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a b s t r a c t

Percolation is the simplest fundamental model in statistical mechanics that exhibits
phase transitions signaled by the emergence of a giant connected component. Despite
its very simple rules, percolation theory has successfully been applied to describe a large
variety of natural, technological and social systems. Percolation models serve as important
universality classes in critical phenomena characterized by a set of critical exponentswhich
correspond to a rich fractal and scaling structure of their geometric features. We will first
outline the basic features of the ordinary model.

Over the years a variety of percolation models has been introduced some of which
with completely different scaling and universal properties from the original model with
either continuous or discontinuous transitions depending on the control parameter,
dimensionality and the type of the underlying rules and networks. We will try to take a
glimpse at a number of selective variations including Achlioptas process, half-restricted
process and spanning cluster-avoiding process as examples of the so-called explosive
percolation. We will also introduce non-self-averaging percolation and discuss correlated
percolation and bootstrap percolation with special emphasis on their recent progress.
Directed percolation process will be also discussed as a prototype of systems displaying
a nonequilibrium phase transition into an absorbing state.

In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded
Schramm, two-dimensional (2D) percolation has become a central problem in probability
theory leading to the two recent Fields medals. After a short review on SLE, we will
provide an overview on existence of the scaling limit and conformal invariance of the
critical percolation. We will also establish a connection with the magnetic models based
on the percolation properties of the Fortuin–Kasteleyn and geometric spin clusters. As
an application we will discuss how percolation theory leads to the reduction of the 3D
criticality in a 3D Ising model to a 2D critical behavior.

Another recent application is to apply percolation theory to study the properties
of natural and artificial landscapes. We will review the statistical properties of the
coastlines and watersheds and their relations with percolation. Their fractal structure and
compatibility with the theory of SLE will also be discussed. The present mean sea level on
Earth will be shown to coincide with the critical threshold in a percolation description of
the global topography.
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1. Introduction

Consider a simple electric circuit consisting of a voltage source and a bulb connected to an insulating hexagonal
honeycomb lattice of sizeN . Now imaginewe start occupying the lattice in a randomway by n number ofmetallic hexagonal
plaquettes. For small values of fraction of occupation p = n/N , lower than a critical threshold pc , there appear some small
metallic clusters but the two opposite sides of the lattice still remain disconnected leading to the lack of charge flow in the
circuit and thus the bulb remains off—see Fig. 1. A metallic cluster is defined as a set of occupied sites that can be traversed
by jumping from neighbor to occupied neighbor. In Fig. 1 the different colors simply label the different isolated clusters
and have no other significance. By increasing the number of the randomly distributed metallic plaquettes (and increasing
the occupation probability p indeed), the average size of the metallic clusters increases. Once it exceeds a certain threshold
value pc , a spanning cluster emerges that closes the circuit and the bulb suddenly lights up. This transition from insulator
to the metallic phase in two dimensions (2D) exemplifies one of the simplest and fundamental classes of phase transitions
in statistical physics called ‘‘percolation’’, which can generally be defined in any dimension d.

The idea of percolation model was first effectively considered by chemist Paul Flory in the early 1940s in his study of
gelation in polymers [1–3]. However, the study of themodel as amathematical theory, dates back to 1954 [4], when engineer
Simon Broadbent and mathematician John Hammersley, one concerned with the design of carbon filters for gas masks, put
their heads together to deal with ‘‘The stepwise spreading of a fluid or individual particles through a medium following a
random path in which each link is either open or shut, according to a specified statistical proportion. The spreading process
is therefore arrested at many sites . . . [5]’’. A long path along which spreading is not interrupted constitutes an infinite (or
spanning) cluster. Broadbent and Hammersley proposed the concept of a percolation threshold above which the links form
an infinite cluster with high probability.

Percolation theory was then popularized in the physics community and intensively studied by physicists [6–17]. It
has been found to have a broad applications to diverse problems as understanding conducting materials [18,19], the
fractality of coastlines [20,21], networks [22–24], turbulence [25,26], magnetic models [27–31], colloids [32,33], growth
models [34], retention capacity and watersheds of landscapes [35–37], the spin quantum Hall transition [38] and SU(3)
lattice gauge theory [39]. From a mathematical point of view percolation is also attractive because it exhibits relations
between probabilistic and algebraic/topological properties of graphs. Although a significant amount of research has been
done in the field there still exist many unsolved problems [40].
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Fig. 1. Schematic illustration of a simple circuit including a bulb and a voltage source connected to an insulator honeycomb lattice which can be furnished
by a fraction p of metallic plaquettes. Once p reaches a critical threshold pc , a spanning metallic cluster emerges which connects the two sides of the lattice
and the bulb suddenly lights up.

One of the active areas in percolation research which has still open problems is to find the percolation thresholds pc ,
as a fundamental characteristic of percolation theory, both exactly and by simulation. The values of percolation thresholds
are not universal and generally depend on the structure of the lattice and dimensionality, and are believed to achieve their
mean-field values only in the limit of infinite dimension [6]. Finding rigorous proofs of exact thresholds and bounds has also
been an enduring area of research formathematicians [41–43]. Exact thresholds in 2D for the square, triangular, honeycomb
and related lattices were found using the star-triangle transformation [44]. It has been shown in [45] that thresholds can be
found for any lattice that can be represented as a self-dual 3-hypergraph (that is, decomposed into triangles that form a self-
dual arrangement). It is also shown in [46] that thresholds can be found for any lattice that can be represented geometrically
as an isoradial graph, yielding a broad new class of exact thresholds and providing a proof [47] of Wu’s 1979 conjecture [48]
for the threshold of the checkerboard lattice. However, the exact value of thresholds for many systems of long interest (such
as site percolation on the square and honeycomb lattices, and bond percolation on the kagomé lattice) are still missing [40].

For ourmentioned example at the beginning of the section, it is equivalent to a 2D site percolation problem on a triangular
latticewhose sites are placed at the center of the plaquetteswith six number of nearest neighbors. The value of the threshold
for this case is exactly known to be pc = 1/2 in the infinite system size limit. In fact, if our system size was infinitely large
or equivalently, we could have infinitely small plaquettes, then we would need N −→ ∞ number of plaquettes to totally
furnish the lattice. In that case, the percolation probability defined as the probability to have an infinite cluster,1 would be
a step function around pc which takes the value 1 for p > pc and zero if p ≤ pc—see Fig. 2. At p = pc , it is believed that with
probability one there is no infinite cluster, but there are typically some very large clusters nearby [49].

One may notice that in our example above, we could instead have occupied the edges of the sites (or the bonds) with
some metallic rods rather than occupying the plaquettes themselves. This would then change the problem to one that is
known as bond percolation on a 2D honeycomb lattice with three number of nearest neighbors. This approach changes the
percolation threshold to 1 − 2 sin(π/18) ≈ 0.65271 [44], but does not affect the other fundamental properties, we shall
return to this point later.

The other point is that in reality the insulator lattice in our experiment is not infinite of course, and it has a finite size.
The problem of how to deal with finite size lattices is known as finite size scaling. It is a useful introduction to the style of

1 However, one should be careful with the definition of ‘‘infinite’’.
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Fig. 2. Schematic plot of the percolation probability as a function of the occupancy. As the system size N goes to infinity, Ps tends to the step function
around the critical threshold pc . For very special systems all graphs for finite N cross at a single point, but in general, because of finite-size corrections, the
crossing does not occur at a single point for finite systems [50,51].

theoretical argument that is often used in percolation theory [16]. In such situations if we repeat our experimentmany times
for a given occupancy p with different realizations of randomness to estimate the percolation probability, we would find a
smooth function as represented in Fig. 2, rather than a step function around pc . This means that in reality we can get con-
nectivity even at very much less than the percolation threshold or not get it even at a much higher occupancy. As the size of
the system gets larger the scatter around the sharpness would reduce until we return to the plot for the infinite system size.

The sudden onset of a spanning cluster at a particular value of the occupation probability along with a number of
characteristic features make the percolation transition a nontrivial critical behavior. This criticality belongs to a large family
of critical phenomena with common remarkable features and forms an important universality class characterized by a
number of scaling laws and critical exponents. The notion of universality means that the large scale behavior of critical
systems can be described by relatively simple mathematical relationships which are entirely independent of the small scale
construction. This property enables one to study and understand the behavior of a very wide range of systems without
needing to know much about the details. For example, the universal properties of the percolation model are entirely
independent of the type of lattice (e.g., hexagonal, triangular or square, etc.) or whether it is site or bond percolation; they
only depend on the dimensionality of the system.

Another example of a prototype model in critical phenomena is the Ising model as a mathematical model of a magnet
which undergoes a phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase at a
particular temperature Tc , the Curie temperature, in more than one dimension. The net magnetization which is the first
derivative of the free energy with respect to the applied magnetic field strength, is the order parameter which distinguishes
between these two phases, i.e., it takes the value 0 in the paramagnetic phase and increases continuously from zero as the
temperature is lowered below the Curie point. Such transitions in which the order parameter is continuous but second
derivative of the free energy (like magnetic susceptibility and heat capacity in the Ising model) exhibits a discontinuity are
called second-order or continuous phase transitions. First-order (discontinuous) transitions involve a discontinuous change
in their order parameter. Both percolation and Ising models display a continuous phase transition and as will be made clear
later in Section 4, they are closely related to each other [27,28]. Therefore we have to be able to define an order parameter
for the percolation model as in the Ising model. It seems not to be so difficult: not all occupied sites are in the infinite (or
spanning) cluster, thus if we look at the probability P∞(p) that an occupied site is in the infinite cluster for a given occupancy
p, then this must be zero (since there is no spanning cluster) below the percolation threshold and increases continuously
(but of course with singular derivatives) as one enters the supercritical (connected) phase2—see Fig. 3. Continuity of the
strength probability P∞(p), as the main macroscopic observable in percolation, at pc is an open mathematical problem in
the general case, but it is known to hold rigorously in 2D and d ≥ 19 [52] using lace expansionmethods. The conjecture that
P∞(p = pc) = 0 for 3 ≤ d ≤ 18 remains however one of the open problems in the field [53].

Percolation is a simple model of robustness and stability exhibiting a robust continuous transition in all dimensions.
It accounts as a fundamental step in dealing with more complex models and even dynamical processes occurring on the
networks. There have been introduced various modifications of the ordinary percolation to model different statistical
phenomena or even at the level of mathematical curiosity in building up a modified version with a possibly discontinuous
phase transition [54–57]. Explosive percolation [58], for example, is one of the most challenging cases with a seemingly
mild modification of standard percolation model which was first, surprisingly, claimed to exhibit a discontinuous phase
transition, in contrast to the ordinary percolation. It then has been realized that actually, due to extremely slow convergence
to asymptotic behavior by increasing the system size, it was hard to numerically realize if the explosive percolation in
random graph is continuous or discontinuous, and it thus became a controversial issue [59–71]. Finally, after a numerical
observation [62], there has been given a mathematical proof [72] in favor of the continuous phase transition. The type of
transition for the explosive percolation in Euclidean space [60,73] has not yet been clarified.

Other variants and modifications of percolation models will be discussed in Section 3.

2 The system is called to be in the subcritical (resp. supercritical) phase if p < pc (resp. p > pc ).
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Fig. 3. Schematic diagram of the percolation strength P∞(p) and the correlation length ξ(p) as a function of the occupancy p for a system of infinite size.

Looking back at Fig. 2, we see that all graphs of different size cross at a single point which is the percolation threshold.
Thismeans that at an exactly certain critical occupancy the percolation probability becomes scale invariant. Scale invariance
means that if we zoom in or out and look at the system with an arbitrary window size, then the picture still has the
same statistical properties with the same resulting physics. This is intimately related to one of the most important
methods developed in theoretical physics called renormalization group, which studies the behavior of a system under scale
transformations [74]. Renormalization group has been very successful to provide very good approximate (or sometimes
exact) values of the critical exponents and thresholds for the percolation models.

In two dimensions it turns out that an even stronger symmetry holds at the critical point: if we blow up different parts
of a figure of percolation clusters by different magnification factors (as long as angles are preserved) then statistically the
picture once again looks the same. This property is called conformal invariance, and with this assumption, theoreticians
have been able to derive many important properties of critical systems in the past few decades [25,75]. In fact the heuristics
behind conformal invariance is a natural generalization of rotation and scale invariance. Conformal invariance is muchmore
powerful in two dimensions where it is associated with the theory of analytic functions of a complex variable.

Fig. 4 visualizes how such transformations work. Consider a special conformal transformation given by f (z) = z/(2− z)
which acts in a way that is shown in Fig. 4(a) on the regions of different color in the complex z-plane, the map of each
domain of specific color in the z-plane at left is shownwith the same corresponding color at right. If we have an Ising model
on a square lattice and color the spin up (down) clusters in black (white), then we see that the figures both above and at the
Curie point seem to be homogeneous—see left panels in Fig. 4(b) and (c). However when we look at the transformed spin
configurations under the conformal mapping f (z), we see that for T > Tc the figure is no longer homogeneous, while the
one at the critical point still is, and looks statistically the same as the original spin configuration at Tc due to its conformal
invariant symmetry.

The emergence of conformal symmetry at the critical point is however more mysterious. This seems to be a generic
feature of criticality butwhy this happens is not fully understood [76].Motivated by numerical experiments [77,78] inwhich
concluded that crossing probabilities should have a universal scaling limit, which is conformally invariant (a conjecture
that is attributed to Michael Aizenman [78]), John Cardy used these heuristic ideas in 1992 to give an explicit formula that
determines the exact values of the crossing probabilities between the opposite sides of a conformal rectangle filled with a
conformally invariant infinitesimal lattice [79]. More recently Smirnov rigorously proved [80] that Cardy’s conjecture holds
for the continuum limit of site percolation on a triangular lattice. But how can one characterize the continuum limit of a
lattice model?

The continuum limit of a latticemodel is often difficult to be capturedmathematically. In this limit the lattice spacing a is
sent to zero, and new sites are constantly added to the lattice during this contraction so that the lattice does not eventually
vanish but continues to fill the original domain that it occupied [81]. The continuum limits ofmost latticemodels are believed
to converge to the quantum field theories (QFTs). At the critical point, since the correlation length ξ is infinite (ξ ≫ a) (Fig. 3),
the latticemodelsmust be invariant under scale transformations. This property alongwith the invariance under translations
and rotations imply (under broad conditions [76]) the conformal invariance, and indeed, suggest that the continuum limit
of critical lattice models should be given by conformal field theories (CFTs). Furthermore, only certain CFTs, usually the
minimal models, have been observed to possess the right structure to describe a critical lattice model in two dimensions.
Due to the relatively few number of such theories, models with the same macroscopic but different microscopic properties
are presumed to have identical continuum limits which correspond to the same CFT characterized by the value of the central
charge c . This is a restatement of the notion of universality discussed earlier. The critical percolation and Ising models are
famous examples of CFTs with central charge c = 0 and c = 1/2, respectively.

A relatively new method to describe the continuum limit of the critical lattice models is called stochastic Löwner
evolution (SLEκ ) invented by Oded Schramm around 2000 [82]—to review SLE see [83] and [84]. Six years later, in 2006,
Wendelin Werner received the Fields medal for his contributions to the development of SLE and related subjects. Theory of
SLEκ is a subject of probability theory that generates planar random curves with conformally invariant probability measures
in a domain with a boundary. The diffusivity 0 ≤ κ ≤ 8 is a real parameter that classifies different conformally invariant
interfaces. For example, the scaling limit of a percolation cluster boundary (hull) is proven by Smirnov [80] to be given by
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Fig. 4. (a) Illustration of the transformed image under the special conformal mapping f (z) = z/(2 − z). Left panels in (b) and (c) show the homogeneous
spin configurations of a 2D Ising model on a square lattice above and at the Curie point, respectively. Under the conformal transformation f (z), the spin
configuration above Tc is no longer homogeneouswhile the one exactly at Tc still is and looks statistically like the original configuration due to its conformal
invariant symmetry. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

SLE6. It is also shown in [85] that the interfaces in the planar critical Ising model and its random-cluster representation
converge to SLE3 and SLE16/3, respectively. In 2010, Smirnov was awarded the Fields medal for the proof of conformal
invariance of percolation and the planar Ising model in statistical physics. SLE has soon foundmany applications and turned
out to describe the vorticity lines in turbulence [26,86], domain walls of spin glasses [87–89], the nodal lines of random
wave functions [90,91], the iso-height lines of random grown surfaces [92–97], the avalanche lines in sandpile models [98]
and the coastlines and watersheds on Earth [99,101,102]. Among which, SLE could provide quite unexpected connections
between some features of interacting systems and ordinary uncorrelated percolation [26,90].
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Fig. 5. Fractal structure of a natural watershed at the north of Tehran, Darabad. The main watershed is the (blue) curve connecting the two points marked
by ⋆.

In 1969, Fortuin andKasteleyn (FK) [27,28,103,104] found an interestingmapping between the q-state Pottsmodel,which
includes the Ising model for q = 2, and a correlated bond-percolation model called the random-cluster model. This yielded
a geometric representation of the partition function for Potts models in terms of the statistics of the random clusters. The
uncorrelated bond percolation model itself can be recovered by taking the limit q → 1 in the FK formalism. This represen-
tation has also become a key point to derivemany exact results in percolation, and allowed powerful renormalization group
ideas to be used [74]. Swendsen andWang [105], and thenWolff [106], have exploited this mapping to devise extraordinar-
ily efficient Monte Carlo algorithms based on nonlocal cluster update for Potts models having far less critical slowing down
than the standard single-spin-update algorithms. It turned out that for those values of q for which the model undergoes a
continuous phase transition, the percolation of FK clusters occurs exactly at the critical temperature and their fractal struc-
ture encodes the complete critical behavior. It can be shown that there is a one-to-one correspondence between different
thermodynamic quantities and their geometric counterparts based on the statistical and fractal properties of FK clusters.

A major breakthrough in statistical physics was the exact solution of the Ising model in two dimensions [107]. Onsager
gave in 1944 a complete solution of the problem in zero external magnetic field. But in three dimensions, Istrail has
shown [108] that essentially all versions of the Ising model are computationally intractable across lattices and thus the
3D Ising model, in its full, is NP-complete. We will show that is possible to map, at least, the criticality of a 3D Ising model
onto a 2D cross section of the model. This mapping provides a dimensional reduction in the geometrical interpretation of
the 3D Ising model. Loosely speaking, for the Ising model on square lattice, there exists an alternative description of the
partition function as a sum over all curves surrounding the geometric spin clusters (rather than the FK clusters) weighted
by their length. The continuum limit of the model in this case is shown to be well-defined and is given by the theory of free
Majorana fermions [109]. Thus our attempt to recast the 2D Ising model as a theory of immersed curves seems successful.
But for an Ising model on a cubic lattice, the boundaries between geometric spin clusters are closed surfaces, not curves. It
is, however, by no means clear how to take the continuum limit of this lattice surface theory [29,109–112]. What we will
suggest in Section 4, is to replace the lattice surface theory in 3D criticality, by a theory of immersed curves on a 2D cross
section of the original lattice.

Percolation theory also provides a suitable platform to study the properties of real and artificial landscapes. A landscape
is a height profile usually defined on a square lattice where each cell’s elevation value at position x represents the average
elevation over the entire footprint of the cell (site). Now imagine that the water is dripping uniformly over the landscape
and fills it from the valleys to the mountains, letting the water flow out through the open boundaries. During the raining,
watershed lines may also formwhich divide the landscape into different drainage basins—see also Fig. 5. Watersheds play a
fundamental role in geomorphology in e.g., water management [113] and landslide and flood prevention [114]. For a given
landscape represented as a digital elevationmap (DEM), it is possible to determine thewatershed lines based on the iterative
application of invasion percolation [115]. It is found [116] that the main watershed line generated on random uncorrelated
landscapes are self-similar with fractal dimension df = 1.2168 ± 0.0005. It has been also shown that a watershed line is
statistically compatible with the family of conformally invariant SLEκ curves with κ = 1.734± 0.005 [99]. Watersheds and
the shortest paths on critical percolation clusters with κ = 1.04± 0.02 [100], are examples of unusual universality classes.
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Watersheds can also be defined in higher dimensions [117]. By raising the water level through the landscape, different
lakes are gradually forming and start merging to each other to form larger and larger lakes. It is likely to expect that at a
certain water level, a percolation transition of the lakes would happen to form a giant lake so that it touches the borders and
the water can indeed flow out of the landscape. This problem is closely related to the retention capacity of the landscapes
addressed in [36,37,118]. Whether the percolation transition is critical or not, is strongly dependent on the spatial behavior
of the correlations between the height variables [119]. For self-affine surfaces with positive Hurst exponent H [120–124]
where the correlation behaves like∼(1− r2H)with the spatial distance r , there will not be a genuine percolation transition,
while for a long-range correlated surface in which the correlation decays with the distance as ∼r−2H with H > 0, the
percolation transition is critical [34] and corresponding critical exponents change with H [125–128]. The fractal dimension
of the watersheds [116,129] as well as various geometric features are dependent on H [130–134]. It has been verified
numerically that the duality relation, as a characteristic property of conformally invariant fractals [135], also holds for the
perimeter of the largest cluster in the full range of Hurst exponents [126,136].

For real landscapes, in addition, percolation theory provides an interesting description for the global topography of
Earth. It is found in [21] that a percolation transition occurs on Earth’s topography in which the present mean sea level is
automatically singled out as a critical level in the model. This finding elucidates the origins of the appearance of ubiquitous
scaling relations observed in the various terrestrial features on Earth. This transition is shown to be accompanied by a
continental aggregation which sheds light on the possibility of the important role played by water during the long-range
topographic evolutions. The criticality of the current sea level also justifies the appearance of the scale (and conformal)
invariant features on Earth, e.g., the fractal rocky coastlines [102], with an intriguing coincidence of the dominant 4/3
fractal dimension in the critical model. The geometrical irregularity of the shorelines actually helps damping the sea waves
and decreasing the average wave amplitude. A simple model is accordingly presented in [20], which produces a stationary
artificial shoreline related to the percolation geometry. A practical application of the discovery of the conformal invariance
in the statistical properties of the shorelines is that it allows one to analytically predict the highly intermittent spatial
distribution of the flux of pollutant diffusing ashore [102].

This review paper is organized as follows. Section 2 presents additional basic properties of percolation model. Formu-
lation of the fractal structure and critical properties of the model is given based on the scaling theory. Section 3 describes
different modifications and variants of percolation models which are mostly developed recently. In Section 4 we focus on
the geometrical properties of the percolation model in two dimensions. The theory of SLE and its analytical consequences
for the percolation model are briefly reviewed. We also show that how one can map the criticality of a 3D Ising model onto
a 2D cross section of the original model. Section 5 outlines the statistical properties and the modeling of the seashores and
watersheds. We explain how percolation theory can describe the origins of the appearance of various fractal patterns on
Earth. Finally, we briefly summarize our results in Section 6.

2. Basic properties of the percolation model

As we saw in the Introduction, percolation theory is concerned with the clustering properties of identical objects which
are randomly and uniformly distributed through space with an occupation probability p. It is so simply defined yet so full
of fascinating results. Although it is purely geometrical in nature, it embodies many of the important concepts of critical
phenomena. In order to formulate the model, let us now define a bunch of geometric observables. For now we consider a
system of infinite lattice size and then in Section 2.3, we will address the situation of finite size effects. For a given value of
occupancy p, the nature of percolation is related to the properties of the occupied clusters. Two objects (e.g., occupied sites
or bonds) belong to the same cluster if they are linked by a path of nearest-neighbor bonds joining them (this definition is
slightly different for site and bond percolation). The connectedness is the essential characteristic of the percolation model
denoted by the spanning probability Ps: In the limit of an infinite lattice there exists a well-defined threshold probability pc
above which there suddenly emerges an infinitely large cluster that spans the system (Fig. 2). Therefore, for p > pc there
exists almost surely (i.e., Ps = 1) one infinite cluster of strength P∞(p) which denotes the probability for a given site to
belong to the infinite cluster. All other clusters have finite size s at any arbitrary p, described by the cluster size distribution
ns(p), i.e., the number of finite clusters of s connected sites, per lattice site. The probability that an arbitrary site belongs to a
finite cluster of size s is then given by sns(p). Thus, the sum of all the probabilities that a given site belongs to either a finite
size cluster or the infinite cluster must equal to p, i.e.,

s

sns(p) + P∞(p) = p. (1)

In the subcritical region, p < pc , P∞(p) is identically zero, and in the supercritical case p > pc , P∞(p) is positive. Conse-
quently, in the vicinity of the percolation threshold, the function P∞(p) is nonanalytic (Fig. 3).

Now we need to define a quantity to measure the cluster size. Intuitively, at a low value of p cluster sizes are small and
increasewith puntil the thresholdwhere the spanning cluster dominates and is infinite in size, and thus the cluster sizemust
diverge. Above the threshold we should remove the infinite cluster from our calculations otherwise it will always dominate.
As the clusters get absorbed into the spanning cluster the typical size of those left goes back down again. Therefore, we
should have a cluster size which increases, diverges at the threshold and then decreases again.
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Fig. 6. Mean cluster size χ(p) as a function of the occupancy p.

By Bayes’ theorem, the probability a site belongs to a cluster of finite mass s given that the site is occupied is

ws(p) =
sns(p)
s
sns(p)

. (2)

Thus we can define the mean cluster size χ(p) as follows,

χ(p) =


s

sws(p) =


s
s2ns(p)

s
sns(p)

. (3)

This definition (3) however, does not have information about the structure of the clusters e.g., their compactness and spatial
extent. For each cluster of mass s one can instead measure its radius of gyration Rg,s, defined by R2

g,s = (1/2s2)


i,j(ri − rj)2,
where the sum is over pairs of points on the cluster. For a given cluster of size s, the smaller radius of gyration is indicative
of its higher compactness and lower spatial extent.

The probability to find a finite cluster of large size s at a given point decreases exponentially with s in the subcritical
regime [137]. More precisely, there exists κ(p) > 0, so that κ(p) → ∞ as p → 0 and κ(p = pc) = 0 such that

ws(p) ≈ e−κ(p)s, s −→ ∞. (4)

It can also be shown that in the supercritical regime, the tail of the finite cluster size distribution has a rather smoother
decaying form. In other words, there exist functions κ1(p) and κ2(p), satisfying 0 < κ2(p) ≤ κ1(p) < ∞, such that [137]

exp

−κ1(p)s(d−1)/d

≤ ws(p) ≤ exp

−κ2(p)s(d−1)/d. (5)

Note that the power s(d−1)/d is the order of the surface area of the sphere in d dimensions with volume s. This implies that
the clusters are compact in the supercritical region [138].

At the critical point, this probability has a power-law decaying form of ws(pc) ≈ s−1−1/δ , with some critical exponent
δ = δ(d) > 0—see also Fig. 6.

We can also define another length scalewhich is different from the average radius of clusters, i.e., the correlation length ξ ,
defined by the two-point correlation function gc(r). This is the probability that if one point is in a finite cluster then another
point a distance r away is in the same cluster. This function then typically has an exponential decay given by a correlation
length ξ :

gc(r) ∼ e−r/ξ , r −→ ∞. (6)

The correlation length is a characteristic size of the cluster distribution which yields a maximum size above which the
clusters are exponentially scarce. It is also the upper bound of the scaling region where percolation clusters have a self-
similar behavior. Therefore we may define the correlation length ξ as an average distance of two points belonging to the
same cluster

ξ 2
=


r
r2gc(r)

r
gc(r)

. (7)

For a given cluster of mass s, one may replace r2 in the above summation by the average squared distance between two
cluster points, i.e., 2R2

g,s. Moreover, with the probability sns, a point belongs to an s-cluster, and since it is then connected to
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s sites, one may also replace gc(r) by s2ns, giving rise to the following relation for the squared correlation length3

ξ 2(p) =


s
2R2

g,ss
2ns(p)

s
s2ns(p)

. (8)

The above definitions of different characteristic observables are valid in all dimensions d.

2.1. Percolation in d-dimensions

2.1.1. Percolation on Zd

Let us consider the percolation problem on a hypercubic lattice Zd in d-dimensions. In d = 1, it is a trivial task to find that
the critical threshold should be pc = 1 both for bond or site percolation models. For d > 1, there exists a critical threshold
0 < pc < 1 below which all open clusters are finite and there is, almost surely, no infinite open cluster, and above pc there
exists an infinite open cluster with probability 1. It is rigorously known that no infinite open cluster exists at p = pc for
d = 2 and d ≥ 19 [52]. For other dimensions it is also conjectured to be held but its proof is viewed as an important open
mathematical problem in the field. It is also known that for an infinite connected graph with maximum finite vertex degree
∆, the bond and site critical thresholds, i.e., pbc and psc , respectively, satisfy the following inequality [137]

1
∆ − 1

≤ pbc ≤ psc ≤ 1 − (1 − pbc)
∆. (9)

In particular, pbc ≤ psc where the strict inequality holds for a broad family of graphs. It can also be shown that for per-
colation on Zd the percolation probability always satisfies P (d+1)

∞ (p) ≥ P (d)
∞ (p) for all p and d, and consequently we have

pc(d + 1) ≤ pc(d) [139,140].
In order to further figure out the global feature of percolation, a natural question would be concerned about the number

of possible infinite clusters which can coexist. It was shown by Newman and Schulman [141] that for periodic graphs at any
arbitrary p, exactly one of the following three situations prevails with probability 1: The number of infinite open clusters can
be either 0, 1 or ∞. It has been proved in [142] that the third situation is impossible on Zd. It has also been proved in [143]
that there cannot be infinitely many infinite open clusters on any amenable graph.4 Nevertheless there are some graphs,
such as regular trees, on which infinitely many infinite clusters can coexist [145].

2.1.2. Percolation on Bethe lattices
Due to its distinctive topological structure, several statistical models even with interactions defined on the Bethe lattice

[146] are exactly solvable and computationally inexpensive [147]. Various systems including magnetic models [146] and
percolation [148,149], have been studied on the Bethe lattice whose analytic results gave important physical insights to
subsequent developments of the corresponding research fields. The Bethe lattice is defined as a graph of infinite points each
connected to z neighbors (the coordination number) such that no closed loops exist in the geometry—see Fig. 7. A finite type
of the graph with boundary is also known as a Cayley tree and possesses the features of both one and infinite dimensions:
since Nk, the total number of sites in a Bethe lattice with k shells, is given as Nk = [z(z − 1)k − 2]/(z − 2), the lattice
dimension defined by d = limk→∞[lnNk/ ln k] is infinite. It is therefore often mentioned in the literature that the Bethe
lattice describes the infinite-dimensional limit of a hypercubic lattice Zd (it is also clear that a Bethe lattice with z = 2 is
isomorphic to the positive 1D lattice Z+). The Bethe lattice is indeed a very important substrate or medium on which the
mean-field theories for various physical models become exact.

As the number of shells grows the number of sites in the surface, or the last shell, grows exponentially z(z − 1)k−1.
Therefore, as k tends to infinity, the proportion of surface sites tends to (z − 2)/(z − 1). By surface boundary we mean the
set of sites of coordination number unity, the interior sites all have a coordination number z. Thus the vertices of a Bethe
lattice can be grouped into shells as functions of the distances k from the central vertex.

It is possible to show that the critical threshold for the Bethe lattice is pc = 1/(z − 1) for any z ≥ 3. Moreover, P∞ = 0
indicates the subcritical region p < pc , while P∞ > 0 indicates the supercritical region p > pc in which P∞(p) is strictly

3 The mean-square distance between two sites on an s-cluster is related to Rg,s , (1/s2)


i,j(ri − rj)2 = 2R2
g,s , where the factor of 2 comes from counting

each pair twice. The correlation length ξ can be defined as an average distance between two cluster sites. Whereas 2R2
g,s is the mean-square distance

between two sites on an s-cluster, ξ 2 is this same distance averaged over all finite sizes s. The probability that a site belongs to s-cluster is sns . There are s
sites in each s-cluster. One can thus weight the average of 2R2

g,s by s · sns , to obtain the squared correlation length Eq. (8).
4 For a finite set of vertices V whose edge boundary is denoted by ∂EV = {(u, v) : u ∈ V , v ∉ V }, the notion of amenability is related to whether the

size of ∂EV is of equal order as that of V , or is much smaller. Denoting the Cheeger constant of a graph G by h(G) = inf
V⊂V (G):|V |<∞

|∂EV |

|V |
, that is the minimal

ratio of boundary to bulk of its nontrivial subgraphs, a graph is called amenable when h(G) = 0, and non-amenable otherwise. The simplest example of a
non-amenable graph is the Bethe lattice with z ≥ 3 for which the Cheeger constant is h = z−2 [140,144]. It is also shown [140] that pc(G) ≤ 1/(h(G)+1),
so that for every non-amenable graph pc(G) < 1.
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Fig. 7. Part of a Bethe latticewith coordination number z = 3 [150]. The lattice sites are represented by open small circles at different shells k = 0, 1, 2, . . ..

increasing function of p. It is also known that at the critical point P∞(p = pc) = 0, meaning that there is no infinite cluster
almost surely at pc .

Since the Bethe lattice has a tree structure, the only way to connect a point sitting at kth shell to the origin is by a path
of k edges. Thus the two-point correlation function is given by gc(k) = pk, which decays exponentially fast as k → ∞ for
all p < 1. Comparing this with relation (6), it turns out that the correlation length should be ξ(p) ∼ −1/ ln p. Therefore,
unlike for the Zd lattice, the correlation length on the Bethe lattice is finite for all 0 < p < 1.

The mean cluster size on the Bethe lattice can also be explicitly computed as follows,

χ(p) =


1 − (z − 1)p

−1 p < pc,
∞ otherwise.

(10)

In the next section we will see how χ(p) → ∞ as p approaches pc from the left.
A much wider class of interesting graphs is that of Cayley graphs (which includes also Cayley trees as a particular kind)

of infinite, finitely generated groups. There, it has been shown [151] that the number N∞ of infinite clusters satisfies

N∞ =

0 if p ∈ [0, pc),
∞ if p ∈ (pc, pu),
1 if p ∈ (pu, 1].

(11)

The parameter space is thus split into three qualitative intervals separated by two critical values pc and pu. Some of intervals
may be however degenerate or empty e.g., for Zd we have pc = pu, and for trees we have pu = 1.

2.1.3. Percolation on random graphs and networks
The field of random graphs was started in 1959 by Erdős and Rényi [152–155] whose work instigated a great amount

of research in the field [156,157]. Random graphs have been extensively used as a probabilistic approach to study
complex networks [158]. Many real-world complex networks such as the Internet [159], social networks [160], and disease
modeling [161], share similar features e.g., they are large, sparse, scale-free, small worlds and highly clustered [162]. Consider
a graph Gn, with n number of vertices. Denote the proportion of vertices with degree k in Gn by random variable P (n)

k . We first
call a random graph process sparse when limn→∞ P (n)

k = pk, for some deterministic limiting probability distribution {pk}∞k=0.
Also, since {pk}∞k=0 sums up to one, for large n, most of the vertices have a bounded degree, which explains the phrase sparse
random graphs. We further call a random graph process scale-free with exponent τ when it is sparse and when

lim
k→∞

log pk
log(1/k)

= τ (12)

exists. This means that the number Nk of vertices with degree k is proportional to an inverse power of k, i.e., Nk ∼ cnk−τ

where cn is some normalizing constant. The requirement


k Nk = n then makes it reasonable to assume that τ > 1.
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Let the random variable Hn denote the typical distance between two uniformly chosen connected vertices in Gn. Then,
we say that the random graph process is a small world when there exists a constant K such that with probability one,
Hn ≤ K log n, in the limit of n → ∞. For ultra-small world random graphs we have almost surely Hn ≤ K log log n.

The simplest imaginable random graph is the Erdős–Rényi random graph ERn(p), which arises by taking n vertices, and
placing an edge independently between any pair of distinct vertices with some fixed probability p. This random graph is
shown to exhibit a percolation phase transition in the size of the maximal component, as well as in the connectivity of the
arising random graph. The phase transition in ERn(p), refers to a sharp transition in the largest connected component and
serves as the mean-field case of percolation.

The degree of a vertex in ERn(p) has a binomial distribution with parameters n and p = λ/n. It is well known that for n
is large, the proportion of vertices with degree k converges in probability to the Poisson distribution with parameter λ, i.e.,

pk(λ) −→ e−λ λk

k!
, as n −→ ∞, k = 0, 1, 2, . . . . (13)

In particular, p0 = e−λ is the fraction of isolated vertices. The control parameter λ may thus be seen as the average degree
of nodes.

Therefore, ERn(p) is a sparse random graph process but not scale-free, since clearly it does not have a power-law degree
sequence. However, in order to adapt the random graph to complex networks, we can make these degrees scale-free in a
generalized random graph by taking the parameter λ to be a random variable with a power-law distribution [163].

Erdős and Rényi have shown [153] that there is a critical value λc = 1 below which ERn(p) random graph has almost
surely no connected components of size larger than O(log n). At λ = λc , the graph has a largest component of size O(n2/3),
while for λ > λc , a drastic separation takes place between the largest cluster and all other smaller components and there
appears a unique giant component of O(n) containing a positive fraction of the vertices.

The average fraction N (λ) of clusters (number of clusters per vertex) can be shown [164] to be given by

N (λ) = −
λ

2
(1 − P∞(λ)2) + (1 − P∞(λ))


1 − ln


1 − P∞(λ)


, (14)

where P∞(λ) denotes for the fraction of vertices in the largest component.
As mentioned earlier, the random graphs like ERn(p) are quite unlike real-world networks, which often possess power-

law or other highly skewed degree distributions. The study of percolation on graphs with completely general degree
distribution is, however, presented in [23], giving exact solutions for a variety of cases, including site percolation, bond
percolation, and models in which occupation probabilities depend on vertex degree.

2.2. Percolation at and near criticality

We have learned that the behavior of percolation process depends strongly on whether we are in the subcritical p < pc
or supercritical p > pc regime. In the former case, all clusters are finite and their size distribution has a tail which decays
exponentially—see (4). In the latter supercritical regime, there exists an infinite cluster with probability one and, the size
distribution of other finite clusters has a tail which decays slower than exponentially—see (5). At the vicinity of the critical
point p ∼ pc , however, there occurs an interesting phenomena characterized by a nonanalytic behavior of the order
parameter P∞(p) along with the divergent asymptotic behavior of the correlation length ξ(p) and the mean cluster size
χ(p)when p approaches pc . Despite lacking theirmathematically rigorous justifications, renormalization and scaling theory
have made remarkable predictions about the behavior of the percolation problem near and at the critical threshold.

2.2.1. Scaling hypotheses and upper critical dimension
According to the scaling hypotheses it is possible to state, in general, the following relation for the number ns(p) of finite

clusters per site

ns(p) ∝ s−τ F

c(p)s


, s −→ ∞ (15)

where τ is a free exponent and F is a scaling function. Near the percolation threshold, c(p) is allowed to behave as a general
power-law c(p) ∝ |p − pc |1/σ , where σ is another critical exponent. We can consider in general, the mth moment of the
cluster size distribution defined by Mm(p) =


s s

mns(p) with m ≥ 1. The following scaling relations are also conjectured
to hold near the percolation threshold with different critical exponents β , γ , α, ∆ and ν

percolation strength (p > pc): P∞(p) ≃ B(p − pc)β , (16a)

mean cluster size: χ(p) ≃ Γ ±
|p − pc |−γ , (16b)

mean cluster number per site: nc(p) ≃ A±
|p − pc |2−α, (16c)

cluster moments ratio (m ≥ 2):
Mm+1(p)
Mm(p)

≃ D±
|p − pc |−∆, (16d)

correlation length: ξ(p) ≃ f ±
|p − pc |−ν, (16e)
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which also define the critical amplitudes whose superscripts + or − refer to pc being approached from above or below, re-
spectively.5 Universal combinations of these amplitudes represent the canonical way of encoding the universal information
about the approach to criticality [165,166]. While critical exponents can be determined working at criticality, amplitude ra-
tios also characterize the scaling region around the critical pointwhich carry independent information about the universality
class [167].

The probability for two sites separated by a distance r to belong to the same cluster also has a power-law decaying form
gc(r) ≃ r2−d−η for large distances at p = pc , introducing the anomalous dimension η.

These exponents, however, are not independent of each other but satisfy two sets of scaling and hyperscaling relations.
The scaling relations can be easily read as γ = ν(2−η), 2−α = γ + 2β = (τ − 1)/σ and β = ∆(τ − 2). The hyperscaling
relation, on the other hand, involves the number d of dimensions dν = 2 − α, and believed to be valid only for d ≤ dc ,
where dc is called upper critical dimension. It is believed that when d ≥ dc , the percolation process behaves roughly in the
same manner as percolation on an infinite regular tree and their critical exponents take on the corresponding values given
by mean-field theory:

α = −1, β = 1, γ = 1, τ =
5
2
, δ = 2, ∆ = 2, η = 0, ν =

1
2
.

If these values are attained by percolation, then the hyperscaling relation gives dc = 6.
The critical exponents are known exactly only in 2D, and not much is known rigorously in the general case. Critical

exponents are universal in the sense that they depend only on dimensionality d, and not otherwise upon the individual
structure of the underlying lattice. Theory of renormalization group (RG) lends support to the hypothesis of universality.

2.2.2. Real-space renormalization group
The Kadanoff picture of RG, called real-space RG, is based on coarse graining and rescaling procedure in which the lattice

is iteratively divided into blocks of linear size b and then rescaled.When this scale transformation is iteratedmany times, RG
leads to a certain number of fixed points. The fixed point equation for the rescaling transformation ξ = ξ/b in percolation,
has two solutions only: ξ = 0, ∞. These are associated with the solutions to the fixed point equation in p-space, Tb(p) = p,
that is, p = 0, 1 and pc , representing the trivially self-similar states of the empty and fully occupied lattice and the nontrivial
self-similar state at p = pc , respectively. The critical exponent ν can then be given by

ν =
log(b)
dTb(p)
dp |pc

 ≈
log(b)
dRb(p)
dp |p⋆

 ,

where the rescaling transformation Tb has been substituted with a real-space renormalization transformation Rb
incorporating coarsening with rescaling. Note that pc is identified with p⋆, the nontrivial solution to the fixed point equation
Rb(p⋆) = p⋆. The real-space renormalization transformation Rb(p) is often chosen to be the probability of having a spanning
cluster (or a majority of sites occupied) in the block.

One can therefore summarize the real-space renormalization transformation procedure as follows: (i) Divide the lattice
into blocks of linear size b. (ii) Replace all sites in a block by a single block of size b occupiedwith probability Rb(p) according
to the coarse graining procedure. (iii) Rescale all length scales by the factor b.

As critical exponents are determined by the large scale behavior, they are universal and insensitive to details of lattice
structure. However, real-space renormalization gives limited results and does not give the critical exponents, except in the
case of the Bethe lattice.

2.3. Fractal structure of the critical percolation clusters

Scaling theory asserts that whenever system is viewed on length scales smaller than the correlation length ξ , it behaves
as it does at the threshold. At the critical point, ξ as the only length scale dominating the critical behavior of an infinite
lattice, is diverging, i.e., ξ → ∞. Disappearance of this scale at p = pc , is reminiscent of scale invariance which implies
the emergence of self-similarity in the geometric feature of the percolation clusters. The fractal properties persist even for
p ≠ pc with finite ξ , whenever the length scale to investigate the system is less than ξ ; once it exceeds ξ , the geometry
becomes Euclidean. Consider a percolation systemwhich is viewed through a hypercubic window of size Ld where L ≪ ξ is
the linear window size or can be regarded as the size of a finite system. Scale invariance then requires that the mean mass
M of the cluster within the window would increase as a power-law with size, i.e., M(ξ , L) ∼ Ld

c
f , where dcf is the fractal

dimension of the cluster. Above pc on length scales L ≫ ξ , the infinite cluster can be regarded as a homogeneous object
which is composed of many cells of size ξ , i.e., M(ξ , L) ∼ ξ

dcf (L/ξ)d. These can be mathematically summarized in terms of
the crossover function m as follows,

M(ξ , L) ∼ Ld
c
f m(L/ξ), where m(L/ξ) =


constant for L ≪ ξ,

(L/ξ)
d−dcf for L ≫ ξ .

(17)

5 Eq. (16c) is valid only for the nonanalytic part of nc(p).
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The mass M , on the other hand, is proportional to LdP∞. Equating this with (17) and rewriting in terms of (p − pc) using
(16a) and (16e), yields the scaling relation dcf = d−β/ν. Since the exponents β and ν are universal, the fractal dimension dcf
is also universal. The values of dcf are known exactly only in 2D and d ≥ dc = 6 as dcf = 91/48 and 4, respectively. In other
dimensions the estimates exist only by numerical simulations. However the fractal dimension dcf by itself is not enough to
characterize the percolation cluster. For example, a critical percolation cluster and a pattern of diffusion-limited aggregation
(DLA) in 3D, share the same value of fractal dimension dcf ≃ 2.5, while their fractal structures have completely different
features. For its better characterization one can define the shortest path between two cluster points. The shortest path of
length lmin is shown to be self-similar which satisfies the scaling relation lmin ∼ Rdmin

f where R is the linear distance between
the two points and, dmin

f denotes for the shortest path fractal dimension. The chemical dimension dch is then defined by

M ∼ ld
ch

min ∼ Rdmin
f dch which means dcf = dmin

f dchf . The fractal dimension dmin
f is known exactly only for dimensions d ≥ 6 to be

dmin
f = 2. Even in 2D, despite its relevance, the fractal dimension of the shortest path is among the few critical exponents

that are not known exactly [168,169]. Now dmin
f distinguishes between percolation cluster and DLA in 3D, by dmin

f ≃ 1.38
and 1, respectively.

A fractal percolation cluster is composed of several other fractal substructures including its perimeter (hull), external
perimeter, backbone, dangling ends and red sites (bonds), etc. For instance, the mean number of red bonds Nr varies with
p as Nr(p) ∼ (p − pc)−1, implying Nr ∼ ξ 1/ν which gives the fractal dimension of the red bonds drf = 1/ν, valid in all
dimensions [170].

In 2D, the perimeter and the external perimeter have the fractal dimension dPf = 7/4 and dEPf = 4/3, respectively, which
belong to the family of conformally invariant curves called SLEκ , with κ = 6 and κ̃ = 8/3, respectively, satisfying the duality
relation κκ̃ = 16.

The fractal dimensions for the percolating cluster at criticality in ERn(p) random graph and random scale-free networks
with n equal to the number of vertices and degree distribution pk = cnk−τ , are also reported in [171]. There has been shown
that the fractal dimension of the spanning cluster is dcf = 4 for τ > 4 and dcf = 2(τ − 2)/(τ − 3) for 3 < τ < 4. Note that
the result for τ > 4 is in agreement with that of the regular infinite dimensional percolation. As we mentioned earlier in
Section 2.1.3, on a random network in the well connected regime, the average distance between sites is of the order log⟨k⟩ n,
and becomes even smaller in ultra-small world random graphs. However as discussed above, for d ≥ 6 we have dcf = 4 and
dmin
f = 2, consequently dch = 2. Therefore the average chemical distance lmin between pairs of sites on the spanning cluster

for random graphs and scale-free networks with τ > 4 at criticality behaves as lmin ∼
√
M , i.e., the distances become much

larger at criticality.

3. Variants of percolation

In the previous section, we studied the standard version of percolation, i.e., Bernoulli percolation, in which all random
occupations of bonds or sites take place irreversibly and independently on either a Euclidean lattice or a random graph.
Over the past decades and years, numerous variations and modifications of the percolation model with a huge variety
of applications in many fields were introduced. An important development first established by Fortuin and Kasteleyn,
is the connection between bond percolation and a lattice statistical model. This consideration has led to a formulation
of the percolation problem as a limiting case of the general Potts model, which was extremely useful, for many of the
techniques readily available in statistical mechanics has been applied to percolation [172]. Many variations were motivated
by consideration of spatial correlations, anisotropy, nonlocality, explosivity, etc. ‘Explosivity’ in particular, deals with the
search for those perturbations of cluster-merging rules which change the order of percolation transition from the second
order (continuous) to the first order (discontinuous). This is knownas explosive percolation inwhich amacroscopic connected
component emerges in a number of steps that is much smaller than the system size. This has recently become a subject of
enormous interest [173], including openings toward other subjects such as jamming in the Internet [174], synchronization
phenomena [175,176] and analysis of real-world networks [177]. Let us first start by introducing the family of explosive
percolation models and then turn our attention to some other variants and modifications. The number of papers appeared
on explosive percolation was itself explosive and we cannot cover all subjects and ideas of course, we rather try to outline
some original and selective topics.

3.1. Explosive percolation

3.1.1. Achlioptas process
Having introduced in Section 2.1.3, the classic Erdős–Rényi randomgraph (or briefly ERn model), is composed of n isolated

vertices whose each pair of vertices is chosen uniformly at random in each step, and connected by an edge {e1}. At any given
moment, a cluster is defined as the set of vertices each of which can be reached from any other vertex in it by traversing
edges. If tn denotes for the number of added edges at time t , it is known that the fraction of vertices in the largest cluster
undergoes a continuous phase transition at the critical time tc = 1/2.
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At a Fields Institute workshop in 2000, Dimitris Achlioptas suggested a class of variants of the classical ERn model where
a nonrandom selection rule, the so-called Achlioptas process, is additionally imposed which tends to the delay (or accel-
eration) in the formation of a large percolating cluster. This has then received much attention in recent years [178–181].
Concretely, consider a model that, like ERn, starts with n isolated vertices and add edges one by one. The difference is that
to add a single edge, first two random edges {e1, e2} are chosen, rather than one, each edge is chosen exactly as in ERn and
independently of the other. Of these, only one should be selected according to the selection rule, and then inserted in the
graph. The other edge is discarded. Clearly, if one always resorts to randomness for selecting between the two edges, the
original ERn model is recovered.

Achlioptas originally asked if it is possible to shift the critical point of this phase transition by following an appropriate
selection rule. One rule that can naturally be imagined is the product rule: Of the given potential edges, pick the one which
minimizes the product of the sizes of the components containing the four end points of {e1, e2}. This rule was suggested
in [182] as the most likely to delay the critical point. Another rule is the sum rule, where the size of the new component
formed is minimized.

A selection rule can be classified as a bounded-size or an unbounded-size rule. In a bounded-size selection rule, decisions
depend only on the sizes of the components and, moreover, all sizes greater than some (rule-specific) constant K are
treated identically. For example K = 1 is the Bohman–Frieze (BF) rule, where e1 is chosen if it joins two isolated vertices,
and e2 otherwise. It was rigorously proven in [178] for a much simpler rule, that such rules are capable to shift the
threshold. Moreover, the percolation transition is strongly conjectured to be continuous for all bounded-size rules [179]. For
unbounded-size rules in contrast, extensive simulations [58] strongly suggested that, the product rule in particular, shows
much more interesting behavior than just shifting the critical point, it exhibits a discontinuous percolation transition. The
numerical evidence showed that the fraction of vertices in the largest cluster jumps from being a vanishing fraction of all
vertices to a majority of them instantaneously, i.e., the largest cluster grows from size at most

√
n to size at least n/2 in at

most 2n2/3 steps, that is, at the phase transition a constant fraction of the vertices is accumulated into a single giant cluster
within a sublinear number of steps.

However, this conjecture has been rigorously disapproved by Riordan andWarnke [72,183] in 2011, by showing that the
number of clusters participated to generate a giant cluster is not sub-extensive to system size in order of magnitude, and
thus, it cannot bring out a discontinuous transition, but a continuous one. In fact, their argument shows continuous phase
transitions for an even larger class of processes [183] called l-vertex rules (every Achlioptas process is a 4-vertex rule). Their
results state that continuity of the phase transition is such a robust feature of the basic model that it survives under a wide
range of deformations and thus all Achlioptas processes have a continuous phase transition. This however neither means
that the connectivity transition at pc is characterized by a usual power-law divergence of the order parameter [184–186]
nor that it cannot be followed by multiple discontinuous transitions. In particular, Nagler et al. have proven that for certain
l-vertex rules the continuous phase transition can have the shape of an incomplete devil’s staircasewith discontinuous steps
in arbitrary vicinity of pc [187].

Therefore, heuristics or extrapolations from simulations suggesting explosive percolation in mean-field models seem to
be wrong in the scaling limit. Nevertheless, a discontinuous transition is possible when one departs far enough from the ERn
model.

3.1.2. Half-restricted process
Half-restricted process [188] is a variant of the Erdős–Rényi process which exhibits a discontinuous phase transition.

Intuitively, a discontinuous transition can only occur if the growth of large clusters is suppressed and clusters with medium
sizes become abundant. After a number of steps, such medium-sized clusters merge and a giant cluster emerges drastically.
As we saw in Section 3.1.1, the idea to do this in an Achlioptas process was to select an edge that connects smaller
components, which did not lead to an explosive percolation. A different approach is however considered in the half-
restricted process: In each step, two vertices are connected by an edge, but one of them is restricted to be within the smaller
components.

Consider a graph Gn including n labeled vertices v1, v2, . . . , vn sorted ascending in the size of the clusters that they reside
in. Vertices with the same cluster size are sorted lexicographically. For a given value of 0 < f ≤ 1, a restricted vertex set
Rf (G) is definedwhich is composed of the ⌊fn⌋ number of vertices in smallest components (⌊fn⌋means the floor of fn, i.e., the
largest integer less than or equal to fn). At each time step t ≥ 1, one edge is added between two chosen vertices vr and vu.
Starting with an empty graph at t = 1, at every step t , first the restricted vertex set Rf (G) is recognized, and one restricted
vertex vr , which belongs to Rf (G), is uniformly chosen at random. Then independently, one unrestricted vertex vu is chosen
uniformly at random from the whole vertex set Gn. An edge is then added between two vertices vr and vu if is not already
present. Fig. 8 illustrates the first four steps of time evolution of an Gn graph with n = 8 and f = 0.5, according to the
half-restricted process.

It has been shown in [188] that, unlike the Achlioptas process, the half-restricted process exhibits explosive percolation
with a discontinuous phase transition for any value of f < 1. Although the evolution of the largest cluster over the first n
edges in the half-restricted process may behave very similar to that of the Achlioptas process [188], they are fundamentally
different in the nature of phase transition as well as mathematical structure.
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Fig. 8. Illustration of the first four steps of time evolution of a graph Gn with n = 8 number of vertices, according to the half-restricted process. The vertices
surrounded by the dashed line belong to the restricted vertex set Rf (G) with f = 0.5.

3.1.3. Spanning cluster-avoiding process
For the continuous phase transitions, the Erdős–Rényi process on random graphs accounts for the mean-field limit of

the standard percolation on a Euclidean lattice. Explosive percolation models in Euclidean space have also been extensively
studied [60,73], and the numerical results suggest discontinuous transitions [189]. However, due to the lack of analytic
arguments, the order of explosive transition in Euclidean space is still elusive. This would therefore be of interest to clarify
the order of the explosive transition in Euclidean space and on random graphs in a unified manner. To this aim, a model
called the spanning cluster-avoiding (SCA) model was introduced [65,190]. The spanning cluster in Euclidean space actually
plays the same role as the giant cluster (or component) in random graph models. The SCA model starts by considering a
finite hypercubic lattice Zd in d dimensions of size N and unoccupied bonds. Inspired by the best-of-mmodel [191], at each
time step t , number ofm unoccupied bonds are chosen randomly and classified into two types: bridge and nonbridge bonds.
Bridge bonds are those that upon occupation a spanning cluster is formed. SCA model avoids bridge bonds to be occupied,
and thus one of the nonbridge bonds is randomly selected and occupied. If them potential bonds are all bridge bonds, then
one of them is randomly chosen and occupied. Once a spanning cluster is formed, restrictions are no longer imposed on the
occupation of bonds. This procedure continues until all bonds are occupied at t = 1.

Extensive numerical simulations and theoretical results [190] have shown that the explosive transition in SCA model in
the thermodynamic limit, can be either discontinuous or continuous for d < dc = 6 depending on the number of potential
bonds m. In other words, there is a tricritical value mc(d) = d/(d − dBB) for d > dBB, where dBB denotes for the fractal
dimension of the set of bridge bonds [192], such that if m < mc , the transition is continuous at a finite threshold tc , and
discontinuous, in the thermodynamic limit, for m > mc at the trivial percolation threshold at t = 1, when all bonds of the
system are occupied. The formula formc(d) is valid only for d < dc = 6 at whichmc(dc = 6) = ∞.

For d ≥ dc , i.e., in the mean-field limit, the transition is shown to be continuous for any finite and fixed value of m.
However ifm varies with the system size N , a discontinuous transition can also take place for d ≥ dc . More precisely, there
exists a characteristic valuemc ∼ lnN such that whenm increases with N slower thanmc , the transition is continuous in a
finite critical time tc , and when m increases with N faster than mc , the transition is discontinuous at the trivial percolation
threshold at t = 1. Ifm increases withN asmc ∼ lnN , then a discontinuous transition occurs at finite tcm, which is neither tc
nor unity. Some necessary conditions for a non-trivial and a trivial discontinuous percolation transition have been recently
proposed [193].

The idea to obtain a discontinuous percolation transition by controlling the largest cluster alone was actually addressed
before [59], in which an acceptance method was used to systematically suppress the formation of a largest cluster on the
lattice. There has been also shown that the cluster perimeters are fractal at the percolation thresholdwith a fractal dimension
of 1.23 ± 0.03, statistically indistinguishable from that of watersheds.

3.2. Non-self-averaging percolation

Fractional percolation, as a non-self-averaging percolation, was introduced [194] to describe some of the main features
of crackling noise as a characteristic feature of many systems when pushed slowly, e.g., the crumpling of paper [195],
earthquakes [196] and the magnetization of slowly magnetized magnets. In the fractional percolation the relative size of
the largest component smax, as the order parameter, exhibits many randomly distributed jumps after a critical threshold pc
whose discontinuities survive even in the thermodynamic limit. A fractional growth rule is used in thismodel which induces
a certain type of size homophily among clusters: Connection of two clusters with a similar size is in priority, while the size of
the larger cluster has already been rescaled by a target fraction factor 0 < f ≤ 1. The model starts by considering a network
of n isolated vertices with no edges. At each step, three different vertices v1, v2, v3 are chosen uniformly at random, no
matter if they are in the same cluster. Let S1 ≥ S2 ≥ S3 denote the sizes of the (not necessarily distinct) clusters that they
are contained in. Then an edge is added between the two vertices vi and vj for which ∆ij := fSi − Sj, 1 ≤ i < j ≤ 3 is
minimal. If there are multiple options, one is randomly chosen. Moreover when only two clusters are left in the system they
will be connected—see Fig. 9 for further illustration.

It has been shown that after the first transition, for p > pc and n → ∞, the size of the largest component either stays
constant or increases fractionally by at least a factor of r = f /(1 + f ). As the first transition is point-continuous [72,197],
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Fig. 9. Illustration of the cluster merging process according to the fractional percolation with target fraction f = 1/2. The link between vertices v1 and v2
is established because ∆12 = −5 is minimal.

the process necessarily undergoes infinitely many discontinuous transitions arbitrarily close to the first dynamical transi-
tion point pc , and the order parameter increases stepwise. The height δk of the kth step down the staircase has the form
δk ∼ (1 + r)−k, giving rise to the scaling distribution ds of the jump size as ds ∼ s−1. Both the size of the jumps, and the
transition points are stochastic even in the thermodynamic limit.

The process is therefore shown to be non-self-averaging in the sense that the relative variance of the size of the largest
component given by ⟨s2max⟩/⟨smax⟩

2
−1, does not vanish for p ≥ pc as n → ∞. This is in contrast to classical models (e.g., the

ERn model) for which the order parameter converges to a nonrandom function in the thermodynamic limit.
The characteristics of fractional percolation are robust against an arbitrary variation of the target fraction factor f .

Assuming a time-dependence form of f (k) = α/k where 0 < α ≤ 1, one finds that the jump size distribution function
decays faster than ∼s−1 characterized by the power-law fluctuations ds ∼ s−β with β = (1 + α)/α.

For other models that exhibit non-self-averaging in percolation we refer to the literature [198–201].

3.3. Correlated percolation

In the percolation models studied so far, all random occupations have been considered to be independent of each other
with no spatial correlations. But this is not always the case when, for instance, percolation theory is applied to study
transport and geometric properties of disordered systems [202–208], since the presence of disorder usually introduces
spatial correlations in the model. For sufficiently short-range correlations, the properties of the model will be the same as
those of uncorrelated percolation. By increasing the range of correlations however, they may have a relevant contribution
leading to new fixed points in the renormalization group study of the model. These can be quantified in terms of how the
correlation function g(r) falls off at large distances r: When the correlations are short-range with a fall-off faster than r−d,
then according to theHarris criterion [209], they are relevant if dν−2 < 0,where ν is the correlation length exponent for the
uncorrelated percolationmodel. Since for the percolationmodelwe always have the hyperscaling relation dν−2 = −α > 0,
so short-range correlations do not change the critical behavior [127]. For long-range correlations of the power-law form
g(r) ∼ r−2H with 2H < d instead, the extended Harris criterion [210] states that the correlations are relevant ifHν −1 < 0.
In this case, the new correlation length exponent is given by the scaling relation νH = 1/H . This relation has been then
verified numerically in [34,206,211–213]. Thus the critical exponents in a long-range correlated percolation can change
depending on how the correlations decay with the spatial distance.

Such a power-law decay of the spatial correlations is a typical characteristic feature of the height profile {h(x)} in random
grown surfaces, where h(x) is the height at the lattice site at position x. This indeed provides a convenient way to tackle
with the correlated percolation on a lattice. For self-affine surfaces for which g(r) ∼ (1− r2H), it is shown in [119] that even
in the thermodynamic limit, the percolation transition is only critical for H = 0. Percolation on these surfaces is actually
governed by the largest wavelength of the height distribution, and thus the self-averaging breaks down. For long-range
correlated surfaces where g(r) ∼ r−2H , in contrast, the transition is critical and the self-averaging is recovered. Depending
on the value of H , the correlation-length exponent is given as follows:

νH =


1/H if 0 < H < 1/ν,
ν if H ≥ 1/ν,

(18)

where ν = 4/3 for a Euclidean lattice in 2D. It is thus natural to expect that other critical exponents also depend on the
value of H . Such a dependence is numerically verified for the fractal dimensions of the largest cluster dcfH , its perimeter dPfH
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and external perimeter dEPfH , shortest path, backbone, and red sites [136]. It has also been shown that, within the numerical
accuracy, the hyperscaling relation d = (γH + 2βH)/νH = γH/νH + 2(d − dcfH) is fulfilled by the exponents. The duality
relation is numerically shown to be valid (dEPfH −1)(dPfH −1) = 1/4, though the theoretical verification of these observations
is still lacking.

3.4. Bootstrap percolation

The bootstrap percolation problem [214,215] and its obvious variants deal with the dynamics of a system composed of
highly coupled elements, each of which has a state that depends on those of its close neighbors. It has played a canonical
role in description of a growing list of complex phenomena including crack propagation [216], neuronal activity [217–219],
and magnetic systems [220] among others.

The standard bootstrap percolation process on a lattice as the spread of activation or infection is defined according
to the following rule with a given fixed parameter k ≥ 2: Initially, each of the sites is randomly infected (or activated)
with probability p and uninfected (inactivated) with probability 1 − p, independently of the state of the other sites. Every
infected site remains infected forever, while each uninfected one which has at least k infected neighbors becomes infected
and remains so forever. This procedure is continued until the system reaches the stable configurationwhich does not change
anymore, i.e., when no uninfected site has k or more infected neighbors. The main question which arises is concerning the
percolation of the infected cluster, i.e., if there emerges a giant spanning cluster of infected sites of size O(n) by the end of
the process.

Bootstrap percolation has been extensively studied on 2D and 3D lattices [221–224] (and references therein), including
the proof of the existence of a sharp metastability threshold in 2D [221] which has then been generalized to arbitrary
d dimensional lattices [222,223]. In particular, Schonmann [225] proved that on the infinite lattice Zd, the percolation
threshold pc(Zd, k) = 0 if k ≤ d, and pc(Zd, k) = 1 otherwise. The finite size behavior (also known as metastability)
was studied in [224,226,227], and the threshold function was determined up to a constant factor, for all 2 ≤ k ≤ d, by Cerf
and Manzo [227]. The first sharp threshold was determined by Holroyd [221], for k = 2 on a finite 2D lattice Z2 of linear
size L, who proved that

pc(L, d = 2, k = 2) ≃
π2

18 ln L
, as L → ∞. (19)

This has been recently [228] generalized to the finite lattice Zd of linear size L as follows:

pc(L, d, k) ≃


λ(d, k)
ln(k−1) L

d−k+1

, for 2 ≤ k ≤ d, as L → ∞, (20)

where ln(k) denotes for an k-times iterated logarithm, ln(k) L = ln

ln(k−1) L


. Although the function λ(d, k) is not exactly

known, but it can be shown that it always has a finite value with the following properties [228]: λ(2, 2) = π2/18, λ(d, 2) ≃

(d− 1)/2, and λ(d, d) ≃ π2/6d as d → ∞. Clearly the result (19) is a special case of (20) for d = 2 and k = 2. Surprisingly,
there exist some predictions for the asymptotic threshold in 2D based on numerical simulations which differ greatly from
the rigorous result (19). For example, based on simulations in [229], the estimate pc(L, d = 2, k = 2) ln L = 0.245 ± 0.015
is reported whereas the rigorous prediction is π2/18 = 0.548311 · · · . This apparent discrepancy between theory and
experiment has been rigorously addressed in [230] to be due to a very slow convergence in the asymptotic limit when
L → ∞.

Bootstrap percolation has also been studied on the random regular graph [231,232], and infinite trees [233] as well. In
the context of real-world networks and in particular in social networks, a bootstrap percolation process can be imagined
as a toy model for the spread of ideas or new trends within a set of individuals which form a network. In this sense, the
bootstrap percolation has been recently [234] studied on the power-law random graphs of n vertices in which is shown that
a giant cluster of size O(n) emerges, with high probability, above a certain critical sublinear number of the initially infected
nodes. This behavior is in sharp contrast with that observed [231,235,236] on an Erdős–Rényi random graph in which there
will be no evolution when the number of initially infected vertices is sublinear.

The final remark is regarding the close relation between the bootstrap percolation and another well-known problem in
graph theory, that of the k-core of random graphs [57,237,238]. The k-core of a graph is the maximal subgraph for which all
nodes have at least k neighborswithin the k-core. However there is a difference between the stationary state of the bootstrap
percolation and the k-core [236]. Bootstrap percolation is an infection process, which starts from a subset of source nodes
and spreads over a network according to the infection rules described earlier. The k-core of the network can be found as an
asymptotic structure obtained by a subsequent pruning of nodes which have less than k neighbors.

3.5. Directed percolation

Considering a porous rock as a randommedium in which neighboring pores are connected by small channels of varying
permeability, an important problem in geology would be how deep the water can penetrate into it. Clearly the ordinary
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Fig. 10. Directed bond percolation on a tilted square lattice started from a source active vertex vs at t = 0. Each bond (and corresponding destination site)
is activated with probability p, shown by solid lines with arrows (filled circles). The cluster of active sites connected by a directed path to vs is indicated
in blue (dark). The vertical direction corresponds to time, and the dashed lines identify the sets of available vertices at time t . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

percolationmodel is not applicable to describe such phenomena since the gravity has weighted a specific direction in space,
i.e., the water propagation is not isotropic but directed. Directed percolation, introduced in [5], is an anisotropic variant of
standard isotropic percolation which introduces a specific direction in space. It accounts for one of the most prominent
universality classes of nonequilibrium phase transitions, playing a similar role as the Ising universality class in equilibrium
statistical mechanics [239]. Directed percolation models exhibit a continuous phase transition with a fascinating property
of robustness with respect to the microscopic dynamic rules. It turned out to describe a wide range of spreading models
e.g., contact process [240,241], epidemic spreading without immunization [242], and forest fire models [243–245]. For
this model, the percolation can only occur along a given spatial direction. Regarding this direction as a temporal degree
of freedom, directed percolation can then be viewed as a dynamical process in d + 1 dimensions. In this sense percolation
on a dynamic network can be mapped onto the problem of directed percolation in infinite dimensions [246].

Starting from a source active (occupied or wet) vertex vs at t = 0 on a tilted hypercubic Zd lattice, directed bond
percolation, as a dynamical process, can be interpreted as follows. As illustrated in Fig. 10, at the next time step, each of
the downward bonds emanating from vs is randomly occupied by an arrow with probability p which corresponds to the
destination site to become active. This procedure is continued row by row until the system reaches an absorbing state, i.e., a
configuration that themodel can reach but it cannot escape from there. There exists a critical threshold pc , that for p < pc the
average number of active sites grows for a short time and then decays exponentially. For p > pc there is a finite probability
that the number of active sites diverges as t → ∞. In this case activity spreads within a so-called spreading cone. At p = pc
which separates a non-fluctuating absorbing state from a fluctuating active phase, a critical cluster is generated from a single
source whose scaling properties are characterized by a number of critical exponents. Note that, in directed percolation each
source vertex generates an individual cluster, so the lattice in this case cannot be decomposed into disjoint clusters.

Therefore, depending on the value of p, activity may either spread over the entire system or die out after some time. The
latter case, i.e., the absorbing state is a completely inactive state which can only be reached by system but not be left. Thus
detailed balance is no longer obeyed and that is why the process is nonequilibrium.

Despite of its very simple rules and robustness, its critical behavior is highly nontrivial and exact computation of the
critical exponents seems impossible. Even in 1 + 1 dimensions, no analytical solution is known, suggesting that is a non-
integrable process. This may be related to the fact that directed percolation, unlike the ordinary percolation, due to the lack
of symmetry between space and time, is not conformally invariant.

Although it is not an equilibrium model, the critical behavior of the directed percolation shares a very similar picture
as in the ordinary percolation. A phenomenological scaling theory can be applied to describe its criticality. Considering
the density ρ(t) of active sites as an order parameter of a spreading process, observations justify that in the active phase
ρ(t) decays and eventually saturates at some stationary value ρs(t). Near the critical point, the stationary density is then
turned out to satisfy a power-law relation ρs ∼ (p − pc)β , where β is a universal critical exponent that only depends on
dimensionality. The other important quantity is the correlation length whose definition needs a special care, since in this
case, time is an additional dimensionwhich should be distinguished from the spatial dimensions. Let us denote the temporal
and spatial correlation lengths by the indices ξ∥ and ξ⊥, respectively, which are independent of each other. Then close to the
transition, these length scales are expected to diverge as ξ∥ ∼ |p−pc |ν∥ and ξ⊥ ∼ |p−pc |ν⊥ with generally different critical
exponents ν∥ and ν⊥. The two correlation lengths are related in the scaling regime by ξ∥ ∼ ξ z

⊥
where z = ν∥/ν⊥ denotes for

the so-called dynamic exponent. In many models, the universality class is given by the three exponents β , ν∥ and ν⊥.
For d ≥ dc = 4, the values of the critical exponents are believed to be given by the mean-field theory as β = 1, ν∥ = 1

and ν⊥ = 1/2 [239]. For d < dc however, there are no exact results neither for critical exponents nor thresholds. However, a
very precise estimates of critical exponents and thresholds on several lattices can be found in [247,248] in 1+1 dimensions,
and in a recent work [249] (and references therein) in higher dimensions.
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Let us conclude this subsection by stating the following conjecture first made by Janssen [250] and Grassberger [251]
inspired by the variety and robustness of directed percolation models. The statement is that any model which fulfills the
following conditions should belong to the directed percolation universality class: (i) The model exhibits a continuous phase
transition into a unique absorbing state, (ii) The transition is characterized by a positive one-component order parameter,
(iii) The dynamic rules involve only short-range interactions, and (iv) The system has no special attributes e.g., additional
symmetries or quenched randomness. Although this conjecture is not yet rigorously proven, it is highly supported by
numerical evidence.

4. Percolation in two dimensions

At the critical point, the correlation length diverges and the system becomes scale invariant and thus scaling hypothesis
applies. However the scaling hypothesis alone cannot determine the critical exponents though it may give some relations
among them. Therefore one may call for some possible stronger symmetries e.g., conformal invariance, to determine the
exponents. Of course scale invariance does not imply conformal invariance at least at the level of the superficial mathe-
matical definition. How can thus conformal invariance to be enhanced from scale invariance? In two dimensions, one can
rigorously show that scale invariance is enhanced to conformal invariance under the following assumptions [76,252,253]:
(i) unitarity, (ii) Poincaré invariance (causality), (iii) discrete spectrum in scaling dimension, (iv) existence of scale current,
and (v) unbroken scale invariance. Fortunately most interesting classes of 1 + 1 quantum field theories, as the scaling limit
of various 2D lattice models in statistical mechanics, satisfy these assumptions. In two dimensions however the conformal
symmetry is extremely powerful since conformal transformations correspond to analytic functions to be used in statistical
mechanics to characterize universality classes. Under conformal transformations the lengths are rescaled non-uniformly
while the angles between vectors are left unchanged.

Many exact results have then been obtained for percolation model in two dimensions using methods of conformal field
theory (CFT). Among them, Cardy’s conjectured formula [254,255] for the crossing probability is one of the famous ones.
For a percolation model defined in a unit disc |z| < 1, the probability that there exists at least one cluster which contains
at least one point from each of two disjoint intervals on the boundary of the disc whose ends are assigned by (z1, z2) and
(z1, z2) respectively, has the following explicit form as a function of the cross-ratio η
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, (21)

where 2F1 is the hypergeometric function. Ps(η) is invariant under transformations of the unit discwhich are conformal in its
interior (but not necessarily on its boundary). Of course, this probability is interesting only at the critical point. For p < pc ,
since all clusters are finite, in the scaling limit we will have Ps = 0, while for p > pc the infinite cluster always spans, so the
limit is 1. This result is valid as long as there are only short-range correlations in the probability measure, independent of
whether the microscopic model is formulated as bond, site, or any other type of percolation.

Moreover it has been shown that the whole probability distribution of the total number of such distinct crossing clusters
is conformally invariant in the scaling limit, depending only on η. In particular themean numberNc of such crossing clusters
is [256]
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The other exact result obtained by using conformal field theory and Coulomb gas methods, is for the number N (A) of
percolation clusters of enclosed area greater than or equal to A at the critical point in two dimensions [257]. It has been
shown to behave as the following power-law

N (A) ∼
C
A

, (23)

with a proportionality constant C = 1/8
√
3π that is universal.

A rigorous proof of Cardy’s formula for site percolation on the triangular lattice was discovered [80] by Smirnov using
advantages of the theory of stochastic Löwner evolution (SLE).

4.1. Stochastic Löwner evolution

In probability theory, the stochastic Löwner evolution (SLEκ ) with parameter κ , introduced by Schramm [82] in 2000, is
a family of random planar curves that have been proven to be the scaling limit of interfaces in a variety of 2D critical lattice
models in statistical mechanics. Here we give a brief description of the so-called chordal SLE in its standard setup, and refer
to [83,84,258] for more detailed information about it, and other variants of SLE.

Consider a curve γ (t) that emanates at t = 0 from origin on the boundary of the upper half-plane H, and goes to infinity
as t → ∞. The curvemight intersect but should not cross itself during the evolution. Let us define the hull Kt as the union of
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Fig. 11. For a putative percolation cluster, the perimeter (or hull) is the union of the solid and dashed boundary lines which contains many fjords, and the
external perimeter is the union of the solid and dotted boundary lines with fractal dimensions dPf and dEPf , respectively. The external perimeter is obtained
by closing off all narrow passageways. The duality relation states that (dEPf − 1)(dPf − 1) = 1/4.

the curve and the set of points got trapped by the curve up to time t , which are not reachable from infinity without crossing
the curve. According to the Riemann mapping theorem, there should be an analytic function gt(z) which maps H\Kt into
the H itself (H\Kt is a simply connected domain that contains all those points of H that are not in Kt ). The map gt(z) can be
uniquely determined by imposing the following hydrodynamic normalization at infinity,

gt(z) = z +
2t
z

+ · · · , as z −→ ∞, (24)

where the coefficient 2t is due to a conventional parameterization of γ . It can be then shown that the evolution of the tip of
the curve, can be given by the Löwner differential equation

∂tgt(z) =
2

gt(z) − ζt
, g0(z) = z, z ∈ H, (25)

where ζt is a continuous function but not necessarily differentiable. In order to have conformally invariant random curves
which behave geometrically as they should to encode the statistics of critical interfaces, Schramm argues that [82] they
should have two properties: Markov property, and stationarity of increments property. With these two properties and
reflection symmetry, ζt can only be proportional to a 1D standard Brownian motion, i.e., ζt =

√
κBt , so that ⟨ζt⟩ = 0 and

⟨(ζt − ζt ′)
2
⟩ = κ|t − t ′|. The diffusivity κ is the only parameter whose different values correspond to different universality

classes of critical behavior. For example, κ = 6 corresponds to the percolation universality class in which cluster boundaries
in the continuum limit are described by SLE6. In fact SLEκ is in general conformally covariant under domain changes, and
only for the special case of percolation with κ = 6 is conformally invariant.

For κ = 0, SLE curve is a vertical straight line, andwhen κ increases the curve becomemore roughwith fractal dimension
df = 1 + κ/8 for κ ≤ 8 and 2 for κ ≥ 8 [259]. For 0 ≤ κ ≤ 4, the SLE curve does not intersect itself or the real axis (dilute
phase), while for κ > 4, it intersects but does not cross itself and the real axis on all length scales (dense phase). SLE is
a space-filling curve when κ ≥ 8. In the dense phase with κ > 4, there is a duality conjecture stating that the exterior
frontier of an SLEκ hull looks locally as SLEκ̃ with κ̃ = 16/κ [135,260]. For example, the external perimeter of a percolation
cluster in the continuum limit is believed to be described by SLE8/3 which is also expected to describe the scaling limit of
planar self-avoiding random walk (SAW), although there is no complete mathematical proof yet [261]—see also Fig. 11.

In addition, SLEκ has two more special properties for κ = 6 (locality) and κ = 8/3 (restriction). Let D be a simply
connected region inH connected to the real axiswhich is at some finite distance from the origin. Consider two SLEκ processes
from the origin to infinity, one in the domain H and another in the domain H\D. If these two processes have the same
distribution up to the hitting time of the set D, then the SLEκ has the locality property. Such a property is expected for the
percolation cluster boundaries with κ = 6 [262,263], and for no other values of κ . Moreover, suppose that SLEκ with κ ≤ 4
has the restriction property. Then the distribution of all paths that are restricted not to hit D, and which are generated by
SLEκ in H, is the same as the distribution of all paths generated by SLEκ in the domain H\D. SLEκ has the restriction property
only for κ = 8/3 and no other values of κ [263]. We also expect such a property to hold for the continuum limit of SAWs,
assuming it exists.

Thewinding angle between the two endpoints of a finite 2D-SAWand indeed, a broader class of critical interfaceswas first
studied by Duplantier and Saleur [264]. Using conformal invariance and nonrigorous Coulomb gas methods, they found that
the distribution of winding angle approaches a Gaussian and they explicitly computed the winding variance as ∼(8/g) ln L,
where L is the distance between the end points of the walk, and g is a model dependent parameter which is 3/2 for SAW.
The winding angle at a single endpoint relative to the global average direction of the curve is a Gaussian with variance
∼(4/g) ln L [264]. It has been also found numerically [265] that the variance in the winding at typical random points along
the curve was only 1/4 as large as the variance in the winding at the end points ∼(1/g) ln L. For SLEκ curves, the variance in
the winding angle at the end point of the curve is shown to be κ ln L [82] (the relation between the Coulomb gas parameter
g and κ can thus be given by κ = 4/g).
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Fig. 12. Site percolation model on a square lattice in H. The fixed boundary condition is enforced at the lower boundary such that on the negative real
half-line all the sites are unoccupied, while on the other half-line the sites are occupied. This imposes an interface (the perimeter in red) at the boundary of
the spanning cluster (yellow colored) starting from the origin and ending at the upper boundary (the interface is defined uniquely by using the turn-right
tie-breaking rule [269]). The external perimeter is shown by the dark solid line. In the scaling limit, as the lattice constant goes to 0, the perimeter and
external perimeter then converge in distribution to SLE6 and SLE8/3 , respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4.2. Scaling limit and conformal invariance of percolation

The existence of the conformally invariant scaling limit of percolationwas first conjectured in [78], based on experimental
observations. This was then supported by some mathematical evidence provided for a different but related model, Voronoi
percolation, which was proven [266] to be invariant with respect to a conformal change of metric. Using nonrigorous
methods of CFT, Cardy could derive an exact limiting formula (21) for the crossing probability in a unit disc. Carleson has
made an essential observation that this formula takes a particularly simple formwhen the domain is an equilateral triangle.
In particular, for a percolation defined in an equilateral triangle △ of side length 1 and vertices z1, z2 and z3, and if z4 is on
(z3, z1) at distance x ∈ (0, 1) from z3, then the crossing probability is simply Ps


(z1, z2), (z3, z4); △


= x. However, for years

mathematicians were unable to rigorously justify Cardy’s formula.
In 2001, Smirnov [80] proved that for site percolation on the triangular lattice, the limiting crossing probability exists

which is conformally invariant and satisfies Cardy’s formula. Conformal invariance of the limit means that if the domain Ω ,
on which the percolation is defined, to be conformally mapped onto any other domain Ω ′, such that z1 is mapped to z ′

1, z2
to z ′

2, z3 to z ′

3 and z4 to z ′

4, then Ps

(z1, z2), (z3, z4); Ω


= Ps


(z ′

1, z
′

2), (z
′

3, z
′

4); Ω ′

. The proof is based on the discovery of

discrete harmonic functions which encode the crossing probability and converge to conformal invariants of the domain, in
the scaling limit.

Although we have been able to define the notion of a limiting crossing probability (though it may not exist at all), it
was not a priori clear until about 2000 [49,267,268] how to define a limiting percolation configuration, i.e., a construction
which does not involve limits of discrete systems. In fact, such a construction has been proposed by SLEκ curves as universal
candidates for the scaling limits ofmacroscopic interfaces in 2D criticalmodels. In order to show the existence and conformal
invariance of the scaling limit for percolation, one can employ either its locality property or Cardy’s formula for crossing
probabilities to show that κ = 6. Based on this observation Schramm conjectured [82] that if percolation interface has a
conformally invariant scaling limit, it must converge to SLE6—see also Fig. 12. Smirnov has then outlined a proof for the
conformal invariance of the full percolation configuration. For more technical details of proof we refer to the original paper
by Smirnov [80] or [270–272].

As an application of this convergence result, one can prove that the critical exponents for 2D percolation exist, and their
exact values can be computed, except for α and τ , which are nevertheless listed here for completeness:

α = −
2
3
, β =

5
36

, γ =
43
18

, τ =
187
91

, δ =
91
5

, ∆ =
91
36

, η =
5
24

, ν =
4
3
.

4.3. Percolation and magnetic models

The analogy between bond percolation and conventional critical behavior in spin systems such as q-state Potts model,
can be developed through a well-known mapping first discovered by Fortuin and Kasteleyn (FK) [27,28,103,104]. The
q-state Potts model is a generalization of the Ising model in which the spins at each site of a lattice can assume q possible
spin values. It is defined by the lattice Hamiltonian H = −J


⟨r,r ′⟩ δs(r),s(r ′), where the sum is over nearest neighbors

and δi,j is the Kronecker delta. In the ferromagnetic case J > 0 (we set J = 1), the state in which all sites have the
same spins minimize the energy and the system exhibits spontaneous magnetization at sufficiently low temperatures.
There exists a critical temperature Tc at which the system undergoes a phase transition to the disordered phase. In
two dimensions for q ≤ 4 the phase transition at Tc is continuous. The partition function as a function of the inverse
temperature β is Z(β) = Tr exp


β


⟨r,r ′⟩ δs(r),s(r ′)


, which apart from an overall unimportant constant may be rewritten
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Fig. 13. Illustration of GS clusters (left) versus FK clusters (right) for an Ising spin configuration. Different distinct clusters are shown in different colors. AGS
cluster in a spin configuration, is a set of nearest-neighbor sites of like states. An FK cluster can then be constructed from a GS cluster by randomly assigning
a bond between each pair of spins with a temperature dependent probability p := 1− e−2β . The critical point on the square lattice is at βc =

1
2 ln(1+

√
2)

and pc =
√
2/(1 +

√
2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

as Z = Tr


r,r ′

(1 − p) + pδs(r),s(r ′)


with p = 1 − e−β . Now every term in this expression is associated with a bond

configuration in which there exists a bond for each term ∝ p and there is no bond for each term ∝ (1 − p). Sites connected
by occupied bonds form clusters, and the Kronecker deltas force all the spins in each cluster to be in the same state. When
the trace is taken over the spins, each cluster will have only one free spin and thus will give a factor q. Therefore one can
write the partition function as a sum over configurations C of occupied bonds [273]

Z =


C

pNb(1 − p)N−NbqNC = ⟨qNC ⟩percolation, (26)

where N is the total number of bonds in the lattice, Nb is the number of occupied bonds and NC is the number of distinct
clusters inC. This is the random cluster (or FK) representation of the q-state Pottsmodel. Clearly the limit q → 1 reproduces
percolation with nontrivial correlations.

From such a correspondence (26), one can build a dictionary which relates the thermodynamic quantities to the geomet-
rical properties. For example, for the Ising model with q = 2, the spin–spin correlator is equal to the pair connectedness
function of FK clusters, i.e., the probability that two sites of a distance r belong to the same FK cluster. The linear dimension
of FK clusters diverges as the Ising correlation length, and the average (FK) cluster size diverges as the Ising susceptibility.
Moreover, the average number of occupied bonds is proportional to the internal energy, and its fluctuations diverge as the
Ising specific heat [274]. The presence of a spontaneousmagnetization at T < Tc reflects the appearance of an infinite cluster
at p > pc .

For an Ising model on a 2D lattice with spin variables σi = ±1, an alternative description of the partition function can be
given by Z = Tr exp(−βS) with the action S =


⟨ij⟩(1 − σi.σj) which only receives contributions from links across which

the neighboring spins are anti-aligned. This means that if we have two adjacent clusters of opposite spins, the contribution
to the action is proportional to the length of the boundary of geometric spin (GS) clusters—see Fig. 13. Thus the action can be
considered as a sum over the self-intersecting connected admissible curves {γ } [109] on the dual lattice weighted by their
lengths L[γ ] [275], i.e.,

Z = exp


{γ }

(−1)n(γ )e−2βL[γ ]


, (27)

where n(γ ) counts the number of intersections of the immersed curve γ . The topological term (−1)n(γ ) in (27) is essential
since it actually distinguishes between the different intrinsic topologies corresponding to a given extrinsic geometry and
introduces cancellations between them to avoid over-counting of configurations. Fromhere it is not so difficult to see that the
continuum limit of this theory is a theory of freeMajorana fermions that at the critical temperature Tc , becomes a conformal
field theory with central charge c = 1/2.6 More recently the existence of conformal invariance and scaling limit of the 2D
Ising model was rigorously proved. It has been shown that the geometric spin (GS) cluster interfaces as well as FK cluster
interfaces in a 2D Ising model strongly converge to the SLE3 and SLE16/3, respectively, in the scaling limit [85,277,278].

4.4. Dimensional reduction in criticality of a 3D Ising model

The 3D Ising model has, so far, resisted an exact solution and may not be even computationally tractable [108]. Never-
theless much is known about its critical behavior, both analytically and numerically.

Inspired by the formulation of the 2D Ising model as a theory of immersed curves, one may think of a possible extension
of the same idea to the 3D model. There has been a lot of effort in the past [109–112,279–286] to reformulate the 3D Ising

6 The central charge c is the CFT parameter which is related to the SLE parameter κ through c(κ) =
(8−3κ)(κ−6)

2κ [276]. Central charge is invariant under
the duality κ → 16/κ .
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model in order to recast it as a string theory, i.e., as a theory of fluctuatingmembranes immersed in three dimensions. These
attempts have been however stymied due to the difficulty in taking the continuum limit of formal sums over lattice surfaces.
Part of the difficulty is that in three dimensions the topological term (−1)l(Σ) (where l(Σ) is the number of links where the
closed lattice surface Σ intersects itself) oscillates very rapidly on the length scale of the lattice spacing.

In this subsection we present a rather phenomenological approach based on application of percolation theory to give
some evidence that the critical properties of a 3D Ising model are encoded in certain observables in a 2D cross section of
the model. This suggests that is possible to employ the well-developed theory of immersed curves to study the Ising model
in three dimensions. As discussed in the last subsection, the FK clusters in q-state Potts model always percolate right at
the critical temperature Tc . The GS clusters in turn, do percolate at the same temperature Tc only in two dimensions. For
example, in a 3D Ising model the FK clusters percolate exactly at the Curie point Tc , while the percolation transition of the
GS clusters, in contrast, occurs at some temperature Tp well below Tc [287] and thus the 3D GS clusters do not capture the
critical properties of the model. The results of extensive Monte Carlo study of 3D Ising model on a cubic lattice shows [31]
that if one looks at an arbitrary 2D cross-section of the model, the GS clusters exhibit a percolation transition at a threshold
which coincides exactly with the Curie point. It is also found numerically that the perimeter and the external perimeter of
a GS cluster in a 2D cross-section at the Curie point satisfy the duality relation and their fractal dimensions and winding
angle statistics are compatible, in the scaling limit, with SLEκ with κ = 5 and 16/5 respectively. This latter is in the same
universality class as interfaces in tricritical Ising model in two dimensions. This numerical evidence may however pave the
way to build a theoretical framework to understand the critical properties of the 3D Ising model.

This observation on dimensional reduction of the criticality becomes more interesting if it would be a general feature of
magnetic models independent of the dimensionality and the type of microscopic interactions. In fact some recent primary
results [288] show that even for an Ising model in four dimensions, the GS clusters in a 2D cross-section of the model
percolate exactly at the critical point of the original 4D model.

5. Percolation description of landscapes

Percolation theory has been extensively applied to describe the properties of both artificial and natural landscapes.
Percolation properties of the correlated surfaces as a model of wide range of artificial landscapes have been discussed in
Section 3.3. Our main focus in this section is mostly devoted to the statistical properties of natural landscapes and their
modeling.

The power spectrum S of linear transects of Earth’s topography7 has a remarkable characteristic scaling relation with
the wave number k as S(k) ∼ k−βc with the exponent βc = 2, over a wide range of scales [289–292]. Similar scaling
relations have been identified in Earth’s bathymetry (i.e., the underwater equivalent to topography) [293], the topography
of natural rock surfaces [294], and the topography of Venus [295]. Such a power-law spectrum in the topography is
responsible for the appearance of various self-similar patterns on Earth, e.g., fractal coastlines [296], the radiation fields
of volcanoes [297,298], crustal density and gravity [299], geomagnetism [300], and surface hydrology such as in the river
basin geomorphology [301]. Although environmental parameters such as erosion seem to play an important role in shaping
the coastlines, drainage basins and watersheds, the observation of scale-invariant topography on Venus, however, indicates
that fractal topography can be formed without erosion.

The exponent βc is related to the Hurst exponentH in fractional Brownianmotion (fBm) via βc = 2H+1, thus suggesting
H ≃ 0.5 for Earth’s topography. However, further surveys based on the fBm model [290] of topography or bathymetry
revealed a more complex multifractal structure of Earth’s morphology giving rise to distinct scaling properties of oceans,
continents, and continental margins describes by H = 0.46, 0.66 and 0.77, respectively [302].

The other characteristic feature of Earth’s topography is its bimodal distribution [303] which reflects the topographic
dichotomy of continents and ocean basins. It has a clear discrepancy with Gaussian models of topography, also consistent
withMandelbrot’s observation [304]. The positive correlation between elevation and slope seen on Earth (i.e., the steepness
increases with the height) is not also predicted by amodel with a Gaussian distribution, implying that the global topography
of Earth is not easily amenable to modeling.

Nevertheless, percolation theory has been recently applied to describe the global topography of Earth [21], in which
the critical point indicates the present mean sea level. Moreover, different models based on percolation theory have been
proposed to describe the statistical properties of regional features on Earth such as coastlines [20,305], river basins and
drainage networks [306–311], and watersheds [115,116,129,312]. Percolation theory has been also successful to help
understand other phenomena on Earth. It has been demonstrated [313] that sea ice exhibits a percolation transition
at a critical temperature above which brine carrying heat and nutrients can move through the ice, whereas for colder
temperatures the ice is impermeable. Percolation also serves as an attractive mechanism to explain core formation in
Earth [314,315].

7 The power spectrum S(k) is defined as the square of the coefficients in a Fourier series representation of the transect, which measures the average
variation of the function at differentwavelengths. For totally uncorrelated adjacent data points S(k) is a constant, while for strongly correlated ones relative
to points far apart, it will be large at small k (long wavelengths) and small at large k (short wavelengths).
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5.1. Fractal geometry of coastlines

Coastlines were among the first natural systems that have been quantitatively characterized when Mandelbrot compu-
tationally analyzed their fractal geometry [296]. In fact the geometrical irregularity of the coastlines helps damping the sea
waves and decreasing the average wave amplitude. Affected by the sea eroding power, an irregular morphology evolves at
the rocky coast until a self-stabilization with the wave amplitude is established. A simple model of such stabilization has
been studied [20] in which the fractal geometry of the coastline plays the role of a morphological attractor directly related
to percolation geometry. Dynamics of themodel spontaneously leads to a stationary fractal geometrywith a dimension very
close to 4/3 independent of the initial morphology, in agreement with that is observed on real coasts [296,316]. This fractal
dimension is also consistent with that of the external perimeter of the spanning cluster in a 2D critical percolation. Two gen-
eral erosion mechanisms are considered in the 2D model, i.e., a rapid mechanical erosion and a slow chemical weakening.
It has been shown that when the model involves both processes, a dynamic equilibrium is reached that changes the shape
of the coast but preserves its fractal properties.

The effect of spatial long-range correlations in the lithology of coastal landscapes on the fractal properties of the coast-
lines has then been addressed in [305]. In fact, due to the endogenic processes like volcanic activity, earthquakes, and tectonic
processes originating within Earth that are mainly responsible for the very long-wavelength topography of Earth’s surface,
one naturally expects that lithological properties of coastal landscapes would be in general heterogeneous as well as long-
range correlated in space. Moreover, a multitude of fractal dimensions has been measured for real coastlines of different
landscapes [317]. Thus self-similar geometry of coastlines should emerge from an intricate interplay between these land-
scape properties and the sea force. The results of a simple invasion model [305] indicates that a critical sea force fc exists at
which the coastline exhibits self-similarity with fractal dimension depending on Hurst exponent. The dominant 4/3 frac-
tal dimension was obtained for uncorrelated landscapes. For f < fc the coastline is rough but not fractal and the eroding
process stops after some time, while for f > fc , erosion is perpetual leading to a self-affine coastline which belongs to the
Kardar–Parisi–Zhang (KPZ) [318] universality class.

As discussed in Section 4, the external perimeter of critical percolation clusters with fractal dimension 4/3 are proven
to have a conformally invariant limit described by SLE8/3. Some numerical evidence of such a strong symmetry has been
also reported for rocky coastlines with fractal dimension 4/3 [102]. These coastlines are therefore shown to be statistically
equivalent to the external perimeter of percolation clusters or that of planar random walk. The conformal invariance can
then be used to predict the statistics of the flux of pollutants diffusing over shorelines. This flux has been characterized
by a strongly intermittent spatial distribution which can vary dramatically between locations just a few hundred
meters apart.

Strong evidence of conformal invariance property has been also presented for the iso-height lines (like coastlines) of both
artificial landscapes in the KPZ universality class [93,95,97] and experimentally grown surfaces [92]. In the KPZ universality
class, the iso-height lines are characterized by a fractal dimension of 4/3 with the same conformal invariant properties as
the external perimeter of critical percolation clusters, compatible with SLE8/3 curves in the scaling limit. Such an analogy
may lead to an alternative description of the coastlines.

5.2. Statistical properties of watersheds

Thewatershed is defined as the linewhich separates adjacent drainage basins—see Fig. 5. Based on observation of natural
watersheds, it has been claimed that they should have a fractal structure [319]. The self-similarity of watersheds has then
been justified numerically for both natural and artificial landscapes [115,129,320]. Watersheds have been shown to be
related to a family of curves appearing in different contexts, e.g., bridge percolation [192], polymers in strongly disordered
media [321], optimal path cracks [322], and fracturing process [323]. To determine the watershed lines on real or artificial
landscapes which are usually in the form of Digital Elevation Maps (DEM), consisting of discretized elevation fields, one can
use an iterative application of an invasion percolation procedure [115].

The fractal dimensions of watershed lines in 2D and 3D were estimated [116] to be df = 1.2168 ± 0.0005 and 2.487 ±

0.003, respectively, for uncorrelated artificial landscapes. In two dimensions, however, the measured fractal dimensions for
natural landscapes obtained from data provided by satellite imagery [324], fall into the range 1.10 ≤ df ≤ 1.15. This may
imply the necessity of considering spatial correlations in computations. When the long-range correlations characterized by
the Hurst exponentH were introduced [320], amonotonic decrease of df withH has been observed, and the agreement with
the observation achieved for 0.3 < H < 0.5 (although this range of H seems to be out of that is observed for continents
and continental margins [302]). Moreover, it has been shown [129] that small and localized perturbations like landslides
or tectonic activities, can have a large and non-local impact on the shape of watersheds. It is also discussed in [312] that
the fractal dimension obtained in 2D for uncorrelated artificial landscapes is intriguingly close to the fractal dimension
of the largest cluster boundary in two models of explosive percolation on a lattice, i.e., the largest cluster and Gaussian
models [59].

Watersheds are shown [99] to be among the rare examples of physical systemsdescribed by SLEκ curveswith κ < 2. It has
been numerically shown that, in the scaling limit, the watershed line exhibits conformally invariant properties compatible
with SLEκ with κ = 1.734 ± 0.005.
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Fig. 14. Schematic illustration of the continental aggregation by decreasing the sea level from top (h = +100 m) to bottom (h = −80 m). This shows a
remarkable percolation transition at the present mean sea level around which the major parts of the landmass join together.

Fig. 15. Map of tectonic plates compared with different disjoint islands for the sea level at h = +100 m. Every disjoint landmass is approximately
surrounded by a major plate boundary.

5.3. The present mean-sea level on Earth

The ubiquitous scale invariant features on Earth have endowed theoretical interest on the assumption that they may
reveal prevalence of some underlying feature [325–327]. This is still an open question if there exists a clear relationship
between the quantitative properties of landscapes and the dominant geomorphologic processes that originate them.
Although such a relationship is established for some of regional features, the global topography in comparison, has received
less attention.

The appearance of scale and conformal invariance property in statistical models like percolation is a specific feature of
criticality. This can be regarded as a motivating issue to search for an underlying mechanism that possibly explains the
emergence of fractal geometries on various landscapes. For instance, it has been shown for an ensemble of experimentally
grown surfaces [34] that there exists a critical level height at which a percolation transition occurs. This may elucidate the
earlier observation [92] of conformal invariant iso-height lines on these samples.

A percolation description of the global topography of Earth is recently presented [21] in which a dynamic geoid-like
level is defined as an equipotential spherical surface as a counterpart of the percolation parameter. When the hypothetical
water level is decreased from thehighest to lowest available heights on Earth, there occurs a geometrical phase transition at a
certain critical level hc aroundwhich themost parts of landmass join together—see Fig. 14. Themost remarkable observation
is that the critical level hc coincides with the present mean sea level h = 0 on Earth. The criticality of the current sea level
justifies the appearance of the scale (and conformal) invariant features on Earth. This may also uncover the important role
that is played by water on Earth and shed new light on the tectonic plate motion.

According to the plate tectonic theory, the outer portion of Earth is made up of a number of distinct plates (Fig. 15) which
move relative to each other. This motion is responsible for the major topographical features such as creation of oceans and
pushing up mountain ranges. The open question motivated by this work is whether such an observed criticality plays the
role of a geometric attractor for tectonic motions through geological time.
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6. Conclusions

Through the current reviewwe have outlined some basic properties and recent advances of percolation theory as well as
some of its recent applicationswhich can be summed up as the following statements. Percolation theory and its applications
span a wide area of science ranging from social and network sciences to string theory and particle physics as well as
various branches of probability theory in mathematics. The percolation models are mostly governed by very simple rules
yet with a fascinating mathematical structure and fundamental features. It has an uncorrelated microscopic structure, but
a long-ranged correlated geometry can emerge which governs the system. All its properties can be described by a number
of geometric observables with some characterizing features distinguishing between subcritical, critical and supercritical
phases. The criticality has a rich fractal structure and remarkable underlying scaling laws defined by some universal critical
exponents. Percolation theory simultaneously benefits from exact conjectures raised by physical insights on the one hand,
and rigorous mathematical proofs on the other hand. It has a very robust nature against small perturbations but ready to
play a role in a completely different scene under sufficiently large modifications. With no interactions, it may be discovered
in the heart of strongly interacting systems.8 While it is applied to formulate the critical behavior of a system in terms of
some appropriate observables, it can be viewed at the same time as another theory in a lower dimension describing the
same system with appropriately well defined observables [31]. Many exact results have been obtained but there still exist
many open challenges in the field [40].
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