that DP with spatially quenched randomness can be mapped onto
a non-M arkovian spreading process with memory, in agreement with previous
results.

F rom a more physical point of view, spatially quenched disorder in …1 ‡ 1†-
dimensional DP was studied by Webman et al. [225]. It turns out that even weak
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disorder drastically modi� es the phase diagram. Instead of a single critical point one
obtains an intermediate phase of very slow glassy-like dynamics. The glassy phase
is characterized by non-universal exponents which depend on the percolation
probability and the disorder amplitude. F or example, in a supercritical …1 ‡1†-
dimensional DP process without quenched disorder the boundaries of a cluster
propagate at constant average velocity v. However, in the glassy phase v decays
algebraically with time. The corresponding exponent turns out to vary continuously
with the mean percolation probability. The power-law behaviour is due to
‘blockades’ at certain sites where the local percolation probability is small (see
� gure 30). Similarly, in the subcritical edge of the glassy phase, the spreading agent
becomes localized at sites with high percolation probability. F or d > 1, however,
numerical simulations indicate that a glassy phase does not exist.

3.7.2. Temporally quenched disorder
Temporally quenched disorder is de� ned by the correlations

²… t†²… t 0† ˆ ® …̄ t ¡ t 0†: …190†

In this case the additional term is a relevant perturbation which scales as
»² ! L¡z=2¡À»². Therefore, we expect the critical behaviour and the associated
critical exponents to change entirely. In the � eld-theoretic formulation this
corresponds to adding a term of the form

S ! S ‡®

…
dt

…
dd x ~¿¿

µ ¶2

: …191†

The in� uence of temporally quenched disorder was investigated in detail in [116].
Employing series expansion techniques it was demonstrated that the three exponents
 ;¸? ; ¸k vary continuously with the disorder strength. Thus the transition no longer
belongs to the D P universality class.

3.7.3. Spatio-temporally quenched disorder
F or spatio-temporally quenched disorder, the noise � eld ² is uncorrelated in both

space and time:

²…x; t†²…x 0 ; t 0† ˆ ®¯d…x ¡ x 0† …̄ t ¡ t 0†: …192†
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Figure 30. …1 ‡ 1†-dimensional DP with spatially quenched disorder. Left: in the glassy
phase quenched disorder forces active sites to percolate in narrow ‘channels’ where
the local percolation probability is high. Right: supercritical disordered DP process
starting from a single seed, leading to avalanches (marked by the arrows) where the
spreading agent overcomes a local barrier.



In Reggeon � eld theory, this would correspond to the addition of the term

S ! S ‡®

…
dd x dt‰ ~¿¿Š2 ; …193†

being an irrelevant perturbation. In fact, this noise has essentially the same properties
as the intrinsic noise and can be considered as being annealed. Spatio-temporally
quenched disorder is expected in systems where each time step takes place in a new
spatial environment of the system. Examples include water in porous media
subjected to a gravitational � eld as well as systems of � owing sand on an inclined
plane (see section 3.9.2). In these cases the critical behaviour of DP should remain
valid on large scales.

3.8. Related models
Directed percolation plays a role in various other contexts such as in coupled

map lattices, the problem of friendly walkers, real-valued spreading processes,
models with particle conservation, and even in systems with in� nitely absorbing
states. In the following we discuss some of these related models. Moreover, we
investigate the special case of compact directed percolation in more detail.

3.8.1. Spreading transitions in deterministic systems
Spreading transitions can also be observed in certain deterministic lattice models.

Instead of using random numbers, these models employ chaotic maps in order to
generate random behaviour. A simple example of such a chaotic map is given by

u… t ‡1† ˆ f…u… t†† ; f …x† ˆ
rx ; if 0 µ x < 1=2;

r…1 ¡ x† ; if 1=2 < x µ 1;

x ; if 1 < x µ r=2 ;

8
><
>:

…194†

where r is a free parameter. The chaotic motion of f for x µ 1 is governed by a tent
map of slope r. However, if r exceeds the value 2, the map eventually reaches an
absorbing state with x > 1, the so-called ‘laminar’ state of the model. In a coupled
map lattice [226] many of these local maps ui… t† are coupled by a di� usive interaction
of the form

ui… t ‡ 1† ˆ f…ui… t†† ‡D
2

‰ f…ui¡1… t†† ¡ 2f …ui… t†† ‡ f …ui‡1… t††Š; …195†

where D plays the role of a di� usion constant. The coupled map lattice evolves
deterministically by synchronous updates. By varying D it exhibits a non-equilibrium
phase transition from a ‘chaotic’ phase into a ‘laminar’ state. The existence of
absorbing states led Pomeau to the conjecture that the transition should belong to
the DP universality class [227], hoping that the apparent randomness of the chaotic
maps would e� ectively lead to stochastic spreading of activity on large scales.
However, subsequent numerical simulations did not agree with this conjecture
[228], in particular the exponents were found to depend on r. The non-universal
behaviour of spreading transitions in deterministic systems is caused by subtle
correlations emerging as artefacts of the deterministic update rule. For example, a
‘cluster’ of chaotic sites starting from a single active seed remains symmetric
throughout the whole temporal evolution, leading to a qualitatively di� erent
spreading behaviour (see � gure 31). The consequences of these correlations are
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not yet fully understood. However, replacing the synchronous dynamics of equation
(195) by asynchronous updates, the deterministic correlations are destroyed and the
resulting phase transition is indeed characterized by DP exponents [143]. Similar
transitions of two-dimensional coupled map lattices have been investigated in [229].

3.8.2. DP and the problem of ‘friendly walkers’
The so-called problem of ‘friendly walkers’ is de� ned as follows. Consider the

paths of m random walkers on a diagonal square lattice. All walks originate in site
…0 ;0† and end in site …x; t†. While travelling the walkers may share the same bonds
but they are not allowed to cross each other (see � gure 32). In the partition sum
Z m…x; t† each possible con� guration of random walks is weighted by a factor pk ,
where p > 0 is a parameter and k denotes the number of bonds used by at least one
of the walkers. F or p < 1 it is therefore advantageous for the walkers to be ‘friendly’
to each other, i.e. to share the same bonds.

Some time ago, Arrowsmith and Essam [230] suggested a close relationship
between DP and the problem of friendly walkers. More precisely, they showed that
the partition function Z m…x; t† is related to the pair-connectedness function c…x; t† of
a directed bond percolation process by [231]

c…x; t† ˆ lim
m!0

Z m…x; t† ; …196†
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Figure 31. Spreading process in a coupled map lattice for r ˆ 3 and D ˆ 0:57. Chaotic and
laminar sites are represented by black and white pixels, respectively. Deterministic
synchronous updates lead to symmetric clusters (left) with non-universal behaviour.
Asynchronous updates (right) destroy these correlations, leading to typical DP
clusters.

mn m-n

(x,t)=(0,4)

m

(0,0)

... ...

Figure 32. The problem of friendly walkers on a diagonal square lattice. Left: a particular
realization of three random walkers travelling from the origin …0;0† to the site …0;4†.
R ight: all m ‡ 1 realizations of m random walkers travelling from …0;0† to …0;2†.



where p is the usual percolation probability. Here the limit m ! 0 has to be
performed as a suitable continuation of polynomial expressions. For example, let
us consider m friendly random walkers travelling from the origin …0 ;0† to the point
…x; t† ˆ …0 ;2† (see right part of � gure 32). There are m ‡1 possible con� gurations;
two of them use only two bonds while the others use four bonds. Hence the partition
function is given by Z m…0 ;2† ˆ …m ¡ 1†p4 ‡2p2. Inserting m ˆ 0 we obtain
Z 0…0;2† ˆ 2p2 ¡ p4. In fact, this expression is exactly equal to the pair connectedness
function c…0 ;2† in a directed bond percolation process. This equivalence holds for
any …x; t† and also in higher dimensions. Recently this result has been generalized to
friendly walkers with arbitrary interactions [232].

The problem of friendly walkers may also be interpreted as a � ow of integer
numbers on a diagonal square lattice. At the origin there is a source creating an
integer number m. While travelling on the directed lattice, this integer number may
split up into several parts. Finally there is a sink where all integers merge into a single
one and disappear. Clearly, the integers represent just the number of friendly walkers
sharing the same bond.

Even more remarkably, it has been shown that DP is related to the partition sum
of a chiral Potts model [230, 231, 233], generalizing the well-known result of Fortuin
and Kasteleyn for isotropic percolation [234]. However, since the de� nition of the
chiral Potts model is rather cumbersome, this relation is not of immediate practical
bene� t.

3.8.3. DP with real-valued degrees of freedom
DP models are usually de� ned in terms of discrete local variables si ˆ 0;1

representing inactive and active sites. An interesting variant of DP is ‘self-organized
directed percolation’, where real-valued local degrees of freedom are used [235- 238].
To understand the basic mechanism, let us consider directed bond percolation.
Clearly, a given path between two sites is conducting if all bonds along the path are
open, i.e. all random numbers generated along the path have to be larger than p.
Thus, in order to � nd out whether a path is conducting, it is only necessary to keep
track of the smallest random number generated along this path. This number may be
considered as the weight of the path, being a measure of its weakest link. However, a
pair of sites can be connected by many di� erent paths. F or the target site to become
active, at least one of these paths has to be conducting. Therefore, two sites are
connected if the max imum of all weights is larger than p.

Interestingly, the maximal weight can be computed by a local update rule which
is de� ned in terms of real-valued degrees of freedom x i… t† 2 ‰0 ;1Š. Starting with the
initial condition x i…0† ˆ 0 the system evolves according to

x i… t ‡1† ˆ min …max…z¡
i ;x i¡1… t†† ;max…z‡

i ;x i¡1… t††† ; …197†
where we used the notation of equation (80). A typical spatial con� guration of a
…1 ‡1†-dimensional chain after 104 updates is shown in � gure 33. Using this update
rule, the binary state si… t† of the corresponding directed bond percolation process
can be retrieved by the projection

si… t† ˆ Y… p ¡ x i… t†† ; …198†
where Y denotes the heaviside step function. Remarkably, the update rule (197) does
not involve the percolation probability p. Instead, it processes all values of p at once
until a particular value of p is selected by application of the projection rule (198).
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Thus, ‘self-organized directed percolation’ can be used as a tool for very e� cient o� -
critical simulations.

3.8.4. Spreading process with particle conservation
Recently Bröker and Grassberger [239] introduced another interesting ‘self-

organized’ variant of DP which is motivated as follows. A gardener takes care of
N plants in a � owerbed. The � owers are seized with a parasite. Once a plant is
struck, it perishes irreversibly. Moreover, the parasite may spread to neighbouring
plants. However, if the number of befallen plants exceeds a certain number, the
gardener replaces one of them, keeping the number of infected plants constant. In
more technical terms, the number of active sites is conserved by means of a global
update rule. The update consists of two steps. At � rst one of the active sites activates
a randomly chosen neighbour, modelling the spreading of the parasite. If this move
was successful, another randomly chosen active site is deactivated, representing the
global control of the gardener. Clearly, the number of active sites M is conserved, i.e.
the model has no absorbing states.

The number of active sites M is speci� ed by the initial state. For example, we may
start with a compact domain of M active sites on an in� nite lattice. Initially,
spreading occurs only at the edges of the domain. As time proceeds, the distribution
of active sites becomes more and more sparse, forming a di� using cloud. Never-
theless, the cloud keeps its integrity and reaches a typical size after some time.
Amazingly, the dynamic processes in the interior of the cloud are those of an almost
critical DP process. In fact, as shown in [239], most properties of the cloud can be
explained in terms of DP scaling laws. Considering a small region in the interior of
the cloud, the relation to DP is quite obvious: the two processes for o� spring
production A ! 2A and self-destruction A ! é occur randomly in space, just as in a
contact process with random-sequential updates. However, the global control
adjusts the ratio of the e� ective rates and drives the system to criticality.

3.8.5. Branching Potts interfaces
Recently Cardy [240] studied a � eld-theory for branching interfaces between

ordered domains of a q-state Potts model. In two spatial dimensions these interfaces
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Figure 33. Self-organized directed percolation in 1 ‡ 1 dimensions. Left: spatial con� gur-
ation of the chain after 104 updates. The arrow indicates the percolation threshold
of directed bond percolation. Right: minimum value of all sites as a function of
time, approaching the percolation threshold of bond DP (dashed line).



are one-dimensional objects. F or q < qc they become fractal with a vanishing
interfacial tension at the critical point, while for q > qc the interfacial width diverges
at a � nite value of the tension, indicating a � rst-order transition. In a certain limit,
namely q ! ¡1, the model becomes equivalent to a DP process. Therefore, the
model provides a � eld theory of directed percolation that di� ers from the standard
� eld theory discussed in section 3.5. Although both � eld theories ‘intersect’ in one
dimension, they are completely di� erent. In particular, the loop expansion starts out
from di� erent critical dimensions, namely dc ˆ 4 for Reggeon � eld theory and dc ˆ 2
for branching Potts interfaces. Consequently, in the latter case the one-loop
estimates for the critical exponents in d ˆ 1 are much more accurate.

3.8.6. DP models with in� nitely many absorbing states
According to the DP conjecture, phase transitions into a single absorbing state

belong generically to the DP universality class. H owever, DP behaviour may also be
observed in models with several or even in� nitely many absorbing states. An
interesting example is the dimer- trimer model for heterogeneous catalysis introduced
by Köhler and ben Avraham [241]. This model generalizes the ZGB model and is
de� ned by the reaction scheme

é é ! AA

é é é ! BBB

AB ! é é

at rate p ;

at rate 1 ¡ p ;

at rate 1 ;

9
>=
>;

…199†

On an in� nite lattice this model has in� nitely many absorbing states. F or example,
con� gurations of dimers and trimers separated by single vacant sites are absorbing.
The dimer- trimer model displays a phase transition in 2 ‡ 1 dimensions. Initially,
the values of the critical exponents were found to be di� erent from those of DP.
Later re� ned simulations con� rmed, however, that the dimer model still belongs to
the DP universality class [242]. The same result was found in a similar model for
catalysis of dimers and monomers [243, 244]. Another important example is the pair
contact process without di� usion [245] which is de� ned by the reaction scheme

2A ! 3A ; 2A ! é : …200†

In this model solitary particles neither react nor di� use. Starting from random initial
conditions, the critical pair contact process evolves into certain frozen con� gura-
tions, as demonstrated in � gure 34. As can be seen, it is important that single
particles are not allowed to di� use. In fact, by adding di� usion of individual particles
the critical behaviour of the model changes entirely (see section 4.5).

In all models with in� nitely many absorbing states and non-conserved order
parameter the critical exponents  ;¸k ;¸? coincide with those of DP. This observa-
tion suggests an extension of the DP conjecture to systems with several absorbing
states which are characterized by a non-conserved single-component order
parameter [246]. However, it was realized that the dynamic exponents ¯ and ³
depend on the initial condition and even violate the usual DP hyperscaling
relation (120). Mendes et al. [129] resolved this problem by introducing the
generalized hyperscaling relation (100). However, the sum ¯ ‡³ is believed to be
independent of the initial condition.
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Recently Muñoz et al. proposed a Langevin equation for systems with in� nitely
many absorbing states [147]. It di� ers from the usual D P Langevin equation (139) by
an additional term:

@t¿…x ; t† ˆ µ¿…x; t† ¡ ¶¿2…x; t† ‡ Dr2¿…x; t† ‡ ±…x; t†

‡ ¬¿…x; t† exp ¡w
… t

0
dt 0¿…x; t 0†

µ ¶
: …201†

Here ¬ and w are certain constants (the noise correlations are assumed to be the
same as in equation (140)). This Langevin equation is non-M arkovian, i.e. it has a
temporal memory. The memory is local since the integral correlates � uctuations at
the same position in space. F rom the physical point of view, this memory encodes the
local realization of the absorbing state. As can be seen in � gure 34, the emerging
inactive domains have a highly inhomogeneous structure which can be regarded as a
� ngerprint of the history of the spreading process. A detailed numerical analysis of
the Langevin equation (201) con� rmed that the exponenets  , ¸k and ¸? do belong to
the DP class while ¯ and ³ vary with the density of the initial state [247]. In order to
explain the apparent non-universality of the spreading exponents, Grassberger et al.
developed a simple toy model that grasps the main properties of such spreading
processes [248]. In this toy model the spreading rate at a given site changes
irreversibly at the � rst encounter with the spreading agent. Although the model
does not involve multiple absorbing states, it displays similar ‘non-universal’
properties.

Another important example for systems with in� nitely many absorbing states is
damage spreading where two copies of a stochastic system evolve under the same
realization of thermal noise. The concept of damage spreading will be discussed in
detail in section 5.

3.8.7. Epidemic processes with immunization
As we have seen in section , epidemic models without immunization belong

generically to the DP universality class. In most cases, however, an infected
individual becomes increasingly immune after recovery, i.e. the susceptibility for a
new infection decreases. Cardy and G rassberger showed that epidemic models with
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Figure 34. The pair contact process 2A ! 3A , 2A ! é at criticality.



immunization are in the same universality class as dynamic percolation [249, 250]. It
is important to note that dynamic percolation di� ers signi� cantly from directed
percolation. For example, let us consider a spreading process with immunization in
2 ‡1 dimensions starting from an initial state where all sites are equally susceptible
for infections. If a single site in the centre is infected, there is a � nite probability that
the disease will spread. However, since infected sites become increasingly immune, a
more or less irregular front of activity moves away from the origin, leaving behind a
certain cluster of immune sites (see � gure 35). The morphology of this cluster
depends on the percolation parameter. In the supercritical case there is a � nite
probability that the front moves to in� nity, whereas in the subcritical regime the
process stops after some time. At crit icality it turns out that the generated cluster has
the same asymptotic properties as critical clusters of isotropic percolation [109]
(cf. left part of � gure 10). Thus, dynamic percolation can be used as a tool to
generate isotropic percolation clusters and should not be confused with directed
percolation. In particular, the critical exponents turn out to be di� erent in both
cases. Interestingly, even a small degree of immunization su� ces for a …2 ‡ 1†-
dimensional epidemic process to cross over from directed to dynamic percolation
(together with a shift of the crit ical point). A renormalized � eld theory of dynamic
percolation was studied in [251].

3.8.8. Compact directed percolation
Let us � nally come back to compact directed percolation (CDP) [117] which

characterizes the critical behaviour of the DK model at the upper terminal point of
the phase transition line p1 ˆ 1=2, p2 ˆ 1 (see � gure 14). The case p2 ˆ 1 is special
because there are two symmetric absorbing states, namely the dry state
s1 ˆ . . . ˆ sN ˆ 0 and the entirely wet state s1 ˆ . . . ˆ sN ˆ 1. In contrast to DP,
CDP has a global Z 2 symmetry

si ! 1 ¡ si ; p1 ! 1 ¡ p1: …202†
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Figure 35. Snapshot of a critical epidemic process with immunization grown from a single
seed after 200 time steps. Active and immune sites are represented by bold and thin
dots, respectively. A zone of activity propagates outwards, leaving a cluster of
immune sites behind. The resulting cluster belongs to the universality class of
isotropic percolation.



Since wet sites cannot spontaneously become dry, compact islands of active sites are
formed. In 1 ‡ 1 dimensions CDP is fully equivalent to a zero temperature Ising
model with Glauber dynamics or the voter model [252]. Expressing the dynamic
processes in terms of kinks X between wet and dry domains, the kinks perform an
annihilating random walk X ‡X ! é . Therefore, …1 ‡ 1†-dimensional CDP is
exactly solvable [113]. The corresponding critical exponents are given by

 ˆ 0 ;  0 ˆ 1 ; ¸k ˆ 2 ; ¸? ˆ 1 ;

¯ ˆ 1=2 ; ³ ˆ 0 ; ~z ˆ 1:

ª
…203†

It should be noted that these exponents do not comply with the usual DP
hyperscaling relation (120). However, as pointed out in [253], they satisfy the
generalized hyperscaling relation (100). In fact, as can be veri� ed easily, for CDP
the backbone of a two-point function (see section 3.5) is no longer statistically
invariant under time reversal.

Because of the vanishing exponent  , the CDP transition is discontinuous . In fact,
for p1 < 1=2, p2 ˆ 1 the empty lattice is a stable stationary state while for p1 > 1=2
the fully occupied lattice is stable. Various spreading models display a crossover from
CDP to DP. In these models, the rate for the reaction A ! é is very small.
Therefore, clusters appear to be compact on small scales. On larger scales, however,
clusters break up into several active branches, leading to DP behaviour in the
asymptotic limit. This type of crossover has been studied in detail in [254- 257] and
may also play a role in experiments of � owing granular matter (see section 3.9.2).

3.9. Experimental realizations of directed percolation
So far we have seen that directed percolation is the generic universality class for

non-equilibrium phase transitions into absorbing states. In fact, DP seems to be of
similar importance as the Ising model in equilibrium statistical mechanics. Despite
this success in theoretical statistical physics, the critical behaviour of D P, especially
the values of the critical exponents, have not yet been con� rmed experimentally. The
lack of experimental evidence is indeed surprising, especially since a large number of
possible experimental realizations have been suggested in the past. As Grassberger
emphasizes in a summary on open problems in D P [106]:

‘ . . . there is still no experiment where the critical behaviour of DP was seen.
This is a very strange situation in view of the vast and successive theoretical
e� orts made to understand it. Designing and performing such an experiment
has thus top priority in my list of open problems.’

What might be the reason for the apparent lack of experimental evidence? It seems
that the basic features of D P, which can easily be implemented on a computer, are
quite di� cult to realize in nature. One of these idealized assumptions is the existence
of an absorbing state. In real systems, however, a perfect non-� uctuating state
cannot be realized. F or example, a poisoned catalytic surface is not completely
frozen, instead it will always be a� ected by small � uctuations. Although these
� uctuations are strongly suppressed, they could still be strong enough to ‘soften’ the
transition, making it impossible to quantify the critical exponents.

Another reason might be the in� uence of quenched disorder due to spatial or
temporal inhomogeneities. In most experiments frozen randomness is expected to
play a signi� cant role. For example, a real catalytic surface is not fully homogeneous
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but characterized by certain defects leading to spatially quenched disorder. As has
been shown in section 3.7, this type of disorder may a� ect or even destroy the critical
behaviour of DP.

In the following we summarize some of the most important experimental
applications which have been proposed so far [258]. Other experimental applications
in systems of growing interfaces will be discussed in section 6.

3.9.1. Catalytic reactions
It is well known that under speci� c conditions certain catalytic reactions mimic

the microscopic rules of DP models. For example, as shown in � gure 17, the ZG B
model for the catalytic reaction CO + O ! CO2 on a platinum surface displays a
continuous transition at y ˆ y1 belonging to DP. In real catalytic reactions, however,
only the discontinuous transition at y ˆ y2 can be observed. F igure 36 shows the
reaction rates as functions of the CO pressure measured in a catalytic reaction on a
Pt(210) surface [259]. Although this experiment was designed in order to investigate
the technologically interesting regime of high activity close to the � rst-order phase
transition, the results clearly indicate that poisoning with oxygen does not occur.
Instead the reactivity increases almost linearly with the CO pressure. Similar results
were obtained for Pt(111) and for other catalytic materials. Thus, so far there is no
experimental evidence for DP transitions in catalytic reactions.

One may speculate why the DP transition is obscured or even destroyed under
experimental conditions. On the one hand, the reaction chain in the experiment is
much more complicated than in the ZGB model [260]. Moreover, the O-poisoned
system might not be a perfect absorbing state, i.e. the surface can still adsorb CO
molecules although it is already saturated. Another possibility is thermal (non-
reactive) desorption of oxygen, acting as an external � eld which drives the system
away from criticality [261] (cf. equation (116)). Finally, defects and inhomogeneities
of the catalytic material could lead to an e� ective (spatially quenched) disorder.

F or a long time the microscopic dynamics processes were di� cult to study
experimentally. However, in recent years novel techniques such as scanning
tunnelling microscopy (STM ) has led to an enormous progress in the understanding
of catalytic reactions, pointing at various unexpected subtleties. F or example, it was
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Figure 36. Left: the reaction rate on Pt(210) as a function of PCO (� gure reprinted from
[259]). R ight: STM image of a catalytic reaction on a Pt(111) crystal (� gure reprinted
from [260]).
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observed that reactions preferably take place at the perimeter of oxygen islands [262].
F urthermore, it was realized that adsorbed CO molecules on Pt(111) may form three
di� erent rotational patterns representing the c…4 £ 2† structure of CO on platinum,
i.e. there are several competing absorbing states [263]. Moreover, the STM technique
allows one to trace individual molecular reactions and to determine the correspond-
ing reaction rates. In addition, the in� uence of defects such as terraces on catalytic
reactions can be quanti� ed experimentally [264]. We may therefore expect consider-
able progress in the understanding of catalytic reactions in the near future.

3.9.2. Flowing granular matter
Recently it has been shown that simple systems of � owing sand on an inclined

plane, such as the experiments performed by Douady and Daerr [265, 266], could
serve as experimental realizations of DP [267]. In the Douady- Daerr experiment
glass beads with a diameter of 250- 425 mm are poured uniformly at the top of an
inclined plane covered by a rough velvet cloth (see � gure 37). As the beads � ow
down, a thin layer settles and remains immobile. Increasing the angle of inclination ¿
by D ¿ the layer becomes dynamically unstable, i.e. by locally perturbing the system
at the top of the plane an avalanche of � owing granular matter will be released.
In the experiment these avalanches have the shape of a fairly regular triangle with
an opening angle ³. As the increment D ’ decreases, the value of ³ decreases,
vanishing as

tan ³ ¹ … D ’†x …204†

with a certain critical exponent x . The experimental results suggest the value
x ˆ 1 [266].

In order to explain the experimentally observed triangular form of the ava-
lanches, Bouchaud et al. proposed a mean-� eld theory based on deterministic
equations, taking the actual local thickness of the � owing avalanche into
account [268]. This theory predicts the exponent x ˆ 1=2. Another explanation
assumes that � owing sand may be interpreted as a nearest-neighbour spreading
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Figure 37. Simpli� ed drawing of the Douady- Daerr experiment. Pouring sand on top of a
plane with inclination ¿, a thin layer settles and remains immobile. Perturbing the
layer locally with a stick we can release an avalanche of � owing.



process [267]. H ere the avalanche is considered as a cluster of active sites. Identifying
the vertical coordinate of the plane with time and the increment of inclination D ’
with p ¡ pc, the opening angle is expected to scale as

tan ³ ¹ ¹?=¹k ¹ … D ’†¸k ¡¸? ; …205†

where ¸k and ¸? are the scaling exponents of the spreading process under
consideration.

To support this scaling argument, a simple lattice model was introduced which
mimics the physics of � owing sand [267]. The model exhibits a transition from an
inactive to an active phase with avalanches whose compact shapes reproduce the
experimental observations. On laboratory scales the model predicts a transition
belonging to the universality class of compact directed percolation (see
equation (203)), implying that

x ˆ ¸k ¡ ¸? ˆ 1: …206†

The CDP behaviour, however, is only transient and crosses over to DP after a very
long time. Thus the Douady- Daerr experiment—performed on su� ciently large
scales—may serve as a physical realization of DP. Irregularities of the layer thickness
can be considered as spatio-temporally quenched disorder which is irrelevant on
large scales (see section 3.7). Thus, in contrast to catalytic reactions, the problem of
quenched disorder does not play a major role in this type of experiment.

The crossover from CDP to DP is very slow and presently not accessible in
experiments. To illustrate the crossover, two avalanches are plotted on di� erent
scales in � gure 38. The left one represents a typical avalanche within the � rst few
thousand time steps. As can be seen, the cluster appears to be compact. However, as
shown in the right panel of the � gure, the cluster breaks up into several branches
after a very long time. Recent experimental studies [269] con� rm that for high angles
of inclination critical avalanches do split up into several branches (see � gure 39). Yet
here the avalanches have no well-de� ned front, the propagation velocity of separate
branches rather depends on their thickness. It is therefore no longer possible to
interpret the vertical axis as a time coordinate. Another problem is the kinetic energy
of the grains. According to arguments by Dickman et al. [238], continuous phase
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transitions into absorbing states can only be observed if the inertia of particles can be
neglected.

F inally, it is not yet known how the spreading process depends on correlations in
the initial state. As shown in section 3.6.4, such long-range correlations may change
the values of certain dynamic critical exponents. However, recent studies of a
single rolling grain on an inclined rough plane [270] support that there are
presumably no long-range correlations due to a ‘memory’ of rolling grains. By
means of molecular dynamics simulations it was shown that the motion of a rolling
grain consists of many small bounces on each grain of the supporting layer.
Therefore, the rolling grain quickly dissipates almost all of the energy gain from
the previous step and thus forgets its history very fast. F or this reason it seems to
be unlikely that quenched disorder of the prepared layer involves long-range
correlations. Therefore, � owing granular matter seems to be a promising candidate
for an experimental realization of DP.

3.9.3. Porous media
DP is often motivated as a model for water percolating through a porous

medium in a gravitational � eld. Due to an external driving force, the � ow in the
medium is assumed to be strictly unidirectional, i.e. the water can only � ow
downwards (in contrast to the depinning models of section 6.2 where the water
can � ow forth and back). Although this application seems to be quite natural, it is
di� cult to realize experimentally. As shown in [271], porous media in nature are
highly irregular. By cutting sandstone into slices and digitizing the section images,
the porosity distribution and the local connectivity were measured and averaged over
99 samples. As expected, the pores have di� erent sizes and are distributed irregularly.
In addition, the percolation probability is found to depend on the local porosity and
the direction in space, i.e. sandstone is an anisotropic material. But there are even
more fundamental problems. On the one hand, water is a conserved quantity,
leading to unpredictable long-range correlations in the bulk. On the other hand,
water can always � ow against the gravity � eld by means of capillary forces.
Therefore, it is quite di� cult or even impossible to verify scaling laws in such
experiments and is not yet clear whether the relation to DP is meaningful or simply a
commonly accepted misconcept.
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Figure 39. Left: triangular avalanches in the Douady- Daerr experiment. Right: avalanches
splitting up into several branches for high angles of inclination (reprinted with kind
permission from A. Daerr).



3.9.4. Epidemics
Another frequently quoted application of D P is the spreading of epidemics

without immunization [101, 111]. In an epidemic process infection and recovery
resemble the reaction- di� usion scheme of DP (81). If the rate of infection is very
low, the infectious disease will disappear after some time. If infections occur more
frequently, the disease may spread and survive for a very long time. However,
spreading processes in nature are usually not homogeneous enough to reproduce the
critical behaviour of DP. Moreover, in many realistic spreading processes short-
range interactions are no longer appropriate. This situation emerges, for example,
when an infectious disease is transported by insects. Such long-range interactions
may be described by Lévy � ights, leading to continuously varying critical exponents
(see section 4.1).

3.9.5. Forest � res
A closely related problem is the spreading of forest � res [102, 134]. Tephany et al.

studied the propagation of � ame fronts on a random lattice both under quiescent
conditions and in a wind tunnel [272]. The experimental estimates of the critical
exponents at the spreading transition are in rough agreement with the predictions of
isotropic and directed percolation, respectively. H owever, the accuracy of these
experiments remains limited.

3.9.6. Calcium dynamics
DP transitions may also occur in certain kinetic models for the dynamics of

calcium ions in living cells. Ca2‡ ions play an important physiological role as second
messenger for various purposes ranging from hormonal release to the activation of
egg cells by fertilization [273, 274]. The cell uses nonlinear propagation of increasing
intracellular Ca2‡ concentration, so-called calcium waves, as a tool to transmit
signals over distances that are much longer than the di� usion length. F or example,
propagating Ca2‡ waves can be observed in the immature Xenopus laevis oocyte [275].
So far theoretical work focused mainly on deterministic reaction- di� usion equations
in the continuum, explaining various phenomena such as solitary and spiral
waves [276]. Recently improved models have been introduced which also take the
stochastic nature of calcium release into account [277]. As expected, the transition in
one of these models belongs to the DP universality class [278]. However, from the
experimental point of view it seems to be impossible to con� rm or disprove this
conjecture. On the one hand, the size of a living cell is only a few orders of magnitude
larger than the di� usion length, leading to strong � nite-size e� ects in the experiment.
On the other hand, inhomogeneities as well as internal structures of the cell lead to a
completely unpredictable form of quenched noise. Therefore, it seems to be
impossible to identify the universality class of the transition in such experiments.
It would be quite an achievement to � nd clear evidence for the very existence of a
phase transition between survival and extinction of propagating calcium waves.

3.9.7. Directed polymers
DP is also related to the problem of directed polymers [279]. In contrast to DP,

which is de� ned as a local process, the directed polymer problem selects directed
paths in a random medium by global optimization. U nder certain conditions, namely
a bimodal distribution of random numbers, both problems were shown to be closely
related [280]. More speci� cally, the roughness exponent of the optimal path in a

Non-equilibrium critical phenomena and phase transitions into absorbing states 899



directed polymer problem is predicted to cross over from the KPZ value 2/3 to the
DP value ¸k=¸? ’ 0:63 at the transition point. Directed polymers were used to
describe the propagation of cracks [281]. However, in such experiments it is usually
impossible to verify the tiny crossover from KPZ to D P.

3.9.8. Turbulence
F inally, DP has also been considered as a toy model for turbulence. As suggested

in [227], the front between turbulent and laminar � ow should exhibit the critical
behaviour of DP. For example, the velocity of the front should scale algebraically
with a combination of DP exponents. However, these predictions are based rather on
heuristic arguments than on rigorous results. In fact, in many respects turbulent
phenomena show a much richer behaviour than DP. Nevertheless there are certain
similarities between D P and turbulence. Therefore, the study of DP could be helpful
for a better understanding of turbulent phenomena.

3.9.9. Summary and outlook
Directed percolation has kept theoretical physicists fascinated for more than four

decades. Several reasons make directed percolation so appealing. F irst of all, D P is a
very simple model in terms of its dynamic rules. Nevertheless, the DP phase
transition turns out to be highly non-trivial. In fact, DP belongs to the very few
critical phenomena which have not yet been solved exactly in one spatial dimension.
Therefore, the critical exponents are not yet known analytically. High-precision
estimates indicate that they might be given by irrational rather than by simple
fractional values. Moreover, DP is extremely robust. It stands for a whole
universality class of phase transitions from a � uctuating phase into absorbing states.
In fact, a large variety of models display phase transitions belonging to the DP
universality class. Thus, on the theoretical level, DP plays the role of a standard
universality class similar to the Ising model in equilibrium statistical mechanics.

In spite of its simplicity, no experiment is known which con� rms the values of the
critical exponents quantitatively. An exception may be the wetting experiment
performed by Buldyrev et al. (see below in section 6.2), where the value of the
roughness exponent ¬ coincides with ¸?=¸k within less than 10% . However, since the
results of similar experiments are scattered over a wide range, further experimental
e� ort in this direction would be needed in order to con� rm the existence of DP in this
type of system.

Apart from the di� culties to realize a non-� uctuating absorbing state, a
fundamental problem of DP experiments is the emergence of quenched disorder
caused by inhomogeneities of the system. Depending on the type of disorder, even
weak inhomogeneities might obscure or even destroy the DP transition. Therefore,
the most promising experiments are those where quenched disorder is irrelevant on
large scales. This is the case, for example, in wetting experiments and systems of
� owing granular matter.

Although there is certainly a lack of experimental evidence, there is no reason to
believe that DP is a purely arti� cial model. To be optimistic, it is helpful to recall the
history of the Ising model, which was introduced almost one century ago. Although
the Ising model is probably the best studied system in equilibrium statistical
mechanics, there are only a few experiments in which the critical exponents have
been reproduced (for a review see [10]). For this reason, many physicists believe that
DP should have a counterpart in reality as well, mostly because of its simplicity and
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robustness. In this respect, Grassberger’s message remains valid: the experimental
realization of DP is an outstanding problem of top priority.

4. Other classes of spreading transitions
This section discusses various other types of non-equilibrium phase transitions

into absorbing states which do not belong to the universality class of directed
percolation. In particular we will address spreading processes with long-range
interactions and additional symmetries.

4.1. Long-range spreading processes
According to the DP conjecture (see section 3.3) phase transitions in spreading

models with short range interactions generically belong to the DP universality class.
In many realistic spreading processes, however, short-range interactions do not
appropriately describe the underlying transport mechanism. This situation
emerges, for example, if an infectious disease is transported by insects. Typically
the motion of the insects is not a random walk, one rather observes occasional � ights
over long distances before the next infection occurs. Similar phenomena are expected
when the spreading agent is subjected to a turbulent � ow. Intuitively it is clear that
occasional spreading over long distances will signi� cantly alter the spreading
properties. On a theoretical level such a super-di� usive transport may well be
described by Lévy � ights [104], i.e. by uncorrelated random moves over long
distances r which are algebraically distributed as

P…r† ¹ 1=rd‡¼ ; …¼ > 0†: …207†
The exponent ¼ is a free parameter that controls the characteristic shape of the
distribution. The algebraic tale leads to occasional long-distance � ights, as shown in
� gure 40.

Anomalous directed percolation, as originally proposed by Mollison [101] in
the context of epidemic spreading, is a generalization of DP in which the spreading
agent is transported by Lévy � ights. As in the case of ordinary DP, we expect
anomalous DP to be characterized by certain universal critical exponents  , ¸?
and ¸jj. The question is how these exponents depend on ¼, whether they are
independent from one another, and how they cross over to the exponents of ordinary
DP. Based on � eld-theoretic considerations, G rassberger [282] claimed that the
critical exponents of anomalous DP should depend continuously on the control
exponent ¼. Very recently this work has been considerably clari� ed and extended by
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Janssen et al. [283], who presented a comprehensive � eld-theoretic analysis of
anomalous spreading processes with and without immunization.

4.1.1. Anomalous directed percolation: � eld-theoretic predictions
In order to include long-range spreading in the Langevin equation (139), the

Laplacian has to be replaced by a non-local expression. This term can be written as
an integral that describes Lévy � ights over the distance r according to the probability
distribution P…r†:

@t¿…x; t† ˆ µ¿…x; t† ¡ ¶¿2…x; t† ‡ ±…x; t†

‡D
…

dd x 0P… jx ¡ x 0j† ¿…x 0 ; t† ¡ ¿…x; t†‰ Š: …208†

The two contributions in the integrand describe gain and loss processes, respectively.
Keeping the most relevant terms in a small momentum expansion [283], this
equation may be written as

@t¿…x; t† ˆ DN r2 ‡DAr¼
A ‡µ… †¿…x ; t† ¡ ¶¿2…x; t† ‡ ±…x; t† ; …209†

where the noise correlations are assumed to be the same as in equation (140). DN and
DA are the rates for normal and anomalous di� usion, respectively. The anomalous
di� usion operator r¼

A describes moves over long distances and is de� ned through its
action in momentum space

r¼
A exp … ik ¢ x† ˆ ¡k¼ exp … ik ¢ x† ; …210†

where k ˆ jkj. The standard di� usive term DN r2 takes the short-range component
of the Lévy distribution into account. N ote that even if this term were not initially
included, it would still be generated under renormalization of the theory. The mean-
� eld theory of anomalous DP is completely analogous to that of ordinary DP. For
¼ < 2 a scaling analysis yields the mean-� eld results

dc ˆ 2¼;  MF ˆ 1 ; ¸MF
? ˆ 1=¼; ¸MF

k ˆ 1: …211†

F or ¼ ¶ 2 these exponents cross over smoothly to the ordinary DP mean-� eld
exponents (124). The mean-� eld approximation is expected to be quantitatively
accurate above the upper critical dimension dc, while for d µ dc � uctuation e� ects
have to be taken into account. By using standard techniques one can derive the
e� ective action

S ‰¿; ~¿Š ˆ
…

dd x dt ~¿…@t ¡ µ ¡ DN r2 ¡ DAr¼
A†¿ ‡G

2
… ~¿¿2 ¡ ~¿2¿†

µ ¶
: …212†

This expression di� ers from the usual action of Reggeon � eld theory (142)- (143) by
the addition of a term representing anomalous di� usion. Simple power counting on
this action con� rms that the upper crit ical dimension is dc ˆ 2¼, below which
� uctuation e� ects become important. The � eld-theoretic RG calculation basically
follows the same lines as in the case of D P. The resulting critical exponents to one-
loop order in d ˆ 2¼ ¡ ° dimensions are given by
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 ˆ 1 ¡ 2°=7¼ ‡O…°2† ;

¸? ˆ 1=¼ ‡2°=7¼2 ‡O…°2† ;

¸jj ˆ 1 ‡ °=7¼ ‡O…°2†:

9
>>=
>>;

…213†

Moreover, it can be shown that the hyperscaling relation (120) holds for arbitrary
values of ¼. Thus, to one-loop order, ³ and ¯ are given by

³ ˆ °=7¼ ‡ O…°2† ; ¯ ˆ 1 ¡ 3°=7¼ ‡ O…°2†: …214†
F inally, since DA will not be renormalized, one can prove the additional exact scaling
relation

¸jj ¡ ¸?…¼ ¡ d† ¡ 2 ˆ 0: …215†

This equation implies that anomalous DP is described by two rather than three
independent critical exponents. M oreover, it has another surprising consequence.
Assuming that  , ¸? and ¸jj change continuously with ¼ and cross over smoothly, it
predicts for � xed d the value ¼c where the system should cross over to ordinary DP.
In order to compute ¼c we simply have to insert the numerically known values of the
DP exponents into equation (215). Surprisingly one obtains ¼c ˆ 2:076 6…2† in one,
¼c ’ 2:2 in two, and ¼c ˆ 2 ‡ °=12 in d ˆ 4 ¡ ° spatial dimensions. Thus, the
crossover takes place at ¼c > 2 which collides with the intuitive argument that the
anomalous di� usion operator r¼

A should only be relevant if ¼ < 2. But, as pointed
out in [283], this naive argument may be wrong in an interacting theory where the
critical behaviour is determined by a non-trivial � xed point of a RG transformation.
The � eld-theoretic calculation rather predicts anomalous di� usion to be relevant in
the range 2 µ ¼ < ¼c…d† for d < 4. The surprising conclusion would be that

r2
A 6ˆ r2 …216†

in certain interacting theories. Loosely speaking, the tendency to correlate particles
in local spots of activity makes a DP process more sensitive to long-range � ights.
Therefore, the relevance of Lévy � ights sets in earlier than in the case of simple
di� usion.

4.1.2. A lattice model for anomalous directed percolation
The � eld-theoretic predictions can be veri� ed numerically by studying a lattice

model for anomalous DP that generalizes directed bond percolation [284]. The
model is de� ned on a tilted square lattice and evolves by parallel updates. As usual, a
binary variable si… t† is attached to each lattice site i. si ˆ 1 means that the site is
active (infected) whereas si ˆ 0 denotes an inactive (healthy) site. The dynamic rules
depend on two parameters, namely the control exponent ¼ > 0 and the bond
probability 0 µ p µ 1. F or a given con� guration fsi… t†g at time t, the next
con� guration fsi… t ‡ 1†g is constructed as follows. F irst the new con� guration is
initialized by setting si… t ‡1† :ˆ 0. Then a loop over all active sites i in the previous
con� guration is executed. In the …1 ‡1†-dimensional case this loop consists of the
following steps.

(1) Generate two random numbers zL and zR from a � at distribution between 0
and 1.

(2) De� ne two real-valued spreading distances rL ˆ z¡1=¼
L and rR ˆ z¡1=¼

R , for
spreading to the left (L) and to the right (R). The corresponding integer
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spreading distances dL and dR are de� ned as the largest integer numbers that
are smaller than rL and rR , respectively.

(3) Generate two further random numbers yL and yR drawn from a � at
distribution between 0 and 1, and assign si‡1¡2dL… t ‡1† :ˆ 1 if yL < p and
si¡1‡2dR… t ‡1† :ˆ 1 if yR < p. In � nite systems the arithmetic operations in
the indices are carried out modulo N by assuming periodic boundary
conditions, i.e. si ² si§N .

This model includes two special cases. For ¼ ! 1 it reduces to ordinary directed
bond percolation (see section 3.1). On the other hand, for ¼ ! 0 the interaction
becomes totally random. In this case the mean-� eld approximation becomes exact
with a transition taking place at pc ˆ 1=2. In between, the spreading properties of the
model change drastically, as demonstrated in � gure 41. As can be veri� ed easily, the
assignment r ˆ z¡1=¼ reproduces the normalized probability distribution

P…r† ˆ ¼=r1‡¼ ; if r > 1 ;

0 ; if r µ 1:

©
…217†

As usual, the distribution has a lower cut-o� at rmin ˆ 1, representing the lattice
spacing. Yet, in contrast to other models [285, 286], no upper cut-o� is introduced.
In order to reduce � nite-size e� ects, the target site is determined by assuming
periodic boundary conditions, i.e. the particle may ‘revolve’ several times around
the system.

An interesting aspect of anomalous DP is the possibility to choose ¼ in such a
way that the critical dimension dc ˆ 2¼ approaches the actual physical dimension
where the simulations are performed. Even in one spatial dimension this allows the
one-loop results (213) to be veri� ed. F or example, if ¼ ˆ 1=2 ‡·, the critical
dimension of the system is dc ˆ 1 ‡2·. Hence the exponents in a …1 ‡1†-dimen-
sional system change to � rst order in · as

 ˆ 1 ¡ 8·=7 ‡O…·2† ;

¸? ˆ 2 ¡ 12·=7 ‡O…·2† ;

¸jj ˆ 1 ‡4·=7 ‡O…·2† ;

z ˆ 1=2 ‡5·=7 ‡O…·2† ;

¯ ˆ 1 ¡ 12·=7 ‡ O…·2† ;

³ ˆ 4·=7 ‡ O…·2†:

9
>=
>;

…218†
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Figure 41. Critical anomalous directed percolation in 1 ‡ 1 dimensions for di� erent values
of ¼. The � gure shows typical clusters starting in the centre of the lattice. The case
¼ ˆ 1 corresponds to ordinary DP. As ¼ decreases, spatial structures become more
and more smeared out until in the mean-� eld limit ¼ ˆ 1=2 the particles appear to be
randomly distributed over the whole system. For small values of ¼ the system quickly
reaches the absorbing state due to extremely strong � nite size e� ects.



In � gure 42, the predicted initial slopes are indicated by solid lines. Clearly they are
in fair agreement with the numerical estimates, con� rming the � eld-theoretic results
of equation (213). This is one of the rare cases where we can directly ‘see’ the � eld-
theoretic results in the simulation data.

4.1.3. Anomalous annihilation process
The more simple case of anomalous pair annihilation A ‡A ! é with long-

range hopping [287] can be solved exactly by a similar � eld-theoretic analysis. In the
ordinary annihilation process [44] with short-range interactions, the average particle
density is known to decay as in equation (37). The Lévy-� ight case may be described
theoretically by inserting an additional operator r¼

A into the � eld-theoretic action
for pair annihilation [44]. The resulting action, which can also be derived
systematically [284], reads

S ‰¿; ~¿Š ˆ
…

ddx dt ~¿…@t ¡ DN r2 ¡ DAr¼
A†¿ ‡2¶ ~¿¿2 ‡¶ ~¿2¿2 ¡ ¿0 ~¿ …̄ t†

7 7
; …219†

where ¿0 represents the initial (homogeneous) density at t ˆ 0. An analysis of this
action follows very closely that of [44]. F or ¼ < 2, power counting reveals the upper
critical dimension of the model to be dc ˆ ¼ < 2. For d > dc mean-� eld theory is
expected to be quantitatively accurate, with an asymptotic density decay ¹ t¡1.
Below dc, however, the renormalized reaction rate � ows to an order ° ˆ ¼ ¡ d � xed
point. The decay of the density can therefore be predicted via dimensional arguments
(see � gure 43):

»… t† ¹
t¡d=¼ ; for d < ¼;
t¡1 ln t ; for d ˆ dc ˆ ¼;
t¡1 ; for d > ¼:

8
<

: …220†
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4.2. Absorbing-state transitions in systems with additional symmetries
As outlined previously, directed percolation is the canonical universality class for

phase transitions into a single absorbing state. According to the D P conjecture, we
may therefore expect non-DP behaviour to occur in systems with several absorbing
states. However, it is important to note that the existence of several absorbing states
alone does not automatically lead to non-DP behaviour at the transition point. As
we have seen in section 3.8.6, even models with in� nitely many absorbing states may
still belong to the DP universality class. Non-D P critical behaviour emerges only if
there is a symmetry among di� erent absorbing states.

The � rst examples of non-DP transitions into absorbing states were discovered
by Grassberger et al. [288, 289] who observed ‘a new type of kinetic critical
phenomenon’ in certain one-dimensional stochastic cellular automata. The density
exponent  ’ 0:6…2† in 1 ‡1 dimensions was found to di� er signi� cantly from the
usual DP exponent  ’ 0:277. Partially because of the complicated dynamic rules of
these models it took almost ten years until the mechanism behind this type of non-
DP behaviour was clearly identi� ed.

Up to now two universality classes of spreading transitions with non-DP
behaviour have been found, namely the so-called parity-conserving class (PC) and
Z 2-symmetric directed percolation (DP2). The PC class is represented most promi-
nently by branching-annihilating random walks with even number of o� spring
(BAWE) [290], where the number of particles is preserved modulo 2. The DP2 class,
on the other hand, which is also referred to as the directed Ising class, introduces two
symmetric absorbing states. As we will see below, both universality classes coincide
in one spatial dimension wherefore they are usually considered to be identical.
However, it is important to note that they di� er from each other in higher
dimensions.

One may speculate whether systems with a symmetry among several spreading
agents will also be able to display novel critical properties. However, such multi-

H. Hinrichsen906

0.5 1 1.5 2 2.5 3
s

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

a
(s

)
direct measurement
extrapolated exponents
fieldtheoretical result

Figure 43. Anomalous annihilation process. The graph shows direct and extrapolated
estimates for the decay exponent ¬, as a function of ¼. The solid line represents the
exact result (neglecting logarithmic corrections at ¼ ˆ 1).



colour spreading processes were found to belong to the DP class as well [291]. A
� eld-theoretic analysis con� rms this observation [292] and predicts that the
symmetry among the spreading agents may be spontaneously broken.

4.2.1. T he parity-conserving universality class
The parity-conserving universality class is represented most prominently by

branching annihilating walks with an even number of o� spring [290, 293- 297].
These non-conserved random walks are de� ned by the reaction- di� usion scheme

A !
¶

…n ‡1†A ; 2A !
¬

é ; …221†

where n ˆ 2 ;4 ;6 ; . . . denotes the number of o� spring. As an essential feature, this
process conserves the number of particles modulo 2. Early numerical studies in 1 ‡1
dimensions assumed instantaneous on-site annihilation ¬ ˆ 1. In this case the
model displays a continuous phase transition only for n ¶ 4 [293- 295], while there is
no such transition for n ˆ 2. Later Zhong and ben Avraham demonstrated that a
phase transition also emerges in the case of two o� spring, provided that the
annihilation rate ¬ is � nite [290]. Figure 44 shows a typical cluster grown from a
single seed. In contrast to DP, a PC process starting with an odd number of particles
cannot reach the empty state since at least one particle is left. Therefore, initial states
with even and odd numbers of particles are expected to lead to di� erent cluster
morphologies.

The relaxational properties of PC models in the subcritical phase di� er
signi� cantly from the standard DP behaviour. While the particle density in DP
models decays exponentially as »… t† ¹ exp …¡t=¹k†, in PC models it decays algebrai-
cally in the long-time limit. More precisely, the temporal evolution of PC processes
in the inactive phase is governed by the annihilation process 2A ! é . U nder RG
transformations we therefore expect the system to � ow towards the � xed point of
particle annihilation. Consequently, in the subcritical phase the particle density
decays algebraically as in equation (37).

A systematic � eld theory for PC models has been presented in [296, 297],
con� rming the existence of such an annihilation � xed point. However, the � eld-
theoretic treatment of the …1 ‡1†-dimensional case poses considerable di� culties.
They stem from the presence of two critical dimensions: dc ˆ 2, above which mean-
� eld theory applies, and d 0

c º 4=3, where for d > d 0
c (d < d 0

c ) the branching process is
relevant (irrelevant) at the annihilation � xed point. Therefore, the physically
interesting spatial dimension d ˆ 1 cannot be accessed by a controlled °-expansion
down from upper critical dimension dc ˆ 2. Nevertheless the usual scaling theory is
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Figure 44. The parity-conserving universality class. Typical space- time trajectories of a
branching annihilating random walk with two o� spring below, at and above the
critical point.



still valid below d 0
c . Currently the best numerical estimates of the critical exponents in

1 ‡1 dimensions are

 ˆ 0:92…2† ;

¸k ˆ 3:22…6† ;

¸? ˆ 1:83…3†:

¯ ‡³ ˆ 0:286…2† ;

2=z ˆ 1:15…1† ;

9
>>=
>>;

…222†

The actual values of ¯ and ³ in dynamic simulations depend on the initial condition.
If the process starts with a single particle, it will never stop, hence ¯ ˆ 0. On the other
hand, if the initial seed consists of two particles, one observes that the roles of ¯ and ³
are exchanged, i.e. ³ ˆ 0.

It has been customary to investigate whether the numerical estimates of the
critical exponents can be � tted by simple rational numbers. In fact, the estimates of
equation (222) are in good agreement with the rational values [295]  ˆ 12=13,
¸k ˆ 42=13, ¸? ˆ 24=13, ¯ ‡³ ˆ 2=7 and ~z ˆ 8=7. In particular,  =¸?, the exponent
for the decay of spatial correlations at criticality, should be equal to 1=2. In the past,
however, rational values were also proposed for the DP exponents and later
disproved by more accurate numerical estimates [298].

4.2.2. The DP2 universality class
The DP2 universality class describes phase transitions in spreading models with

two symmetric absorbing states. Since the two absorbing states compete with one
another, the resulting critical behaviour is di� erent from ordinary directed
percolation{. In various models, for example in certain cellular automata [288,
289] as well as in interacting monomer- dimer models [299- 302], the two absorbing
states emerge as checkerboard-like con� gurations of particles at even or odd
sites, respectively (see � gure 45). Other DP2 models explicitly introduce two
symmetric inactive states, as, for example, non-equilibrium Ising models [303,
304], Z 2-symmetric generalizations of the D K model and the contact process [263],
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{ Without symmetry, one of the two absorbing states will dominate so that the critical behaviou r
crosses over to DP after su� ciently long time.

Figure 45. Temporal evolution of the …1 ‡ 1†-dimensional interacting monomer- dimer
model of [299]. The two absorbing states emerge as alternating con� gurations with A
particles at even and odd sites, respectively.



monomer- monomer surface reaction models with two absorbing states [305], and
certain cellular automata [306]. Even in monomer- monomer models with three
absorbing states a D P2 transition emerges at certain points in the parameter
space [307, 308].

On a phenomenological level, spreading transitions with several absorbing states
may be de� ned by introducing a single active state A and n symmetric absorbing
states I1 ; . . . ;In which can be regarded as having di� erent colours. The system
evolves according to the following descriptive rules.

(1) Spreading of activity: active sites turn their inactive nearest neighbours into
the active state.

(2) Spontaneous recovery: active sites turn spontaneously into an inactive state
of a randomly chosen colour.

(3) Boundaries between inactive domains of di� erent colours are free to separate
again, leaving active sites in between.

Rules 1 and 2 resemble the usual infection and recovery processes of D P. Rule 3 is
new and distinguishes di� erent colours. Roughly speaking, this rule ensures that
inactive domains of di� erent colours cannot stick together irreversibly, rather they
will always be separated by � uctuating active ‘interfaces’. The symmetry under
global permutation of the colours ensures that absorbing domains of di� erent
colours compete with one another, leading to interesting critical behaviour.

F ollowing these descriptive rules, we can introduce a generalized version of the
Domany- Kinzel cellular automaton (see section 3.2.1) with n absorbing states [263].
It uses the same type of lattice and is de� ned by the conditional probabilities

P…Ik jIk ;Ik† ˆ 1 ;

P…A jA ;A† ˆ 1 ¡ nP…Ik jA ;A† ˆ p2 ;

P…A jIk ;A† ˆ P…A jA ;Ik† ˆ p1 ;

P…Ik jIk ;A† ˆ P…Ik jA ;Ik† ˆ 1 ¡ p1 ;

P…A jIk ;Il† ˆ 1 ;

9
>>>>>>>>=
>>>>>>>>;

…223†

where k ; l ˆ 1; . . . ;n and k 6ˆ l. Notice that rule 3 is implemented by transition
Ik I l ! A , ensuring that active sites are created between two inactive domains of
di� erent colours. F or n ˆ 1 the above model reduces to the original Domany- K inzel
model. F or n ˆ 2 it displays a DP2 phase transition at the critical threshold
p1;c ˆ p2 ;c ˆ 0:567 3…5†. Similarly it is possible to de� ne a generalized contact process
by the rates

wAA!AIk
ˆ wAA!Ik A ˆ 1=2n ;

wAIk !Ik Ik
ˆ wIk A!Ik Ik

ˆ 1=2 ;

wAIk !AA ˆ wIk A!AA ˆ ¶=2;

wIk Il!Ik A ˆ wIk Il !AIl
ˆ ¶=2 ;

9
>>>>>=
>>>>>;

…224†

Here the last equation implements rule 3. F or n ˆ 1 this model reduces to the usual
contact process introduced in section 3.2.2. For n ˆ 2 the model undergoes a DP2
transition at the critical point ¶c ˆ 1:592…5†. A typical evolution of the generalized
contact process in 1 ‡ 1 dimensions is shown in � gure 46. In the active phase ¶ > ¶c

small inactive islands of random colour are generated which survive only for a short
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time. Approaching the phase transition their size and lifetime grows while the density
of active sites decreases. N otice that according to rule 3 a thin � lm of active sites
separates di� erent inactive domains. As expected, the numerical estimates of the
critical exponents are in agreement with the PC exponents (222). Both models can
easily be generalized to higher dimensions. However, in higher dimensions the phase
transition is presumably characterized by mean-� eld behaviour. Similarly, increasing
the number of absorbing states does not lead to new universality classes. Simulations
with n ¶ 3 symmetric absorbing states in 1 ‡1 dimensions indicate that the system is
again described by mean-� eld exponents.

If the Z 2 symmetry of DP2 models is broken by an external � eld, the critical
behaviour at the transition crosses over to ordinary DP [137]. Roughly speaking the
external � eld favours one of the absorbing states so that pairs of kinks between
oppositely oriented inactive domains form bound ‘dipoles’ of a certain size.
Interpreting these dipoles as composite particles, they recombine and produce a
single o� spring at certain rates, resembling an ordinary D P process on large scales.

4.2.3. The di� erence between the PC and DP2 universality classes
In the DP2 class the ‘kinks’ between di� erently coloured domains may be

interpreted as branching-annihilating particles with even number of o� spring.
Although the number of active sites is generally not conserved modulo 2, we may
associate with each active island between di� erently coloured inactive domains a
particle X . Obviously, these particles perform an e� ective branching-annihilating
random walk X ! 3X ;2X ! é . Therefore, the DP2 class and the PC class coincide
in 1 ‡ 1 dimensions. However, it is important to note that they are di� erent in higher
dimensions. Active sites of PC models in d ¶ 2 dimensions can be considered as
branching-annihilating walkers, whereas DP2 models describe the dynamics of
branching-annihilating interfaces between oppositely oriented inactive domains
(see � gure 47). Therefore, the corresponding � eld theories are expected to be
di� erent. A � eld theory for the PC class was presented in [296, 297], whereas the
development of � eld theories for branching-annihilating interfaces started only
recently [240].

In order to understand the di� erence between PC and DP2, it is helpful to
consider two other universality classes which also coincide in 1 ‡1 dimensions,
namely the annihilation process A ‡A ! é and the voter model [252]. The voter
model is a two-state model with spins si ˆ §1. It evolves by random-sequential
updates ‡¡ ! ‡ ‡ = ¡ ¡ with equal rates. Interpreting ‡¡ kinks as particles A , the
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Figure 46. Simulation of the generalized contact process with n ˆ 2 absorbing states starting
from a random initial condition. The two di� erent types of inactive domains are
shown in black and grey. The active sites between the domains are represented by
white pixels.



voter model and the annihilation process coincide in 1 ‡1 dimensions. However, in
higher dimensions they are di� erent. In fact, even their Langevin equations turn out
to be di� erent. As shown in section 2.6, the Langevin equation of the annihilation
process reads

@t»…x; t† ˆ ¡¶»2…x; t† ‡Dr2»…x; t† ‡ ±…x; t† ;

h±…x; t†±…x 0
; t 0†i ˆ G»2…x; t†¯d…x ¡ x 0† …̄ t ¡ t 0† ;

)

…225†

where »…x; t† represents the coarse-grained density of A -particles. On the other hand,
the Langevin equation of the voter model [253] is given by

@t»…x; t† ˆ Dr2»…x; t† ‡ ±…x; t†

h±…x; t†±…x 0 ; t 0†i ˆ G»…x; t†‰1 ¡ »…x; t†Š¯d…x ¡ x 0† …̄ t ¡ t 0† ;

)

…226†

where »…x; t† 2 ‰0 ;1Š represents the local orientation of the domain. Obviously, the
two equations stand for di� erent universality classes.

4.2.4. DP2 surface critical behaviour
The in� uence of an absorbing wall in systems with a DP2 transition was studied

in [309]. Analysing the generalized Domany- Kinzel model (223) with two absorbing
states in a semi-in� nite geometry, it turned out that absorbing and re� ective
boundary conditions play complementary roles. Moreover, since  and  0 may be
di� erent in the DP2 class, one has to introduce two di� erent surface exponents  s

and  0
s . For absorbing boundary conditions the numerical estimates in a …1 ‡ 1†-

dimensional DP2 process are

 s ˆ 1:34…2† ;  0
s ˆ 2:06…2†: …227†

F or re� ecting boundary conditions the two values are simply exchanged. This
property is related to a duality transformation in parity-conserving processes [310].
It is quite remarkable that the two surface exponents seem to obey the scaling
relation

1
2…  s ‡  0

s† ˆ ¸k ¡ 1 …d ˆ 1† ; …228†

generalizing the conjecture  s ˆ ¸k ¡ 1 in the case of DP.
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Figure 47. Con� gurations of an almost critical PC (left) and a DP2 process (right) in d ˆ 2
dimensions.



4.3. Activated random walks
So far we considered non-equilibrium phase transitions where a parameter (e.g.

the percolation probability p) has to be tuned to criticality. Other systems with
conserved dynamics can be tuned to criticality by varying the particle density in the
initial state. An interesting example is the activated random walk of n particles [238].
In this model each site can be occupied with arbitrarily many particles. Sites with at
least two particles are active, i.e. their particles may move independently to randomly
selected neighbours. Sites with only one particle are frozen. On an in� nite lattice, this
model has in� nitely many absorbing states. The control parameter is the density of
particles. For a low density, the model quickly evolves into one of the absorbing
states, whereas it remains active for high particle densities. Near the transition, the
stationary density of active sites »stat scales as

»stat ¹ …± ¡ ±c† ; ± ˆ n=N ; …229†

with the critical point ±c ’ 0:9486 in 1 ‡1 dimensions [238]. H owever, unlike other
models with an in� nitely many absorbing state (see section 3.8.6) the transition does
not belong to the DP universality class. F or example, in 1 ‡1 dimensions the
measured exponent  ˆ 0:43…1† di� ers signi� cantly from the expected DP value
 DP ’ 0:277. Obviously, this deviation is due to the conservation law. Hence,
activated random walks provide a new universality class of phase transitions into
absorbing states, caused by an additional symmetry, namely particle conservation.

4.4. Absorbing phase transitions and self-organized criticality
In contrast to ordinary transitions into absorbing states, self-organized critical

systems exhibit long-range correlations and power laws without being tuned to a
certain critical point. In some sense the annihilation process A ‡A ! é (see
section 2.4) can be considered as a simple example of self-organized crit icality.
Without tuning of a parameter the annihilation process generates long-range
correlations with power-law characteristics. Like many other coarsening processes
and growth phenomena the driving mechanism is a stationary state which is
approached but never reached.

The term ‘self-organized criticality’ (SOC) refers to di� erent types of models that
are attracted to a stationary critical state without being tuned to a critical point. The
chief examples are the sandpile model [36] and the Bak- Sneppen model [311]. The
concept of SOC has been used to explain the large variety of power laws observed in
nature, for example 1=f noise, the distribution of earthquakes, and the dynamics of
� nancial markets, to name only a few [312]. F or more than one decade SOC was
considered as a quite separate � eld of theoretical statistical physics, being more or
less unrelated to conventional phase transitions with a tuning parameter. Recently, it
was pointed out [313- 315] that SOC is in fact closely related to ordinary phase
transitions into (in� nitely many) absorbing states (for a survey see [238]). More
precisely, two classes of SOC models have to be distinguished. The � rst class of SOC
models, exempli� ed by the Bak- Sneppen model, employs extremal dynamics. In this
case the site with an extremal value is selected for the next update, i.e. the dynamic
rules provide a mechanism of global supervision. In the second class, which is
represented by the sandpile model, the bulk dynamics is conserved. H ere a slow
driving force competes with the loss of particles at the system’s boundaries and
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drives the system to criticality. Hence the process of self-organization is character-
ized by a separation of time scales for avalanches and driving.

In the latter case, SOC is related to a conventional absorbing-state transition as
follows. As explained in [238], any system with conserved local dynamics and a
continuous absorbing-states transition can be converted into a SOC model by (1)
adding a process for increasing the density in in� nitesimal steps, and (2) implement-
ing a process for decreasing the density in� nitesimally while the system is active. For
example, let us consider the activated random walk. Adding a process for random
deposition of particles and a process for loss of particles during avalanches at the
boundaries, we obtain the so-called Manna sandpile model [316] which is known to
exhibit SOC. Using a deterministic variant of the same model, one obtains the
famous Bak- Tang- Wiesenfeld model [36]. However, in order to create a SOC
counterpart for directed percolation, a slightly di� erent recipe has to be used, as
demonstrated in [314, 317].

4.5. T he annihilation/� ssion process
As shown in section 2.6, the in� uence of � uctuations in …1 ‡ 1†-dimensional

systems can be very di� erent. In the annihilation process, for example, the particles
become anticorrelated, i.e. they try to be far away from each other. As shown in [43],
this type of � uctuation corresponds to ‘imaginary’ noise in the Langevin equation. In
a DP process, however, the particles are highly correlated and the noise turns out to
be real. Three years ago Howard and Täuber posed the question whether it is
possible to interpolate between real and imaginary noise. As a prototype of such a
transition, they considered the annihilation/� ssion process

2A ! 3A ; 2A ! é …230†
with di� usion of single particles. Note that this is a binary process, i.e. at least two
particles are required to meet at the same (or at neighbouring) sites in order to self-
destruct or to create o� spring. Moreover, there are no exceptional symmetries such
as parity conservation on the microscopic level. The model exhibits a non-equi-
librium phase transition between an active phase and two non-symmetric absorbing
states, namely the empty lattice and the state with only one di� using particle.
Performing a � eld-theoretic Howard and Täuber argued that this transition should
belong to an independent yet unknown universality class of phase transitions.

The annihilation/� ssion process may be interpreted as a pair contact process plus
di� usion of single particles. As a consequence, the static background shown in
� gure 34 begins to � uctuate. Since the decay of the particle density in the subcritical
phase is governed by the annihilation process 2A ! é , it is natural to expect that the
transition does not belong to the DP class. Similarly, the possibility of DP2 critical
behaviour seems to be unlikely since there is no parity conservation or Z 2-symmetry
in the system [163, 318]. Thus, the annihilation/� ssion process may represent a new
type of non-equilibrium critical phenomenon which has not yet been studied before.

4.6. T he Lipowski model
A particularly interesting model with a non-DP transition in d ˆ 2 spatial

dimensions has been introduced recently by Lipowski [319]. It has in� nitely many
absorbing states and is de� ned by extremely simple dynamic rules.

The model is de� ned as follows. The state of the system is speci� ed by real
numbers y ij 2 …0 ;1† which reside on the bonds of a d-dimensional square lattice (see
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� gure 48). Initially all these variables are randomly distributed between 0 and 1. The
model evolves by random sequential updates depending on a control parameter p
which plays the role of a percolation probability. F or each update attempt a site i is
selected at random. Its local ‘� eld’ hi is de� ned by the sum of the y variables of the
four connecting bonds. If hi > p the four variables are replaced by random numbers
drawn from a � at distribution between 0 and 1. Otherwise the update attempt is
abandoned. As usual in models with random-sequential dynamics, each update
attempt corresponds to a time increment of Dt ˆ 1=N , where N is the total number
of sites. A site is called ‘active’ if it is susceptible for a replacement, i.e. hi > p.
Measuring the density of active sites in a numerical simulation, the model displays a
continuous phase transition between a � uctuating active and a frozen phase. Clearly,
the model has in� nitely many absorbing states.

The Lipowski model poses a puzzle: in one dimension the static exponent 
coincides with the DP exponent  ’ 0:276. In two dimensions, however, the static
exponent  is found to be much smaller than the expected value 0:58. Surprisingly,
the measured value seems to coincide with the DP value in one dimension. Lipowski
argued that the model should provide a mechanism for dimensional reduction,
placing the two-dimensional critical phenomenon into a one-dimensional univers-
ality class. H owever, the observed coincidence may well be accidental. Moreover, it
is not obvious how such a mechanism should work. It is therefore an interesting open
question whether dimensional reduction can be observed in stochastic lattice models.

5. Damage spreading
One of the central problems of dynamic system theory is the dependence of the

system’s temporal evolution on the initial conditions. It is well known that nonlinear
systems with deterministic dynamics may be extremely sensitive to small perturba-
tions of the initial state. Even in simple systems such as in a periodically driven
pendulum, a small variation of the initial parameters can change the entire trajectory
completely. If the distance between two in� nitesimally di� erent trajectories diverges
during the temporal evolution, a dynamic system is said to exhibit chaotic behaviour.

H. Hinrichsen914

Figure 48. The Lipowski model. Each bond of a square lattice carries a weight between zero
and one. A plaquette of four bonds (hollow circles) is randomly selected. If the sum
of the four weights exceeds a certain threshold, they are replaced by four independent
random numbers between zero and one.



The notion of chaos has been introduced in the context of deterministic systems
where a trajectory is uniquely determined by the initial condition. In random
processes, however, trajectories are not uniquely determined; the time evolution of
such a system is not reproducible and therefore the usual de� nition of chaotic
behaviour does not apply. Nevertheless, one may pose the question how the system
responds to changes in the initial condition. It would be interesting to know, for
example, how the biological evolution on earth would have been a� ected if the initial
conditions were slightly di� erent. In order to address this question, Kau� man
introduced the concept of damage spreading (DS) [320, 321]. In damage spreading
simulations [322] two copies (replicas) S ;S 0 of a stochastic model evolve simul-
taneously. Initially the two copies di� er only on a small number of sites. This
di� erence is considered as a small perturbation (damage) in one of the two systems.
Moreover, it is assumed that the replicas evolve under identical realizations of
thermal noise, i.e. both copies use the same sequence of random numbers in the
simulation. If the number of sites in di� erent states, the so-called Hamming distance

D… t† ˆ
X

i

Di… t† ˆ
X

i

1 ¡ ¯si…t† ;s 0
i …t† …231†

does not go to zero in the long-time limit, damage is said to spread, indicating high
sensitivity with respect to the initial condition. Otherwise, if D… t† vanishes, damage is
said to heal, indicating a weak in� uence of the initial condition. In order to get
statistically meaningful results, the Hamming distance has to be averaged over many
realizations of randomness.

Damage spreading � rst appeared in physics literature in the mid eighties [323-
327] and attracted considerable interest and attention. The main reason behind this
initial enthusiasm was the hope that damage may spread in some regions of a
system’s parameter space and disappear elsewhere, indicating the existence of chaotic
and regular phases in stochastic systems. The initial enthusiasm abated during
subsequent years, the main reason being an apparent lack of an objective measure
whether damage does or does not spread in a given system. More precisely, it was
realized that the location of the phase boundaries may depend on details of the
algorithmic implementation. However, if spreading or healing of damage indicated
some intrinsic property of the system, one would not expect the result to depend on
details of the algorithm used to generate its dynamics. Meanwhile D S has been
applied to a large variety of models (see table 3). In view of the vast literature on DS
simulations, it is therefore necessary to carefully analyse the conceptual problems of
this technique.

In the following we discuss several aspects of D S. F irst we present a simple
example in order to explain how a DS simulation depends on the algorithmic
implementation. F rom a more mathematical point of view, this phenomenon can
also be understood by analysing the joint master equation of the two replicas.
Because of their algorithmic dependence, DS simulations are ambiguous and cannot
be used as a criterion for ‘chaotic’ and regular phases. However, to some extent the
ambiguity of DS can be overcome by an algorithm-independent de� nition of DS
phases. In this approach the entire family of physically legitimate algorithms for a
given dynamic system is considered as a whole. F urthermore, we summarize what is
known about the universal properties of DS transitions. Finally we discuss several
applications of DS simulations.
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5.1. Damage spreading phases
5.1.1. Algorithmic dependence of damage spreading simulations

The conceptual problem of DS was � rst discovered in the Domany- Kinzel
cellular automaton (cf. � gure 14). Martins et al. [366] observed that in a certain
region of the active phase damage spreads and heals elsewhere. Subsequently several
other authors determined the boundary of this region with increasing accuracy [114,
367- 369]. Independently, mean-� eld type approximations of varying complexity
con� rmed the existence of this ‘chaotic phase’ [368, 370- 372]. Its boundary, however,
was shown to depend on the manner in which the dynamic procedure of the DK
model is implemented on a computer [370, 371], while the evolution of a single
replica is completely insensitive to the algorithmic implementation. This prompted
Grassberger [369] to observe that

‘it is misleading to speak of di� erent phases in the DK automaton,
. . . instead these are di� erent phases for very speci� c algorithms for
simulating pairs of such automata’.

To understand the algorithmic dependence of DS simulations, let us consider a much
simpler system, namely the Ising model. In this context it is important to note that
there are di� erent levels of variety in stochastic lattice models (see � gure 49). As
explained in section 2.10, the equilibrium ensemble of the Ising model can be
generated by various di� erent dynamic rules. F or example, heat bath and M etropolis
dynamics represent two di� erent dynamic systems which have the same stationary
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Table 3. Some applications of damage spreading.

Ref.

Equilibrium models
Ising ferromagnet [325, 326, 328- 331]
Heisenberg model [332]
XY model [333]
Potts and Ashkin- Teller models [334- 336]
discrete N -vector ferromagnets [337]
spin glasses [338- 345]
Ising model with microcanonical constraints [346]
diluted Ising model [347, 348]
Ising model in quenched random � elds [349]
Frustrated Ising systems [350]
Layered Ising systems [351]

Non-equilibrium models
Kauffman model [320, 321, 352, 353]
The game of life [354, 355]
ZGB model [356]
Ohta- Jasnov- Kawasaki and Ginzburg- Landau model [357]
Irreversible reaction- diffusion processes [358, 359]
Models for surface reactions [360]
Restricted solid on solid growth models [361]
Models of the PC class [362]
SOC models [363]
Travelling salesman problem [364]
Boolean random networks [365]



state. Initially it was hoped that DS would not depend on the intrinsic dynamics,
allowing regular and chaotic phases to be identi� ed as equilibrium properties [325-
327]. However, later it was realized that di� erent dynamic procedures (such as
Glauber versus Metropolis [328, 331], Q2R [329], or Kawasaki dynamics [330])
exhibit di� erent DS properties. Yet, this is not surprising since the dynamic rules,
although generating the same equilibrium ensemble, represent di� erent dynamic
systems. Since D S is a dynamic phenomenon it is quite natural that it depends on the
dynamics under consideration. Similarly, it is not surprising that DS depends on the
type of updates [373, 374] and the interaction range [375].

The real conceptual problem of D S occurs at the second level in � gure 49: on a
computer each dynamic rule can be realized by several algorithms. Regarding a
single system, these algorithms are fully equivalent and cannot be distinguished.
However, in DS simulations they lead to di� erent results. To understand this
apparent paradox, let us consider the Ising model with spin-orienting (standard
heat bath) and spin-� ipping (Glauber) dynamics. Both algorithmic prescriptions
represent the same dynamic rule which mimics the contact of the Ising model with a
thermal reservoir by means of local spin dynamics. More precisely, an observer of a
single system who analyses the trajectories would be unable to decide whether its
temporal evolution was generated by standard heat bath or Glauber dynamics. This
can already be seen in the example of a single-spin Ising model at in� nite
temperature. Since in this case the spin ¼… t† ˆ §1 changes randomly in time, the
transition rates are simply given by w¡1!‡1 ˆ w‡1!¡1 ˆ 1. These transition
probabilities de� ne our dynamic system. However, this system can be realized by
two di� erent algorithms, namely by spin-orienting updates (standard heat bath
dynamics)

z=rnd(0,1);

if (z<0.5) ¼… t ‡dt†=1; else ¼… t ‡dt)=-1;

and by spin-� ipping updates (Glauber dynamics)

z=rnd(0,1);

if (z<0.5) ¼… t ‡dt† ˆ ¡¼… t†; else ¼… t ‡dt† ˆ ¼… t†.

It is obvious that both procedures are fully equivalent on a single replica, i.e. an
observer would be unable to decide which of the two algorithms has been used. The
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Figure 49. The thermodynamic ensemble of an equilibrium model (left) may be generated
by di� erent dynamic procedures (centre) that are characterized by speci� c transition
probabilities. Each of these dynamic procedures in turn can be realized by di� erent
algorithms (right). These algorithms are fully equivalent and cannot be distinguished
by an observer of a single system. However, their damage spreading properties turn
out to be di� erent (see text).



di� erence between the two algorithms may become evident only if we observe the
evolution of two replicas S and S 0 of the system in a DS simulation: For spin-
orienting updates an initial ‘damage’ ¼…0† ˆ ¡¼…0† 0 heals immediately while it is
preserved when spin-� ipping updates are used.

A similar algorithmic dependence can be observed in the full Ising model (58) at
� nite temperature. De� ning the transition probability (cf. equation (59))

pi… t† ˆ exp ‰hi… t†Š
exp ‰hi… t†Š ‡exp ‰¡hi… t†Š …232†

we may express the update rules of heat bath dynamics by

¼i… t ‡ 1† ˆ sign ‰ pi… t† ¡ zi… t†Š ; …233†

where zi… t† 2 …0 ;1† are equally distributed random numbers. The corresponding
update rule for Glauber dynamics is given by

¼i… t ‡ 1† ˆ ‡sign ‰ pi… t† ¡ zŠ; if ¼i… t† ˆ ‡1 ;

¡sign ‰1 ¡ pi… t† ¡ zŠ ; if ¼i… t† ˆ ¡1:

©
…234†

It is easy to verify that for given f¼i¡1… t† ;¼i… t† ;¼i‡1… t†g, the probability to get
¼i… t ‡1† ˆ ‡1 is the same in both cases. Hence, by observing the temporal evolution
of a single Ising system, one cannot tell which of the two methods was used to
generate the trajectory in con� guration space. The two algorithms can only be
distinguished when two copies are simulated in parallel, i.e. by studying damage
spreading.

Investigating the two-dimensional Ising model with Glauber dynamics, Stanley
et al. [326] and Mariz et al. [328] found that damage spreads in the disordered phase
T > T c and heals elsewhere. Performing more precise simulations, Grassberger [376]
realized that the DS transition occurs slightly below T c. This observation was also
supported by a mean-� eld theory [377]. Moreover, the critical point of the DS
transition was found to vary continuously when mixtures of Glauber and heat bath
dynamics are used [378]. Very similar properties are observed in the three-
dimensional Glauber model [376, 379- 381]. Turning to the Ising model with spin
orienting (standard heat bath) dynamics, it is possible to prove that damage does not
spread at any temperature in any dimension [327, 328].

5.1.2. The master equation of damage spreading simulations
In order to understand the algorithmic dependence of DS simulations from a

more fundamental point of view, let us consider two copies S 1 and S 2 of an arbitrary
non-equilibrium system with asynchronous dynamics (random-sequential updates).
Each of the two systems evolves according to a master equation with a given
Liouville operator L. The total system S ˆ …S 1 ;S 2† constitutes a new non-equi-
librium system that evolves according to a joint master equation with a certain
Liouville operator M. If both systems were using independent random numbers, M
would be given by the tensor product L « L. However, in DS simulations the use of
the same sequence of random numbers leads to non-trivial correlations between S 1

and S 2.
According to the de� nition of damage spreading, the Liouville operator M of the

total system …S 1 ;S 2† is restricted by certain physical constraints. On the one hand,
each replica is required to evolve according to its own natural dynamics. H ence, by

H. Hinrichsen918



integrating out the degrees of freedom of one of the replicas we obtain the Liouville
operator of the other system:

X

s1

hs1 ;s2jMjs 0
1 ; s 0

2i ˆ hs2jLjs 0
2i for all s2 ;s 0

1 ;s 0
2 ; …235†

X

s2

hs1 ;s2jMjs 0
1 ; s 0

2i ˆ hs1jLjs 0
1i for all s1 ;s 0

1 ;s 0
2: …236†

These restrictions already imply probability conservation for the total system. On the
other hand, the trajectories of the two replicas, once they have reached the same state
(no damage), have to be identical:

hs1 ;s2jMjs 0 ;s 0i ˆ hs1jLjs 0i¯s1 ;s2 : …237†

The ambiguity of damage spreading simulations is due to the fact that the
restrictions (235)- (237) do not fully determine the Liouville operator M of the total
system. This can easily be veri� ed by counting the degrees of freedom. For a system
with n con� gurations the restrictions determine less than 3n3 of the n4 matrix
elements of M so that damage spreading is ambiguous for n ¶ 3. But even in the
case of a single-spin Ising model with n ˆ 2 states one can show that only 14 of 24
equations are linearly independent so that two out of 16 matrix elements of M can
be chosen freely. The remaining degrees of freedom are the origin of the algorithmic
dependence of D S simulations. A similar ambiguity occurs in the joint transfer
matrix of models with parallel dynamics [382].

5.1.3. An algorithm-independent de� nition of damage spreading
In order to overcome these conceptual di� culties, let us consider the entire family

of dynamic procedures consistent with certain physically dictated constraints [382].
Then for any particular system one of the three possibilities may hold.

(1) Damage spreads for any member of the family of dynamic procedures.
(2) Damage heals for any member of this family.
(3) Damage spreads for a subset of the possible dynamic procedures, and heals

for the complementing subset.

Obviously this allows us to classify damage spreading properties in an algorithm-
independent manner. To this end we must, however, consider simultaneously the
entire set of possible algorithms (dynamic procedures) which are consistent with the
physics of the model under consideration. This set of physically ‘legitimate’ algor-
ithms may be de� ned by certain restrictions which are dictated by the dynamics of
the single evolving system.

(a) De� nition of DS: the dynamic rules for the evolution of the pair of replicas
are such that a single replica evolves according to its ‘natural’ dynamics.
Once both replicas have reached the same con� guration, their temporal
evolution will be identical.

(b) Interaction range: the transition probabilities for the combined system at site
i may depend only on those sites that a� ect the evolution of site i under the
dynamic rules of a single system.

(c) Symmetry: the rules that govern the evolution for the pair of systems do not
break any of the symmetries of the single-replica dynamics.
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The � rst restriction is simply a verbal formulation of equations (235)- (237). The
second condition tells us that the interaction range in the combined system of two
replicas must not exceed the interaction range of a single system. The third rule
implies, for example, that if there is a left-right symmetry in the evolution of a single
system, the same must hold for the pair of replicas. It can be shown that these
conditions su� ce to unambiguously determine a set of physically ‘legitimate’
algorithms. This was demonstrated for the one-dimensional Domany- Kinzel
model [382] for which the phase diagram in � gure 50 was found.

Clearly, the subjectivity in de� ning DS phases, as described before, has now been
shifted to selecting the restrictions de� ning which DS procedure is ‘legitimate’.
However, the speci� cation of such a family by means of physically motivated criteria
appears to be less arbitrary than choosing, at random, one out of a continuum of
physically equivalent update procedures. It should also be emphasized that the
algorithm-independent de� nition of DS phases does not mean that DS is re� ected in
the dynamic behaviour of a single system, so that Grassberger’s observation still
holds: DS is a property of a pair of stochastic systems.

5.2. Universality of damage spreading transitions
5.2.1. The DP conjecture for damage spreading

As can be seen in � gure 51, spreading of damage is in many respects similar to
spreading of activity in a DP process. As in DP damage spreads to nearest
neighbours and heals spontaneously. Once both copies have reached the same
con� guration (no damage), their evolution will be identical, i.e. they are con� ned
to some ‘absorbing’ subspace from where they cannot escape. In contrast to DP
the spreading process depends crucially on the actual evolution of the two replicas,
providing a � uctuating background in which the spreading process takes place.
Nevertheless DS follows the same spirit as the spreading of activity in a DP model.
This observation led Grassberger to the conjecture that damage spreading transi-
tions belong generically to the directed percolation universality class [369].
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Figure 50. Algorithm-independent damage spreading phases in the Domany- Kinzel model.
1: damage never spreads. 2: damage may spread, depending on the algorithm. 3:
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So far analytical support for this conjecture came from approximate mean-
� eld arguments [371] and an exact statement by Kohring and Schreckenberg [370],
who noted that on the p2 ˆ 0 line the dynamics of damage spreading in the
DK automaton is precisely identical to the evolution of the DK automaton itself,
hence on this line DS is trivially in the DP universality class. To prove this
statement, consider two replicas of S and S 0 of a DK automaton evolving according
to equation (83) with equal random numbers zi… t† ˆ z 0

i… t†. The probabilities
PD…Di ˆ 1jsi¡1 ;si‡1; s 0

i¡1 ;s 0
i‡1† to generate damage at site i are listed in table 4. For

p2 ˆ 0 they may be expressed as

PD…Di ˆ 1jsi¡1 ; si‡1; s 0
i¡1 ;s 0

i‡1† ˆ
p1 ; if si¡1 ˆ si‡1 and s 0

i¡1 6ˆ s 0
i‡1 ;

p1 ; if si¡1 6ˆ si‡1 and s 0
i¡1 ˆ s 0

i‡1 ;

0; otherwise

8
><
>:

…238†

or equivalently
PD…Di ˆ 1jsi¡1 ;si‡1; s 0

i¡1 ;s 0
i‡1† ˆ p1…1 ¡ ¯Di¡1 ;Di‡1†: …239†

Therefore, the damage variables Di… t† evolve precisely according to the probabilistic
rules of a single DK automaton. Hence for p2 ˆ 0 the DS transition belongs to the
DP universality class. This mapping of DS to DP was later extended to other regions
in the phase diagram of the DK model [382]. Although such an exact mapping is
usually not available for other models, various numerical simulations show that
most DS transitions are indeed characterized by DP exponents, supporting Grass-
berger’s conjecture. The same applies to deterministic cellular automata with chaotic
behaviour if a small noise is added [383].

Di� erent D S properties may be expected in models with cluster dynamics [384].
However, as pointed out in [385, 386], it is di� cult to extend the de� nition of ‘using
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F igure 51. Damage spreading in the …1 ‡ 1†-dimensional Domany- Kinzel cellular
automaton evolving in the stationary active state at p1 ˆ 0, p2 ˆ 0:313. An initial
damage is introduced at the lattice site in the centre.

Table 4. Probabilities PD…Di ˆ 1jsi¡1 ;si‡1; s 0
i¡1 ;s 0

i‡1† for the generation of
damage in the DK model.

¼ 0
i¡1 ;¼ 0

i‡1

¼ 0
i¡1 ; ¼ 0

i‡1 00 01 10 11

00 0 p1 p1 p2
01 p1 0 0 max… p1 ;p2†
10 p1 0 0 max… p1 ;p2†
11 p2 max… p1 ;p2† max… p1 ; p2† 0



the same random numbers’ to cluster algorithms since the number of clusters may
di� er on both replicas. This di� culty can be overcome by introducing a random
background � eld [387]. Assigning a local random number to each lattice site the new
orientation of a cluster depends on whether the sum of its random numbers are
positive or negative. Although cluster algorithms involve long-range correlations,
DS transitions still belong to the DP universality class unless they coincide with the
thermodynamic phase transition of the Ising system.

5.2.2. DS transitions with non-DP behaviour
The critical properties of a DS transition are expected to change if one of the four

conditions of the DP conjecture is violated. F or example, DS transitions in models
with frozen randomness (such as the K au� man model [320, 321]) do not belong to
the DP class. Non-D P behaviour is also expected when the DS order parameter
exhibits an additional Z 2 symmetry (cf. section 4.2). In the context of damage
spreading it is important to note that such a symmetry should be a property of the
DS order parameter, i.e. the Hamming distance. F or example, the Z 2 symmetry of
Ising systems is not su� cient— inverting all spins in both replicas does not change the
Hamming distance between the two con� gurations. Similarly, models with a non-DP
transition do not automatically exhibit non-DP damage spreading. For example,
Grassberger’s cellular automaton A, which has a DP2 phase transition, displays an
ordinary D S transition belonging to DP [362].

Non-DP behaviour at the DS transition can be observed in systems with a
symmetry between two ‘absorbing states’ of Di… t†, one without damage D ˆ 0 and
the other with full damage D ˆ 1. The simplest example of such a symmetry is the
Ising model with Glauber dynamics. In fact, if both replicas are in opposite states
(full damage), they will always evolve through opposite con� gurations. Unfortu-
nately, there is no DS transition in the one-dimensional Glauber model. However, by
exploiting the algorithmic freedom, it is possible to construct a modi� ed dynamic
rule which exhibits a DP transition [388]. This rule depends on a parameter ¶ and is
de� ned by

¼i… t ‡1† ˆ
‡sign … pi… t† ¡ z† ; if y ˆ 1 ;

¡sign …1 ¡ pi… t† ¡ z† ; if y ˆ ¡1 ;

(

y ˆ 1
2¼i‰…1 ‡ ¼i¡1… t†¼i‡1… t†† ‡…1 ¡ ¼i¡1… t†¼i‡1… t†† sign …¶ ¡ ~z†Š;

9
>>=
>>;

…240†

where z ; ~z 2 …0 ;1† are two independent random numbers. On a single replica this
update rule is fully equivalent to Glauber and heat bath dynamics for all 0 µ ¶ µ 1.
However, the e� ective rate for spreading of damage depends on ¶. F or � xed
temperature J =kBT ˆ 0:25, a DS transition with non-DP exponents occurs at the
critical value ¶¤ ˆ 0:82…1†. This example demonstrates that additional symmetries of
the DS order parameter may lead to non-DP behaviour at the D S transition. A
similar situation emerges in the non-equilibrium Ising model introduced by Ódor
and M enyhárd [362].

5.3. Applications of damage spreading
5.3.1. M easurement of critical exponents in equilibrium models

Damage spreading simulations can also be used to determine certain static and
dynamic properties of systems at thermal equilibrium. This application of DS was
� rst demonstrated by Coniglio et al. [389] who showed that there exists an exact
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relation between the H amming distance D and certain correlation functions. The
essential idea is to consider two copies S ;S 0 of an Ising model with spins ¼i ;¼

0
i ˆ §1

and introducing a small damage by keeping a single spin in one of the systems � xed
during the whole temporal evolution, say ¼ 0

0 ˆ ¡1. Since this perturbation breaks the
symmetry between the two copies, it is important to distinguish two di� erent types of
damage at site i, namely ¼i ˆ 1 ;¼ 0

i ˆ ¡1 and ¼i ˆ ¡1 ;¼ 0
i ˆ 1. The probabilities of

� nding these di� erent types of damage in the stationary state is given by

d‡¡ ˆ h…1 ¡ si†s 0
i i; d¡‡ ˆ hsi…1 ¡ si† 0i; …241†

where si ˆ 1
2…¼i ¡ 1† (see also [322]). Notice that these quantities can be understood

as two-point correlation functions between the two copies. However, their di� erence

Gi ˆ d‡¡
i ¡ d¡‡

i ˆ hsii ¡ hs 0
i i …242†

is a combination of one-point functions, i.e. by taking a certain combination of the
damage probabilities one obtains quantities that describe the properties of a single
system. Therefore, such quantities do not depend on the algorithmic implementa-
tion. In fact, using detailed balance and ergodicity one can prove that

Gi ˆ C0 ;i

2…1 ¡ m† ; …243†

where C0 ;i is the two-point correlation function and m the magnetization of the Ising
model at thermal equilibrium. This relation is exact and does not depend on the
speci� c algorithmic implementation used in the simulation. M oreover, it can be
shown by monotonicity arguments that for standard heat bath dynamics the total
damage D is related to the static susceptibility À by

À ˆ 2…1 ¡ m†
X

i

Gi: …244†

Thus, damage spreading simulations can be used to determine the static exponents 
and ¸ and the critical temperature of the Ising model (see [390- 392]). Similar
relations between Hamming distance and correlation functions were found in certain
lattice models with absorbing states [393].

DS is also used as a tool for accurate measurements of the dynamic exponent z at
the phase transition of equilibrium systems, provided that the thermodynamic
transition and the DS transition coincide [394, 395]. In this case the spreading
exponent z is not given by the DP exponent ¸k=¸?, instead it is expected to coincide
with the dynamic exponent z of the model under consideration. The knowledge of z
is important in order to estimate the critical slowing down of a given dynamic
system. In a series of papers the dynamic exponent of the Ising model with heat bath
dynamics has been measured in two [396- 400] and three dimensions [397, 399, 401,
402]. After an initial controversy, Grassberger [403] compared several simulation
methods and found the estimates z ˆ 2:172…6† in two and z ˆ 2:032…4† in three
dimensions. Later re� ned simulations con� rmed these results [404].

5.3.2. Identi� cation of domain walls in coarsening systems
Damage spreading techniques can also be used to identify domain walls in

coarsening systems. Coarsening phenomena [405] occur in various dynamic systems
as, for example, in the Ising model with Glauber dynamics. In the ordering phase,
starting with random initial conditions, patterns of ferromagnetic domains are
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formed whose typical size grows with time as t1=2. For zero temperature, these
domains are completely ordered and the domain walls can be identi� ed as bonds
between oppositely oriented spins. For non-zero temperature, however, it is di� cult
to de� ne domain walls as one has to distinguish between ‘true’ domains and islands
of the minority phase generated by thermal � uctuations. In order to identify
coarsening domains for 0 < T < T c, Derrida [217] proposed to compare two
identical copies evolving under the same thermal noise. One copy starts with random
initial conditions and begins to coarsen, whereas the other copy starts from a fully
magnetized state and remains ordered as time evolves. It is assumed that all spin � ips
occurring in ordered replica can be regarded as thermal � uctuations. Therefore,
when a spin � ip occurs simultaneously in both replicas, it can be considered as a
thermal � uctuation, while it is a signature of the coarsening process otherwise. This
method was used to determine the fraction of persistent spins of the Ising model [207]
as a function of time, con� rming that the persistence exponent does not change for
0 µ T < T c.

Since Derrida’s method allows only one type of domain to be detected, it is
impossible to identify the precise location of domain walls. This can be overcome by
comparing three replicas instead of two [219]. As before, the � rst copy starts with
random initial conditions and serves as the master copy in which the coarsening
process takes place. The other copies start from fully ordered initial conditions with
positive and negative magnetization, respectively. F luctuations in the � rst copy,
which do not occur in the other two replicas, indicate the presence of a domain wall.
More precisely, domain walls may be detected by the observable

Di… t† ˆ 1 ¡
Y

j

1 ‡ ¼
…1†
j … t†¼…2†

j … t†
2… † 1 ¡

Y

j

1 ‡ ¼
…1†
j … t†¼…3†

j … t†
2… †; …245†

where the superscripts denote the replica. As shown in � gure 52, this method works
surprisingly well. H owever, it turns out that the appearance depends on the
algorithmic implementation, i.e. Glauber and heat bath dynamics leads to di� erent
results. This is not surprising as the method relies on the same ideas as damage
spreading.
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5.4. Damage spreading and experiments
In this section we have seen that the concept of damage spreading depends on the

algorithmic implementation and therefore lacks a well-de� ned meaning. The
suggested algorithm-independent de� nition of DS resolves these di� culties only
partly, since it is based on certain (physically motivated) ad hoc assumptions.
Therefore, DS does not provide a strict de� nition of ‘chaotic’ and ‘regular’ phases
in stochastic systems. Nevertheless DS has been useful for estimating critical
exponents of certain non-equilibrium phase transitions and to identify domain walls
in a coarsening system at non-zero temperature. Concerning the question whether
DS is relevant for experiments, there is a clear answer: DS is an arti� cial concept
which does not exist in nature. In particular, there is no meaning of ‘using the same
sequence of random numbers’ in an experimental system. DS is rather a simulation
technique for a pair of systems, taking advantage of our ability to use deterministic
pseudo random number generators. It is indeed not surprising that such a concept,
for which there is no correspondence in nature, expresses its incompleteness by
certain inconsistencies.

6. Interface growth
A further important � eld of statistical physics is the study of crystal growth and

transitions between di� erent morphologies of moving interfaces [406]. During the
last two decades there has been an enormous progress in the understanding of
growth processes (for reviews see e.g. [33, 407- 409]). In this section we will focus on
certain classes of depinning transitions which are closely related to non-equilibrium
phase transitions into absorbing states.

6.1. Roughening transitions— a brief introduction
Models of growing interfaces may be realized either on a discrete lattice or by

continuum equations. Discrete solid-on-solid (SOS) models are usually de� ned on a
d-dimensional square lattice of N ˆ L d sites associated with integer variables hi

marking the actual height of the interface at site i. Clearly, this description does not
allow for overhangs of the interface. The set of all heights fhig determines the state
of the system which evolves according to certain stochastic rules for adsorption and
desorption. In restricted solid-on-solid models (RSOS) the dynamic rules satisfy the
additional constraint

jhi ¡ hi‡1j µ 1 ; …246†

i.e. adjacent sites may di� er by at most one height step. To characterize the
evolution of the interface, it is useful to introduce the mean height

-
h… t† and the

width w… t†:

-
h… t† ˆ 1

N

X

i

hi… t† ; w… t† ˆ
µ

1
N

X

i

h2
i … t† ¡… 1

N

X

i

hi… t††2¶1=2

: …247†

A surface is called ‘smooth’ if the heights hi are correlated over arbitrarily large
distances. Otherwise, if distant heights become uncorrelated, the surface is said to be
rough. A rough surface is typically characterized by a diverging width when the
system size is taken to in� nity.

In many cases growing interfaces exhibit simple scaling laws. In a � nite system,
starting from a � at interface, the width � rst increases algebraically as w ¹ t® , where
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® > 0 is the growth exponent of the system{. In the long-time limit, when the
correlation length reaches the system size, the width saturates at some constant
value wsat ¹ L ¬, where ¬ is the roughness exponent. This type of scaling behaviour is
known as Family- V icsek scaling [410], as described by the scaling form

w…N ; t† ¹ N ¬f … t=N z† ; …248†
where z ˆ ¬=® is the dynamic exponent of the model. f …u† is a universal scaling
function with the asymptotic behaviour f …u† ¹ u® for u ! 0 and f…u† ˆ const for
u ! 1. Notice that this scaling form is invariant under rescaling

x ! Lx; t ! Lz t ; h…x; t† ! L¬h…Lx;Lz t† ; …249†
where L is a dilatation parameter. Notice that in contrast to the order parameter of a
spreading process (92), the � uctuations in the heights increase under rescaling.

The critical exponents ® and z are used to categorize various universality classes
of roughening interfaces. Typically each of these universality classes is characterized
by certain symmetry properties of the system and may be associated with a speci� c
stochastic di� erential equation. This equation describes the growth of a continuous
height � eld h…x; t† and consists of the most relevant operators under rescaling (249)
that are consistent with the symmetries of the system. F or example, postulating the
symmetries

(1) translational invariance in space x ! x ‡ D x,
(2) translational invariance in time t ! t ‡ D t,
(3) translational invariance in height direction h ! h ‡ D h,
(4) re� ection invariance in space x ! ¡x,
(5) up/down symmetry h ! ¡h,

one is led to the Edwards- W ilk inson (EW) universality class [411], as described by the
equation

@h…x; t†
@t

ˆ v ‡¼r2h…x; t† ‡ ±…x; t† ; …250†

where v denotes the mean velocity and ¼ the surface tension. ±…x; t† is a zero-average
Gaussian noise � eld with variance

h±…x; t†±…x 0 ; t 0†i ˆ 2D¯d…x ¡ x 0† …̄ t ¡ t 0† …251†

taking the stochastic nature of deposition into account. This equation is linear and
thus exactly solvable. Scaling invariance (249) implies that the critical exponents are
given by

¬ ˆ 1 ¡ d=2; ® ˆ 1=2 ¡ d=4; z ˆ 2 …EW†: …252†

Edwards- Wilkinson growth processes are invariant under up/down re� ection of the
interface h ! ¡h. However, if atoms are adsorbed from a gas phase above the
interface there is no particular reason for the system to be up/down symmetric. In
that case the above equation has to be extended by the most relevant term that
breaks the up/down symmetry, leading to the Kardar- Parisi- Zhang (KPZ)
equation [186, 412]
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@h…x; t†
@t

ˆ v ‡¼r2h…x; t† ‡¶…rh…x; t††2 ‡ ±…x; t†: …253†

F or a one-dimensional interface the critical exponents of the KPZ universality class
are given by

¬ ˆ 1=2 ; ® ˆ 1=3 ; z ˆ 3=2 …KPZ in 1d† ; …254†
whereas in d ¶ 2 dimensions only numerical estimates are known (see [33]).

It is particularly interesting to study roughening transitions between a smooth and
a rough phase. A roughening transition is usually accompanied by a diverging spatial
correlation length ¹?. In the smooth phase this correlation length provides a typical
scale below which the interface appears to be rough. On larger scales, however, the
interface turns out to be smooth. Approaching the roughening transition the
correlation length ¹? diverges whereby the entire interface becomes rough. One of
the simplest models displaying a roughening transition is the two-dimensional
discrete Gaussian SOS model [33]. Another important example is the K PZ equation
which exhibits a roughening transition in d > 2 spatial dimensions.

In the following we will focus on certain growth models with depinning
transitions. In particular we will discuss depinning transitions in random media,
polynuclear growth processes, and solid-on-solid growth processes with evaporation
at the edges of plateaus. In the pinned phase of these models the interface is smooth
and does not propagate. Varying a control parameter the interface undergoes a
depinning transition; it starts moving and evolves into a rough state. As we will see
below, various depinning transitions are closely related to phase transitions into
absorbing states.

6.2. Depinning transitions of driven interfaces
An interesting class of depinning transitions can be observed in experiments of

driven interfaces in random media [33]. In these experiments a liquid is pumped
through a porous medium. If the driving force F is su� ciently low the liquid cannot
move through the medium since the air- liquid interface is pinned at certain pores.
Above a critical threshold, however, the interface starts moving through the medium
with an average velocity v. Close to the transition, v is expected to scale as

v ¹ …F ¡ Fc†³ ; …255†
where ³ is the velocity exponent. One of the � rst experiments in 1 ‡1 dimensions was
performed by Buldyrev et al., who studied the wetting of paper in a basin � lled with
suspensions of ink or co� ee [413]. Here the driving force F is a result of capillary
forces competing with the total weight of the absorbed suspension. Consequently,
the interface becomes pinned at a certain height where F ’ Fc. Once the interface has
stopped, the width should scale as

w…`; t† ¹ `¬f… t=`~z† ; …256†
where ` is a box size and ¬ the roughening exponent. M easuring the interface width
Buldyrev et al. found the roughness exponent ¬ ˆ 0:63…4†. In various other
experiments the values are scattered between 0:6 and 1:25. This is surprising since
the Kardar- Parisi- Zhang (KPZ) class [186] predicts the much smaller value ¬ ˆ 1=2.

It is believed that the large values of ¬ are due to inhomogeneities of the porous
medium. Because of these inhomogeneities, the interface does not propagate
uniformly by local � uctuations as in the KPZ equation, rather it propagates by
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avalanches. In the literature two universality classes for this type of interfacial growth
have been proposed. In the case of linear growth the interface should be described by
a random � eld Ising model [414], leading to the exponents ¬ ˆ 1, ~z ˆ 4=3 and
³ ˆ 1=3 in 1 ‡ 1 dimensions. In the presence of a KPZ-type nonlinearity, however,
the roughening process should exhibit a depinning transition which is related to
DP [415, 416]. The underlying DP mechanism di� ers signi� cantly from an ordinary
directed percolation process in a porous medium subjected to a gravitational � eld
(cf. section 3.9.3). In ordinary D P the spreading agent represents active sites and
percolates along the given direction. In the present case, however, water may � ow
not only in the direction of the pumping force but also in the opposite direction.
Moreover, the DP process runs perpendicular to the direction of growth, as will be
explained below.

A simple model exhibiting a depinning transition is shown in � gure 53. In this
model the pores of the material are represented by cells of a diagonal square lattice.
The liquid can � ow to neighbouring cells by crossing the edges of a cell. Depending
on the direction of � ow these edges can either be permeable or impermeable. For
simplicity we assume that all edges are permeable in the downwards direction,
whereas in the upwards direction they can only be crossed with a certain probability
q. Thus, by starting with a horizontal row of wet cells at the bottom, we obtain a
compact cluster of wet cells, as illustrated in � gure 53. The unrestricted � ow
downwards ensures that the cluster has no overhangs. Clearly, the size of the cluster
(and therefore the penetration depth of the liquid) depends on q. If q is large enough,
the cluster is in� nite, corresponding to a moving interface. If q is su� ciently small,
the cluster is bound from above, i.e. the interface becomes pinned.

The depinning transition is related to DP as follows. As can seen in the � gure, a
pinned interface may be interpreted as a directed path along impermeable edges
running from one boundary of the system to the other. Obviously, the interface
becomes pinned only if there exists a directed path of impermeable bonds connecting
the boundaries of the system. Hence the depinning transition is related to an
underlying directed bond percolation process with probability p ˆ 1 ¡ q running
perpendicular to the direction of growth. The pinning mechanism is illustrated in
� gure 54, where a supercritical DP cluster propagates from left to right. The cluster’s
backbone, consisting of bonds connecting the two boundaries, is indicated by bold
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Figure 53. Simple model for interface depinning in random media. The pores of the medium
are represented by cells on a diagonal square lattice. The permeability across the
edges of the cells depends on the direction of � ow: in the downward direction all
edges are permeable, whereas in the upward direction they are permeable with
probability q and impermeable otherwise. The right panel of the � gure shows a
particular con� guration of open (dashed) and closed (solid) edges. Pumping in water
from below, the interface becomes pinned along a directed path of solid lines, leading
to a � nite cluster of wet cells (shaded region). The dashed arrow represents an open
path in order to illustrate a possible � ow.



dots. The shaded region denotes the resulting cluster of wet cells. As can be seen, the
interface becomes pinned at the lowest lying branch of the DP backbone. Therefore,
the roughening exponent coincides with the meandering exponent of the backbone

¬ ˆ ¸?=¸k: …257†

Moreover, by analysing the dynamics of the moving interface, it can be shown that
the dynamic critical exponents are given by ³ ˆ ¬ and ~z ˆ 1. Thus, depinning
transitions in inhomogeneous porous media may serve as possible experimental
realizations of the DP universality class.

The prediction (257) matches surprisingly well with the experimental result
¬ ˆ 0:63…4† obtained by Buldyrev et al. [413]. Therefore, it is near at hand to regard
this experiment as a � rst quantitative experimental evidence of DP exponents.
However, only one exponent has been veri� ed, and it is not fully clear how accurate
and reproducible these exponents are. Moreover, pressure di� erences may cause
long-range correlations in the bulk, leading to a � at interface on large scales. This
means that gravity could destroy the asymptotic critical behaviour. In fact, in
subsequent experiments the estimates for the critical exponents are scattered over
a wide range. F or example, Dougherty and Carle measured the dynamical avalanche
distribution of an air- water interface moving through a porous medium made of
glass beads [417]. According to the DP hypothesis, the distribution P…s† of avalanche
sizes s should decrease algebraically. In the experiment, however, a stretched
exponential behaviour P…s† ¹ s¡b exp …¡s=L† is observed even for small � ow rates.
The estimates for the exponent b are inconclusive; they depend on the time window
of the measurement and vary between ¡0:5 and 0:85. Even more recently Albert
et al. proposed to identify the universality class by measuring the propagation
velocity of locally tilted parts of the interface [418]. Their results suggest that
interfaces propagating in glass beads are not described by a D P depinning process,
instead they seem to be related to the random-� eld Ising model. Altogether the
emerging picture is not yet fully transparent and further experimental e� ort in this
direction would be desirable.

Depinning experiments were also carried out in 2 ‡1 dimensions with a spongy-
like material used by � orists, as well as � ne-grained paper rolls [419]. In this case,
however, the exponent ¬ is not related to 2 ‡ 1-dimensional DP, instead it
corresponds to the dynamic exponent of percolating directed interfaces in 2 ‡1
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dimensions. In experiments as well as in numerical simulations a roughness exponent
¬ ˆ 0:50…5† was obtained.

6.3. Polynuclear growth
A completely di� erent type of depinning transition takes place in models for

polynuclear growth (PNG ) [141, 420- 422]. A key feature of PNG models is the use
of parallel updates, leading to a maximal propagation velocity of one monolayer
per time step. F or a high adsorption rate the interface of PNG models is smooth
and propagates at maximal velocity v ˆ 1. Roughly speaking, this means that the
interface is ‘pinned’ at the light cone of the dynamics. Decreasing the adsorption rate
below a certain critical threshold, PN G models exhibit a roughening transition to a
rough phase with v < 1. In contrast to equilibrium roughening transitions, which
only exist in d ¶ 2 dimensions, PNG models display a roughening transition even
in one spatial dimension.

One of the simplest PNG model investigated so far is de� ned by the following
dynamic rules [141]. In the � rst half time step atoms ‘nucleate’ stochastically at the
surface by

hi… t ‡1=2† ˆ
hi… t† ‡ 1 ; with prob. p ;

hi… t† ; with prob. 1 ¡ p:

©
…258†

In the second half time step the islands grow deterministically in the lateral direction
by one step. This type of growth may be expressed by the update rule

hi… t ‡1† ˆ max
j2hii

‰hi… t ‡1=2† ;hj… t ‡ 1=2†Š; …259†

where j runs over the nearest neighbours of site i.
The relation to DP can be established as follows. Starting from a � at interface

hi…0† ˆ 0, let us interpret sites at maximal height hi… t† ˆ t as active sites of a DP
process. Obviously, the adsorption process (258) turns active sites into the inactive
state with probability 1 ¡ p, while the process (259) resembles o� spring production.
Therefore, if p is large enough, the interface is smooth and propagates with maximal
velocity v ˆ 1. This situation corresponds to the active phase of DP. Approaching
the phase transition, we expect the density of sites at maximal height to scale as

nmax ˆ 1
N

X

i

¯hi ¡t ¹ …p ¡ pc† ; …260†

where N denotes the system size and  ’ 0:277 is the density exponent of DP. Below
a critical threshold, however, the density of active sites at the maximum height
hi… t† ˆ t vanishes after some time, the growth velocity is smaller than 1, and the
interface evolves into a rough state. Although this mapping to DP is not exact,
numerical simulations strongly support the validity of equation (260). As will be
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F igure 55. Polynuclear growth model. In the � rst half time step atoms are deposited with
probability p. In the second half time step islands grow deterministically by one step
and coalesce.



shown below, PNG models are actually a realization of unidirectionally coupled DP
processes [423, 424].

Polynuclear growth models have also been used to describe the growth of
colonial organisms such as fungi and bacteria [425]. This study was motivated by
recent experiments with the yeast Pichia membranaefaciens on solidi� ed agarose
� lm [426]. By varying the concentration of polluting metabolites, di� erent front
morphologies were observed. The model proposed in [425] aims to explain these
morphological transitions on a qualitative level. It is easy to verify that this model
follows the same spirit as the PNG model de� ned above. They both employ parallel
dynamics and exhibit a DP-related roughening transition.

Concerning experimental realizations of PNG models, one major problem—
apart from quenched disorder— is the use of parallel updates. The type of updates in
these models is crucial; by using random-sequential updates the transition is lost
since in this case there is no maximum velocity. However, in realistic experiments
atoms do not move synchronously, rather the adsorption events are randomly
distributed in time. Therefore, random sequential updates might be more appro-
priate to describe such experiments. It thus remains an open question to what extent
PNG processes can be realized in nature.

6.4. Growth with evaporation at the edges of plateaus
DP-related roughening transitions can also be observed in certain solid-on-solid

growth processes with random-sequential updates [427, 428]. As a key feature of
these models, atoms may desorb exclusively at the edges of existing layers, i.e. at sites
which have at least one neighbour at a lower height. This corresponds to a physical
situation where the binding energy of atoms at the edges is much smaller than the
binding energy of atoms in completed layers. By varying the growth rate, such
growth processes display a roughening transition from a non-moving smooth phase
to a moving rough phase. A simple solid-on-solid model for this type of growth is
de� ned by the following dynamic rules [427]: for each update a site i is chosen at
random and an atom is adsorbed

hi ! hi ‡1 with probability q …261†
or desorbed at the edge of a plateau

hi ! min …hi ;hi‡1† with probability …1 ¡ q†=2;

hi ! min …hi ;hi¡1† with probability …1 ¡ q†=2:

ª
…262†

Moreover, the growth process is assumed to be restricted, i.e. updates are only
carried out if the resulting con� guration obeys the constraint (246).

The qualitative behaviour of this model is illustrated in � gure 56. For small q the
desorption processes (262) dominate. If all heights are initially set to the same value,
this level will remain the bottom layer of the interface. Small islands will grow on top
of the bottom layer but will be quickly eliminated by desorption at the island edges.
Thus, the interface is e� ectively anchored to its bottom layer and a smooth phase is
maintained. The growth velocity v is therefore zero in the thermodynamic limit. As
q is increased, more islands on top of the bottom layer are produced until
above qc ’ 0:189, the critical value of q, they merge forming new layers at a � nite
rate, giving rise to a � nite growth velocity.

Interestingly, this model can be interpreted as a driven di� usion process of two
oppositely charged types of particles. The charges
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ci;i‡1 ˆ hi‡1 ¡ hi 2 f¡1 ;0 ;‡1g …263†
are bond variables and represent a change of height between two adjacent interface
sites. In this representation the dynamic rules (261)- (262) can be implemented by
randomly selecting two neighbouring bonds and performing the following processes
with probabilities indicated on the arrows:

é ‡ !¬
q

…1¡q†=2
‡é ; é é !¬

q

1¡q
‡¡; ¡é !¬

q

…1¡q†=2
é ¡; ¡ ‡!

q
é é : …264†

In the smooth phase q < qc, the charges are arranged as closely bound ‡¡ dipoles.
F or q > qc, the dipoles become unbound wherefore the � uctuations in the total
charge, measured over a distance of order N , diverge with N . Thus the transition can
be described in terms of correlations between charged particles.

6.4.1. Relation to directed percolation
At the transition the dynamics of the model is related to DP as follows. Starting

with a � at interface at zero height, let us consider all sites with hi ˆ 0 as particles A of
a DP process. Growth according to equation (261) corresponds to spontaneous
annihilation A ! é . Conversely, desorption may be regarded as a particle creation
process. However, since atoms may only desorb at the edges of plateaus, particle
creation requires a neighbouring active site to be present. This process therefore
corresponds to o� spring production A ! 2A . Clearly, these processes resemble the
dynamic rules of a DP process. In contrast to PNG models, the DP process takes
place at the bottom layer of the interface. Moreover, the roughening transition does
not depend on the use of either parallel or random-sequential updates.

In the model without the restriction (246), the relation to DP can be proven
exactly. In this case the processes at the bottom layer decouple from the evolution of
the interface at higher levels. Introducing local variables si ˆ ¯hi ;0 it is possible to
map equations (261) and (262) exactly onto the dynamic rules

if si ˆ 1 ; si ! 0 with prob. q ;

if fsi¡1 ;si ;si‡1g ˆ f0 ;0 ;1g si ! 1 with prob. …1 ¡ q†=2 ;

if fsi¡1 ;si ;si‡1g ˆ f1 ;0 ;0g si ! 1 with prob. …1 ¡ q†=2 ;

if fsi¡1 ;si ;si‡1g ˆ f1 ;0 ;1g si ! 1 with prob. 1 ¡ q:

These rules de� ne a contact process on a square lattice (cf. � gure 16) in which
particles self-annihilate at unit rate and create o� spring with rate ¶=2 ˆ …1 ¡ q†=2q.
Since the percolation threshold of the contact process ¶c ˆ 3:297 85…8† is known, we
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Figure 56. Restricted solid-on-solid growth model exhibiting a roughening transition from a
non-moving smooth to a moving rough phase. Monomers are randomly deposited
whereas desorption takes place only at the edges of plateaus.



can predict the critical point of the unrestricted growth to be given by the
qc ˆ 0:232 675…5† model. For the restricted model there is no exact mapping to a
contact process. Nevertheless numerical simulations strongly suggest that the bottom
layer still exhibits D P behaviour.

The underlying DP transition is the origin of the roughening transition. In the
active phase of DP the interface � uctuates close to the bottom layer so that the
interface is smooth. Approaching criticality the bottom layer occupation n0

vanishes as
n0 ¹ …qc ¡ q† ; …265†

where  is the density exponent of DP. In the inactive phase of DP the interface
detaches from the bottom layer and evolves into a rough state. Therefore, the front
velocity v for q > qc is proportional to the characteristic survival time of a DP
process in the inactive phase

v ¹ 1=¹k ¹…q ¡ qc†1=¸k : …266†

With respect to the microscopic rules the roughening transition in these models
seems to be as robust as a DP transition. Including the dynamics at higher levels of
the interface, the models turn out to be described by unidirectionally coupled DP
processes (see below).

6.4.2. Scaling of the interface width
Turning to the scaling properties of the interface width (247) the emerging picture

is less clear and may indicate the presence of many length scales. With only a single
length scale one would expect the saturation width in � nite systems to scale as
wsat…N † ¹ N ¬ in the growing phase and wsat…N † ¹ N ¬ 0

at criticality, where ¬ and ¬ 0

are generally di� erent critical exponents. Thus the expected scaling form would read

wsat…N ;q† ˆ N ¬ 0
g…N 1=¸?…q ¡ qc†† ; …267†

where g…u† is a universal scaling function with the asymptotic behaviour

g…u† ˆ
juj¡¬ 0¸? ; for u ! ¡1 ;

const ; for u ! §0 ;

juj…¬¡¬ 0†¸? ; for u ! ‡1:

8
><
>:

…268†

This scaling form implies that the width in a � nite size system saturates at

wsat…N ;q† ˆ
…qc ¡ q†¡¬ 0¸? ; if q < qc ;

N ¬ 0
; if q ˆ qc ;

N ¬…qc ¡ q†…¬¡¬ 0†¸? ; if q < qc:

8
><
>:

…269†

However, the width at criticality actually increases as w… t† ¹ ln t… †® until it
saturates at

wsat ¹ ln N… †µ ; …270†

where µ ’ 0:43, suggesting that ¬ 0 ˆ 0. Moreover, as the growth rate is increased and
the interface starts to move, the width diverges as wsat…q† ¡ wsat…qc† ¹…q ¡ qc†0:95 ,
suggesting that ¬ ’ 0:9. This value di� ers from the expected value ¬ ˆ 1=2 for
growing interfaces in one spatial dimension. Therefore, the scaling behaviour of the
interface width is presumably characterized by many di� erent length scales. This
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point of view is con� rmed by a numerical analysis of correlation functions at
di� erent levels [428].

6.4.3. Spontaneous symmetry breaking
The roughening transition in growth models with evaporation at edges of islands

is accompanied by spontaneous symmetry breaking of translational invariance in
height direction. This symmetry is associated with a family of non-conserved
magnetization-like order parameters

M n ˆ 1
N

XN

jˆ1

exp
2ºihj

n ‡ 1… †
77777

77777: …271†

The order parameter M 1 ˆ j1=N
P

j…¡1†hj j, for example, measures the di� erence
between the densities of sites at even and odd heights, respectively (see � gure 57). In
the smooth phase the order parameters M n tend towards stationary positive values.
Approaching the phase transition these values vanish algebraically as

hM ni ¹…qc ¡ q†³n ; …272†
where ³1 º 0:65, ³2 º 0:40 and ³3 º 0:23. At criticality, starting from a � at interface,
the order parameters decay as M n… t† ¹ t¡³n=¸k , as shown in the right hand graph of
� gure 57. In the rough phase q > qc, where the heights hi become uncorrelated over
large distances, M n ˆ 0 in the thermodynamic limit.

6.4.4. Experimental realizations
With respect to experimental realizations of the dynamic rules (261) and (262) it

is important to note that atoms are not allowed to di� use on the surface. This
assumption is rather unnatural since in most experiments the rate for surface
di� usion is much higher than the rate for desorption back into the gas phase.
Therefore, it will be di� cult to realize this type of homoepitaxial growth experi-
mentally. However, in a di� erent set-up, the above model could well be relevant [429].
As illustrated in � gure 58, a laterally growing monolayer could resemble the dynamic
rules (261) and (262) by identifying the edge of the monolayer with the interface
contour of the growth model. In this case ‘surface di� usion’, i.e. di� usion of atoms
along the edge of the monolayer, is highly suppressed. Moreover, in single-step
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F igure 57. Spontaneous symmetry breaking. Left: simulation in the smooth phase starting
from a random interface con� guration. Black (white) pixels indicate even (odd)
heights. As time evolves the systems ‘coarsens’, providing a robust mechanism for the
elimination of minority islands. Right: order parameters M n versus time at criticality
starting from a � at interface.



systems (such as fcc (100) surfaces) it would also be possible to implement the
restriction (246).

6.5. Unidirectionally coupled directed percolation processes
So far we have seen that the scaling properties of quantities involving only the

bottom level of the interface may be adequately described by using DP exponents. In
particular it was shown that the density of exposed sites at the bottom layer
decreases as n0 ¹ …qc ¡ q† until it vanishes at the transition. Let us now turn to
the scaling properties of the � rst few layers k ˆ 1 ;2 ; . . . above the bottom layer. Since
the scaling properties at the bottom layer k ˆ 0 in the smooth phase are completely
characterized by the three DP exponents  , ¸?, and ¸jj, it is natural to assume that
the next layers obey similar scaling laws with analogous exponents,  …k†, ¸?

…k† and
¸

…k†
jj . F or example, the densities

nk ˆ 1
N

Xk

jˆ0

X

i

¯hi ; j ; k ˆ 0;1;2; . . . …273†

of sites at height µ k above the bottom layer are expected to scale as

nk ¹…qc ¡ q† …k†
; k ˆ 1 ;2 ;3; . . . : …274†

In principle all these exponents could be di� erent and independent from each other.
However, extensive numerical simulations and � eld-theoretic considerations [428]
suggest that the scaling exponents ¸?

…k† and ¸
…k†
jj are identical on all levels and equal to

the DP exponents ¸? and ¸jj. This remarkable property implies that the growth
process at criticality is characterized by a single dynamic exponent z ˆ ¸jj=¸?.
The density exponents  …1† ;  …2† ;  …3† ; . . . ; however, turn out to be di� erent and
considerably reduced compared to  …0† ˆ  . These exponents appear to be non-
trivial in the sense that they are not simply related to DP exponents.

In order to explain the reduced values of  …k† it is useful to introduce the
following particle interpretation. Assuming that the minimal height of the interface is
zero, lattice sites at height hi µ 0 ;1 ;2 ; . . . may be associated with particles
A ;B ;C ; . . . ; respectively. By de� nition, particles of di� erent species are allowed to
occupy the same site simultaneously. For example, the presence of an A particle
induces the simultaneous presence of all other particle species at the same site. As
shown before, the A particles of the unrestricted model evolve independently
according to the dynamic rules of a contact process. Similarly, in the absence of A
particles, the B particles will evolve according to the rules of a contact process. In the
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presence of an A particle, however, B particles are instantaneously created at the
same site, giving rise to an e� ective reaction A ! A ‡ B at in� nite rate. As this
reaction does not modify the con� guration of the A particles, it couples the two
subsystems in one direction without feedback. Similarly, the B particles induce
the creation of C particles by an e� ective reaction B ! B ‡ C . Thus we obtain a
unidirectionally coupled sequence of contact processes corresponding to the
reaction- di� usion scheme

A $ 2A B $ 2B C $ 2C

A ! A ‡B B ! B ‡ C C ! C ‡D ; etc.

Notice that this sequence can be truncated at any level without changing the
dynamics of the lower levels. In fact, numerical simulations of the growth model
and a unidirectionally coupled sequence of three …1 ‡ 1†-dimensional directed
bond percolation processes yield compatible estimates for the critical exponents
(cf. � gure 59):

 …0† ˆ 0:28…1† ;  …1† ˆ 0:13…2† ;  …2† ˆ 0:05…1†: …275†

Thus, ‘coupled DP’ is a universal phenomenon and should play a role even in more
general contexts, namely whenever D P-like processes are coupled unidirectionally
without feedback.

6.5.1. M ean-� eld approx imation
The simplest set of Langevin equations for unidirectionally coupled DP

reads [428]

@t¿k…x ; t† ˆ µk ¿k…x ; t† ¡ ¶¿2
k…x ; t† ‡Dr2¿k…x ; t† ‡·¿k ¡1…x ; t† ‡ ±k…x ; t† ; …276†

where ±k are independent multiplicative noise � elds with correlations

h±k…x ; t†i ˆ 0 ; h±k…x ; t†±l…x 0 ; t 0†i ˆ 2G¿k…x ; t†¯k ;l¯
d…x ¡ x 0† …̄ t ¡ t 0†: …277†

Assuming that ¿¡1 ² 0, the lowest equation for k ˆ 0 reduces to the ordinary
Langevin equation of DP (139). The parameters µk control the rates for o� spring
production at level k . In principle all these parameters could be di� erent, leading to
interesting multicrit ical behaviour [423]. Here we will restrict ourselves to the
simplest case where the parameters µk ˆ µ coincide.
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The reduced values of  …1† ;  …2† ; . . . can already be understood on the level of
a simple mean-� eld approximation. Determining the stationary solutions of the
mean-� eld equations

@t¿k ˆ µ¿k ¡ ¶¿2
k ‡·¿k¡1 …278†

and expanding the result for small values of µ, the � elds ¿k are found to scale
asymptotically with the mean-� eld exponents


…k†
MF ˆ 2¡k : …279†

In addition, dimensional analysis of equations (276) and (277) reveals that the mean-
� eld scaling exponents ¸

…k†
? and ¸

…k†
k coincide with the DP exponents ¸MF

? ˆ 1=2 and
¸MF

k ˆ 1 on all levels, i.e. they do not depend on k .

6.5.2. Field-theoretic treatment
The above mean-� eld approximation is expected to hold above the critical

dimension dc ˆ 4. In less than four dimensions � uctuation corrections to  …k† have
to be taken into account. These corrections can be approximated by � eld-theoretic
renormalization group techniques [423, 424]. To this end the master equation is
mapped onto a second-quantized bosonic operator representation, leading to the
e� ective action (cf. section 3.5)

S ‰¿0 ; ~¿0 ;¿1 ; ~¿1 ; . . .Š ˆ
XK ¡1

kˆ0

…
ddx dt

©
~¿k…x; t† ½@t ¡ Dr2 ¡ µ… †¿k…x; t† ¡ · ~¿k ¿k ¡1

‡G
2

~¿k…x; t† ¿k…x; t† ¡ ~¿k…x; t†… †¿k…x; t†
ª

; …280†

where K is the total number of levels in the hierarchy. Because of the unidirectional
structure the truncation of the hierarchy at � nite K does not a� ect the temporal
evolution of the subsystems k µ K . The � eld-theoretic treatment turns out to be
rather complex, since even a one-loop calculation for a two-level system involves 34
di� erent diagrams. Details of these calculations are given in [424], whose main results
we summarize here. A one-loop calculation in the inactive phase reveals that the RG
� ow is characterized by two � xed lines. One of them is unstable and corresponds to a
situation where the two systems are decoupled. The other one is stable and describes
the interacting case. One can show that strongly ultraviolet-divergent contributions
cancel along the stable � xed line. To determine the exponent  …1†, similar calculations
have to be performed in the active phase. Choosing a particular point along the � xed
line it is possible to derive the result

 …0† ˆ 1 ¡ °=6 ;  …1† ˆ 1=2 ¡ °=8 ; …281†
where ° ˆ 4 ¡ d . This result explains the downward correction of the critical
exponent  …1† in less than four dimensions.

The � eld-theoretic analysis involves various technical and conceptual problems.
On the one hand, in the active phase several infrared-divergent diagrams are
encountered [430], without being clear to what extent they will a� ect the physical
properties of coupled DP. On the other hand, the coupling constant · between
di� erent levels is shown to be a relevant quantity, i.e. it grows and � nally diverges
under RG transformations. This may be the cause for numerically observed
violations of scaling. In fact, the curves in � gure 59 for k ¶ 1 are not perfectly
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straight but slightly bent. This curvature is neither related to transients nor to � nite
size e� ects. A careful analysis shows that the � eld-theoretic prediction seems to apply
in an intermediate scaling regime, whose size depends on the coupling constant ·.
The breakdown of scaling may be an artefact of the lattice realization which, in
contrast to the � eld-theoretic prediction, seems to limit the value of ·.

6.6. Parity-conserving roughening transitions
So far we discussed two examples of depinning transitions related to DP, namely

interface depinning in driven random media, polynuclear growth, and growth
without evaporation at the edges of terraces. It is therefore interesting to ask
whether it is possible to � nd examples of roughening transitions with non-DP
behaviour in one spatial dimension.

As discussed in section 4.2 non-DP phase transitions into absorbing states can be
observed in systems with additional symmetries. For example, non-DP behaviour is
observed in parity-conserving branching processes. Therefore, the question arises
whether it is possible to replace the underlying DP transition in the previously
discussed growth models by a parity-conserving mechanism. As shown in [431], this
can be done by considering the growth of dimers with evaporation at edges of
plateaus. As dimers consist of two atoms, the number of particles at each height level
is preserved modulo 2. This de� nition of the dynamic rules mimics a BAWE at
the bottom layer of the interface. It turns out that some of the critical properties of
the roughening transition in this model are indeed characterized by PC exponents
(cf. equation (222)).

As shown in � gure 60, the model generalizes the growth model introduced in
section 6.4, replacing monomers by dimers. In each attempted update two adjacent
sites i and i ‡1 are selected randomly. If the heights hi and hi‡1 are equal, one of the
following moves is carried out. Either a dimer is adsorbed with probability p

hi ! hi ‡1 ; hi‡1 ! hi‡1 ‡ 1 …282†
or desorbed with probability 1 ¡ p:

hi ;hi‡1 ! min …hi¡1 ;hi ;hi‡1 ;hi‡2†: …283†
An update will be rejected if it leads to a violation of the RSOS restriction (246).

The transition of the model is illustrated in � gure 60: if q is very small, only a few
dimers are adsorbed for a short time so that the interface is smooth and pinned at the
(spontaneously selected) bottom layer. As q increases, a growing number of dimers
covers the surface and large islands of several layers stacked on top of each other are
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formed. When q exceeds the critical value qc ’ 0:317…1†, the mean size of the islands
diverges and the interface evolves into a rough state.

Naively one may expect the interface to detach from the bottom layer in the
rough phase, resulting in a � nite propagation velocity. In the present case it turns
out, however, that the interface remains pinned to the initial height, i.e. it does not
propagate at constant velocity. This is due to the fact that a stochastic deposition
process cannot create a dense packing of dimers. Instead the emerging con� gurations
are characterized by a certain density of defects (solitary sites at the bottom layer)
where dimers cannot be adsorbed. Because of the RSOS condition (246) these defects
act as ‘pinning centres’ which prevent the interface from growing, leading to
triangular con� gurations as shown in � gure 60. The pinning centres cannot
disappear spontaneously, they can only di� use by interface � uctuations and
recombine in pairs so that their number is expected to decrease very slowly.
Therefore, the interface of an in� nite system in the rough phase does not propagate
at constant velocity. Instead the squared width and the average height grow
logarithmically with time as -

h… t† ¹ w… t† ¹ log t. At criticality, this behaviour crosses
over to w2… t† ¹ -

h… t† ¹ log t. Thus the expected scaling form reads

w2…L ; t† ’ log ‰t¡® F… t=L z†Š ; …284†

where F is a universal scaling function and ® plays the role of a growth exponent.
F or ® ˆ 0:172…10† and z ˆ 1:76…5† we obtain a fairly accurate data collapse (see
� gure 61 (a)), supporting the supposition that z is the dynamic exponent of the PC
universality class. Similarly the densities nk (see equation (273)) are found to decay at
criticality as nk… t† ¹ t¡¯k with

¯0 ˆ 0:280…10† ;¯1 ˆ 0:200…15†; ¯2 ˆ 0:120…15† ; …285†

where ¯0 ˆ  =¸k is the usual cluster survival exponent of the PC class.
Using the particle interpretation of section 6.5, the temporal evolution of the A

particles resembles a BAWE. Similarly, the B particles perform an e� ective BAWE
on top of inactive islands of the A system. Since A particles instantaneously create B
particles, the two subsystems are coupled by the e� ective reaction A ! A ‡B at
in� nite rate. As this reaction does not modify the con� guration of the A particles, it
couples the two subsystems only in one direction without feedback. On the other
hand, the RSOS condition (246) introduces an e� ective feedback so that the A
particles are not completely decoupled from the B particles. However, it seems that
the inhibiting in� uence of the B particles does not a� ect the critical behaviour of the

Non-equilibrium critical phenomena and phase transitions into absorbing states 939

101 102 103 104 105

t

0.1

1

n0

n
1

n
2

10
1

10
2

10
3

10
4

t

0.1
nA

nB

n
C

10 6 10 4 10 2 100 102 104

t / L
z

1

0.3

t-
a
 e

xp
(W

2
)

(a) (c)(b)

Figure 61. Dimer model. (a) F inite size scaling of the width. (b) Decay of the densities
n0 ;n1 ;n2 as a function of time. (c) Decay of the corresponding densities in
unidirectionally coupled BAWEs.



A particles. Similarly, the C particles are coupled to the B particles by the e� ective
reaction B ! B ‡C . Therefore, the dimer model resembles a unidirectionally
coupled sequence of BAWEs, corresponding to the reaction scheme

A ! 3A B ! 3B C ! 3C

2A ! é 2B ! é 2C ! é

A ! A ‡B B ! B ‡ C C ! C ‡D ; etc.

In fact, as shown in � gures 61 (b) and (c), a coupled hierarchy of three BAWEs shows
the same critical behaviour as the dimer model at the � rst few layers.

6.7. Non-equilibrium wetting transitions
Wetting phenomena (� gure 62) are observed in various physical systems where a

bulk phase (e.g. a gas or liquid) is brought into contact with a wall or a substrate.
Because of interactions between bulk phase and surface, a thin layer of another
phase may be formed which is attracted to the substrate. The thickness of the layer
� uctuates and may depend on various parameters such as temperature or chemical
potential. As some of these parameters are varied, the thickness of the layer may
diverge, leading to a wetting transition. Theoretical models for wetting phenomena
ignore the details of molecular interactions between surface, layer and bulk phase.
Instead, they characterize the system by an interface without overhangs which
separates the two phases. The con� guration of the interface is given in terms of
the height h…x† ¶ 0 of the interface at point x on the surface. Within this approach,
wetting transitions may be viewed as the unbinding of the interface from the wall.

Wetting transitions at thermal equilibrium have been theoretically studied and
experimentally observed in a large variety of systems (for a review, see [432]). Models
for equilibrium wetting are usually de� ned by an e� ective Hamiltonian of the form

H ˆ
…

dd¡1x
¼

2
…rh†2 ‡ V ‰h…x†Š

h i
; …286†

where ¼ denotes the surface tension of the interface and d ¡ 1 the dimension of the
interface [433- 435]. The potential V ‰h…x†Š yields the e� ective interaction between
wall and interface. Usually it contains an attractive component binding the interface
to the wall. H owever, as temperature or other parameters are varied, the attractive
component of the potential may become so weak that the potential is no longer able
to bind the interface, leading to a wetting transition. In d ˆ 2 dimensions one usually
distinguishes between critical and complete wetting. Critical wetting refers to the
divergence of the interface width when the wetting transition is approached by
moving along the coexistence curve of the bulk and surface phases. On the other
hand, complete wetting refers to the divergence of the interface width when the
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chemical potential di� erence between the two phases is varied, moving towards the
coexistence curve. Critical and complete wetting transitions are associated with
generally di� erent critical exponents.

While equilibrium wetting transitions are well understood, the investigation of
wetting transitions under non-equilibrium conditions has started only recently. Here
the surface layer is adsorbed to the wall by a growth process whose dynamics, unlike
in equilibrium processes, does not obey detailed balance. As expected, the resulting
critical exponents di� er from those observed at thermal equilibrium.

6.7.1. A lattice model for non-equilibrium wetting
A simple lattice model for non-equilibrium wetting can be de� ned as

follows [436]. As in section 6.4, the interface is given by height variables
hi ˆ 0 ;1 ; . . . ;1. For each update a site i is selected randomly and one of the
following moves is carried out:

hi ! hi ‡1 with prob. q=…q ‡ p ‡1† ;

hi ! min …hi¡1 ;hi ;hi‡1† with prob. 1=…q ‡ p ‡1† ;

hi ! hi ¡ 1ifhi¡1 ˆ hi ˆ hi‡1 with prob. p=…q ‡ p ‡1†:

9
>=
>;

…287†

The selected move will be rejected if it would result in a violation of the RSOS
constraint jhi ¡ hi‡1j µ 1. In addition, a hard-core wall at zero height h ˆ 0 is
introduced, i.e. a process is only carried out if the resulting interface heights are
non-negative. Generally the processes de� ned above do not satisfy detailed balance.

By varying the relative rates of these processes, a transition from a binding to a
non-binding phase is found. This wetting transition can be understood as follows.
Without the wall for � xed p > 0, the parameter q controls the mean growth velocity
of the interface. This velocity may be positive or negative and vanishes at some
critical value q ˆ qc. On large time scales a lower wall will only a� ect the interface
dynamics if the interface moves downwards, i.e. q µ qc, leading to a smooth
interface. In the moving phase q > qc, however, the interface does not feel the wall
and evolves into a rough state (see � gure 63). It is obvious that in the moving phase
the interface velocity scales as v ¹ …q ¡ qc†y with y ˆ 1. In the smooth phase q < qc,
the expected scaling for bottom layer occupation and width is given by

»0 ¹ …qc ¡ q†x 0 ; w ¹ …qc ¡ q†¡® ; …288†

where x 0 and ® are certain critical exponents. The above model includes two special
cases, namely p ˆ 0, where the interface cannot move below its actual minimum
height, and p ˆ 1, where the dynamic rules satisfy detailed balance.

6.7.2. T he exactly solvable case p ˆ 1
F or p ˆ 1 the dynamic rules (287) can be mapped onto an exactly solvable

equilibrium model which exhibits a transition to complete wetting. F or q < 1 the
probability of � nding the interface in the con� guration fh1 ; . . . ;hN g is given by the
distribution

P…h1 ; . . . ;hN † ˆ P…H † ˆ Z ¡1qH…h1 ;... ;hN † ; …289†

where H ˆ H…h1 ; . . . ;hN † ˆ PN
iˆ1 hi is the sum of all heights and Z ˆ P

h1 ;... ;hN
qH

denotes the partition sum running over all possible interface con� gurations.
Equation (289) can be proven by verifying the detailed-balance condition
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w…¼H ! ¼H ‡1†w…¼H ‡1 ! ¼H † ˆ q …p ˆ 1† ; …290†

which is consistent with the hard wall constraint hi ¶ 0. The steady-state
distribution (289) does not exist for q > 1, where the interface propagates at constant
velocity. The critical exponents x 0 and ® can be computed by analysing the transfer
matrix acting in the spatial direction [437, 438]

T h ;h 0 ˆ qh ; if jh ¡ h 0j µ 1 ;

0; otherwise;

(

…291†

where h;h 0 ¶ 0. Steady-state properties can be derived from the eigenvector ¿ that
corresponds to the largest eigenvalue · of the transfer matrix

P1
h 0ˆ0 T h ;h 0 ¿h 0 ˆ ·¿h.

F rom the squares of the eigenvector components various steady-state quantities can
be derived. F or example, the probability »h of � nding the interface at height h is
given by »h ˆ ¿2

h=
P

h 0 ¿2
h 0 . Close to criticality, where ° ˆ 1 ¡ q is small, one can carry

out the continuum limit ¿h ! ¿… ~h†, replacing the discrete heights h by real-valued
heights ~h. Then, the above eigenvalue problem turns into a di� erential equation [437]
which, to leading order in °, is given by

@2

@ ~h2
‡…3 ¡ ·† ¡ 3°~h… †¿… ~h† ˆ 0: …292†

Simple dimensional analysis indicates that the height variables scale as h ¹ °¡1=3

wherefore the width diverges as w2 ¹ °¡2=3. Similarly one can show by elementary
calculations that »0 ¹ °. The critical exponents for p ˆ 1 are thus given by

x 0 ˆ 1; ® ˆ 1=3: …293†
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6.7.3. T he generic case p 6ˆ 1
In the non-equilibrium case p 6ˆ 1 the critical exponents can only be approxi-

mated numerically. F or p ˆ 0, where the interface cannot move below its actual
minimum height, the hard-core wall becomes irrelevant and the model reduces to a
growth process similar to the one discussed in section 6.4, belonging to the
universality class of unidirectionally coupled directed percolation. F or p ˆ 1 the
numerical estimates are consistent with the previously derived exact results. For
0 < p < 1 a very slow crossover to a di� erent behaviour with critical exponents
y ˆ 1:00…3†, x 0 ˆ 1:5…1† and ® ˆ 0:41…3† is observed. Similar results are obtained for
p > 1 except for x 0 which is close to 1 in this case.

It is believed that this type of non-equilibrium wetting can be modelled by the
KPZ equation (253) with an additional term for the e� ective interaction between the
wall and the interface [439, 440]

@h…r; t†
@t

ˆ v ‡¼r2h…r; t† ‡¶…rh…r; t††2 ‡ ±…r; t† ¡ @V ‰h…r; t†Š
@h…r; t† : …294†

Dimensional analysis suggests that the width exponent described by this equation
should be given by ® ˆ …2 ¡ z†=…2z ¡ 2†, where z ˆ 3=2 is the dynamic exponent
of the KPZ universality class, yielding ® ˆ 1=2. The numerical estimates of
® ’ 0:41 are smaller, presumably because of the very slow crossover to the exactly
solvable case ® ˆ 1=3. In addition, equation (294) suggests that the bottom layer
occupation »0 should be proportional to the inverse correlation length, hence
x 0 ˆ ¸? ˆ 1=…2z ¡ 2† ˆ 1. However, this scaling argument seems to hold only for
p > 1, whereas for 0 < p < 1 much larger values for x 0 are observed. As shown in
[436], the changing sign of the coe� cient ¶ in equation [294] leads to di� erent
universality classes in both cases, corresponding to the distinction between an ‘upper’
and a ‘lower’ wall in [440]. In fact, comparing the growth velocities of a � at and a
tilted interface, in the absence of a wall it is found that the nonlinear term …rh…r; t††2

is indeed non-vanishing in the …p ;q† plane, except for the dashed line shown in
� gure 63. Therefore, moving along the transition line, the sign of ¶ changes precisely
at the integrable point, leading to a di� erent exponent x 0.

6.7.4. Non-equilibrium wetting of an attractive substrate
In the above wetting model the substrate is introduced as a hard wall at zero

height. Therefore, the model neglects interactions between the substrate in the
surface layer. Loosely speaking, the free energies of the exposed and the wetted
substrate are assumed to be equal. In order to describe more realistic situations, the
model has to be generalized by taking interactions between the substrate and the
surface layer into account. This can be done by introducing a modi� ed growth rate q0

at zero height [441]. Obviously the attractive short-range interaction at the bottom
layer is a surface e� ect. Therefore, the critical point qc remains unchanged. However,
if the interaction is strong enough, the transition becomes discontinuous. In the
equilibrium case p ˆ 1 it can be proven by using transfer matrix methods where for
q0 < 2=3 there is a � rst-order wetting transition.

In the non-equilibrium case the morphology of the phase transition depends on
the sign of the KPZ nonlinearity. For p > 1 the emerging picture is essentially the
same as for p ˆ 1, although with di� erent critical exponents. F or p < 1, however,
there is a whole region in the phase diagram where the pinned and the moving phase
coex ist. As illustrated in � gure 64, islands generated by � uctuations quickly grow
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until they reach an almost triangular shape. Since the K PZ nonlinearity is negative,
adsorption processes at the inclined edges of the islands are strongly suppressed,
allowing the attractive interaction to reduce the size of the island in the lateral
direction. This ensures the stability of the pinned phase in parts of the phase diagram
where a free interface would move away from the wall. This model demonstrates that
non-equilibrium e� ects do not only lead to di� erent critical exponents but may also
change the whole phase structure of a model.
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Appendix A: Vector space notation and tensor products
A one-dimensional lattice model, whose sites i ˆ 1 ; . . . ;N are either occupied

(si ˆ 1) or vacant (si ˆ 0), can be in 2N di� erent states s ˆ fs1 ;s2 ; . . . ;sN g. In order
to represent the probability distribution P t…s† as a vector in a 2N -dimensional vector
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space let us de� ne an orthogonal set of basis vectors jsi corresponding to the
con� gurations of the system. Using the representation

j0i ˆ 1
0… †; j1i ˆ 0

1… † …A 1†

the basis vectors are given by

jsi ˆ js1i « js2i « . . . « jsN i; …A 2†
where ‘«’ denotes the tensor product of two vectors:

a1

a2
… †«

b1

b2
… † ˆ

a1b1

a1b2

a2b1

a2b2

0
BBB@

1
CCCA: …A 3†

Row vectors hsj are the transposed vectors of jsi. In this vector space the probability
distribution P t…s† can be represented by the vector

jP ti ˆ
X

s

P t…s†jsi: …A 4†

De� ning the sum vector over all states

h1j ˆ
X

s

hsj ˆ …1 ;1†«N ˆ …1 ;1 ; . . . ;1† …A 5†

the normalization of the probability distribution can be simply expressed as
h1jP ti ˆ 1. Similarly the ensemble average hA… t†i of any observable A can be
expressed as

hA… t†i ˆ h1jA jP ti: …A 6†
The empty lattice is represented by the vector jvaci ˆ j0i«N . Local operators act only
on a � nite number of adjacent sites. F or example, a single-site operator A i can be
written as

A i ˆ 1 « 1 « . . . «A«|‚‚{z‚‚}
ith position

. . . « 1 ; …A 7†

where 1 and A are 2 £ 2 matrices. Here the tensor product of two matrices is de� ned
by

a1 a2

a3 a4… †« b1 b2

b3 b4… † ˆ

a1b1 a1b2 a2b1 a2b2

a1b3 a1b4 a2b3 a2b4

a3b1 a3b2 a4b1 a4b2

a3b3 a3b4 a4b3 a4b4

0
BB@

1
CCA: …A 8†

Similarly one can de� ne two-site operators Bi ;i‡1, where B is a 4 £ 4 matrix. The
above notations can be easily generalized to systems with n > 1 particle species by
introducing local vectors with n components in equation (A 1).

Appendix B: Derivation of the e� ective action
In order to derive the e� ective action of Reggeon � eld theory by integration of

the noise, we � rst introduce a response � eld ~¿…x; t†. This allows the ¯-function to be
expressed as an oscillating integral

Z ¹
…

D±P‰±Š
…

D¿D ~¿I ‰¿; ~¿Š exp i
…

ddx dt ~¿…@t¿ ¡ Dr2¿ ¡ µ¿ ‡¶¿2 ¡ ±†
µ ¶

; …B 1†
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where I ‰¿; ~¿Š denotes the Jacobian. After a Wick rotation in the complex plane the ¿-
dependent noise contribution can be separated by

Z ¹
…

D¿D ~¿I ‰¿; ~¿Š exp ¡
…

ddx dt ~¿…@t¿ ¡ Dr2¿ ¡ µ¿ ‡¶¿2†
µ ¶

£
…

D±P‰±Š exp
…

dd x dt ~¿±… †: …B 2†

Because of the correlations (140) the probability distribution P‰±Š is given by

P‰±Š ˆ f ‰¿Š exp ¡
…

ddx dt
±2…x; t†

2G¿…x; t†… †; …B 3†

where f ‰¿Š is a (� eld-dependent) normalization factor. This allows the noise to be
integrated…

D±P‰±Š exp
…

dd x dt ~¿±… † ˆ f ‰¿Š
…

D± exp
…

dd x dt ~¿± ¡ ±2

2G¿… †
µ ¶

ˆ f ‰¿Š
…

D± exp
…

dd x dt
G
2

~¿2¿ ¡ ±2

2G¿… †
µ ¶

ˆ -
f ‰¿Š exp

G
2

…
ddx dt¿ ~¿2… †; …B 4†

where we used Gaussian integration of the form
…‡1

¡1
d²

1

…2º±¿†1=2
exp ~¿² ¡ ²2

2±¿… † ˆ exp 1
2±¿ ~¿2… †: …B 5†

The resulting partition function reads

Z ¹
…

D¿D ~¿I 0‰¿; ~¿Š exp ¡
…

dd x dt ~¿‰@t¿ ¡ Dr2¿ ¡ µ¿Š ‡¶ ~¿¿2 ¡ G
2

~¿2¿… †
µ ¶

:

…B 6†
It is convenient to symmetrize the cubic terms in the partition function. To this end
we rescale the � elds by

¿ 0 ˆ …2¶=G†1=2
¿; ~¿ 0 ˆ …G=2¶†1=2 ~¿; G 0 ˆ …2G¶†1=2

: …B 7†
In order to keep the action symmetrized during the RG procedure, one has to
introduce an additional coe� cient ½ in front of the time derivative. Dropping the
primes the e� ective action S ˆ S 0 ‡S int is given by the expressions (144) and (145).
Alternatively the action may directly be derived from the master equation of a
contact process by introducing bosonic creation and annihilation operators (for this
standard procedure we refer to [24, 25, 442]).

Appendix C: Shell integration
The one-loop integrals in Wilson’s renormalization group approach take the

form

I…k† ˆ 1

…2º†d

…

>

dd k 0f …k2 ;k ¢ k 0 ;k 02† …C 1†

where ‘>’ denotes integration in the momentum shell O…1 ¡ l† < jk 0j µ O . This
integral can be written as
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I…k† ˆ lOd

…2º†d S d¡1

…º

0
d³ sind¡2 ³f…k 2 ;Ojk j cos ³;O2† ; …C 2†

where S d and V d denote surface area and volume of a d-dimensional sphere:

S d ˆ 2ºd=2

G…d=2† ; Vd ˆ S d

d
: …C 3†

We also use the notation Kd ˆ S d =…2º†d . F or easy reference we listed some of the
values for S d , Kd , and V d in table 5.

To evaluate equation (C 2) it is often helpful to use the formulas…º

0
d³ sind¡2 ³ ˆ S d

S d¡1
; …C 4†

…º

0
d³ sind¡2 ³ cos2 ³ ˆ S d

dS d¡1
: …C 5†

In particular, if the function f does not depend on ³ the integral I…k† reduces to

I…k† ˆ 1

…2º†d

…

>

dd k 0f…k2 ;k 02† ˆ lKdOd f …k2 ;O2†: …C 6†

Appendix D: One-loop integrals for directed percolation
The integral for propagator renormalization reads

J P ˆ
…

>

Dk 0! 0G0
k
2

‡k 0 ;
!

2
‡! 0… †G0

k
2

¡ k 0 ;
!

2
¡ ! 0… †

ˆ
…

>

Dk 0! 0 1

…D…k
2

‡k 0†2

¡ µ ¡ i½…!

2
‡! 0††…D…k

2
¡ k 0†2

¡ µ ¡ i½…!

2
¡ ! 0††

:

…D 1†

Denoting A § ˆ D……k =2† § k 0†2 ¡ µ ¡ i½…!=2† and integrating with respect to the
pole i½! 0 ˆ A ‡ we obtain

J P ˆ 1

…2º†d‡1

…

>

dd k 0
…1

¡1
d! 0 1

…A ‡ ¡ i½! 0†…A ¡ ‡ i½! 0†

ˆ 2ºi

…2º†d‡1i½

…

>

ddk 0 1
A ‡ ‡A ¡
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Table 5. Surface area Sd , Kd ˆ Sd =…2p†d and the volume V d of
a d-dimensional sphere.

d 1 2 3 4 5 6

S d 2 2p 4p 2p2 8p2=3 p3

Kd
1
p

1
2p

1

2p2

1

8p2

1

12p3

1

64p3

V d 2 p 4p=3 p2=2 8p2/15 p3=6



ˆ 1

2…2º†d
½

…

>

ddk 0 1
1
4

Dk2 ‡Dk 02 ¡ µ ¡
i
2

½!

ˆ lKdO4

2½…1
4

Dk 2 ‡ O2D ¡ µ ¡ i
2

½!†
: …D 2†

The integral for vertex renormalization is given by

J V ˆ
…

>

Dk!G2
0…k ;!†G0…¡k ;¡!†

ˆ 1

…2º†d‡1

…

>

dd k
…1

¡1
d!

1

…Dk2 ¡ µ ¡ i½!†2…Dk2 ¡ µ ‡ i½!†
: …D 3†

Integration with respect to the poles i½! ˆ Dk2 ¡ µ yields the result

J V ˆ 2ºi

…2º†d‡1i½

…

>

ddk
1

4…Dk2 ¡ µ†2
ˆ lKdOd

4½…O2D ¡ µ†2 : …D 4†

Appendix E: Notation
Frequently used symbols

A ;B ;C ; . . . particle species
é vacant site
¬ roughness exponent
 density exponent

 …k† density exponents at di� erent hierarchy levels
¯ exponent for temporal decay

D di� usion constant
G noise amplitude
d spatial dimension of the system

D ;E ;
-D ;

-E matrices for matrix product states
D distance from criticality

D… t† Hamming distance (damage)
® growth exponent
G noise amplitude

hi… t† interface height at site i
H Hamiltonian, internal energy
hii set of nearest neighbours of site i

³ critical initial slip exponent
³n critical exponents of the order parameters M n

I` probability for empty interval of length `
J coupling constant in equilibrium systems
µ rate for o� spring production in Langevin equations
L length of the system
¶ coe� cient for nonlinear term in Langevin equations

»…x; t† particle density
L dilatation parameter for scaling transformations
· coupling constant between di� erent levels
L Liouville operator

M n order parameters for spontaneous symmetry breaking
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nk… t† density of sites at height k above the bottom layer
N system size (total number of sites N ˆ L d )
¸k temporal scaling exponent
¸? spatial scaling exponent

p percolation probability
P t…s† probability to � nd the system in state s at time t
P l… t† local persistence probability
Pg… t† global persistence probability

q probability for interface growth
s state of the model

si local state si ˆ 0 ;1 ; . . . of lattice site i
S � eld-theoretic action
¼ control exponent for anomalous DP
¼i local Ising spin ¼i ˆ §1 at site i
T temperature
v interface velocity

ws!s 0 transition rate from state s to state s 0

w…N ; t† interface width
O cut-o� in momentum space

±…x; t† noise � eld in Langevin equations
¹? spatial correlation length
¹k temporal correlation length
z dynamic critical exponent

Z partition sum

Abbreviations
BAWE branching-annihilating random walk with even number of o� spring

CDP compact directed percolation
DK Domany- K inzel (model)

D MRG density matrix renormalization group
DP directed percolation

DP2 directed percolation with two absorbing states
DS damage spreading

EW Edwards- Wilkinson
IMF improved mean � eld

IPDF interparticle distribution function
KPZ Kardar- Parisi- Zhang
MC Monte Carlo
M F mean � eld

MPS matrix product state
PNG polynuclear growth

RG renormalization group
RSOS restricted solid on solid

SOS solid on solid
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