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Abstract
The last few decades have revealed the living cell to be a crowded spatially heterogeneous 
space teeming with biomolecules whose concentrations and activities are governed by 
intrinsically random forces. It is from this randomness, however, that a vast array of precisely 
timed and intricately coordinated biological functions emerge that give rise to the complex 
forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature 
of life has drawn the interest of an increasing number of physicists, and recent years have 
seen stochastic modeling grow into a major subdiscipline within biological physics. Here we 
review some of the major advances that have shaped our understanding of stochasticity in 
biology. We begin with some historical context, outlining a string of important experimental 
results that motivated the development of stochastic modeling. We then embark upon a fairly 
rigorous treatment of the simulation methods that are currently available for the treatment of 
stochastic biological models, with an eye toward comparing and contrasting their realms of 
applicability, and the care that must be taken when parameterizing them. Following that, we 
describe how stochasticity impacts several key biological functions, including transcription, 
translation, ribosome biogenesis, chromosome replication, and metabolism, before considering 
how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we 
close with our expectation for the future of the field, focusing on how mesoscopic stochastic 
methods may be augmented with atomic-scale molecular modeling approaches in order to 
understand life across a range of length and time scales.

Keywords: chemical master equation, flux balance analysis, metabolism, reaction–diffusion 
master equation, stochastic chemical kinetics, gene expression, whole-cell modeling
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1. Introduction: beyond the mean

If so much of our modern understanding of biology is cast 
in the language of chemistry, and so much of our chemistry 
is built upon the bedrock of modern statistical and quantum 
physics, it is perhaps no surprise that so many physicists 
have wandered into the weeds of the biological sciences and 
made profound contributions there. These contributions began 
remarkably early, and have punctuated the history of modern 
biology. They include the investigations of researchers like 
Muller, Max Delbrück, and Erwin Schrödinger, who specu-
lated about the physical properties necessary for a molecule to 
encode genetic information before DNA’s role had even been 
implicated [1–3], and the work of Alan Turing who consid-
ered the types of reaction–diffusion systems that produce the 
spatial patterns seen in biological morphogenesis [4]. They 
also include experimental triumphs, like the crystallographic 
elucidation of the DNA double helix [5] by Watson, Crick and 
Franklin, the structure of proteins with the work of Kendrew 
et al [6] being the first, and Woese’s sequence-based approach 
to phylogeny that would reveal the archaeal domain of life [7].

With the advent of modern computers, the predictive-
ness of biophysical models has grown considerably. From 
the configurational space of proteins and other biomolecules 
elucidated through molecular dynamics (MD) and Brownian 
dynamics (BD) simulations, to the propagation of action 
potentials through neural networks, to the systems-level 
complexity of reaction networks involving thousands of bio-
chemical species, theoretical biophysicists are diving deeper 
and uncovering more about the nature of life. Never far from 
their minds, however, is the knowledge that the apparent order 
they see in living systems emerges from the chaotic and inher-
ently stochastic motions of a teeming soup of biomolecules. 
Understanding this ‘order from disorder’ remains an impor-
tant part of understanding the biological world. After all, life 
only happens far from equilibrium, but we live in a universe of 
ever-increasing entropy; we can never faithfully describe the 
former without accounting for the randomness of the latter.

In this review we explore the current state of stochastic 
modeling of cellular processes at the level of whole cells. 
We will begin with some history, touching on a number of 
watershed theoretical and experimental results. We will then 
review the basic theory necessary to describe stochastic, spa-
tially resolved chemical networks in section 2, then discuss 
simulation methodologies, available software to perform 
simulations, and how to design and parameterize such mod-
els. Section 3 will discuss how stochasticity plays a role in 
the fundamental molecular processes of biology: transcrip-
tion, translation, DNA replication, ribosome biogenesis, and 
metabolism. In section 4, we will explore how these processes 
interact in the cell, and how to unite individual models of 
these processes to a model of a whole cell. We will then move 
from single cells to colonies in section 5 and describe how 
one builds colony-level models based on physical principles. 
Finally, we close with a discussion of the possibility of uniting 
mesoscopic stochastic modeling with atomic-scale molecular 
dynamics simulations in order to bridge the length- and time-
scales of the molecular level to the level of an organism.

1.1. Stochastic physics in biology: a historical review

For much of the history of modern biology, researchers have 
largely been comfortable with descriptions of cellular pro-
cesses that focus on mean behavior. Microbial growth, for 
example, is often described in terms of lag, log, and stationary 
phases, as though every cell in a population fits neatly into one 
of these categories at any given moment. Of course in reality, 
its long been understood that substantial heterogeneity exists 
within populations of microbes. Persister cells, for example, 
were discovered in the 1940s and represent an essentially dor-
mant fraction of log-phase populations that can survive antibi-
otic treatment [8]. This is not to mean that ‘log-phase’, cannot  
be a useful description, but rather that in many cases, cellular 
behavior should be thought of in terms of distributions. Some 
cells in a population may be growing exponentially, others 
may not be growing at all, and en masse the population has 
some effective growth rate.

The distributional nature of many cellular processes 
revealed itself slowly over many years. As early as the 1930s, 
researchers began to interpret variability in bacterial cell-
cycle duration in terms of multi-step stochastic processes [9]. 
In 1945, Delbrück showed that the number of bacteriophages 
in infected Escherichia coli cells varied more than could be 
accounted for by the variability in the size of the cells them-
selves, and proposed stochasticity in the ‘autocatalytic’ pro-
cess of viral reproduction as a possible explanation [10]. A 
few years later, Benzer showed that sub-optimally induced  
E. coli expressed variable numbers of β-D-galactosidase 
(part of the lac operon) [11]. Novick and Weiner [12] 
expanded on this work to show that at low methyl-1-thio-β-D-
galactopyranoside concentrations (or TMG, a commonly used 
lac inducer) concentrations, induction of the lac operon was 
an ‘all-or-none’ process—some cells in a population expressed 
the operon at its full rate, while the others did not express it at 
all [12]. This finding was also attributed to the ‘autocatalytic’ 
(i.e. involving a positive feedback loop) nature of the induc-
tion. Maloney and Rotman [13] made these findings more con-
crete, measuring a bimodal distribution of β-D-galactosidase 
enzymes in E. coli under low levels of induction [13]. In 1976, 
[14] described variability in the durations of ‘swimming’ and 
‘tumbling’ behaviors in individual bacteria in response chemi-
cal attractants, and attributed it to Poissonian fluctuations in 
the production of small numbers of regulator molecules [14].

By the 1990s, a number of groups were actively investigat-
ing the degree to which stochasticity in gene expression can 
lead to phenotypic variations within cell populations [15–19]. 
But it was still not until the first few years after the turn of the 
millennium that the study of gene expression ‘noise’ (often 
defined in terms of the ratio of the protein copy number vari-
ance to its squared mean, Var[ p]/E[ p]2) would explode into 
the mainstream of biological physics research. It started in a 
now-classic article by [20]. Using E. coli engineered to express 
yellow and cyan fluorescent proteins, each from identical 
promoters located on opposite sides of the chromosome, the 
authors showed that ‘intrinsic’ and ‘extrinsic’ gene expression 
noise could be experimentally distinguished. Intrinsic noise is 
associated with the fluctuations due to discrete particle numbers 
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and random reaction times, whereas extrinsic noise describes 
the fluctuations arising from all other noise sources such as 
variability in the quantities of components in the gene expres-
sion machinery (e.g. RNA polymerase (RNAP), ribosomes, 
and ribonucleases). In the above example, extrinsic noise leads 
to correlated fluctuations between the cyan and yellow fluo-
rescent protein copy numbers, however the fluctuations from 
the intrinsic noise sources are not correlated between the two 
reporter proteins. This work would be followed by a string of 
 high-profile experimental and theoretical results that: impli-
cated the role that single-molecule events can play in pheno-
typic switching [21]; determined the distributions of proteins 
and messenger RNA (mRNA) that should arise from stochas-
tic gene expression [22, 23]; and measured—at the genome 
scale—the variability of gene products in E. coli [24] and later 
in yeast [25]. Among the most celebrated results to emerge dur-
ing this time was that protein copy numbers should be expected 
to follow a gamma distribution [22–24] (see figures 1(a) and 
(b)), although countless other important results would come 
from many other luminaries in the field [26–41].

1.2. Fluctuations percolate through cellular networks

It should come as no surprise that noise associated with gene 
expression has a number of important implications for the fit-
ness of a living cell. This is due in part to the fact that so 
many key cellular phenomena require the combined func-
tion of many different gene expression products. Consider, 
for example, the step-wise association of several proteins to 
form a macromolecule, like a ribosome (see section 3.4 for 
details). As the macromolecule forms, the production of each 
intermediate complex is limited by the number of its available 
precursors. But each precursor—be it a protein or the previous 
intermediate—is itself subject to stochastic variability in pro-
duction, and as a result the noise in each protein gets passed 
on through the association network of the macromolecule. As 
another example, one can consider large biochemical reaction 
networks like bacterial metabolism. Often, multiple chemical 
reactions may be arranged in sequential steps in which one 
metabolite may be transformed into another and then another 
through the activity of multiple different enzymes (glycoly-
sis is one such example of a roughly linear pathway, see 
 section 4). Because the number of each enzyme will vary from 
cell to cell, the maximum reaction flux through each sequence 
of reactions will also vary. At the level of the whole network, 
this can have profound effects, giving rise to wide distribu-
tions of growth rates (see figures 1(c) and (d)), metabolic effi-
ciencies, and metabolic byproduct formation rates [42].

1.3. Single cell super-resolution imaging reveals mRNA  
and protein distributions

The ongoing revolution in stochastic physics in biology has 
been facilitated in large part by a concurrent revolution in single 
cell super-resolution imaging. Starting in the late 1980s, a num-
ber of physicists and chemists began developing methods to 
detect single fluorescent molecules [45], and image them with 
resolutions below the 200 nm diffraction limit of traditional 

optical microscopy. Among them, stimulated emission deple-
tion (STED), which relies on the use of a secondary laser to 
inhibit the emission of fluorophores in a ring around the center 
of the primary excitation laser, and thereby narrow the point 
spread function (PSF) of the emitted fluorescence, was the first 
to be applied to the imaging of cells [46]. Over the following 
10 years, a family of techniques—PALM [47], FPALM [48], 
and STORM [49]—emerged that exploit the stochastic nature 
of fluorescent emission. In essence, these approaches rely on 
emission from just a few fluorophores at a time; provided no 
two fluorescent molecules within the diffraction limit of each 
other emit simultaneously, the detected photons recorded over 
a series of time points can be collected and the positions of 
individual molecules can be reconstructed with errors on the 
order of nanometers [50]. These techniques have been further 
developed to capture the location of a fluorophore in the z-axis 
as well, leading to a three-dimensional map of the fluorescent 
molecules in the cell. Figure 2 shows an example of the type 
of data techniques like 3D STORM [50] can provide. Recent 
advances in super-resolution imaging include the MINFLUX 
methodology [51], which can achieve ∼1 nm resolution.

The impact of super-resolution microscopy in biophysics 
is reflected in the 2014 Nobel prize in Chemistry awarded 
to Moerner, Betzig, and Hell ‘for the development of super-
resolved fluorescence microscopy’. It has revealed the archi-
tecture of microtubule networks, and the dynamics of the 
molecular motors that traverse them in living cells [54, 55], 
the diffusive and subdiffusive motions of macromolecules like 
RNAP and ribosomes within and around the chromosome [56, 
57], as well as the numbers and locations of individual genes, 
messengers, and proteins [24, 53, 58], and the intramolecular 
motions of biological machines and complexes [59].

1.4. Spatial heterogeneity and cellular architecture

Over the past few decades, the living cell has come to be viewed 
as a crowded, spatially heterogeneous space, the structure of 
which can have profound effects on a wide range of chemi-
cal and biological processes [60–62]. The details of this space 
are increasingly being revealed through both super-resolution 
optical microscopy, and groundbreaking advances in cryo-
electron microscopy and tomography [63–65]. Obstructed dif-
fusion within the cytoplasm, for example, has been implicated 
in both the slowed association times and enhanced rebinding 
times between transcription factors and their targets [66, 67]. 
Additionally, varying densities of DNA have been shown to 
lead to spatial dependencies in the distributions of key molec-
ular machines, including RNAP and ribosomes [56, 68, 69], 
and by extension, the proteins and mRNA they create. As a 
result, understanding the details of many cellular processes 
requires not merely a stochastic description, but a spatially 
resolved description that accounts for the random motions 
of the particles involved and the local environment in which 
they reside. Stochastic reaction–diffusion simulations have 
been brought to bear on a number of important biological pro-
cesses, including the assembly of cell division machinery in 
bacteria [70, 71], cell polarization in yeast [72], and ribosome 
assembly [69].

Rep. Prog. Phys. 81 (2018) 052601
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Due in part to their analytic intractability and significant 
computational complexity, a great body of work has thus far 
been devoted to developing efficient computational methods 
for simulating stochastic reaction diffusion systems. As a 
result, a major focus of what follows in this review will be 
devoted to these methods. Nevertheless, it is always the sci-
ence that drives method development, and so the later portions 
of this review will focus on emerging questions in biology, and 
how the new computational methods can help to answer them.

2. Spatially-resolved stochastic dynamics

In a stochastic, spatially resolved model of a cell, there exists 
the notion of the cellular state probability. This is a distribu-
tion over all spatial and chemical configurations of the cellular 
model. The time evolution of this distribution is governed by 
the reaction–diffusion master equation  (RDME). For a gen-
eral introduction to the physics of stochastic processes, the 

Figure 2. An example of 3D super-resolution data [52]. The small 
regulatory RNA, SgrS, in E. coli is labeled using single-molecule 
fluorescence in situ hybridization (smFISH) [53] and imaged 
using 3D STORM [50], revealing that the small RNA localize 
near the cell membrane. Blue points indicate individual molecule 
localization events, the orange density shows the localization event 
probability density projected onto the coordinate planes.

Figure 1. The distributional nature of life at the single cell level. Panels (A) and (B) show the distributions of copy numbers of fructose 
bisphosphatase (part of the glycolytic pathway, see section 4.1 and figure 9) and isoleucyl-tRNA synthetase in the translation pathway of 
E. coli and the mitochondria of S. cerevisiae, respectively. Yeast cells are on the order of 100-fold larger than bacteria, and as a result, the 
fructose bisphosphatase copy number, a cytosolic enzyme, appears in correspondingly larger numbers. The mitochondria within yeast are 
comparable to E. coli in size, and so the numbers of mitochondrial isoleucyl-tRNA synthetases appear in comparable numbers. Panels (C) 
and (D) show the similarity of predicted and experimentally measured growth rate distributions in E. coli and S. cerevisiae. The former was 
produced by sampling protein copy numbers from experimentally measured distributions, and using the resulting values as constraints in a 
genome-scale reconstruction of E. coli metabolism [42]. The latter shows experimental data adapted from Levy et al [43] (light blue), and 
a theoretical distribution also produced by sampling protein copy number distributions (dark blue, adapted from Labhsetwar et al [44]). 
Adapted from [44]. CC BY 3.0.
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reader is directed to the classic review by Chandrasekhar [73] 
in Reviews of Modern Physics and the textbooks by Gillespie 
[74], van Kampen [75], and Gardiner [76]. To define the 
RDME, we must first develop the basic notation and theory of 
stochastic chemical reaction networks.

2.1. Probability of the ‘cellular state’ and its equation  
of motion

We will denote an arbitrary chemical reaction of Ri reactants 
forming Pi products as

∑
i

ν iRi −→
∑

i

ν iPi (1)

where ν i is the stoichiometry for reactant i and ν j is the stoi-
chometry for product j. The rate of conversion through this 
reaction takes the form

dy
dt

= k
∏

i

ci
ν i , (2)

where i indexes reactants, the extent of reaction y is defined 
to be

y(t) =
cj(t)− cj(0)

ν j − ν j
, (3)

for any chemical species j, and the chemical concentration of 
species j is

cj =
nj

NAΩ
, (4)

where ni is the particle count, NA is Avogadro’s number, and 
Ω is the volume of the system. Equation  (2) is not true in 
general. Only if the reaction is elementary, i.e. the reaction 
occurs in a single step with a single transition state, does this 
theory apply [77]. To apply this to non-elementary reactions, 
the reaction mechanism must be known so that each step can 
represented as an elementary reaction.

The form of (2) can be derived from collision theory [77], 
however a simple justification follows from the fact that the 
reacting molecules must find each other within the reacting 
volume Ω in order to react. This means that the reaction rate 
must be proportional to the rate of particle encounters. The 
number of particle encounters per unit time depends on the 
number of ways that the reactant particles can come together 
to form a reacting complex. For example, the dimerization

2A −→ B (5)

requires two species to combine. There are nA species, and the 
number of possible interactions is nA(nA − 1)/2 since in this 
reaction, a particle cannot interact with itself (the  −1 term) 
and swapping the particles does not change the reaction (the 
1/2 term). This is clearly a binomial coefficient, and indeed 
the rate law for a single reaction can be written generally

dy
dt

∝
∏

i

(
ni

ν j

)
. (6)

In macroscopic systems, e.g. ni ∼ NA, we can expand the 
binomial coefficient

(
ni

ν i

)
=

ν i∏
k=0

(ni − k) = ni
ν i

ν i∏
k=0

(
1 − k

ni

)
= ni

ν i

[
1 + O

(
1
ni

)]

 (7)
and truncate to zeroth order in 1/ni, from which (2) follows 
from the definition of the concentration, (4).

In order to maintain consistent units in (2), the dimensions 
of the chemical rate constant, k, depends on the reaction order,

α =
∑

i

ν i (8)

as

[k] = volumeα−1time−1. (9)

The reaction constant, k, encodes the details of the reac-
tion kinetics, such as the diffusion rates of the reactants, the 
encounter geometry, temperature, and other microscopic 
details.

We will define a system of Nrxn reactions between Nsp 
chemical species as

XTS = 0, (10)

where

S = [ν1 ν2 · · · νNrxn ]−
[
ν1 ν2 · · · νNrxn

]
 (11)

is the Nsp × Nrxn stoichiometric matrix, constructed from the 
reactant (νr) and product (νr) stoichiometry vectors for all r 
reactions, such that matrix elements associated with products 
are positive and matrix elements associated with reactants 
are negative, and X symbolizes both the product and reactant 
chemical species. The system of chemical rate equations  is 
then,

dc
dt

= S · J (12)

where the flux vector is defined as,

Jr = kr

Nsp∏
i=1

ci
Sir . (13)

Equation (12), being a deterministic, continuous treatment, 
does not capture the true nature of the reactive dynamics of a 
chemical system at low particle numbers. The times and posi-
tions in which reactions occur are completely randomized 
due to Brownian motion of the molecules (the so-called 
Stoßzahlansatzs, or molecular chaos hypothesis). Any memory 
of the prior state of the system is washed out after a time scale 
much shorter than the average time between reactions. The 
best that we can do is assign probabilities to the reactions and 
treat the system as a stochastic process. We assume that the 
system is ‘well-stirred’, meaning that the diffusion time scale 
is much shorter than the reaction time scale, which allows us 
to ignore spatial dependence. We also assume that the series 
of chemical reactions are described by a Poisson process with 
a rate which depends only on the current number of particles 
in the system, i.e. a Markov jump process. The defining equa-
tion of stochastic chemical kinetics in a ‘well-stirred’ environ-
ment is the chemical master equation (CME) [78, 79],

Rep. Prog. Phys. 81 (2018) 052601
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dP
dt

(x, t) =
Nrxn∑
r=1

ar(x − Sr)P(x − Sr, t)−
Nrxn∑
r=1

ar(x)P(x, t)

 (14)

where ar(x) is the propensity (i.e. transition rate) for reaction 
r while the system is in state x, where

x(t) = [x1(t) x2(t) · · · xNsp(t)]
T (15)

which enumerates the particle counts for each species in the 
system, and Sr is the column of the stoichiometric matrix 
corre sponding to reaction r. Equation (14) describes the time 
evolution of the probability distribution function P(x, t) over 
the discrete space of particle number configurations of the 
system. The first summation in (14) is the rate of probability 
entering the state x due to reactions from neighboring particle 
number states, while the second summation represents the rate 
of probability loss from x due to reactions leaving the state. 
The CME performs bookkeeping on the states: probability 
lost from one state is immediately recovered in another. For 
an in vivo system, (14) can be considered as the equation of 
motion for the probability distribution function over cellular 
states. Here, the cellular state is the total number of biomol-
ecules such as proteins, RNA, and metabolites.

The reaction propensities, ar(x), describe the transition 
rates between particle number states due to the action of reac-
tion r. Again, we will only consider elementary reactions. The 
reaction propensity is

ar(x) = κr

Nsp∏
i=1

(
xi

Sir

)
, (16)

which follows from the same argument as (2), in that the over-
all rate of a reaction is proportional to the number of ways that 
the reactants can be grouped. However, here κr is the ‘stochas-
tic rate constant’ not the deterministic rate constant kr. They 
are related by

κr = (NAΩ)
1−αkr (17)

since the deterministic rate equations  are defined in terms 
of concentrations, whereas the CME is defined in terms of 
absolute numbers and the approximation (7) is no longer 
justified.

2.2. Stochastic simulations

It is difficult, if not outright impossible to solve the CME 
for many systems of interest, though a number of simpli-
fied models which capture the essential physics of important 
biological processes have analytic solutions, e.g. stochastic 
gene expression [22, 23, 80]. In general, for models includ-
ing  non-idealized descriptions of the chemical reaction net-
work, the way around this difficulty is to generate trajectories 
sampled from the probability distribution the CME describes. 
The basic algorithm is the Gillespie direct method [81, 82], 
also known as the stochastic simulation algorithm (SSA). 
The algorithm was initially derived for gas phase kinetics and 
shown to be rigorous [79], then subsequently proven valid for 
the solution phase as well [78]. Starting out with the initial 

species counts, x0, the stoichiometric matrix, S, and the pro-
pensity functions, ar(x), defined for each reaction r, the algo-
rithm steps forward in time by randomly choosing the identity 
and time of the next reaction event. The time between subse-
quent reaction events is exponentially distributed, with a rate 
equal to the sum of all reaction propensities, arxn. The reason 
is transparent if you consider the CME for the current state 
and ignore incoming transitions,

dPreact

dt
= −

Nrxn∑
r=1

ar(x)Preact

= −

(
Nrxn∑
r=1

ar(x)

)
Preact = −arxnPreact,

 

(18)

whose solution is

Preact(t) = arxne−arxnt. (19)

The probability that a reaction i fires is then simply

Prxn(i) =
ai

arxn
. (20)

At each step of the SSA, a random reaction time τ ∼ Exp(arxn) 
is chosen, along with a random reaction index i ∼ Prxn(a). The 
state is advanced by adding τ to the current time, and adding 
the net change of particles due to reaction i, i.e. the ith column 
of the stoichiometric matrix to the current particle counts.

Gillespie [82] presented an alternative  algorithm, called 
the first reaction method. It differs from the direct algorithm 
in that a putative reaction time,

τi ∼ Exp(ai(x)) (21)

is computed for all reactions each time step. The minimum 
τi identifies both the time and index of the next reaction that 
fires. These two algorithms are mathematically equivalent 
[82], however the direct method is more computationally effi-
cient since only two random variates are necessary per event 
as opposed to Nrxn as with the First Reaction Method.

Since Gillespie’s algorithms were published in [82], many 
improved algorithms have been published. The computational 
complexity of the direct method is O(Nrxn). The Next Reaction 
Method [83], which improves upon the First Reaction Method, 
is able to achieve O(logNrxn) complexity while only requiring 
a single random number per reaction event on average. The 
main feature of this method is that instead of recomputing all 
Nrxn tentative reaction times, t + τi, after each reaction event, 
they are stored and used later in the simulation. They are only 
recomputed when the simulation advances past their scheduled 
time (and the system state is updated appropriately) or if reac-
tions have occurred between t and t + τi which change the pro-
pensity for reaction i to fire. Techniques have been developed 
which improve upon the direct method such as partial propen-
sity calculations [84–86] which are O(Nsp) instead of O(Nrxn), 
and methods which sort the reactions by propensity to decrease 
the number of iterations necessary to find a reaction [84, 87, 
88], among others. An approximate method appropriate for 
large particle numbers is Tau leaping [89, 90]. This method 
evolves the dynamics forward in time using fixed time step τ, 
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chosen to be larger than the expected time between reaction 
events yet short enough to ensure that the reaction propensities 
do not vary significantly, and updates the state to include the 
expected number of reactions which occur over the interval t 
to t + τ . Other techniques for analyzing well-mixed stochastic 
systems beyond directly simulating the underlying stochastic 
process are reviewed in Schnoerr et al [91]. When applicable, 
these methods can provide analytic expressions for quantities 
such as mean and variance of particle abundances, and are gen-
erally much faster than direct simulation.

2.3. The reaction–diffusion master equation as a description 
of cellular processes

Cells can contain small copy numbers of chemical species 
which diffuse through a complex, crowded environment com-
posed of other biomolecules and organelles. To accurately 
capture this behavior requires a stochastic, spatially resolved 
model. The two most common methods to simulate these 
systems at a biologically relevant scale are RDME and par-
ticle-based reaction–diffusion (PBRD) methods. The former 
method samples solutions from the probability distribution 
described by the RDME—an extension of the CME gener-
alized to include spatial degrees of freedom. These RDME  
[92–95] methods do not track individual particles, but rather 
track the populations of chemical species within subvol-
umes of the simulation domain, as opposed to PBRD which 
accounts for the position of each particle in the simulation.

We assume that there is a combination of a length- and 
time-scale in which the system’s behavior can be considered 
well-mixed. Then for a particular choice of time scale, the 
reaction volume can be divided into subvolumes of a corre-
sponding length scale such that both the chemical reactions 
and the diffusion between neighboring subvolumes can be 
treated as a Poisson process. The equation of motion govern-
ing this description is the RDME:

dP(x, t)
dt

=
V∑
ν

Nrxn∑
r=1

[−ar(xν)P(xν , t)

+ ar(xν − Sr)P(xν − Sr, t)]

+
V∑
µ

n.n.(µ)∑
ν

Nsp∑
α=1

[−dα
µxαµP(x, t)

+ dα
ν (x

α
ν + 1)P(x + 1α

ν − 1α
µ , t)],

 
(22)

where P(x, t) is the probability to find a configuration of par-
ticle counts and locations x at time t. The first summation in 
(22) describes the flow of probability between different copy 
number states at every subvolume, and is simply a chemical 
master equation  for that subvolume. The reaction propensi-
ties ar(xν) give the transition probabilities due to reaction r 
firing at site ν, and are computed following (16). The vector 
Sr is the rth column of the stoichiometric matrix describing 
the change in species counts when reaction r fires. The sec-
ond summation, where n.n.(µ) denotes all nearest neighbors 
of subvolume μ, describes the flow of probability due to dif-
fusion between neighboring subvolumes, where each unique 
chemical species α is treated separately to allow for differing 
diffusion rates. The vector 1α

ν  represents a single molecule of 
species α in volume ν, i.e. (1αν )βµ = δαβδµν. Each subvolume 
is treated as well-stirred reaction volume, allowing for the 
reactions in each subvolume to be simulated independently. 
Figure  3 provides a schematic description of the dynamics 
simulated. These methods are generally less computationally 
expensive than particle-based methods, however excluded 
volume effects between reacting particles are neglected. 
Molecular crowding due to other molecules in the cell can be 
modeled through the introduction of obstacles in the lattice 
geometry [67, 96], however. The use of spatial discretization 
could lead to reduced accuracy compared to particle methods, 
but it has been shown that RDME methods approach the same 

Figure 3. Schematic diagram of the RDME method using a cubic lattice. Circles indicate particles, their color indicates their species type. 
The cubes represent well mixed subvolumes of edge length λ, with their color indicating their site type. At each time step particles can 
diffuse to nearest neighbor subvolumes, or react with particles within the same subvolume. Site types allow for the behavior (e.g. varying 
diffusion coefficients or allowed chemical reactions) to vary with respect to position.
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level of accuracy when the reaction radii are much smaller 
than the largest subvolume separation [97–100].

The spatial decomposition can take on any form provided 
that the separation between lattice sites is smaller than a par-
ticle would be expected to diffuse over a single time step. 
However it is convenient to decompose the system into a cubic 
lattice. In this case, the RDME takes the form

dP(x, t)
dt

=
V∑
ν

Nrxn∑
r=1

[−ar(xν)P(xν , t)

+ ar(xν − Sr)P(xν − Sr, t)]

+
V∑
ν

±̂i,̂j,̂k∑
ξ

Nsp∑
α=1

[−dα
ν xαν P(x, t)

+ dα
ν+ξ(x

α
ν+ξ + 1)P(x + 1α

ν+ξ − 1αν , t)],
 

(23)

where the configuration vector x contains the number of spe-
cies present at each individual lattice site,

x =
[
x1,1,1 x1,1,2 · · · x1,1,Nz x1,2,1

· · · · · · x1,NyNz · · · · · · · · · xNx,Ny,Nz

]T (24a)

xi,j,k =
[
x1

i,j,k · · · xNsp
i,j,k

]T
, (24b)

and the second term now describes particle diffusion in terms 
of the ξ transitions along the lattice axes: ±î, ±ĵ, and ±k̂ . For 
a cubic lattice with spacing λ, the diffusive propensity is

dα
ν =

Dα
ν

λ2 , (25)

and is computed by treating diffusion as a discrete random 
walk of step size λ and associating the diffusion constant Dα

ν  
with the discrete step probability. The cubic lattice represen-
tation is simple to implement computationally, however it 
forces all subvolumes be the same size. This can be problem-
atic where it is necessary to treat sections of the simulated vol-
ume at differing levels of detail. This arises frequently in the 
simulation of neurons since dendritic spines are much more 
narrow compared to the neuronal body.

A highly efficient method to sample trajectories from 
RDME on a cubic lattice is the multi-particle diffusion RDME 
(MPD-RDME) algorithm. It is based on an operator-splitting 
method [101] and the direct SSA [81], and is most similar 
to the Gillespie multiparticle (GMP) method developed by 
Rodriguez et al [102]. An implementation of this algorithm 
using the massively parallel architecture of modern graphics 
processing units (GPUs) hardware is available in the Lattice 
Microbes package [67, 92, 93, 96, 103, 104]. Lattice Microbes 
trajectories are capable of reaching hour long time scales—
orders of magnitude longer than competing codes [94, 105–
107]. By taking sufficiently short time steps such that particles 
are unlikely to take part in multiple reactions, the subvolumes 
are rendered independent, and can be simulated in parallel 
(implementation details can be found in Roberts et  al [96], 
Roberts et al [92], and Hallock et al [93]).

The MPD-RDME algorithm represents the simulation 
volume as a cubic lattice, where each subvolume contains a 

finite number of particles. The particles are represented by an 
array of integers, where the value of each integer greater than 
zero identifies both the presence of a particle and its species 
type. A value of zero indicates a vacancy. The simulation loop 
proceeds by executing the GPU-based procedures (called ker-
nels) for diffusion in the x, y, and z directions sequentially, fol-
lowed by the reaction kernel. The simulation time is updated 
as ti+1 = ti + τ , and once t > tfinal the loop exits and the simu-
lation terminates. These kernels are executed in parallel on the 
GPU where each thread is responsible for a single subvolume. 
The simulation algorithm takes regular time steps, as opposed 
to the Gillespie direct algorithm which takes time steps of var-
ying length sampled from an exponential distribution.

During a time step [t, t + τ ], the probability of a reaction 
occurring is simply

Preact =

∫ τ

0
dt arxne−arxnt = 1 − e−arxnτ (26)

following (19). Each time step, a random number 
ρ ∼ Uniform(0, 1) is drawn and if ρ < Preact , then a reaction 
will occur at that time step. The specific reaction is then cho-
sen according to (20), as in the exact stochastic simulation 
algorithm. The diffusion kernels proceed similarly. The prob-
ability that the particle leaves its site is

Pdiffuse = 1 − e−adifτ , (27)

where adif  is the sum of the two diffusive propensities to 
transition along the diffusion kernel axis, e.g. 2dα

ν  in the case 
where the site types of the subvolumes at  −1, 0, and  +1 are 
all identical.

The nature of the MPD-RDME algorithm places con-
straints on the model parameters and the coarseness of the 
lattice. The largest diffusion constant in the system and the 
lattice spacing dictates the largest valid time step,

τ <
λ2

2maxα Dα
, (28)

that can be taken. This relationship is a consequence of the 
fact that diffusion in the RDME is a discrete random walk. 
The decoupling of reactions from diffusion used in this 
method relies on a separation between diffusion and reaction 
time scales. We define the diffusion time scale to be

τD =
λ2

6Dmax
 (29)

and the reaction time scale to be

τR =
1

amax
, (30)

where amax is the largest reaction propensity. Then

τR � τD (31)

implies that

λ �
√

6Dmax

amax
. (32)

Substituting in the expressions for reaction propensities (16), 
we see that there are upper and lower bounds on the lattice size:
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λ �

(
6Dmax

J(0)
maxNA

)1/5

(zeroth-order) (33)

λ �
√

6Dmax

J(1)
max

( first-order) (34)

λ � J(2)
max

6DmaxNA
(second-order), (35)

where J(i)
max is the maximum ith-order flux (13) evaluated 

using typical lattice site concentrations.
In the implementation of the MPD-RDME algorithm, the 

simulation volume is represented by an Nx × Ny × Nz × Np 
array of integers, where Nx,y,z  are the number of lattice sites in 
each dimension and Np is the lattice occupancy. The finite lat-
tice occupancy is a consequence of the GPU-oriented nature 
of the algorithm, allowing for the GPU to access the lattice 
memory in a regular pattern. This implies that the maximum 
particle concentrations that can be simulated are constrained 
by the maximum number of particles per subvolume. If a 
reaction or diffusion event causes any subvolume to exceed 
its capacity, the computation on the GPU must be placed on 
hold so that a process can run on the host to correct the over-
flow. Particles in the offending site are redistributed among 
the neighboring subvolumes which have empty particle slots 
available. Frequent overflows will cause the computational 
efficiency to plummet due to the repeated shuffling of the lat-
tice data between the host and GPU.

The probability of an overflow occurring due to diffusion 
can be computed by considering particle placement as a series 
of Bernoulli trials [96]. Consider an empty lattice containing 
Ls subvolumes, each having a maximum occupancy of nmax, 
to which we add N particles. The trial in this case is whether 
or not a particle is placed randomly at a particular lattice site. 
If all lattice sites are equally likely to receive a particle, then 
the probability of the success of a single trial is p = 1/Ls. The 
probability that a particular subvolume receives n particles 
then follows the binomial distribution

P(n) =
(

N
n

)(
1
Ls

)n (
1 − 1

Ls

)N−n

. (36)

The overflow probability of a single site is then

Pof = 1 −
nmax∑
n=0

P(n), (37)

from which it follows that the expected number of overflows, 
Nof, is

E[Nof|nmax, Ls, N] = Ls

[
1 −

nmax∑
n=0

(
N
n

)(
1
Ls

)n (
1 − 1

Ls

)N−n
]

.

 (38)
By considering the RDME simulation as a series of Bernoulli 
trials where success represents a time step with no particle 
overflows, it can be shown that the mean number of time steps 
between overflows is simply

tof =
1

1 − (1 − Pof)Ls
. (39)

For Lattice Microbes, an acceptable number of time steps 
between overflows should be greater than 1000 in order to 
minimize the impact of host–GPU memory transfers on the 
simulations performance. Equation (39) can be solved numer-
ically to find the appropriate lattice occupancy for a required 
particle density (figure 4). For an E. coli sized volume (1 fl), 
with a 32 nm lattice spacing at a maximum of 8 particles per 
subvolume, it follows from (39) that we can simulate systems 
with total particle concentrations of ∼33 μM. At the highest 
concentrations seen in a model of ribosome biogenesis [69] 
(42 μM), this lattice configuration leads to overflows occur-
ring once per 58 time steps on average, drastically decreasing 
the efficiency of the computation. Doubling the particles per 
subvolume to 16 effectively eliminates overflows, resulting 
in a mean of 2.6 × 1011 steps between overflows. To treat all 
proteins in an E. coli cell (5 mM), at a 32 nm lattice spacing 
would require a maximum particle occupancy of 156. Using 
the smallest possible lattice spacing of 20 nm (to fully contain 
a ribosome), we can reduce the maximum occupancy to 56.

2.4. RDME-based simulation software

Software to generate cell state trajectories following RDME 
has been available since at least [108] with the introduction 
of SmartCell [108]. SmartCell uses a version of the next reac-
tion method which treats diffusion to neighboring subvolumes 
in the same way as reaction events. This technique was later 
employed in MesoRD [94, 109] in 2005 as the next subvol-
ume method (NSM). Source code and binary distributions for 
these codes are available as of this writing, however the proj-
ects no longer appear to be in active development. GPGMP 
[110] is a GPU-accelerated code employing the GMP method 
[102]. GMP is a split-operator approach which treats the 
subvolumes as independent reaction volumes whose dynam-
ics are simulated using the direct SSA. Diffusion of particles 
is simulated using a lattice gas automaton [101], a cellular 

Figure 4. Dependence of maximum concentration on lattice 
spacing, λ, for a 1 fl simulation volume. The curves are plotted by 
solving (39) with a mean number of time steps between overflows, 
tof = 1000, and using 8, 16, 32, or 64 particles per subvolume.
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automaton which allows multiple diffusion events to occur at 
each time step. Source code for GPGMP is available, however 
it is no longer in active development.

SmartCell, MesoRD, and GPGMP all require the cellular 
geometry to be discretized onto a regular cubic lattice, how-
ever many later codes do not have this restriction. NeuroRD 
[111] was the first code which represented the geometry 
as a tetrahedral mesh in order to accurately represent the 
geometry of dendritic spines. This code does not use a split-
operator technique, but instead uses a spatial tau-leaping / 
gradientbased diffusion (Sτ/GD) method: both reactions 
and diffusion are simulated using tau-leaping and the gra-
dient between neighboring subvolumes is used to sample 
the total number of particles migrating within a time step 
[112, 113]. URDME is another code which uses tetrahedral 
meshing, however it uses the NSM which exactly samples 
the underlying distribution [95]. This package has tight inte-
gration with the commercial finite-element analysis system 
Comsol Multiphysics, allowing for convenient generation 
and manipulation of mesh data. Due to the Python interface 
to URDME [114], this software is easily extended to other 
simulation modalities such as time-dependent geometry 
[115] and molecular crowding [116].

Lattice Microbes [92, 96, 103, 104], by nature of the 
highly parallelizable MPD-RDME algorithm, performs all 
RDME simulations on GPU hardware, allowing for simu-
lation times on the order of hours to be completed within 
days. Implementations of Lattice Microbes are avail-
able which distribute the simulation domain over multiple 
GPUs attached to a single workstation (MGPU) or over 
multiple GPU-equipped compute nodes over MPI, which 
has allowed for hour-long simulations of yeast cells to be 
completed within 28 h [117]. Simulations are designed and 
controlled from a Python-based environment [103] similar 
to PyURDME [114], allowing the programmatic construc-
tion of complicated reaction models [69] and systems with 
time-varying geometry [118]. STAUCC [119] is another 
parallelized code which features both MPI and GPU imple-
mentations of the spatial tau-leaping algorithm. However 
neither source code nor binary distributions of the simula-
tor are freely available. STEPS [120–122] is a GPU-based 
code using tetrahedral mesh geometry using a split operator 
approach. Reactions are performed using the SSA on a per 
subvolume basis, while diffusion is performed using a mul-
tinomial multiparticle diffusion (MND) method. NeuroRD, 
URDME, Lattice Microbes, and STEPS are all under active 
development. Table  1 provides a summary of the freely 
available voxel-based simulation software.

2.5. Particle-based simulation software

As an alternative to voxel-based methods, PBRD simulations 
allow for the study of stochastic reaction–diffusion systems 
without discretizing space. These particle-based methods 
track the position and identity of each particle in space, and 
evolve their positions in time using BD where the position of 
each particle i is updated as

x(ti+1) = x(ti) +
1
ζi

f i({x}, t)τ +
√

2Diη(t)
√
τ ,

 (40)
where τ is the time step, Di is the diffusion constant which is 
related to the drag coefficient ζi through the Einstein relation 
Dζ = kBT , f i({x}, t) is the sum of forces acting on the par-
ticle, and η(t) is a Gaussian random variable with zero mean 
and unit variance. Reactions between particles are imple-
mented through assigning reaction probabilities to interact-
ing particles if their separation ‖xi − xj‖ is less than the sum 
of their reaction radii. Depending on the implementation of 
the simulation software, attractive and repulsive interactions 
can be accounted for in these methods through the force 
term, allowing for the simulation of molecular crowding and 
aggregation.

MCell was the first PBRD simulation software, appearing 
in 1996 [125]. Particles are propagated in time using a Monte 
Carlo (MC) algorithm using a fixed time step which does not 
account for particle–particle interactions or excluded vol-
ume. In addition to 3D diffusion, particles can transition onto 
2D structures such as membranes. Model specification with 
MCell can be done using text files, or a graphical interface 
(CellBlender) which takes advantage of the free open source 
3D computer graphics package Blender. Smoldyn [126, 127], 
ChemCell [128], and Cell++ [129] use a similar diffusion 
methodology and have similar features. eGFRD [130] uses a 
novel Green function reaction dynamics (GFRD) algorithm 
which decomposes the many-body problem into one- and 
two-particle independent subproblems. These subproblems 
have analytic solutions to the Smoluchowski equation in the 
form of Green functions, which can be used to advance the 
simulation in forward in time. The major benefit to this tech-
nique is that larger time steps can be taken, accelerating the 
simulation time. Interestingly, the computational complexity 
of GFRD is O(Nsp

5/3) in contrast to the O(Nsp) scaling at con-
stant volume that most PBRD algorithms follow. This leads to 
a crossover at high particle densities, where standard PBRD 
techniques are more efficient. Finally, ReaDDy [107] directly 
treats particle–particle interactions through forces, allowing 
for the highest level of computational detail and physical 

Table 1. Comparison of actively developed, freely available RDME-based spatially resolved stochastic simulation software.

Software Method Geometry Interface Parallel References

Lattice Microbes MPD-RDME Lattice Python 2 or 3 MGPU, MPI [92, 93]
MesoRD NSM Lattice SBML N [94, 109]
NeuroRD Sτ/GD Mesh XML N [111]
Spatiocyte cRDME hcp lattice Python 2 N [123, 124]
STEPS SSA/MND Mesh Python 2 MPI [120, 122]
URDME NSM Mesh Python 2 N [95]
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accuracy currently available. A parallelized implementation 
using CUDA has been released [131], however it is no longer 
in active development. For further information on this simula-
tion methodology, the review by [132] provides an excellent 
overview. A summary of the actively developed simulation 
codes is provided in table 2.

2.6. RDME versus particle methods

In general, PBRD methods provide a more accurate descrip-
tion of the underlying phenomena, however they have the 
drawback of being significantly more computationally expen-
sive. The serial RDME simulator MesoRD [94, 109] is approx-
imately 3× faster than MCell [106, 125] and Smoldyn [126, 
127]. Lattice Microbes is approximately 100–250×  faster 
than MCell and Smoldyn on account of its GPU implemen-
tation and greater efficiency of the RDME [103]. However, 
PBRD can rigorously include particle interactions, while such 
interactions can only be approximated in RDME formalism 
[133]. For PBRD methods which account for excluded vol-
ume interactions directly, such as ReaDDy [107], the maxi-
mum allowable time step is on the order of nanoseconds since 
the average displacement per step should be small compared 
to the smallest particle radius. An indirect method of dealing 
with crowding in PBRD simulations has been proposed by 
[134], which allows for time steps bounded only by the maxi-
mum reaction timescale and the required spatial resolution. 
Here, the concentration and radii of non-reactive crowders are 
used to compute the probability to reject a potential Brownian 
displacement or reaction event, otherwise the simulation algo-
rithm is similar to other PBRD codes.

The RDME as an approximation does not converge to the 
expected behavior in the limit of λ → 0, since the encounter 
probability of two particles vanishes at the limit of infinitesi-
mal lattice spacing [97]. A modification to the standard meth-
ods, called the cRDME [135] or volume RDME (vRDME) 
[136], restricts the state of the system to a single particle per 
subvolume and allows second-order reactions between near-
est-neighbor particles. This technique is exact in the limit 
of λ → 0, but it requires a much finer lattice than standard 
RDME methods and neighboring lattice sites can no longer 
be computed independently, which renders the method com-
putationally expensive and decreases its applicability to 
dense cellular systems. However the method recovers effects 
of excluded volume on the particle number statistics seen in 

PBRD simulations with excluded volume [136], underscoring 
the importance of these non-reactive particle interactions.

2.7. Hybrid methods

Many processes within living cells, especially gene expres-
sion shown in figure 7, are characterized by low particle num-
bers and a high degree of randomness which brings about 
stochastic effects. So far we have written mostly about the 
RDME or CME descriptions of cellular processes where  
the system is assumed to follow a Markov jump process over 
the state space of particle numbers in time, to capture the dis-
creteness of the population and the randomness of the dynam-
ics (22). Unbiased realizations of the Markov processes are 
typically obtained with some variation of the widely used 
SSA; however, this algorithm is constrained by the fact that 
each single reaction event requires an update of the system, 
making the simulations for certain types of systems compu-
tationally costly. These problematic systems are characterized 
by large total reaction propensities; either due to large particle 
abundances or due to high reaction rates. In such a situation 
there may exist a partitioning of the species into slow species 
where their total reaction propensity is low and fast species 
whose total reaction propensity is high. A challenging and 
typical scenario is when species found in low abundance react 
with species found in high abundance, making the dynamics 
of the low-concentration species dependent on the dynamics 
of the high-concentration species. Numerical methods [137, 
138] to improve the computational efficiency by reformulat-
ing the original scheme in a more economical way or by devel-
oping multi-scale stochastic approaches in which the high 
propensity segments of the system are described by ordinary 
differ ential equation (ODE) and the low propensity segments 
are treated stochastically are briefly reviewed in the 2012 arti-
cle by Jahnke and Kreim [139]. Their review of the hybrid 
piecewise stochastic deterministic method (CME/ODE, see 
 figure 5) includes a rigorous error analysis of their partitioning 
scheme which was validated against a pure SSA simulation 
of a rather small system. In these hybrid models, a Markov 
jump process describing the dynamics of the low-abundance 
species is coupled to deterministic rate equations  modeling 
the high-abundance species. Such a partitioning works well 

Table 2. Comparison of actively developed freely available PBRD 
based spatially resolved stochastic simulation software. Packages 
which account for the excluded volume of reacting particles are 
indicated in the EV column.

Software Method EV Interface Parallel References

Smoldyn MC N Text Na [126, 127]
MCell MC N GUI & 

Text
N [106, 125]

ReaDDy BD Y Python 2 Na [107]
eGFRD GFRD N Text N [130]

a Parallel implementation exist, yet are no longer maintained.

Figure 5. Communication times between the CME and ODE and 
the adaptive time steps within the ODE used in the hybrid scheme 
developed by Jahnke and Kreim [139]. First, the CME simulation is 
advanced in time by a half time step. Then the CME state at t + 1

2τ  
is then used to update the ODE state. The ODE is then advanced in 
time by a full time step. Finally, the CME state is updated with the 
ODE state at t + τ  and advanced to the end of the time step.
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for cellular systems described by RDME or CME and typi-
cally improves the speed of the numerical simulations by a 
factor of 50–100, making it an indispensable tool for complex 
whole-cell simulations with a large number of species types, 
cellular components, and high concentrations of metabolites 
in the extracellular and intracellular regions. While it is intui-
tively tempting to assume a partial thermodynamic limit for 
the fast reactions involving a large number of species and 
just rescale the rate constants so the hybrid system so can be 
treated by a single stochastic model, this assumption cannot 
be made about the behavior of genetic switches in the early 
phases of the response to sugars, inducers, and metabolites. 
The optimal communication times between the CME and 
ODE descriptions as well as the time steps for each method 
must be accessed to verify that the hybrid description does 
not compromise the simulation accuracy or lose any of the 
stochastic effects which often have the greater impact on the 
cell’s behavior.

In RDME simulations, which account for the spatial hetero-
geneity in the cell, additional factors need to be considered. In 
the case of highly abundant, slowly diffusing species, a hybrid 
simulation combining a deterministic  reaction–diffusion par-
tial differential equation (PDE) model is in order. The RDME/
PDE hybrid has been studied previously [140–142], as well 
as the PBRD/PDE hybrid [143]. Depending on the resolution 
of the subvolumes compared to the dimensions of the largest 
moving particle, it may be again necessary to use a hybrid 
method in which the equations of motion for the large parti-
cles follow Brownian dynamics in order to correctly account 
for the effects of excluded volume. PBRD and RDME meth-
odologies have been coupled previously using Smoldyn 
[144], however the implementation of BD did not account 
for excluded volume interactions nor other particle–particle 
interactions. The impetus for the coupling was to allow for the 
simulation of chemical systems over varying levels of length 
scale, e.g. a yeast cell treated with PBRD and its surround-
ing environment with RDME. A successful coupling of an on-
lattice method with an off-lattice method which accounts for 
non-reactive interactions between particles would allow the 
effect  of molecular crowding on the spatiotemporal behav-
ior of cellular biochemistry to be comprehensively explored 
computationally.

2.8. Model development: how to design and parameterize 
kinetic models

The study of a stochastic, spatially resolved system begins 
with the description of the model. We must decide the geom-
etry and architecture of the simulation domain, which chemi-
cal species to include and their initial distribution within the 
simulation volume, the diffusion coefficients of these species, 
and which reactions are significant and the rates in which 
they occur. Unfortunately, the reality is that biological mod-
els suffer from a lack of information. Either the only infor-
mation available is from in vitro experiments whose results 
do not necessarily apply to the intracellular environment, the 
necessary experiments have not been performed, or there is 
no viable way to measure the quantity of interest. Thus, the 

usual solution is to infer the parameters of interest through 
optimization of the model against the available experimental 
data. For modeling a system which behaves deterministically, 
this is straightforward yet non-trivial: fit the model solution to 
experimental measurements of the time course of the biologi-
cal system. However for a stochastic system, the  situation is 
far more complicated since the system is expected to behave 
differently from experiment to  experiment— distributions 
must be considered. As a first step, an exploration of the 
parameter space of the chemical reaction network using deter-
ministic rate equations can be helpful in acquainting one’s self 
with the model.

With the complexity of chemical networks in biology, the 
resulting reaction models can have many parameters. Varying 
these parameters can have profound effects on the behavior of 
the model. For instance, the value of a parameter may deter-
mine whether a model of a genetic switch exhibits bistability 
[145]. However, it has been observed that many models have 
the surprising characteristic that some of the parameters, or 
functions of parameters, can be varied with little impact on 
the quality of fit to the experimental data. In fact, this has been 
claimed to be a universal property of dynamic models in biol-
ogy [146], and has even been suggested to be exploited by 
Nature to provide biological robustness [147]. This feature is 
termed ‘sloppiness’ and is measured from the Hessian matrix 
of the model objective function. If the objective function,

C(θ) =
∑

ij

(
yi(tj;θ)− Yij

σij

)2

,

 (41)
describes the deviation of the vector of experimental mea-
surements Yij, with uncertainty σij , at time point j, for exper-
imental conditions i, from the measurement predicted by the 
model yi(tj;θ) for the set of model parameters θ, then the 
Hessian matrix is

Hij(θ) =
∂2C

∂ ln θi ∂ ln θj
 (42)

where the derivatives are taken with respect to the logarithm of 
the parameter value to account for the fact that the param eters 
will take on different units and scales of magnitude. When 
one inspects the eigenvalue spectrum of the Hessian, evalu-
ated at a minimum of the objective function, it is common to 
see that the eigenvalues span many orders of magnitude. This 
is the manifestation of sloppiness: the parameter space is split 
into stiff dimensions where the eigenvalues are large and the 
model output is sensitive, and sloppy dimensions where the 
eigenvalues are small and the model is insensitive. A model 
is declared sloppy if the ratio of the largest eigenvalue to the 
smallest is greater than 103 [146]. Sloppiness should be not 
be confused with unidentifiability. Identifiability describes the 
ability to uniquely quantify all model parameters given suf-
ficient experimental data, assuming that the model faithfully 
represents the phenomenon  in question. Sloppy models are 
not necessarily unidentifiable [148].

Another problem with high dimensional models is that 
the fitness landscape of the objective function can be rugged, 
with many minima corresponding to acceptable fits to the 
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experimental data. Many of these minima in parameter space 
(including the global minimum), can take on values which are 
not realistic [149]. It is sometimes useful to break this symme-
try using a regularization term in the objective function which 
penalizes unrealistic parameter values [150] while testing 
the viability of the model to accelerate the optimization pro-
cess. A suggested way to deal with these problems is through 
optimal experiment design [151], which attempts to predict 
the experimental conditions whose data would minimize the 
uncertainty in the best-fit model parameters. However, White 
et al [152] warn that this solution can lead to an overall loss of 
predictive power of the model in spite of the lowered param-
eter uncertainty since the optimal experimental conditions can 
inadvertently magnify the effect of details which were left out 
of the model. Another way to quantify the uncertainty in the 
parameter estimates is to use bootstrapping [153]. The exper-
imental data set is sampled with replacement to generate an 
ensemble of replicated data sets. The best fit parameters for 
each element of the ensemble allows us to construct a histo-
gram of parameter values from which confidence intervals can 
be determined.

These chemical reaction networks are by their very nature 
coarse-grained, however further coarse-graining can be per-
formed to reduce the number of reactions or to account for the 
lack of knowledge of the complete biochemical process. This 
sort of coarse-graining uses non-mass-action reaction propen-
sities, the most common of which is Hill kinetics. Consider 
the scheme,

E + nS
k
�
k′

E:Sn
kcat−→E + P.

 
(43)

Assuming that [E] is small compared to [S], it can be shown 
that

−d[S]
dt

=
kcat[E] · [S]n

(k/k′)n + [S]n
,

 
(44)

allowing us to replace (43) with

E + nS
k([S],[E])−→ E + P. (45)

The right-hand-side of (44) can be written as

k(y) =
Vmax · yH

K1/2
H + yH ,

 
(46)

for a concentration y = [S], and can be interpreted as a saturat-
ing function of y, which reaches one half of its maximum rate,

Vmax = kcat[E], (47)

when y reaches the concentration,

K1/2 =
k
k′

. (48)

The steepness of the curve at K1/2 is governed by the Hill 
coefficient,

H = n, (49)

which can be understood as a measure of the ‘cooperativ-
ity’ of the reaction, i.e. the effect of binding a ligand affects 
the enzyme’s ability to bind subsequent molecules. Hill 

coefficients greater than one describe cooperative binding 
where the binding rate of further substrates increases with 
the number of substrate molecules bound to the enzyme, 
and negative Hill coefficients describe the opposite situation. 
When H  =  1, the reaction is non-cooperative and describes 
Michaelis–Menten (MM) kinetics. However, the value of H 
determined from fitting to (46) cannot be used to infer the 
number of binding substrates. The result is predicated on 
the assumption that reactions with order greater than two 
can occur, which is nonsense. Instead, ligands bind sequen-
tially and it is possible that there can be intervening reactions 
involving the formation of an activated complex [154]. In 
general, the use of non-elementary propensity functions in 
RDME models is problematic. Lawson et  al [155] reported 
a comparison between reactions with MM propensity func-
tions and the equivalent mass-action reactions in an RDME 
model over varying lattice spacings. They showed that steady 
state ES abundance computed from the MM approximation 
diverges wildly from the mass-action kinetics as the lattice 
spacing decreases. Smith and Grima [156] later proposed that 
the reason for this discrepancy is that in the fast-diffusion 
limit, the RDME for the MM approximation does not conv-
erge to the expected MM approximated CME. They claim 
that because the use of non-elementary propensity functions 
implicitly assume that reactions represent the fastest time 
scale in the model, this is inconsistent with the assumptions 
underlying the RDME. However, in light of these complica-
tions the functional form of (46) fits remarkably well to the 
reaction rate of many systems. This means that many common 
reaction motifs seen in biology, such as MM reactions and 
reactions whose rates are described by Hill functions, must 
be decomposed into elementary mass-action kinetics prior to 
inclusion in an RDME model.

Stochastic models add another layer of complexity to the 
parameter estimation problem. Instead of being able to mini-
mize a deterministic function (41), we must contend with the 
fact that a single parameter set can be associated with an infi-
nite set of realizations of the system. Approximate Bayesian 
computation (ABC) [157] provides a simple way to estimate 
parameter values and their uncertainties which works well 
for stochastic simulations. Assuming a prior distribution of 
parameter values, informed by previous knowledge of the biol-
ogy or just reasonable estimates of minimum and maximum 
values, ABC provides an estimate of the likelihood function of 
the model given experimental data. The idea is to comprehen-
sively sample the prior parameter distribution and compute 
the deviation of the model from the experiment. A threshold 
ε is chosen as the acceptance criterion:  all parameter values 
which lead to deviations from the experiment less than ε are 
accepted. Usually, the dimensionality of the experimental 
data is so high that the probability of sampling an acceptable 
parameter set is low. To remedy this, instead of directly com-
paring the model to the data, summary statistics are used. For 
example, the parameter space of a model describing a three-
state genetic switch was explored using ABC [150]. A model 
of a two-state switch [67] was extended to include a third 
genetic state describing the situation when the lac repressor 
binds to two operators simultaneously, forming a DNA loop. 
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The new state (loop) was connected to the repressed (off) state 
via the reactions,

DNAoff
k′
�

k([I])
DNAloop.

 
(50)

Here the off-to-loop transition rate k′ is constant, while the 
loop-to-off transition rate k([I]) is written as the Hill function

k([I]) = k0 + (k1 − k0)
[I]H

K1/2
H + [I]H

, (51)

where k0 is the loop-to-off transition rate without the presence 
of inducer ([I] → 0) and k1 is the loop-to-off transition rate 
at saturating inducer concentration ([I] → ∞). The remaining 
model parameters were fixed, leading to a five-dimensional 
parameter space. The stochastic model was solved using the 
finite state projection (FSP) [158], which yields directly the 
probability distributions. The statistic of interest was the range 
of inducer concentration in which the system was bistable. 
Parameter sets which exhibited a range of bistability which 
included the experimentally observed bistability range were 
accepted. The prior distribution was a uniform distribution 
whose bounds were chosen using simple biological argu-
ments. The resulting parameter distributions are shown in 
 figure 6 as a series of two-dimensional histograms.

The joint histograms reveal the interdependence of the 
model parameters. The k′–k0 histogram is an excellent exam-
ple of model sloppiness: the ratio k’/k0 clearly impacts the 

bistability range, however the absolute values of the param-
eters are unimportant. This can be interpreted as the rate of 
switching between these transcriptional states is irrelevant: 
only the fraction of time spent in each state is important.

Using ABC was trivial in this example because the prob-
ability distributions were directly available. However in most 
cases the probability distribution is not accessible, instead we 
must infer the solution by simulating the stochastic process. 
In these cases, parameter estimation is significantly more 
difficult. The simulated distributions can be fit to the exper-
imental data using a variety of objective functions such as the 
negative log-likelihood, the cumulative distribution function, 
or through comparing the distributions using a metric such as 
the Kullback–Leiber divergence [159]. Optimizing over these 
objective functions can be troublesome since evaluations are 
not deterministic and there is no objective function gradient 
available to provide to the optimizer. Srivastava and Rawlings 
[160] propose using the sample path method coupled with a 
derivative-free global optimization algorithm and bootstrap-
ping for uncertainty analysis. For each simulated trajectory 
used to generate the histogram, the sample path method stores 
the value used to seed the random number generator. The ran-
dom numbers are then replayed for each successive objective 
function evaluation, which effectively smooths the objective 
function in parameter space.

The previous examples were for well-mixed systems. 
Parameter optimization and sensitivity analysis for stochas-
tic, spatially resolved systems has not been explored to the 

Figure 6. Example of ABC parameter estimation using a three-state model of the lac genetic switch in E. coli [150]. First order rate 
parameters are reported as multiples of the cell division rate (kp), binding coefficients are reported in millimolar, and the Hill coefficients 
are dimensionless. The mean of the distribution is shown with a white marker. The parameter sets exhibiting bistability within a range of 
external conditions were accepted. Adapted from [150]. CC BY 3.0.
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same extent, unfortunately. The problem is that performing 
these simulations is generally many orders of magnitude more 
computationally expensive, making the direct exploration of 
parameter space difficult. Sensitivity analysis about a set of 
parameters in a one-dimensional RDME simulation has been 
described by [161]. They use finite differences to compute 
the derivative of a summary statistic with respect to a model 
parameter. They present a number of techniques based on the 
concept of variance reduction. Consider the summary statistic 
f evaluated over many realizations of the system at parameter 
sets θ and θ + δ, where δ  is a small perturbation. The vari-
ance of the difference of the statistic between the two param-
eters is

Var[ f (θ + δ)− f (θ)] =Var[ f (θ + δ)] + Var[ f (θ)]

− 2 Cov[ f (θ + δ), f (θ)].
 

(52)

By correlating the simulated time courses between the two 
parameter sets, Cov[ f (θ + δ), f (θ)] is maximized which 
reduces the number of replicates necessary to estimate the 
statistic f. They present three methods: the split propen-
sity method, the common Poisson process method, and the 
grouped sampling method. The split propensity method gener-
ates sample paths for two parameter sets simultaneously such 
that the total propensity for the next event considers whether 
the event occurs in the first, the second, or both systems. Since 
the perturbation is small, most events will occur in both sys-
tems such that the two sample paths are highly correlated. The 
common Poisson process method is similar to the sample path 
method in that the simulation of the two param eter sets share 
the same stream of random numbers. Finally the grouped 
sampling method extends the split propensity method to seg-
ment the space of possible events into M  +  2d groups, where 
M is the number of reactions, d is the dimension of the lattice, 
and the factor of 2 accounts for diffusion in both the posi-
tive and negative directions. The groups are then ordered by 
their voxel index. Events are selected by first choosing the 
group based on its total propensity, then the event from that 
group. The result is a sample path for both systems similar to 
the split propensity method with the added characteristic that 
shared events occur in similar positions in each system, fur-
ther reducing the variance between the two statistics. In gen-
eral, Lester et al [161] show that the grouped particle method 
requires the least number of simulations to achieve a given 
variance, followed by the coupled Poisson process method. 
For highly parallelized implementations of lattice-based sto-
chastic simulators (i.e. Lattice Microbes), the coupled Poisson 
process method would be the most simple to apply with the 
least impact on simulation performance.

Recently, Schnoerr et al [162] have shown that an approx-
imation to the likelihood function for stochastic, spatially 
resolved models can be derived using a connection between 
the RDME and spatial-temporal Cox point processes [163]. 
Spatial-temporal Cox processes are essentially Poisson pro-
cesses over a given spatial domain and time interval where 
the Poissonian rate itself is a random variable. These pro-
cesses are generally used to derive phenomenological models 
of stochastic systems evolving through time and space. Since 

the resulting likelihood function is computed from the solu-
tion to a PDE or stochastic PDE, optimizing the likelihood 
function is computationally inexpensive. With the likelihood 
function readily available, it is possible to perform selection 
between sets of potential models using an information crite-
rion. Schnoerr et al [162] report that the compute time neces-
sary to optimize a four-parameter system was order of 10 s, 
which suggests that this technique could be applied to param-
eter estimation in much larger, perhaps whole-cell models.

Other necessary data to construct whole-cell models 
include the diffusion coefficients and simulation geometry. As 
long as there is not a separation of diffusion scales between 
species in the model, RDME simulations are not in general 
sensitive to the exact value of the diffusion coefficients over 
time scales longer than the diffusion time [67, 69]. It is pre-
ferred to use in vivo measured diffusion rates when they are 
available, however this is rarely the case. Instead, estimations 
relating the radii of gyration to the diffusion coefficients in 
cytoplasm [164] are an appropriate replacement. Diffusion 
coefficients assigned to transitions between compartments 
with dissimilar diffusive properties can be computed as the 
geometric mean, Da↔b =

√
DaDb .

The simulation volume is generally constructed manu-
ally based on measurements from microscopy [67, 69, 118, 
120, 123]. However recently it has become possible to per-
form simulations using the actual 3D geometry data captured 
from tomographic methods [117, 165, 166]. Isaacson et  al 
[166] used data from structured illumination microscopy of 
DAPI-stained DNA in mouse cells to study the diffusion of 
a transcription factor in the nucleus using an RDME simula-
tion. Bartol et al [165] used serial electron microscopy sec-
tioning of rat neurons to simulate Ca2+ transient formation 
using MCell. Earnest et al [117] presented two case studies in 
the use of cryoelectron tomograms as simulation geometry: a 
simulation of a hypothetical genetic switch in an S. cerevisiae 
cell, similar to the lac system in E. coli; and a simulation of 
an auto-repressing gene in a HeLa cell. The simulation geom-
etry of the S. cerevisiae cell was inferred using measurements 
from a cryo-electron microscopy (cryo-EM), including the 
density of nuclear pores; whereas the HeLa simulation used 
the compartments created from the tomography data directly. 
The work focused on the construction of model geometry for 
use in lattice-based reaction–diffusion simulations, and sug-
gested situations where experimentally derived geometry can 
be necessary. However, the importance of ‘real’ as opposed to 
idealized simulation geometries has yet to be studied in detail.

3. Stochasticity in universal cellular processes

If one were to consider the question ‘What is life?’ several 
essential properties should naturally spring to mind. Chief 
among them, living things have the ability to extract energy 
from their environment in order to grow, reproduce, and pass 
on their genes to the next generation. Of course, these proper-
ties alone are not strictly sufficient, and debate remains about 
what a formal definition of life could be (if one even exists), but 
they do give us a starting point to think about what behaviors 
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are truly important for understanding the living world. In this 
section, we review the current state of modeling several major 
cellular processes that are integral for the growth and replica-
tion of the cell. These processes include genetic information 
processing (transcription, translation, DNA replication, and 
ribosome assembly), and metabolism.

3.1. Transcription: modeling constitutive and regulated mRNA 
expression

The first step in the central dogma of molecular biology 
involves the transcription of a gene to form a messenger RNA. 
In its simplest form, this process can be modeled as the first 
order reaction

D kt−→D + m, (53)
where D represents the gene, and m represents the mRNA, and 
kt represents the transcription rate. Of course, this representation 
sweeps away a great deal of important biology (the association 
of transcription factors, the binding, open complex formation, 
and processivity of RNAP, etc), but it has nevertheless been used 
to great effect in countless high profile studies of gene expres-
sion (for just a few examples, see [22–24, 167, 168]).

The first order transcription and subsequent decay of mRNA,

D kt−→D + m (54a)

m kd−→∅, (54b)
which can be understood as a stochastic birth–death pro-
cess, yields Poisson-distributed copy numbers with mean 
kt/kd. In many cases, accounting for the existence of regula-
tory machinery can be essential to accurately modeling the 
transcription of a gene. The binding of a transcription factor 
(TF) to either activate (transcriptional activator) or deactivate 
(transcriptional repressor) the gene can be straightforwardly 
included in a model by adding just a few reactions. For exam-
ple, to account for the transcriptional activator T,

D + T
ktf
�
ktf

′
D∗ (55a)

D∗ kt−→D∗ + m (55b)

where ktf  and ktf
′ are the binding and dissociation rates of the 

TF to the gene, and D* represents the gene in its transcription-
ally active form. In the literature, the explicit dependence on 
the transcription factor is sometimes suppressed, and the gene 
is treated as though it undergoes first order transitions between 
inactive and active states with an effective rate k̃tf = ktfnT . 
This is often necessary when attempting analytical treatments, 
and it can be shown that (see [17]) the scheme

D
k̃tf
�
ktf

′
D∗ (56a)

D∗ kt−→D∗ + m (56b)

m kd−→∅, (56c)

corresponding to the regulated production and decay of 
mRNA, yields a messenger mean and variance given by

m̄ =
kt

kd

k̃tf

k̃tf + ktf
′ (57a)

σ2
m = m̄

(
1 +

ktktf
′

(k̃tf + ktf
′)(k̃tf + ktf

′ + kd)

)
. (57b)

Often, however, explicitly including the transcription factor, 
as well as the possible transitions the TF can undergo, can be 
necessary to capture the dynamics of the system.

Consider as an example the lac genetic switch—the ‘hydro-
gen atom’ of gene regulation. In this system, LacI, which 
represses transcription of the lac operon, can bind one or two 
lactose molecules. With lactose bound, LacI loses affinity for 
its DNA binding site, which in turn enables transcription of 
lacZ, lacY, and lacA to proceed. LacY is a lactose transporter, 
which creates a positive feedback loop—increased intracel-
lular lactose enhances lacY expression, which in turn leads to 
enhanced lactose uptake. In general, feedback leads to effects 
such as the emergence of bistability due to up regulation (pos-
itive feedback) and noise reduction due to down regulation 
(negative feedback) of mRNA transcription. This is a ubiqui-
tous feature of gene regulatory networks.

Due to their complexity, systems like this are amenable to 
analytical treatments only under certain simplifying assump-
tions (e.g. protein expression being modeled as a Poisson pro-
cess [168], or occurring in bursts of geometrically-distributed 
sizes [169]). Nevertheless, these simplified descriptions—as 
well as more complete computational models [67, 150, 170]—
have proven successful in describing a number of observed 
features of self-regulated genes, including the bimodality of 
LacY copy numbers at intermediate levels of inducer.

3.2. Translation: modeling protein distributions

Following transcription, the next step in gene expression is 
translation of the mRNA into its protein product. As was 
the case with transcription, translation is a complex process 
involving interactions of scores of different biomolecules (the 
association of the ribosomal subunits to the mRNA, interac-
tions between the ribosome, mRNA, tRNAs, and elongation 
factors, etc) but it is often modeled simply as a first-order 
reaction. Because proteins are relatively long-lived, a com-
mon assumption is that they are lost primarily through dilu-
tion as the cell grows and divides. This too can be modeled 
as a first order reaction, giving a complete protein expression 
model,

D kt−→D + m (58a)

m kr−→m + p (58b)

m kd−→∅ (58c)

p
γ−→∅, (58d)
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where γ is the dilution rate, which can be related to the cell’s 
doubling time, tD, as γ = (ln2)/tD. This model, and variations 
on it, has been analyzed on countless occasions. In particular, 
Friedman et al [22] in 2006 and Shahrezaei and Swain [23] in 
2008 both showed that when the mRNA lifetime is assumed 
to be much shorter than that of the protein, the model gives 
rise to Poissonian ‘bursts’ of protein production of exponen-
tially-distributed size, and leads to gamma-distributed protein 
counts [22, 23]:

P( p) =
pa−1e−p/b

Γ(a)ba (59)

where the shape parameter, a = kt/γ, represents the average 
number of protein production bursts in a cell cycle, and the scale 
parameter, b = kr/kd, represents the average number of proteins 
produced in a burst. This distribution has simple expressions for 
the mean and variance of the protein copy numbers:

E[ p] = ab (60a)

Var[ p] = ab2. (60b)

The transition rates between the transcriptional states can 
divide the system into two regimes. The non-adiabatic regime 
is characterized by the transcriptional switching rates being 
much slower than the protein decay rates. Here, metastable 
populations with low and high average protein abundances 
develop corresponding to the inactive and active transcriptional 
states, respectively. The adiabatic regime is characterized by 
the transcriptional switching rates being much faster than the 
protein decay rates. The switching is fast enough that the meta-
stable states blend into a single peak in the protein distribution 
and the two transcriptional states can then be considered as a 
single state with a mean transcription rate [33, 145].

In a seminal 2010 article, Taniguchi et al [24] constructed 
a library of over 1000 E. coli strains, each with a fluorescent 
protein fused to a different gene of interest. Then, by measur-
ing the fluorescence of single cells of each strain, the authors 
estimated the copy number of each protein on the level of 
individual cells. They found that the experimental copy num-
ber distributions were fit extraordinary well with a gamma 
distribution across a wide range of expression levels (see 
 figures 1(a) and (b)) [24]. This work also provided genome-
wide measurements of mRNA lifetimes and expression levels, 
and has become foundation for countless theoretical studies.

More general theories of gene regulation networks have 
been developed. Wang et  al [36] describes a landscape and 
flux theory of gene regulatory networks. The time dependence 
of the various chemical abundances can be approximated con-
tinuously as

dx
dt

= F(x) + η(t), (61)

where F(x) is a generalized force describing the dynamics of 
the chemical abundances, x, and η(t) is white noise with the 
autocorrelation function

〈η(t)η(t′)〉 = 2Dδ(t − t′), (62)

with D as the noise strength tensor. This leads a diffusion 
equation defined over concentrations which satisfies the con-
servation law

∂P
∂t

+∇ · J(x, t) = 0. (63)

Here J(x, t) is the flux describing the evolution of the prob-
ability distribution, which at steady state ∇ · J(x, t) = 0. It 
follows that steady state dynamics can be expressed in terms 
of a potential U(x) = − logPs.s.(x) and a non-equilibrium 
driving force Fcf(x) = Js.s./Ps.s. defined by the steady 
state probability distribution, Ps.s., and steady state flux, 
Js.s.. This force is nonzero only when the curl of the flux is  
non-vanishing, which implies a loss of detailed balance. This 
admits an elegant interpretation of the network dynamics—
the state of the system can be thought of as a charged particle 
under the influence of an electric potential U, and a magnetic 
force Fcf . For a complete review of the this theory, see [171]. 
This method was used to study the mammalian cell cycle [41]. 
Since protein abundances in such cells are generally large, the 
chemical Langevin description (61) is reasonable, however in 
bacterial systems this may not be appropriate.

3.3. DNA replication: modeling variations in initiation,  
termination, and replication duration

Cells can not reproduce without somehow copying their 
genetic material. But even in bacteria, where the process of 
DNA replication is comparatively straightforward, many 
details surrounding its control remain poorly understood. 
What is known is that bacterial cells initiate replication 
through the accumulation of DnaA to the chromosome near 
the origin of replication, oriC. This leads to DNA melting and 
strand separation, and the subsequent assembly of the replica-
tion machinery. Two replication forks form and progress in 
opposite directions along the circular chromosome simultane-
ously, meeting approximately opposite the origin of replica-
tion at one of several replication termination (ter) sites.

In slow-growing bacteria, the cell cycle can be neatly 
divided into three parts: the B-period represents the time 
between the start of the cell cycle (completion of the previous 
round of cell division) and the initiation of DNA replication, 
the C-period represents the time between DNA replication ini-
tiation and termination, and the D-period represents the time 
after replication but before division. Experiments have shown 
that the C- and D-periods remain relatively constant across 
large ranges of cellular growth rates [172]. This means that for 
cells with doubling times shorter than C  +  D (approximately 
60 min in E. coli), the cell cycle must begin with one set of 
replication forks already progressing, and fast-growing cells 
must maintain multiple sets of replication forks simultane-
ously [173]. As a result, individual cells will have different 
copy numbers of each gene at different times, and asynchro-
nous populations will exhibit cell-to-cell variations in gene 
copy numbers (see figure 7).

Simulating the effects of DNA replication is fairly straight-
forward. Each gene in the computational model gets assigned 
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to it some replication time, tr . For t < tr, the gene exists in a 
low-copy number state (e.g. 1 for slow-growing cells, or 2, 
4, etc for faster-growing cells); at t = tr, the copy number is 
doubled, and remains so for the rest of the modeled cell cycle. 
Each tr  is a function of the gene’s position on the chromo-
some, as well as the durations of the B- and C-periods, and 
the doubling time of the cell. Note that for slow-growing cells, 
tr = B + χC  (where χ represents the position of the gene as 
a fraction from origin to terminus), meaning genes near the 
origin get replicated before genes closer to the terminus, but 
for faster growing cells, in which the cell cycle begins with a 
set of replication forks already progressing, genes close to the 
origin may start off in two copies and not double to four until 
late in the cell cycle.

The impact of variability in gene copy number on mRNA 
and protein statistics has been investigated experimentally 
and theoretically. In 2014, Jones et al [174] showed that DNA 
replication represents a major source of variability in mRNA 
concentrations [174]. Their results were refined in 2015 by 
Peterson et al [175], and then extended to protein variability 
by Cole and Luthey-Schulten [80] in 2017. All told, account-
ing for DNA replication can lead to a doubling or tripling 
(in slow- and fast-growing cells, respectively) of predicted 
mRNA Fano factors (Var[m]/E[m]) relative to analogous mod-
els that ignore the effect [175], and the contribution to protein 
noise associated with DNA replication is of comparable size 
to those associated with cell-to-cell variability in RNAP, ribo-
some, and ribonuclease E copy numbers [80].

3.4. Ribosome biogenesis: coupling transcription, translation, 
and ribosome assembly

With transcription and translation described, we are now in 
a position to discuss how ribosomes are formed. Ribosome 
biogenesis is a highly complex, tightly regulated process in 
the cell, where each 70S ribosome (composed of a 30S small 
subunit (SSU) and a 70S large subunit (LSU)) represents the 
end result of the coordinated transcription, translation, fold-
ing, and hierarchical assembly of three strands of ribosomal 
RNA (rRNA) and over four dozen ribosomal proteins (r-pro-
teins). The SSU, tasked with binding and decoding mRNA, 
is composed of the 16S rRNA and 21 r-proteins, whereas 
the LSU is tasked with the synthesis of the nascent polypep-
tide chain and is composed of the 5S and 23S rRNA and 33 
r-proteins.

Here we will differentiate assembly and biogenesis: assem-
bly is the association of ribosomal proteins to rRNA, whereas 
biogenesis is the assembly process, as well as all necessary 
transcription and translation of the necessary components. 
Ribosomes appear to assemble in vitro [176–178] within 
hours, however in living cells the process concludes within 
minutes [179]. In bacteria, the ribosomes are not evenly dis-
tributed throughout the cell volume, but rather accumulate 
around the cell poles and inner membrane [56, 57, 67, 68, 
180]. However, the disassociated large and small ribosomal 
subunits can be found anywhere in the cell with equal prob-
ability [68].

Ribosome biogenesis involves the cooperation of many 
molecular components. In bacteria the process involves the 
transcription of rRNA genes, the translation of r-protein, post-
transcriptional processing and modification of both the rRNA 
and r-proteins, and assembly of the r-proteins and rRNA 
comp onents to form the mature ribosomal subunits [181]. 
These processes all occur in parallel, perpetually throughout 
the cell cycle. The 54 r-proteins are classified by their order 
of binding. Primary proteins bind directly to the rRNA, sec-
ondary proteins require the presence of primary proteins in 
order to bind, and tertiary proteins require the presence of sec-
ondary proteins to bind. The r-proteins can compose 9–22% 
of the total protein counts in the cell [182, 183]. In addition, 
approximately 20 assembly cofactors are engaged to facilitate 
the process at various stages of the assembly process.

In 1966, Hosokawa et  al [185] began the study of the 
assembly mechanism. Nomura and coworkers were the first 
to systematically study the order of r-protein assembly to 
the 16S rRNA to form the SSU [184]. By reconstituting the 
small subunit in vitro and measuring the equilibrium binding 
fractions of r-proteins, they found that the stability of bind-
ing an r-protein to an assembly intermediate can depend on 
which r-proteins are bound initially. They were able to infer 
an assembly hierarchy of binding dependencies, which is 
presented in figure  8(a). Later work in the field has shown 
through in vitro experiments that the assembly process can 
follow multiple pathways, which all follow a general bind-
ing order of 5′-domain r-proteins associating first, followed 
by the central-domain r-proteins, then finally the 3′-domain 
r-proteins [176–178, 186–191].
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Figure 7. DNA replication induces variability in gene copy number. 
Early in the cell cycle (t < tr), a given gene may exist in one copy, 
but later (t > tr) it may exist in two copies. This gene copy number 
variability imparts a comparable level of protein noise as does 
variability in RNAP, ribosome, and ribonuclease copy numbers [80]. 
Reprinted figure with permission from [80], Copyright (2017) by the 
American Physical Society.
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Recently, Earnest et al [69] reported the first kinetic model 
of the assembly of the SSU, accounting for the association 
of 18 r-proteins to the 16S rRNA. A naïve approach to con-
structing such a kinetic model would consider the association 
of a protein to any possible protein/rRNA configuration—this 
would lead to 18! (6.4 × 1015) reactions. Instead, the authors 
constructed the assembly reaction network by considering 
only r-protein association reactions which are consistent with 
the Nomura map. To parameterize the reaction network, rate 
parameters for two experimental conditions were inferred 
from pulse/chase mass spectrometry [176, 177]. The resulting 
kinetic models consisted of 1612 SSU assembly intermediates 
and 6997 protein/intermediate association reactions and were 
further reduced by removing the assembly intermediates from 
the network which contributed the least to the total assembly 
flux. This reduction resulted in simplified models with less 
than 150 assembly intermediates, which faithfully captured 
the topology of the r-protein/rRNA original (1612-interme-
diate) interaction network and reproduced the experimental 
protein binding kinetics described in [176] and [177] (figure 
8(b)). Both models are consistent with an assembly mechanism 
inferred from cryo-EM of 30S assembly intermediates [177].

In order to model ribosome biogenesis, Earnest et al [69] 
integrated kinetic models of transcription and translation with 
the assembly model. The biogenesis model consisted of 251 
species types: the SSU, LSU, rRNA, 18 ribosomal proteins, 
the ribosomal operons and associated mRNA, and over 140 
SSU assembly intermediates. These species interact through 
approximately 1300 reactions: transcription, translation, 
assembly, and RNA degradation. Most reaction rates were 
taken directly from literature sources, with the exception of 

the transcription rates which were chosen to produce 4500 
ribosomes on average at steady state. Using cryo-electron 
tomography data describing slow-growing E. coli [67], they 
constructed a spatially resolved model using diffusion rates 
from the literature and simulated a full 120 min cell cycle 
using Lattice Microbes [92, 93]. Due to the relatively small 
number of 30S particles in the process of assembly and the 
large range of possible intermediates, the counts of individual 
16S/r-protein configurations can be of the order of one per 
cell. Thus, to accurately describe the fluctuations due to small 
copy numbers, a spatially resolved representation accounting 
for the discreteness of chemical species was essential [192].

The model was further expanded in 2016 to account for 
DNA replication and cell division [118] in order to to explore 
mRNA copy number variability associated with DNA replica-
tion. Cell cycle parameters, such as the delay between cell 
division and DNA replication initiation and the duration of 
replication, for the slow-growing E. coli were determined 
from a simple statistical model. This model described the 
probability to find a cell of a particular length with two cop-
ies of a gene, given the location of the gene in the genome. 
The model was fit to data from computed from images of a 
series of E. coli strains with fluorescently labeled genes dis-
tributed evenly throughout their genome. The cell geometry 
was allowed to vary over the cell cycle following the inferred 
cell cycle parameters. The ribosomal operons were duplicated 
and moved over the course of the simulation to include the 
effect of DNA replication. Though the cell growth and DNA 
replication were progressed deterministically by the simula-
tion, not the underlying biochemistry, the work showed how 
ribosome number per unit volume remains constant over the 

Figure 8. (a) The Nomura assembly map, which presents the thermodynamic protein binding dependencies to the 16S rRNA [184]. Arrows 
point from a protein to the protein that is dependent on it. (b) Assembly diagram describing the rRNA/protein association process at 40 ◦C 
[69]. Nodes represent specific rRNA/protein assembly intermediates, edges represent the binding of a ribosomal protein, where the color 
indicates the binding domain of that protein. The colored squares in each node indicate the proteins bound to that intermediate following 
the structure of panel (a). A filled square indicates that all proteins of the domain and binding order in the same position in the Nomura map 
are bound. Square nodes are intermediates which have been observed during in vitro assembly experiments [177].
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cell cycle, and paved the way for more complexly coupled 
whole cell models.

3.5. Metabolism: modeling how fluctuations in the 
microenviron ment and gene expression affect metabolic 
behavior

Metabolism, the process by which chemical fuels are con-
verted into energy, cellular building blocks, and other vital 
compounds (vitamins, cofactors, etc), represents something 
of a linchpin, tying essentially every other cellular process 
together. It produces the driving forces (by way of ATP, 
GTP, NADH, etc) and substrate pools (nucleic and amino 
acids) necessary to replicate the genome and express the 
plethora of RNA and proteins the cell needs to grow and 
divide. In so doing, metabolism involves the coordinated 
activity of hundreds or thousands of catalytic enzymes, each 
taking part in perhaps only a few related reactions whose 
reactants, products, and stoichiometry have been painstak-
ingly elucidated through decades of biochemical research. 
Because of its complexity, modeling metabolism represents 
a major challenge in systems biology. In principle, any reac-
tion network can be posed as a set of stochastic or determin-
istic differential equations; the problem with metabolism is 
that many of the enzymes involved are poorly characterized, 
and kinetic parameters can be scarce or vary wildly from 
study to study.

In the 1980s, researchers began to develop what would 
come to be known as flux balance analysis (FBA) as a way 
to partially circumvent the difficulty in parameterizing a 
kinetic description of metabolism. At its core, FBA is strik-
ingly simple. Networks are described in terms of a stoi-
chiometric matrix, S, and a vector of (biomass-normalized) 
fluxes through each reaction, v. It is assumed that there is 
no appreciable buildup or loss in the intracellular metabo-
lite concentrations during growth, which leads to the ‘steady 
state’ requirement that:

dc
dt

= S · v = 0.
 

(64)

Importantly, in addition to the metabolic reactions, the stoi-
chiometric matrix also usually includes some sink reaction 
that consumes certain metabolites—amino acids, nucleic 
acids, lipids, etc—in their appropriate levels in order to pro-
duce a unit of biomass. The biomass reaction also includes a 
 growth-associated ATP maintenance coefficient (GAM) which 
represents the ATP expenditure associated with peptide bond 
formation, RNA synthesis and recycling, and other uses of ATP 
required for growth. Non-growth associated ATP maintenance 
(NGAM) is also generally included as a ATP  →  ADP  +  Pi 
reaction in the stoichiometric matrix with a positive flux lower 
bound that can be fit to experimental data. By maximizing flux 
through this ‘biomass reaction’ subject to constraints placed on 
the fluxes through the metabolic reactions, a number of differ-
ent environments and metabolic phenotypes can be modeled. 
This problem can be posed as the linear program,

maximize vbiomass

subject to S · v = 0
and vl.b. � v � vu.b, (65)

where vl.b. and vu.b. represent vectors of lower- and upper-
bounds for the reaction fluxes. For an outstanding introduction 
to FBA with an accompanying tutorial, see Orth et al [193].

What types of constraints are necessary to model metab-
olism in a realistic way? First, its important to describe the 
environment. If the model is intended to describe cells grown 
in aerobic glucose minimal media, then the fluxes that repre-
sent the uptake of oxygen, glucose, and salts should be lim-
ited to biologically reasonable values, while the fluxes that 
represent the uptake of other carbon sources not present in the 
media should be capped at zero. This type of ‘constraint-based 
modeling’ can be extremely powerful and extensible. Knock-
out studies can be performed, for example, by constraining the 
flux through any reactions catalyzed by a given gene product 
to be zero. Other, more physically motivated constraints, can 
also be set. If a given reaction leads to a large change in Gibbs 
free energy, then it may be considered to be irreversible, and 
the lower-bound on the flux through it may be set to zero.

Extensions of this type of thermodynamic approach have 
been proposed and implemented on a number of occasions. 
Thermodynamics-based metabolic flux analysis (TMFA), first 
developed in 2007 [194], involved the detailed estimation of 
the free energy change in almost every reaction in the iJR904 
model of E. coli (described in Reed et  al [195]), and the 
requirement that it be negative for all reactions that carry non-
zero flux. Research has continued along these lines, including 
the development of the ‘max-min driving force’ approach of 
Noor et al [196], which was used to predict specific metabolic 
reactions that pose a thermodynamic bottleneck, and what 
that means in terms of evolutionary pressures on the enzymes 
that catalyze those reactions. For example, the authors found 
the malate dehydrogenase was barely feasible at a pH of 7.5, 
and became thermodynamically infeasible below 7.0. They 
proposed that the high turnover rate (over 1000 reactions per 
second per enzyme molecule) may have evolved in order to 
compensate for the marginal ∆Gr  of the reaction. Another 
particularly nice feature of these types of free energy-based 
approaches is that they naturally require some estimation of 
the metabolite concentrations [194, 196]—a detail missing in 
more traditional FBA approaches. Metabolome-wide Gibbs 
energy estimates have generally relied on experimental val-
ues and the group contribution method, but have recently been 
been expanded to include values based on quantum chemistry 
calculations [197].

Constraints based on the structure and stability of enzymes 
have also been investigated. In 2013, Chang et al [198] inves-
tigated the thermotolerance of E. coli metabolism by using 
experimentally determined critical temperatures for the ther-
mal denaturation of enzymes involved in an FBA model. The 
resulting simulations showed good agreement with exper-
imental growth studies, and yielded new predictions regarding 
the specific enzymes that give rise to thermosensitivity [198].
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Thermodynamics-based constraints are not the only physi-
cally motivated constraints that can be applied to FBA models. 
Limitations on reaction fluxes based on the volume or mass of 
the enzymes that catalyze the reactions have also been pro-
posed. In general, these depend on physical and kinetic param-
eters of the enzymes, the latter of which can be estimated from 
literature values (which can often be found in resources like 
the BRENDA database [199]) and take the form:

Nrxn∑
i=1

vi

ki
ni � N (66)

where ki represents the turnover rate of the enzyme that cat-
alyzes reaction i (with units appropriately chosen such that 
vi/ki represents the number of enzymes per unit of biomass), 
ni represents the volume or mass of each enzyme, and N rep-
resents the total volume or mass of catalytic proteins in a unit 
of biomass. These types of approaches have shown promise 
in understanding the origins of carbon catabolite repression, 
and the evolutionary forces that may have shaped the enzyme 
kinetics we observe today [200, 201].

The impact of stochastic gene expression on metabolic 
behavior has also been investigated using FBA. By sampling 
enzyme copy numbers from experimentally determined pro-
tein abundance distributions, Labhsetwar et al [42] simulated 
large numbers of individual E. coli cells, each with their 
own sets of metabolic constraints. This yielded a wide dis-
tribution of growth rates, and significant pathway level vari-
ability, including the emergence of subpopulations of cells 
that differ entially used either of two glycolytic pathways  
(Emden–Meyerhof–Parnas or Entner–Doudoroff), and either 
the oxidative phosphorylation or acetate overflow pathways 
[42]. This approach has also recently been applied to the study 
of S. cerevisiae metabolism [44].

Finally, FBA has been leveraged to study the role of chang-
ing microenvironments in multicellular systems. By cou-
pling an FBA description of metabolism and growth with a 
reaction–diffusion model of metabolite transport, Cole et al 
[202] modeled the spatial dependence of metabolic pheno-
types in macroscopic (∼1 mm) E. coli colonies. Their model 
recapitulated the experimentally measured penetration depth 
of oxygen into the colonies, the shape and radial expansion 
of the colonies, and predicted a previously unknown form of 
crossfeeding in which cells near the bottom of the colonies 
ferment glucose to acetate, and cells near the top consume the 
acetate [202]. This methodology will be described in greater 
detail in section 5.1.

4. Toward a whole cell model: uniting metabolism, 
transcription, translation, and DNA replication  
in the cell

4.1. Thermodynamics and free energies of the core metabolic 
network

Understanding the physical forces that determine the activity 
of a metabolic network requires a thermodynamic analysis of 
whether a given reaction or pathway is feasible. At or near equi-
librium under physiological conditions (pH  ∼  7, ∼300 K, and 

∼1 atm), the change in Gibbs free energy of a reaction is related 
to the reactant concentrations through the well-known equation,

∆Gr = ∆G◦
r + RT

Nsp∑
i=1

Silnci, (67)

where ci represents the concentration of species i, and Si rep-
resents its stoichiometric coefficient in the given reaction. The 
free energy dissipated by a reaction can also be related to the 
fluxes and rate constants of the forward and backward reac-
tions [203],

∆Gr = RTln
J−r
J+r

, (68)

where the forward flux, J+r = k+r
∏reacts.

i c−Sir
i , and the back-

ward flux, J− = k−r
∏prods.

j cSij
j  (see (13)), can be described in 

terms of their forward and backward rate constants, k+r  and 
k−r , respectively.

An enzyme catalyzing a reaction with a large negative ∆Gr  
has almost no backwards flux. In glycolysis, the process of 
converting glucose from the environment to ATP and pyruvate 
(an input to pathways generating further ATP), the reaction 
catalyzed by phosphofructokinase (PFK), which is coupled 
to ATP hydrolysis, dissipates some 20 kJ mol−1, meaning 
less than one percent of the flux is in the reverse direction 
(thus it is considered an irreversible or ‘committed’ step; see 
 figure  9(a)). Of course, not all glycolytic steps are so exer-
gonic, but a few, including the reactions catalyzed by PFK and 
pyruvate kinase (PK), have rather large negative associated 
free energies. Because these reactions are so favorable, living 
cells have evolved mechanisms to tightly control the activity 
of the enzymes that catalyze them. In E. coli, for example, 
PFK I is allosterically activated by ADP and GDP, and inhib-
ited by phosphoenolpyruvate (the penultimate metabolite in 
glycolysis) [204] such that the reaction rate is increased in 
conditions of low ATP, and decreased when the outputs of gly-
colysis cannot be consumed fast enough.

Glycolysis itself can be thought of as consisting of two 
parts—an upper part and a lower part. Upper glycolysis 
involves the stepwise conversion of glucose (a six carbon 
sugar) into two three carbon molecules of D-glyceraldehyde 
3-phosphate (GAP). This process requires the consumption 
of two ATP molecules, the first being used to phosphorylate 
glucose (either directly through the use of hexokinase, or indi-
rectly through the use of phosphoenolpyruvate via the phos-
photransferase system in bacteria), and the second being used 
to phosphorylate β-D-fructose 6-phosphate to β-D-fructose 
1,6-bisphosphate (carried out by PFK). The energetic cost of 
these ATP has led upper glycolysis to be thought of as the 
‘investment’ phase of the pathway, with lower glycolysis 
making up the ‘pay-off’ phase.

Lower glycolysis converts GAP to pyruvate, but does so 
through steps that transform NAD+ to NADH (via glyceralde-
hyde phosphate dehydrogenase (GAPDH)), and ADP to ATP 
(first via phosphoglycerate kinase (PGK) and again via PK). 
The net result of the upper and lower parts of the pathway is 
the formation of two ATP and two NADH for each glucose 
molecule.
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In addition to its ATP production, glycolysis also produces a 
number of other important intermediates. Glucose-6-phosphate, 
for example, can enter the pentose phosphate pathway, produc-
ing ribose-5-phosphate for subsequent nucleotide synthesis 
(and charging two NADP+ molecules to NADPH en route). 
Similarly, dihydroxyacetone phosphate (DHAP) is a precursor 
of triglycerides, and 3-phosphoglyceric acid (3PG) is a serine 
precursor. Finally, the glycolytic end product pyruvate can be 

converted to acetyl-CoA in order to drive the tricarboxylic acid 
(TCA) cycle and subsequent electron transport chain (yielding 
a theoretical maximum of approximately 30 ATP per glucose 
molecule [205, 206], although most living organisms realize 
yields considerably smaller than this), or be used to make any of 
a number of fermentative byproducts including ethanol, lactate, 
acetate, and formate. The efficiency of metabolism in produc-
ing high-energy compounds allows living cells to maintain high 

Figure 9. (a) Glycolysis, a section of the central metabolic network. Central metabolism is the set of reactions that convert food (sugar) 
into energy to run the cell, make building blocks for proteins, DNA, RNA, and lipids, and secrete waste products or signaling molecules. 
In bacteria, glucose import occurs across the inner membrane with concomitant phosphorylation to glucose-6-phosphate. The reaction 
free energies (in units of kJ mol−1) are given for conditions consistent with metabolite concentrations in E. coli [207]. The substrates are 
typically found in millimolar concentrations [207], whereas the enzymes themselves are found in micromolar quantities [208]. (b) Example 
of the measurement of reaction free energies. By introducing radiolabeled glucose (at carbons 1 and 2, magenta circles) and monitoring the 
ratio of labeled to unlabeled metabolites, Park et al [207] were able to compute the reaction free energy of the triose phosphate isomerase 
catalyzed reaction, since unlabeled DHAP can only be produced through the reverse reaction.
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concentrations of ATP, GTP, NADH, and NADPH (in E. coli, 
approximately 9.6, 4.9, 0.08, and 0.12 mM, respectively [207]).

Metabolic thermodynamics has recently been exper-
imentally investigated by Park et al [207]. Using 13C-labeled 
glucose, the reversibility, and in turn the free energy dissipated 
by many reactions in E. coli, S. cerevisiae, and mammalian 
central metabolism were inferred. The authors demonstrated 
their approach using triose phosphate isomerase (TPI); by labe-
ling glucose carbons 1 and 2, the researchers showed that any 
unlabeled DHAP must have been generated via backward flux 
through TPI, rather than forward flux through fructose bispho-
spate aldolase (FBA) (see figure  9(b)). The ratio of labeled-
to-unlabeled DHAP was then used to determine the ratio of 
forward-to-reverse TPI flux, and in turn, the ∆G of the reaction.

4.2. Kinetic model of core metabolic network

Based on the above considerations, a broadly applicable 
kinetic model of metabolism must be comprised not only of 
the known reactions, but also of many of the key regulatory 
connections between allosteric modulators and their targets. 
Without such regulation, a model whose parameters may be 
trained under one set of conditions (aerobic growth on glu-
cose, for example), might have only limited predictive power 
under significantly different conditions (anaerobic culture, or 
growth on pyruvate or acetate etc).

A number of groups are actively developing kinetic models 
of metabolism [209–212] that account for regulation. Among 
them, Khodayari and Maranas [212] recently described a 
model of E. coli metabolism that encompasses 457 reactions 
among 337 metabolites and, importantly, includes almost 300 
regulatory links. Their model was validated across a range of 
environmental conditions and genetic perturbations. Of par-
ticular interest, the Khodayari model breaks down complex 
reactions into multiple elementary reactions, fitting rate con-
stants for each step. The enzyme-mediated reaction that trans-
forms A–B, for example, might be written:

A + E � A:E (69a)

A:E � E:B (69b)

E:B � E + B, (69c)

rather than a more compact approximate form, perhaps involv-
ing a Hill function (section 2.8). This can be extremely valu-
able when attempting stochastic simulations of the network in 
which the elementary reaction steps are the natural description 
of the system.

4.3. How cellular networks are linked

Marrying models of the universal cellular processes (tran-
scription, translation, replication, ribosome biogenesis, and 
metabolism) into a comprehensive description of the living 
cell represents the holy grail of computational biophysics. 
From a practical standpoint, initial progress will likely require 
some simplification. Recent pioneering work in developing 
a synthetic ‘minimal’ cell—that is a cell with the smallest 

number of genes necessary to sustain life—represents a unique 
opportunity in this respect. The current version of the mini-
mal cell, based on Mycoplasma mycoides and dubbed JCVI-
Syn3.0, has a genome comprised of only 473 genes (roughly 
a tenth of the E. coli genome) [213]. What makes the minimal 
cell so attractive from a modeling perspective is that many 
cellular networks are either greatly reduced or stripped out 
entirely. Metabolism, for example, involves only 165 enzymes 
(35% of the genome), and transcriptional regulation is almost 
nonexistent through the removal of most genes coding for 
transcription factors. Nevertheless, given an extremely rich 
growth medium, the minimal cell maintains a doubling time 
of around 3 h.

Biologically, the universal networks are linked in fairly 
obvious ways. Transcription and replication require pools 
of nucleic acids, translation requires pools of aminoacylated 
tRNAs, ribosome biogenesis requires both, and all of them 
require sufficient ATP and GTP to proceed. Estimates based on 
the chemical makeup of the cell indicate that roughly 70, 13, 
and 2% of available ATP is used in protein translation, main-
taining mRNA pools, and chromosome replication, respec-
tively [206, 214, 215]. These estimates generally involve the 
the summation of ATP molecules used to carry out a given pro-
cess. For example, in order to incorporate a single amino acid 
into a growing peptide chain, one ATP is hydrolyzed to AMP 
(roughly equivalent to hydrolyzing two ATP to ADP) in order 
to charge the amino acid, and two GTP (roughly equivalent 
to two ATP) are hydrolyzed during peptide bond formation, 
for a total of four ATP per amino acid. Importantly, this does 
not include the ATP expenditure associated with error check-
ing and the rejection of incorrect aminoacylated tRNAs, for 
which estimates range up to around two ATP per peptide bond. 
Similarly, the glycolytic breakdown of glucose to lactate and 
acetate—the main ATP-generating pathway in the minimal 
cell—requires the transcription and translation of around a 
dozen enzymes. This means that the products of metabolism 
are directly used in transcription, translation, and replication, 
and vice versa. While these types of connections are easy to 
understand, they pose several challenges from a computational 
standpoint. One of the most important is that concentrations of 
different chemical species can span a wide range from just a 
few per cell (on the order of a nanomolar) in the case of mRNA 
and some proteins, all the way up to tens of millimolar in the 
case of some amino acids, sugars, and ATP [207]. Obviously 
the low-concentration species, which will be subject to appre-
ciable variability, will require a stochastic description, but the 
high-concentration species might be better modeled using a 
deterministic approach in which the individual reaction events 
that consume or produce each molecule are averaged out. 
Coupled stochastic and deterministic modeling approaches 
have been implemented for a variety of systems, including the 
metabolism of clusters of cells [216], a model of Mycoplasma 
genitalium [217], and recently the mechanochemical dynamics 
of actin filaments [218]. Modeling the minimal cell will likely 
require a deterministic kinetic model of metabolism coupled 
with stochastic models of transcription, translation, ribosome 
biogenesis, and DNA replication.
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5. Physics of 3D cellular communities

Cells do not exist in a vacuum. From isogenic colonies to com-
plex biofilms and tissues, cells often live in dense consortia, 
interacting with each other in a multitude of ways. They can 
mechanically interact—like platelets adhering to each other 
during blood coagulation; they can interact through the directed 
production and dispersal of chemical messengers like toxins or 
signaling molecules—agents made at some cost to the individ-
ual cells but that serve the needs of the community; and they can 
interact passively, simply through the impact their consumption 
of resources and production of waste has on their microenviron-
ment. These passive interactions can be surprisingly strong, 
driving different subpopulations of cells toward divergent 
modes of metabolism. While FBA alone can describe the aver-
age metabolic behavior of cells in homogeneous environ ments, 
and extensions like population FBA offer insight into how het-
erogeneity in the internal constituents of cells can affect their 
behavior, it is only recently that FBA has been applied to the 
study of how nonuniform external conditions can affect cellular 
metabolism and community dynamics.

While most of what follows will be devoted to the study 
of metabolism in multicellular systems, we note that this rep-
resents only one aspect of the broader field of multicellular 
modeling. Methods have been developed for simulating dif-
ferent aspects of the development of biofilms, tumors, and 
even embryos [219–222], and recently, stochastic models of 
the expression and intercellular exchange of proteins have 
begun to appear [223].

5.1. Spatially resolved FBA

In 2013, Cole et al [216] proposed the coupling of an FBA 
model of bacterial metabolism with an RDME model of 
metabolite transport within and around a clusters of cells 
[216]. Although the single-molecule resolution of the origi-
nal implementation limited it to relatively low concentrations 
of metabolites and fairly small volumes (containing around 
100 cells), these early simulations showed that FBA could 
be used to model the steep nutrient gradients that emerge 
within microbial colonies. Over the next two years, the gen-
eral approach would be refined to the point where simulations 
of macroscopic colonies under realistic laboratory conditions 
could be accomplished [202, 224]. The basic method, called 
three-dimensional dynamic flux balance analysis (3DdFBA), 
can be represented as the solution to

∂φi(r, t)
∂t

= ∇ · [Di(r, ρ(r, t))∇φi(r, t)] + ρ(r, t)Mi(φ(r, t))
 (70a)

∂ρ(r, t)
∂t

= ρ(r, t)Mgr(φ(r, t)) + T(ρ(r, t)),
 

(70b)

where φi(r, t) represents the concentration of metabolite i 
(e.g. oxygen, glucose, and metabolic byproducts), and ρ(r, t) 
represents the density of cells. Obviously, the metabolites 
can diffuse as described by the space and density dependent 
diffusion coefficient Di(r, ρ(r, t)), but they can also react 
through the local metabolic activity of the cells in each region 

of space. The reaction term, Mi(φ(r, t)), is dependent on the 
local metabolite concentrations and is computed using FBA. 
The local cell density grows exponentially at rate Mgr(φ(r, t)), 
which corresponds to the biomass term in the FBA model, and 
can undergo some sort of transport, T(ρ(r, t)), which expands 
the colony. In practice, this cell transport is usually assumed 
to be either diffusive [224], or result from cells ‘pushing’ out-
ward as the local cell density grows beyond some maximal 
packing fraction [202] (see figure 10(a)). The majority of the 
parameters used in this model were determined from exper-
imental data, however the maximum oxygen uptake rate was 
chosen to ensure that the carbon sources were utilized at their 
maximum uptake rates.

Using their own implementations of this spatially resolved 
dynamic FBA strategy, Harcombe et al [224] investigated two- 
and three-species codependent consortia in 2014, and Cole et al 
[202] showed that syntrophic metabolic behaviors can emerge 
even within isogenic populations in 2015 (see figure 10(b)).

5.2. Emergence of metabolic cooperativity

One of the strengths of using FBA in a spatiotemporal frame-
work is that it enables modelers to investigate the interplay 
between neighboring cells in dense communities. It has long 
been known, for example, that oxygen is utilized so rapidly 
by E. coli that its penetration depth into a colony is only  
∼50 μm [225]. This means that much of the bulk of the col-
ony must be confined to an anaerobic metabolic state. What 
was unknown until recently was that the shallow oxygen pen-
etration was also one of the driving forces behind an emergent 
form of cooperative crossfeeding [202].

Within an E. coli colony growing on a nutrient-rich sub-
strate—like the glucose-infused agar commonly used in lab-
oratories—cells near the bottom have access to food but little 
oxygen, while cells on the top have access to oxygen but little 
food. This drives the bottom of the colony into a fermentative 
mode of metabolism in which they produce formate, acetate, 
and other byproducts. Some of these byproducts, specifi-
cally acetate, can filter up to the top of the colony, where they 
can be aerobically catabolized by the cells near the top (see 
figure  10(b)). This crossfeeding was found to be extremely 
robust across variations in the shape and texture of the agar, 
its glucose concentrations, and across several common labora-
tory E. coli strains [226].

5.3. Future: metabolic reprogramming in tumor formation

One of the hallmarks of cancer is the reprogramming of metab-
olism toward increased proliferation rates [227]—analogous 
to the evolutionary pressure on microbial species to maxi-
mize their growth rate. The associated increase in metabolic 
rates carries with it another cancer hallmark: anoxia within 
the tumor and an associated enhancement in proangiogenic 
signaling [227]. The oxygen and nutrient gradients that form 
within a tumor have been shown to drive a form of lactate 
crossfeeding that bears a striking resemblance to the acetate 
crossfeeding present within E. coli colonies [202, 228–230]. 
Indeed, it has been noted by several authors that the dynamics 
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of microbial populations may offer some insight into the 
dynamics of a growing tumor [231–233]. This suggests that 
spatially resolved FBA methods like that of [202] may be 
leveraged to help understand tumor metabolism. Importantly, 
numerous human tissue- and cancer-specific FBA models are 
under active development by the community (see Nilsson and 
Nielsen [230] for an excellent review). These may be inte-
grated in various combinations in order to construct models of 
growing tumors in the context of surrounding healthy tissues, 
potentially giving insight into emergent forms of crossfeeding 
both within the tumor and between it and nearby tissue.

6. Outlook

The ultimate goal of constructing whole-cell simulations is to 
describe life in the language of physics. The vocabulary is, of 
course, well known—we speak of thermodynamic potentials, 
molecular conformations, chemical transformations and reac-
tions—but the grammar, the system of integrating methods 
that span vastly different time and length scales, and whose 
applicabilities are often mutually exclusive, into a cohesive 

picture of the living cell remains elusive. This final section is 
intended to outline in broad terms our expectations for the 
future of the field.

A few things are clear. First, the types of coarse-graining 
that are necessary to describe living systems over cell-cycle 
time scales—namely RDME—are not by themselves suf-
ficient. They leave too much unanswered; a coarse-grained 
simulation may indicate that two molecules interact, but it will 
take finer-grained methods like MD or BD to describe how 
they interact, and hybrid techniques like quantum mechanics/
molecular mechanics (QM/MM) to describe their chemical 
reactivity. The problem is that these atomic-scale methods are 
considerably more costly computationally, describing motions 
on femtosecond time scales and Ångstrom length scales. The 
hope is that the two descriptions (fine and coarse) can be made 
to meet in the middle—to ‘overlap for a microsecond’. The 
coarse-grained models might capture the dynamics of a cell 
over long periods, and interesting intermediate states—DNA 
melting during replication initiation, polymerization of FtsZ 
prior to division, etc—may serve as starting points for fur-
ther exploration using MD, BD, and QM/MM. The question 
is what would it take to get there? 

Figure 10. Simulating the metabolism and growth of a bacterial colony. (a) 3DdFBA methodology: the simulation volume is discretized 
into a 3D cubic lattice. In each voxel, the diffusion of metabolites is modeled using a seven-point finite difference scheme. Substrates 
can be either passively or actively imported. Metabolism is modeled using flux balance analysis. Growth and expansion of the colony is 
modeled assuming cells grow exponentially, and that they begin to spill out into neighboring lattice sites as their local packing fraction 
surpasses some critical value (∼0.65) [202]. (b) Results of a simulation; E. coli colonies separate into anaerobic acetate producers near the 
base, and aerobic acetate consumers on top [202].
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All atom MD and coarse-grained BD simulations have 
contributed enormously to our understanding of the molecular 
mechanisms that underpin the living cell [234–239]. Both of 
these methods rely on force fields derived in large part from 
quantum chemical studies of bonded and non-bonded inter-
actions within biomolecules and complexes. The importance 
of the MD simulations to structural biology is reflected in the 
2013 Nobel Prize in Chemistry, awarded to Martin Karplus, 
Michael Levitt and Ariel Warshel for their development of 
multiscale models for complex chemical systems. MD and BD 
have facilitated a dynamic understanding of the structures of 
many large macromolecules, including the ribosome and ATP 
synthase (the structures of each of which also led to Nobel 
prizes). While there has been a steady refinement of the force 
fields and their associated dynamics, due in large part to pro-
tein folding studies that compare simulations and experiments, 
limitations on the number of atoms that can be simulated, and 
the duration of those simulations, remain a hurdle. What is 
required is faster scalable MD and BD codes that are capable 
of simulating billions of atoms for long times. NAMD [237], 
one of the most widely used supercomputer applications in the 
world, recently completed tests of a billion-atom MD simula-
tion (a 10 × 10 × 10 array of satellite tobacco mosaic viruses 
for a few picoseconds). For the first time, this puts short simu-
lations of an entire minimal cell—on the order of a few billion 
atoms—within reach.

At the other end of the spectrum, RDME simulations of 
a minimal cell, which are in principal possible using today’s 
codes, represent another type of challenge. To describe a cell is 
not just to describe the approximate locations of every particle, 
but to describe their reactions and interactions as well. Progress 
continues to be made in constructing and parameterizing the 
major cellular reaction networks—metabolism, transcription, 
translation, replication, and division—but combining them into 
a unified cohesive description continues to be a challenge. As 
noted in section 4.3, progress will likely come through the devel-
opment of hybrid stochastic–deterministic methods, treating, as 
examples, the random transcription and translation of enzymes 
stochastically, and their role in catalyzing metabolic reactions 
involving high-concentration species deterministically.

Finally, it should not go without saying that at every scale, 
biological models are generally based (albeit sometimes loosely) 
on experimentally determined parameters. Development of 
these coarse-grained methods will place greater demands on 
experimentalists for the quantitative data necessary to param-
eterize the models. These include everything from vibrational 
spectra and crystallographic data for atomistic models, to reac-
tion rates and -omics data for kinetic models. There can be no 
substitute for the systematic exper imental determination and 
curation of these types of data. The current generation of sci-
entists is incredibly fortunate in this regard. We have at our dis-
posal robust and well-tested molecular force-fields [240, 241], 
and databases that include tens-of-thousands of atomic-resolu-
tion structures [242] and enzyme kinetic rates [199].

Data from -omics experiments are essential for the design 
and validation of whole-cell models, however generally they 
can only provide the mean abundances. Recent develop-
ments in microfluidics have made single-cell high-throughput 

-omics experiments possible [243]. These experiments meas-
ure the distributions of species abundances, which will be 
necessary to parameterize or validate these stochastic mod-
els with inherent cell-to-cell variability. Most exper imentally 
derived kinetic parameters used in current models are derived 
from in vitro conditions, however there can be significant dif-
ferences in enzyme activity compared to in vivo. For exam-
ple, a deterministic, well-mixed model of glycolysis in S. 
cerevisiae originally parameterized with in vitro derived 
param eters exhibited qualitatively wrong steady-state behav-
ior under glucose-limited conditions [244], yet kinetic param-
eters measured under conditions closer to in vivo yielded a 
model having the right behavior, and was predictive over the 
five exper imental conditions tested [245]. The development 
of high-throughput measurement techniques to quantify the 
kinetic parameters of metabolic enzymes would be especially 
helpful in the development of whole-cell models.

Obviously, there remains a great deal of work ahead before 
even a minimal cell can be accurately described on all scales. 
But with ongoing technical advances making molecular simu
lations larger and faster, and making hybrid RDME simula-
tions more comprehensive, a true in silico cell may soon be 
within our grasp.
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