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a b s t r a c t

In these lecture notes, the basic principles of stochastic thermodynamics are developed
startingwith a closed system in contactwith a heat bath. A trajectory undergoesMarkovian
transitions between observable meso-states that correspond to a coarse-grained descrip-
tion of, e.g., a biomolecule or a biochemical network. By separating the closed system into
a core system and into reservoirs for ligands and reactants that bind to, and react with
the core system, a description as an open system controlled by chemical potentials and
possibly an external force is achieved. Entropy production and further thermodynamic
quantities defined along a trajectory obey various fluctuation theorems. For describing
fluctuations in a non-equilibrium steady state in the long-time limit, the concept of a
rate function for large deviations from the mean behavior is derived from the weight of
a trajectory. Universal bounds on this rate function follow which prove and generalize the
thermodynamic uncertainty relation that quantifies the inevitable trade-off between cost
and precision of any biomolecular process. Specific illustrations are given for molecular
motors, Brownian clocks and enzymatic networks that show how these tools can be used
for thermodynamic inference of hidden properties of a system.

© 2017 Elsevier B.V. All rights reserved.

1. Introductory remarks

Over the last about ten to twenty years, stochastic thermodynamics has emerged as a comprehensive framework for
describing small driven systems in contact with (or embedded in) a heat bath like colloidal particles in laser traps or
biomolecules and biomolecular networks. As an essential concept, the notions of classical thermodynamics like work, heat
and entropy production are identified on the level of fluctuating trajectories. The distributions of these quantities obey
various universal exact fluctuation relations.

In the first part of these lecture notes, these conceptswill be developed for a driven systemobeying aMarkovian dynamics
on a discrete set of states which implicitly also contains the case of overdamped motion on a continuous state space usually
described by Langevin equations. Since this part is well established by now, only a few selected references to the original
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key papers will be given. A more comprehensive guide to the vast literature concerning refinements and theoretical and
experimental case studies, can be found, inter alia, in several recent reviews [1–4].

The second part deals with a more recent development concerning the fluctuations in non-equilibrium steady states
for which a family of inequalities were found among which the most prominent one constrains the mean and variance of
currents in terms of the overall entropy production. This universal relation can also be expressed as the inevitable trade-
off between cost and precision of any thermodynamically consistent process which has been dubbed the thermodynamic
uncertainty relation. Its proof follows fromauniversal bound on the large deviations of any current. Stronger bounds on these
fluctuations follow with somewhat more knowledge about the driving forces and the topology of the underlying network.
With these relations, measured fluctuations allow to infer otherwise hidden properties of these systems. This presentation is
not intended to be an exhaustive review of these recent (and ongoing) developments but rather a pedagogical introduction
to them.

2. Closed system in contact with a heat bath

2.1. Meso-states

Starting on a very general level, we consider a closed systemwithmicro-states {ξ} and energyH(ξ ) in contact with a heat
bath at inverse temperature β . In equilibrium, free energy, internal energy and entropy are given by

F = −(1/β) ln
∑

ξ

exp[−βH(ξ )], E = ∂β (βF ), S = β2∂βF = β(E − F ), (1)

respectively.
We then partition the total phase space into a set of observable meso-states {I}. Each micro-state ξ is assumed to belong

to one and only one meso-state I to which manymicro-states ξ ∈ I contribute. In equilibrium (superscripte), the probability
to find the system in meso-state I is then given by

PI e =

∑
ξ∈I

exp[−β(H(ξ ) − F )] ≡ exp[−β(FI − F )] (2)

where the last equality defines the free energy FI of the state I . This identification is justified, first, since the mean energy in
state I can be expressed as

EI =

∑
ξ∈I

P(ξ |I)H(ξ ) = ∂β (βFI ), (3)

where

P(ξ |I) = exp[−β(H(ξ ) − F )]/PI e = exp[−β(H(ξ ) − FI )] (4)

is the conditional probability for the micro-state ξ given the meso-state I . Second, defining an ‘‘intrinsic’’ entropy SI from FI
as in (1) leads to

SI ≡ β2∂βFI = β(EI − FI ) = −

∑
ξ∈I

P(ξ |I) ln P(ξ |I) ≡ S[P(ξ |I)], (5)

which is the Shannon entropy of the conditional probability.1 With these expressions, in equilibrium, mean energy, entropy
and free energy of the system can also be written as

E =

∑
I

PI eEI , S =

{∑
I

PI eSI

}
+ S[PI e], F =

{∑
I

PI eFI

}
− (1/β)S[PI e], (6)

respectively.

2.2. Trajectory, time-scale separation, transition rates and master equation

In the course of time, the system moves along a trajectory I(t) of meso-states. While in principle any partition into
meso-states is formally possible, such a separation makes physical sense, and will lead to stochastic thermodynamics, if
transitions between meso-states are slow while transitions between the micro-states belonging to one meso-state are fast.
As a necessary condition, obviously, the heat bath has to relax at least as fast. Ideally, the dynamics along such a trajectory
then becomesMarkovian, whichmeans that there is a (constant) transition rate KIJ for the system in state I to jump to state J

1 Throughout this presentation, entropy is dimensionless, i.e., Boltzmann’s constant is set to 1, and S[pi] ≡ −
∑

ipi ln pi denotes the Shannon entropy of
an arbitrary discrete probability distribution.
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independent of how long the system has already been in state I and how it got there. Under this assumption, the probability
to observe the system at time t in state I follows the master equation

∂tPI (t) =

∑
J

[PJ (t)KJI − PI (t)KIJ ]. (7)

The transition rates {KIJ} are not arbitrary but have to fulfill certain conditions. First, under this dynamics, the equilibrium
distribution (2) should remain invariant. Second, in equilibrium, there should be no net flow across any link (IJ) whichmeans
that in a long trajectory the number of transitions between I and J should be the same as the number of those between J and
I . These two conditions imply that

KIJ/KJI = PJ e/PI e = exp[−β(FJ − FI )] = exp(−β∆IJF ) = exp(−β∆IJE + ∆IJS) (8)

where we use the notation∆IJA ≡ AJ −AI throughout for any function defined onmeso-states. This constraint does not fully
specify the dynamics. In order to determine the rates beyond this constraint on their ratio, one would need a more specific
model. It turns out, however, that a number of general results can be derived that are independent of such non-universal
choices.

Crucially, under the assumption of fast equilibrationwithin ameso-state, the dynamics (7) can be usednot only in genuine
equilibrium but also in situations where the system has initially been prepared in one meso-state, or, more generally, in an
initial condition {P0

I } since the future evolution from state I is independent of whether that state has been prepared initially
or has been visited in the course of an equilibrium trajectory. If the set ofmeso-states is connected, i.e., does not split into two
subsets among which there is no link, the Perron–Frobenius theorem guarantees that any initial distribution will approach
the unique equilibrium distribution, PI (t) → PI e as t → ∞ for all I [5].

2.3. Thermodynamics along a trajectory and in the ensemble

Along a trajectory I(t), the internal energy of the system becomes a stochastic quantity, E(t) = EI(t). Since the system is
closed, any energy change of the system is compensated by a corresponding change in the energy of the heat bath, which can
be interpreted as a perpetual exchange of heat along an individual trajectory as introduced by Sekimoto [6]. Quantitatively,
for a transition from I to J , this first law reads

∆IJE ≡ EJ − EI = −QIJ . (9)

Here, QIJ > 0 corresponds to heat dissipated in the bath thus increasing its entropy by βQIJ . Moreover, the system carries
entropy

Ssys(t) ≡ SI(t) − ln[PI(t)(t)]. (10)

The first part is the intrinsic entropy defined in (5) above whereas the second is the ‘‘stochastic entropy’’ [7] that can change
even while the system remains in the same meso-state. Consequently, a transition from I to J at time t entails the total
entropy change

∆IJStot(t) = βQIJ + ∆IJSsys(t) = βQIJ + SJ − SI + ln[PI (t)/PJ (t)] = ln[PI (t)KIJ/PJ (t)KJI ] (11)

where we have used (8) and (9).
This particular identification of a trajectory dependent total entropy change gains further justification through the

following implications and observations. First, in equilibrium, the entropy is constant along any trajectory since the various
contributions in (11) add up to zero for each transition. This would not be the case if we had not included the term called
stochastic entropy. Second, on the ensemble level, the probability for a transition from I to J at time t is PI (t)KIJ . Consequently,
the mean rate of entropy production at time t becomes

⟨Ṡtot(t)⟩ ≡

∑
IJ

PI (t)KIJ∆IJStot(t) =

∑
I<J

[PI (t)KIJ − PJ (t)KJI ] ln[PI (t)KIJ/PJ (t)KJI ] (12)

as introduced by Schnakenberg [8]. Here and throughout, the notation I < J means that each link (IJ) is counted only once.
Since (x − y) ln(x/y) ≥ 0 for all non-negative (x, y), we immediately get the second law

⟨Ṡtot(t)⟩ ≥ 0, (13)

independently of the initial condition at any time during the evolution. Note that without the term called above stochastic
entropy, it is easy to conceive a case for which the mean contribution from heat and intrinsic entropy becomes negative.

Third, as a refinement of the second law (13), using the path weight and the concept of ‘‘time-reversal’’ introduced below
in Section 4, one can easily prove the integral fluctuation theorem for total entropy production [7]

⟨exp[−∆Stot]⟩ = 1, (14)
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where the exponent corresponds to the total entropy change along a trajectory of arbitrary but fixed length T and the average
is over the ensemble that evolves from an arbitrary initial condition {P0

I }.
Fourth, this identification of entropy along a trajectory can be motivated from ‘‘time-reversal’’ by refining an argument

given in [9]. Suppose we postulate the following conditions for the entropy change along a trajectory associated with a
transition I → J at time t: (i) The contribution ∆StotIJ from this jump is the negative of a putative contribution of the
reversed jump taking place at the same time, ∆StotIJ (t) = −∆StotJI (t). (ii) The mean rate of total entropy production is non-
negative at any time t for any initial distribution {P0

I }. It is then straightforward to show that ∆IJStot(t) should be of the form
g(ln[PI (t)KIJ/PJ (t)KJI ]) with g(y) = −g(−y). If one imposes additionally that along a trajectory the total entropy production is
additive in system and bath, with the latter given by βQIJ , g(y) must be linear leading to (11) up to a multiplicative constant.

2.4. Time-dependently driven system

The framework discussed above can easily be adapted to the situation where one assumes that the system is driven
externally leading to a time-dependence of the microscopic Hamiltonian as H(ξ, λ) where λ(t) is a time-dependent control
parameter [10–12]. This time-dependence should be slow enough so that the micro-states within each meso-state can still
equilibrate. As a first consequence, free energy, internal energy and entropy of the meso-states as defined in (1) above (here
with H(ξ ) → H(ξ, λ)) become time-dependent, FI (λ), EI (λ), SI (λ). Second, thermodynamic consistency now requires that
the ratio of the transition rates (8) becomes time-dependent and is given by

KIJ (λ)/KJI (λ) = exp[−β∆IJF (λ)] (15)

with λ = λ(t).
In such a setting, along the trajectory I(t) of meso-states the rate of work applied to the system should be identified as

Ẇ (t) =

∑
ξ∈I(t)

exp[−β(H(ξ, λ) − FI (λ))](∂H/∂λ)λ̇ = ∂λFI (λ)|I(t)λ̇, (16)

which corresponds to the appropriately averaged change of the microscopic Hamiltonian. Here, and throughout along
trajectories, the dot denotes a total time-derivative (possibly delta-like due to jumps). Note that this expression differs
slightly from earlier identifications of work, ∂λEI (λ)|I(t)λ̇, for a stochastic dynamics [11,12] since we allow the meso-states to
have different intrinsic entropy [9,13].

The first law then allows us to identify the rate of dissipated heat as

Q̇ (t) ≡ Ẇ (t) − Ė(t) = Ẇ (t) −

∑
J

δ̇JI(t)EJ (λ) − ∂λEI (λ)|I(t)λ̇ = −

∑
J

δ̇JI(t)FJ (λ) −
d
dt

SI(t)(λ)/β. (17)

Since internal energy and intrinsic entropy of a meso-state can become time-dependent, these expressions show that, in
contrast to the case without driving, heat is now exchanged even if the system stays in the same meso-state.

The total entropy change along a trajectory becomes

Ṡtot(t) = βQ̇ (t) +
d
dt

[SI(t)(λ) − ln PI(t)(λ)]. (18)

The integral fluctuation theorem for entropy production (14) holds for arbitrary driving λ(t) [7] as does, consequently, the
second law on the ensemble level.

3. From a closed to an open system

3.1. Transition rates

So far, we have considered a closed system in contact with a heat bath. For systems involving transport (possibly against
an external force) and/or chemical reactions, it is advantageous to split this system further into (i) a core system of interest,
(ii) the surrounding solution, which will effectively act as a particle reservoir, and (iii) a part responsible for providing an
external mechanical force. The latter two parts will be associated with external driving and, possibly, with the extraction of
chemical or mechanical work.

As the core system, we consider paradigmatically an enzyme or a molecular motor (or several of them) that induce
enzymatic reactions, like the hydrolysis of ATP, between solutes of various species α in the solution, see Fig. 1. Consequently,
to each meso-state I of the full system there corresponds a state of the enzyme(s) iI including tightly bound solutes. The
mapping from I to iI is unique with many meso-states I leading to the same iI .

The change in free energy difference of the full system upon a transition from I to J can then be written as

∆IJF = FiJ − FiI −

∑
α

µα∆IJNα
+ fdIJ . (19)
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Fig. 1. Scheme of a molecular motor powered by the hydrolysis of an ATP shown here as ATP (red) → ADP (orange) + P (yellow) stepping along a filament
against a force represented by a weight. From the closed system’s perspective, the mesostates I, J, K contain the state of the enzyme iI,J,K , the total number
of molecules of each species, and the position of themotor relative to the fixed track, dI,J,K . In the open system’s perspective of just themotor, one can focus
on the states of the motor, here oversimplified as just two different ones iI = iK (tightly bound to the track) and iJ (with one ‘‘head’’ loose binding to ATP).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The first term is the free energy difference of the two enzyme configurations. If these two configurations contain a different
number of bound solutes,∆IJNα

̸= 0, the second termquantifies the free energy difference of the surrounding solutionwhich
we have characterized by a set of chemical potentials {µα

} that are essentially determined by the respective concentrations
of the various species.2 Likewise, if the transition I → J involves the motor stepping a distance dIJ ≡ dJ − dI against
the external force f , the last term is the corresponding free energy change. We assume that there are no transitions that
change the numbers of free solutes without a concomitant change of the enzyme configuration. This means that there are
no chemical reactions taking place in the solvent that are not enzymatically induced. We can then replace all reference to
the original meso-states IJ by considering the chemical potentials and the force to be given andwrite IJ → ij. The transitions
between the internal states of themotor or enzyme (including binding and release of solutes)must then obey the constraints

kij/kji = exp[−β(∆ijF −

∑
α

µα∆ijNα
+ fdij)]. (20)

The core system has thus become an open system connected to a heat bath with inverse temperature β and chemostats
with chemical potential {µα

} possibly subject to an external force f . The master equation (7) expressed for the probability
of just the core states reads

∂tpi(t) =

∑
j

[−kijpi(t) + kjipj(t)]. (21)

3.2. Thermodynamics along trajectories and in the ensemble

For this open system, the first law (9) along a transition i → j becomes

∆ijE + ∆ijEsol
+ W out

ij = −Qij. (22)

On the left hand side, the first term is the energy change of the enzyme, the second one the energy change in the surrounding
solution, formally the reservoirs, if the two core states contain a different number of bound solutes, and the third term the
extracted mechanical work, W out

ij ≡ fdij delivered against an external force f in a transition i → j. These three different
contributions towhatwould be the internal energy in a description as a closed systemmust be compensated by thedissipated
heat since the total energy, including that of the heat reservoir, must be conserved.

The entropy change (10) of the system, now consisting of core system and solution, that is associated with a transition
i → j, becomes

∆ijSsys(t) ≡ ∆ijS + ∆ijSsol + ln[pi(t)/pj(t)]. (23)

The first term contains the change in intrinsic entropy of the enzyme, the second one the entropy change of the surrounding
solution, the last one the stochastic entropy of the enzyme. Note that there is nomore stochastic entropy associatedwith the
state of the solution since the reservoir is fully characterized by the chemical potentials. Likewise, there is neither intrinsic
nor stochastic entropy associatedwith a putativemechanicalwork source.With (20), the total entropy change can bewritten
as

∆ijStot(t) = βQij + ∆ijSsys(t) = βQij + ∆ijS + ∆ijSsol + ln[pi(t)/pj(t)] = ln[pi(t)kij/pj(t)kji]. (24)

2 This identification can be made more formal as discussed in [9].
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On the ensemble level, the first and second law now become

⟨Ė(t)⟩ + ⟨Ėsol(t)⟩ + ⟨Ẇ out(t)⟩ = −⟨Q̇ (t)⟩ (25)

and

⟨Ṡtot(t)⟩ =

∑
ij

pi(t)kij∆ijStot(t) =

∑
i<j

[pi(t)kij − pj(t)kji] ln[pi(t)kij/pj(t)kji] ≥ 0, (26)

respectively. The integral fluctuation theorem (14) for total entropy production holds unmodified.

3.3. Non-equilibrium steady states (NESSs)

Themaster equation (21) with the thermodynamic consistency condition (20) will typically approach a unique stationary
state, {pi(t)} → {psi } as t → ∞ independent of the initial distribution {p0i } [5]. This stationary distribution can either
be calculated as the right eigenvector to the eigenvalue 0 of the corresponding matrix or obtained from a nice graphical
construction explained, e.g., in [14], which works particularly well for small networks.

In this non-equilibrium steady state, there will be net currents across some links,

jsij = psikij − psjkji ̸= 0, (27)

which distinguishes such a NESS fundamentally from genuine equilibrium. In a NESS, the mean rate of entropy production
(26) (denoted by σ from now on) is constant and given by

σ =

∑
i<j

[psikij − psjkji] ln[psikij/p
s
jkji] ≥ 0. (28)

3.4. Remark on strong coupling and fixed pressure

So far, we have implicitly assumed that the coupling between the system and the heat bath is weak. As shown in [15], a
thermodynamically consistent identification of trajectory dependent internal energy and entropy is, however, possible even
without this assumption, which, for biomolecular systems, will not necessarily hold. Likewise, for biochemical systems, the
assumption that the system (including the particle reservoirs) has a fixed volume should typically be replaced by assuming
a fixed pressure P . However, all definitions and identifications on the trajectory level from the above sections remain valid,
provided free energies differences Fj − Fi are replaced by Gibbs free energy differences Gj − Gi = Fj − Fi + P(Vj − Vi). The
exception is the first law (22), which now reads

Ej − Ei + ∆ijEsol
+ P(Vj − Vi) + W out

ij = −Qij, (29)

with the concomitant identification of heat. In order not to overburden the presentation, we stick to the weak coupling and
constant volume case in the following and refer to [16] for an instructive discussion of the latter and related aspects.

4. ‘‘Time-reversal’’, entropy production, and fluctuation relations

For this section, we first return to a general open system characterized by a set of states {i} with time-independent
transition rates (20).

4.1. Path weight for a trajectory

The probability p[i(t)|i0] to observe a trajectory i(t) starting at time t = 0 in i(0) = i0 and jumping at times tj from i−j to
i+j ending up after J jumps at time t = T in i(t) = iT is given by3

p[i(t)|i0] =

⎧⎨⎩
J∏

j=1

exp[−ri−j (tj − tj−1)]ki−j i+j

⎫⎬⎭ exp[−riT (T − tJ )] = exp

[
−

∑
i

riτi

]∏
ij

k
nij
ij (30)

where the last product runs over all links (in both directions). Here,

ri ≡

∑
j

kij (31)

3 This expression arises from applying repeatedly a straightforward generalization of the fact that if an event occurs with a rate k, the probability that
it occurs for the first time at time t is p(t) = exp(−kt)k given by a product of a waiting probability (‘‘nothing happens’’) and the rate.
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is the escape rate of state i. For J = 0, i.e., the trajectorywithout any jump, the term in curly brackets should be set to 1 and, in
the remainder, tJ to 0 leading to the weight exp[−ri0T ] for this trajectory. The second equality shows that the weight of any
trajectory that starts at i0 is fully determined by knowing the total time τi it spends in a state i and the number of transitions
nij from i to j. Of course, there are many different trajectories leading to the same set {τi}, {nij}, which are, in general, not
easily summed (or integrated) up.

4.2. Time-reversed trajectory and time-reversed process

An important concept for deriving fluctuation relations is the time-reversed or ‘‘backward’’ trajectory, or path, p̃ath ≡

ĩ(t) ≡ i(T − t), running from ĩ0 = iT to ĩ(T ) = i0. The ratio between the probability to observe this trajectory given its initial
value and the original (‘‘forward’’) one follows from (24) and (30) as

p[p̃ath|ĩ0]
p[path|i0]

≡
p[ĩ(t)|ĩ0]
p[i(t)|i0]

= exp[−

∑
ij

nij ln(kij/kji)] = exp[−(βQ [path] + ∆S[path])], (32)

since in the path weight the terms involving the escape rates are identical for both paths. This ratio is hence given by the
heat dissipated along the original path and the concomitant change in intrinsic entropy.

In a useful generalization, while always drawing the forward path from the original distribution {p0i }, the backward one
can be drawn from a, in general, fictitious ensemble {p̃0

i
} not necessarily given by {pi(T )}, where the latter would be the

final distribution along the forward process. Denoting this probability distribution for the backward paths by p̃[p̃ath], we
get easily

p̃[p̃ath]

p[path]
=

p̃[p̃ath|ĩ0 = iT ]p̃0iT
p[path|i0]p0i0

= exp[−(ln[p0i0/p̃
0
iT ] + βQ [path] + ∆S[path])]. (33)

Thismaster relation is a useful starting point for a unified derivation of several famous non-equilibrium relations as discussed
in the following.

4.3. Fluctuation theorem for entropy production in a non-equilibrium steady state (NESS)

For a NESS, we can draw the initial state for forward and backward path from the stationary distribution {psi }. Since the
first term in the exponent of (33) then becomes the change in stochastic entropy along the path, we get

p[p̃ath]

p[path]
= exp[−∆Stot[path]]. (34)

Hence, in a NESS the probability to observe the time-reversed trajectory compared to the original one is exponentially small
in the total entropy production along the original path. For a NESS, this relation quantifies an often somewhat imprecisely
insinuated relation between entropy production and the ‘‘breaking’’ of time-reversal symmetry.

This behavior under time-reversal implies a remarkable symmetry of the distribution p(∆Stot) of total entropy production
in a NESS, called the fluctuation theorem (FT), since

p(−∆Stot) =

∑
paths

p[path]δ(∆Stot[path] + ∆Stot)

=

∑
paths

p[p̃ath] exp[∆Stot[path]]δ(∆Stot[path] + ∆Stot)

=

∑
p̃aths

p[p̃ath] exp[−∆Stot[p̃ath]]δ(−∆Stot[p̃ath] + ∆Stot)

= exp[−∆Stot]p(∆Stot). (35)

Here, the first equality is the definition of the probability distribution, in the second we use the ratio (34), in the third
the anti-symmetry ∆Stot[path] = −∆Stot[p̃ath] and the fact that summing over the reversed paths is exhaustive. Due to
the inclusion of stochastic entropy, this relation holds as shown here even for a finite total time T [7]. Without this term,
it has been first derived for stochastic dynamics in the long-time limit in [17,18]. Earlier versions have been derived for
thermostatted and chaotic dynamics [19–21].

4.4. Time-dependent driven systems: Jarzynski and Crooks relation

For a closed system connected to a heat bath and driven by a time-dependent Hamiltonian H(ξ, λ) as introduced in
Section 2.4 above, the weight for a trajectory is slightly more involved than the ‘‘simple’’ expression (30). First, since the
escape rate becomes time-dependent, the respective terms in the exponent must be replaced by time-integrals. Second, the
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weight now depends on the times when the transitions have taken place rather than just on their numbers. Moreover, the
reversed process now also involves time-reversal of the control parameter according to λ̃(t) ≡ λ(T − t).

It is a simple exercise to show that the (inverse) ratio of probabilities of observing the original trajectory under the forward
driving and the probability of observing the time-reversed one under the time-reversed driving startingwith arbitrary initial
conditions is still given by (33) since the crucial time-dependences cancel. For this closed driven system, we should use (33)
with capital letters for meso-states and probabilities which was the notation in Section 2.

For a system that is driven from an initial parameter λ0 to a final λ1, by starting the original process in thermal equilibrium
and the backward one also in the respective thermal equilibrium, Pe

I (λ) = exp[−β(FI (λ) − F (λ))], the first term in the
exponent of (33) becomes

ln[p0i0/p̃
0
iT ] ↦→ ln[Pe

I0 (λ0)/Pe
IT (λT )] = β[−FI0 (λ0) + F (λ0) + FIT (λT ) − F (λT )] = β[∆F [path] − ∆F ], (36)

where F (λ) denotes the free energy at control parameter λ and ∆F ≡ F (λT ) − F (λ0) is the free energy difference of the
system at the two values of the control parameter. After integrating (16) and (17) along a trajectory, the sum of second and
third term in the exponent of (33) becomes

βQ [path] + ∆S[path] = β(W [path] − ∆F [path]). (37)

Putting everything together, one gets

p̃[p̃ath]/p[path] = exp[−β(W [path] − ∆F )]. (38)

By repeating essentially the same calculation as above for the derivation of the FT in a NESS, one gets the Crooks relation [12]

p̃(−W ) = p(W ) exp[−β(W − ∆F )]. (39)

Consequently, the free energy difference of two states can be determined by measuring the crossing point of the work
distributions using the original and the time-reversed protocol. For the beautiful first experimental application of this
relation with biomolecules, see [22].

Finally, and here certainly not following the original history, one gets the famous Jarzynski relation [10,11] by integrating
(39) overW as

⟨exp[−βW ]⟩ = exp[−β∆F ], (40)

whose manifold consequences are authoritatively reviewed in [1].
Note that we have derived the Jarzynski and the Crooks relation here using stochastic dynamics and meso-states that

possess intrinsic entropy. The original derivation of the former [10] used Hamiltonian dynamics for the closed system
and coupling and decoupling from a heat bath. Likewise, the original (and many present) derivations using stochastic
dynamics [11,12] ignore the intermediate consequences of intrinsic entropy, which are no longer explicitly visible at the
end anyway.

5. Asymmetric random walk as a simple thermodynamically consistent paradigm

5.1. Model

For a simple asymmetric random walk, we introduce a few concepts that will be explored for more general systems in
the following sections. This model can also serve as a simple description of a molecular motor running along a filament.
In each step of length d, the motor works against an external force f and is powered by hydrolysis of one molecule of ATP
that provides ∆µ of free energy in each forward reaction (ATP → ADP + Pi) and generates the same amount in a backward
reaction. Thermodynamic consistency (20) demands for the ratio of forward, k+, to backward, k−, rate

k+/k− = exp[β(∆µ − fd)] ≡ exp A, (41)

which defines the (dimensionless) affinity A.

5.2. Fluctuations

After a time t , the motor has made n+ steps in the forward and n− steps in the backward direction. Their probability
distribution obeys

∂tp(n+, n−, t) = −(k+ + k−)p(n+, n−, t) + k+p(n+ − 1, n−, t) + k−p(n+, n− − 1, t). (42)

Since the steps in the two directions correspond to two independent Poisson processes, this distribution function is simply

p(n+, n−, t) = [(k+t)n+/n+!][(k−t)n−/n−!] exp[−(k+ + k−)t], (43)
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as is easily verified a posteriori by insertion.4 Mean value and dispersion are given by

⟨n±⟩ = k±t and ⟨(n± − ⟨n±⟩)2⟩ = k±t. (44)

For the net number of steps in forward direction, n ≡ n+ − n−, one gets for mean and dispersion

⟨n⟩ = (k+ − k−)t and ⟨(n − ⟨n⟩)2⟩ = (k+ + k−)t ≡ 2Dt (45)

with the diffusion constant D ≡ (k+ + k−)/2.
The mean rate of entropy production (28) becomes

σ = (k+ − k−) ln(k+/k−) = jsA (46)

with the mean net current js ≡ k+ − k−.

For large t , the factorials in (43) can be approximated by Stirling’s formula leading to

p(n+, n−, t) ≈ exp{−t[ν+ ln(ν+/k+) − ν+ + k+ + ν− ln(ν−/k−) − ν− + k−]} ≡ exp[−tI(ν+, ν−)] (47)

where we have defined the fluctuating rates of directed transition

ν± ≡ n±/t (48)

with stationary mean value νs
±

= k± and identified a ‘‘rate’’ function I(ν+, ν−).

5.3. Thermodynamic uncertainty relation

The expressions just given allow for another interpretation in terms of the precision of a biomolecular process. After a
time t , the motor has ‘‘produced’’ a number of steps n. The uncertainty of this process is defined as

ϵ2
≡ ⟨(n − ⟨n⟩)2⟩/⟨n⟩2 = 2D/js2t, (49)

which is ameasure of its precision. During this time t , on average, running this process has generated C ≡ σ t entropy, which
is the (dimensionless) free energy that is not recovered as mechanical work, i.e., the net thermodynamic cost of the process.
By combining (46) and (49) one gets

Cϵ2
= 2σD/js2 = A coth(A/2) ≥ 2. (50)

The product of loss and precision is thus given by a function of the affinity. Independently of the value of this affinity, this
product is bounded by, 2 which has been dubbed the ’’thermodynamic uncertainty relation’’ [23]. The longer the motor runs
the higher the precision, which is a consequence of the diffusive behavior. On the other hand, the cost increases linearly
in time which implies that the product Cϵ2 is time-independent. A higher precision inevitably comes at a higher cost. The
inequality is saturated for vanishing affinity, i.e., close to equilibrium, and also close to the stall force, f ≃ ∆µ/d. The a
priori surprising fact is that the thermodynamic uncertainty relation holds in a much more general formulation for any
thermodynamically consistent Markov process as we will see below.

6. Fluctuations in a non-equilibrium steady state (NESS) in the long-time limit

From now on, we focus on the fluctuations in a NESS in the long-time limit for which general results can be derived based
on techniques from large-deviation theory as reviewed in [24–26] and by Touchette in this volume.

6.1. Empirical density, current and traffic

For a Markov process on an arbitrary set of states, we define two classes of observables. First, there is the (residence
or sojourn) time τi a trajectory spends in the state i with the mean ⟨τi⟩ = psi t . It will become convenient to consider the
empirical density

pi ≡ τi/t, (51)

whose mean is the stationary distribution ⟨pi⟩ = psi
Second, from the number of jumps nij, we get the fluctuating, or empirical, currents and traffic, defined as

jij ≡ (nij − nji)/t and tij ≡ (nij + nji)/t, (52)

4 Note that for this simple asymmetric randomwalk the summation of (30) over all transition times is obviously possible leading to the additional factor
tn+n−/(n+!n−!) when (43) is derived from (30).
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with mean values

jsij = psikij − psjkji and tsij = psikij + psjkji, (53)

respectively. For an arbitrary current

jα ≡

∑
ij

nijdα
ij/t with mean jα s

=

∑
ij

psikijd
α
ij (54)

the generalized distances dα
ij = −dα

ji determine howmuch each transition i → j contributes. A prominent current is the one
of total entropy production jσ for which dσ

ij ≡ ln[psikij/p
s
jkji], whose mean is given by the entropy production rate σ (28).

6.2. Level 2.5 rate function and contractions

There is an elegant approach to determine the probability of large fluctuations, i.e., large deviations from the average
behavior, in the long-time limit. Let p({τi}, {nij}, t) be the probability (density) of observing the residence times {τi} and {nij}

transitions from i to j, after a time t . This probability can be calculated by introducing an auxiliary set of rates on the same
network of states for which these values would correspond to the mean behavior. Specifically, for the rates k̂ij ≡ nij/τi the
stationary distribution becomes p̂i = τi/t and the mean number of transitions is n̂ij = p̂ik̂ijt = nij. We denote the escape
rates for these modified rates as r̂i.

Using this auxiliary set of rates, the ratio of probabilities of observing the fluctuation {τi}, {nij} in the original network
and in the one with the auxiliary set of rates follows from the path integral expression (30) as [27]

p({τi}, {nij}, t|{kij}, i0)

p({τi}, {nij}, t|{k̂ij}, i0)
= exp

⎡⎣−

∑
i

τi(ri − r̂i) +

∑
ij

nij ln(kij/k̂ij)

⎤⎦ , (55)

where we introduce a finally irrelevant common initial state i0.5 Bymultiplying with the denominator, summing over initial
states and normalizing with the typical fluctuation of the original network, the ratio of probabilities of observing the (large)
fluctuation and a typical one for the original set of rates now follows as

p({τi}, {nij}, t|{kij})
p({psi t}, {p

s
ikijt}, t|{kij})

= exp

⎡⎣−

∑
i

τi(ri − r̂i) +

∑
ij

nij ln(kij/k̂ij)

⎤⎦ ×

∑
i0
p({p̂it}, {p̂ik̂ijt}, t|{k̂ij}, i0)psi0∑

i0
p({psi t}, {p

s
ikijt}, t|{kij}, i0)p

s
i0

. (56)

The last factor involves the ratio of probabilities of observing the typical behavior for the respective set of ratesweightedwith
the probability of the initial state in the original set of rates. For large t , the latter dependence vanishes and the ratio becomes
a time-independent function of both sets of rates in leading order. Consequently, in the long-time limit, the logarithmic ratio
of these probabilities can be written in the form

− lim
t→∞

(1/t) ln
(

p({τi}, {nij}, t|{kij})
p({psi t}, {p

s
ikijt}, t|{kij})

)
= I({τi/t}, {nij/t}) (57)

with the rate function

I({τi/t}, {nij/t}) =

∑
i

(τi/t)(ri − r̂i) +

∑
ij

(nij/t) ln(k̂ij/kij). (58)

The auxiliary rates have now served their purpose and we can focus on fluctuating quantities for the original set of rates.
Specifically, we consider the empirical densities, currents and traffics as defined in (51), (52). Expressed in these quantities,
the rate function (58) reads

I({pi}, {jij}, {tij}) =

∑
ij

{
jij + tij

2

[
ln

jij + tij
2pikij

− 1
]

+ pikij

}
. (59)

This rate function is a very general one, called ‘‘level 2.5’’. It is crucial to note that probability conservation provides a set of
constraints

∑
jjij = 0 for all states {i}, which will be assumed implicitly in the following.

Often one is interested in the corresponding rate function of a subset of these quantities, or a set of certain functions
of them. Such a rate function can be obtained from the full one through ‘‘contraction’’. Specifically, the rate function for
f = f ({pi}, {jij}, {tij}) is obtained through

I(f ) = min
{pi},{jij},{tij}

|f ({pi},{jij},{tij})=f

I({pi}, {jij}, {tij}) (60)

5 Here and in the following, the advantage of including the denominators on the left hand sides is that one avoids introducing the Radon–Nikodym
derivative for measures and still deals with dimensionless quantities when later taking logarithms.
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since for t → ∞ one can focus on themost likely fluctuation for given constraints. In general, this constrainedminimization
cannot be performed analytically. An upper bound on the rate function for f , however, can be obtained by inserting a
variational trial solution.

An important contraction is the one eliminating the traffic, which can be performed analytically. Keeping in mind the
symmetry properties of tij and jij, one finds for the optimal value

t∗ij
2

= j2ij + 4pipjkijkji (61)

and, hence, for the rate function [27]

I({pi}, {jij}) = I({pi}, {jij}, {t∗ij }) =

∑
i<j

⎧⎨⎩jij ln
jij +

√
j2ij + 4pipjkijkji

2pikij
−

√
j2ij + 4pipjkijkji + pikij + pjkji

⎫⎬⎭ . (62)

In this form, the rate function inherits the FT-symmetry (34)

I({pi}, {jij}) − I({pi}, {−jij}) = −

∑
i<j

jij ln[pikij/pjkji] ≡ −σ ({jij}), (63)

with its time-antisymmetric part given by the corresponding entropy production.

6.3. A universal bound on current fluctuations

A further contraction of (62) to get rid of the empirical densities cannot be performed analytically. One can, however, get
an upper bound on the rate function for the currents by replacing (the unknown optimal) pi by (the stationary) psi ,

I({jij}) ≤ I({psi }, {jij}) =

∑
i<j

⎧⎨⎩jij ln
jij +

√
j2ij + tsij

2
− jsij

2

jsij + tsij
−

√
j2ij + tsij

2
− jsij

2
+ tsij

⎫⎬⎭ . (64)

This upper bound still obeys the FT-type symmetry

I({psi }, {jij}) − I({psi }, {−jij}) = −

∑
i<j

(σ s
ij/j

s
ij)jij = −σ ({jij}), (65)

where

σ s
ij ≡ jsij ln[psikij/p

s
jkji] = jsij ln

tsij + jsij
tsij − jsij

(66)

is the mean entropy production rate in the link (ij). Remarkably, a quadratic function with the sameminimum and the same
symmetry provides a global upper bound on the right hand side of (64) leading to [28]

I({jij}) ≤

∑
i<j

σ s
ij(jij − jsij)

2

4jsij
2 . (67)

This bound is tight at jij = ±jsij and has, in general, a larger curvature in the minimum than (64). Thus the fluctuations of the
current through any link have been shown to be larger than a Gaussian involving the local entropy production.

Finally, to get anupper boundon the rate function for an arbitrary current jα withmeanvalue jsα , we can choose jij = jsijjα/jsα
leading to

I(jα) ≤
σ (jα − jα s)2

4jα s2
. (68)

Hence, the rate function for any current is bounded by a simple quadratic function whose curvature is determined by the
dissipation rate σ defined in (28) as first conjectured in [29] and proven along the lines shown here in [28], see also [30].

6.4. Bounds on the rate function for empirical densities and traffic

By applying a similar reasoning, Garrahan has derived related bounds for non-negative time-symmetric quantities like
empirical densities and traffic [31]. Rather than entropy production σ , the overall activity or traffic

∑
ijp

s
ikij then plays a

crucial role.
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Fig. 2. Randomness parameter r ≡ 2D/vd for kinesin as experimentally measured in [36] as a function of ATP-concentration (for a fixed force f = 3.59 pN,
left panel) and of load force (for fixed cATP = 2 mM, right panel). The colored area shows the corresponding theoretical bound (72). At, e.g., 2 pN load force
(right panel), these experimental data imply that this motor thus converts ATP to mechanical power with an efficiency of at most 45% for these conditions.

7. Thermodynamic uncertainty relation: The cost of precision and thermodynamic inference

7.1. Formulation

In significantly larger generality than for the asymmetric randomwalk discussed above in Section 5.1, the thermodynamic
uncertainty relation provides a universal bound on the precision of any biomolecular process. In a NESS, with each stationary
current jsα =

∑
i<jd

α
ij j

s
ij, see (54), there is associated a fluctuating ‘‘output’’Xα =

∑
ijnijdα

ij withmean ⟨Xα⟩ = jsαt . Fromvariance
and mean of this output in the long-time limit, we define its precision

ϵ2
α ≡ ⟨(Xα − jsαt)

2
⟩/(jsαt)

2
→ 2Dα/(jsα

2t) for large t, (69)

where Dα is the dispersion of the process. On the other hand running this process for a time t generates on average C = σ t
entropy, which is the thermodynamic cost associated with it. The thermodynamic uncertainty relation

lim
t→∞

Cϵ2
α = 2σDα/jsα

2
≥ 2 (70)

holds for any Markov process. Thus, precision in the outcome of any such process requires a minimum cost.
This relation was formulated as a conjecture in [23] based on analytical results in limiting cases and on extensive

numerics for networks with random rates. With the bound (68) on the rate function, the proof follows trivially using
Dα = 1/[2I ′′(jsα)] [28]. It holds even for a finite time t with ϵα(t) [32,33] and, in a variant, for discrete time [34].

7.2. Thermodynamic inference for a molecular motor

The thermodynamic uncertainty relation can be used to infer physical properties of biomolecular systems from the
observation of fluctuations even if the underlying biochemical or enzymatic network is not (fully) known as we will now
illustrate for a molecular motor running against a constant force f at a mean velocity v with dispersion D.

Any such motor delivers a mean output power Pout
= f v =

∑
i<jfj

s
ijdij, where dij denotes the distance the motor steps in

a transition i → j along its track against the force. The corresponding fluctuating current jout is a genuine current to which
the uncertainty relationwill be applied below. Likewise, this motor is powered by the consumption of ATP leading to amean
input power P in that is typically not directly accessible.

In a NESS, the entropy production rate, i.e., the rate of wasted free energy, can then be written as

σ = β(P in
− Pout). (71)

The thermodynamic efficiency of such amotor η ≡ Pout/P in fulfills a universal bound set by the thermodynamic uncertainty
relation (70) applied to the output current that can be obtained through a simple algebraic transformations as [35]

η =
Pout

Pout + σ/β
=

vf
vf + σ/β

≤
1

1 + v/(Df β)
. (72)

The intriguing aspect of this bound arises from the fact that v,D and f are experimentally accessible quantities. No
knowledge of the underlying network, i.e., of the specific reaction scheme is necessary for applying this bound. There could
be idle cycles where ATP is used without advancing the motor. It is not even necessary to know the free energy difference
∆µ associatedwith the ATP hydrolysis. In Fig. 2, this bound is evaluatedwith experimental data for a kinesinmotor reported
in [36].
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Fig. 3. A network with two independent cycles [(1,5,4) and (1,2,3,4)] (left panel). Rate function I(jσ ) for the entropy current, its quadratic bound (68) and
the corresponding topology- and affinity-dependent bound (76) (right panel). Transition rates: k15 = k52 = k21 = k34 = e4 , k12 = k25 = k51 = k14 =

k43 = k32 = e−4 , k23 = e10 , k41 = e6 , leading to the cycle affinities A1 = A2 = 24 and hence (A/n)∗ = 24/4 = 6.

8. Topology- and affinity-dependent bounds for thermodynamic inference

8.1. Cycles and their affinities

Cycles and the currents running through them are even better suited for relating statistical with thermodynamic
properties than the currents through individual links [8]. A cycle Ca is a directed, self-avoiding, closed path of length Na
on the set of states, see Fig. 3. Its adjacency matrix χ a

ij has element 1 if the cycle passes the link (ij) in forward direction, -1 if
it passes this link in backward direction, and 0 if the link is not part of this cycle. For a complete set of cycles, all stationary
currents can be expressed as a linear combination of cycle currents

jsij =

∑
a

χ a
ij j

s
a. (73)

In a NESS, after completing any cycle, the system has returned to its original state and hence all physical changes
associated with the cycle have taken place in the surrounding reservoirs. The mean entropy production (28) is time-
independent and becomes a linear combination of cycle currents

σ = jsσ =

∑
i<j

jsij ln[piskij/pjskji] =

∑
i<j

jsij ln[kij/kji] =

∑
a

jsaAa (74)

where the cycle affinity

Aa =

∑
i<j

χ a
ij ln[kij/kji] =

∑
I

nγ
a A

γ (75)

is determined by the ratio of forward and backward rates along a cycle. These cycle affinities are (integer) linear combinations
of a set of physical affinities Aγ that are imposed by the external conditions. Examples for such physical affinities are βfd,
where f is a force and d a repeat distance on a filament or β∆µ of an ATP hydrolysis. In the example of the ARW from Section
5.1, there is the equivalent of only one cycle with one cycle affinity A = Ain

− Aout
= β(∆µ − fd).

8.2. Uniform, unicyclic asymmetric random walk

For a unicyclic network ofN stateswith uniform rates k+, k−, hence affinity A = N ln(k+/k−), andmean current js = σ/A,
the rate function for the probability current can be obtained from (47) through contraction or from (62) using the obvious
symmetry p∗

i = 1/N . In any case, it leads to [18]

I(j) = I(ξ js) = (N/A)σ

[
ξ ln

aξ +

√
a2ξ 2 + 1

a +
√
a2 + 1

−

√
ξ 2 + 1/a2 +

√
1 + 1/a2

]
, (76)

with the scaled current ξ ≡ j/js and a ≡ sinh(A/2N).

8.3. Nonuniform unicyclic and multicyclic networks

For a unicyclic network with non-uniform rates with cycle affinity A =
∑

i<j ln[kij/kji], one can prove that (76) provides
an upper bound on the rate function for the probability current [37]. The physical reason is that at fixed affinity and number
of states uniform rates lead to the smallest fluctuations.
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An expansion of (76) around the minimum then implies for the dispersion coefficient the inequality

D =
1

2I ′′(js)
≥

A
2N

js2

σ
coth(A/2N) [= (js/2N) coth(A/2N)], (77)

which leads for cost and precision to the improved inequality

Cϵ2
= 2σD/js2 ≥ (A/N) coth(A/2N) ≥ max(2, A/N). (78)

The first inequality is saturated for uniform rates, the second one close to equilibrium (A ≪ N) for the first choice, and far
from it for the second one.

An a priori surprising result is that for an arbitrary current ja in a multicyclic network the rate function I(ja), the
diffusion constant Da and the product Cϵ2

a in the refined uncertainty relation are still bounded by the expressions (76), (77),
unbracketed) and ((78), respectively, if one replaces (A/N) by (A/N)∗ which is the smallest strictly positive value of (Aa/Na)
among all cycles, for an example, see Fig. 3. This proof relies on an identification of a suitable choice of fundamental currents
and is somewhat technical [37]. The physics behind it reflects the fact that the cyclewith the smallest Aa/Na potentially leads
to the smallest fluctuations and thus provides a lower bound on the true fluctuations.

8.4. Example: Cost and precision of a Brownian clock

For an example illustrating these concepts, we consider a simple model for a thermodynamically consistent clock [38].
It consists of a unicyclic network of N states driven by an affinity A leading to a mean current js. A unit of measured time is
counted whenever the transition from N to 1 occurs. For consistency, we have to allow that this transition may occasionally
happen in the reversed direction, inwhich case time has ‘‘advanced’’ a negative unit. After real time t , the clock hasmeasured
X(t) units with mean jst and precision as given by (69). The implications of the bound (78) for the design, precision and cost
of such a Brownian clock can best be illustrated by comparing two clocks using familiar notions [38]. Suppose we want to
measure reliably, say with a precision ϵ = 0.01, a time of one hour with either a slow clock that takes one minute for a
revolution or a fast clock that takes only one second implying ⟨X⟩ = 60 and 3600 for slow and fast, respectively. With the cost
C = A⟨X⟩, the second inequality in (78) implies, first, a structural constraint on the minimal number of states making up the
cycle, which is Nmin = 167 and 3 for the slow and the fast clock, respectively. The slow clock has to have sufficiently many
states within its cycle to achieve the required precision. Second, for a given design, i.e., for a given number of states N in
the cycle, the affinity driving the clock has to be at least Amin = 2Narccoth(⟨X⟩Nϵ2) ≥ 2/(⟨X⟩ϵ2). For the slow clock, we get
Amin ≃ 333 and for the fast one, Amin ≃ 5.55. The overall entropy production associated with measuring one hour with this
precision is bounded by 20000 for both types. From an energetic point of view, both designs are equivalent. In a biochemical
network the free energy is often provided by ATP hydrolysis, which under physiological conditions liberates approximately
20 kBT of free energy. The universal result Cϵ2

≥ 2 then implies that for an uncertainty of 0.01 the Brownian clock requires
the consumption of at least 1000 ATP molecules.

The fact that the bound (78) holds even for the ‘‘best’’ cycle of amulticyclic network implies that amore intricate ‘‘wiring’’
of the network cannot improve the inevitable trade-off between precision and cost. It has been shown, however, that driving
such a clock not by a constant affinity but rather by amodulation of energies and barriers, i.e. of the transition rates between
the states in a periodic fashion, a given precision requires no minimal cost [38], see also [39]. On the other hand, if one
includes the thermodynamic cost of providing such a time-periodic variation of parameters, one is effectively back at the
above inequality [40].

8.5. Thermodynamic inference: Fano factor in enzyme kinetics

These topology- and affinity-dependent bounds can be used as a diagnostic tool to infer properties of an unknown
underlying biochemical network if the fluctuations of a current can be measured and if some information on the driving
affinity is known. As an example consider an enzyme E that transforms a substrate S into a product P using hydrolysis of one
ATP molecule which liberates ∆µ of free energy. Suppose in a single-molecule experiment one measures that after a long
time t on average ⟨X⟩ = jst product molecules have been generated with a variance ⟨(X − jst)2⟩ = 2Dt which defines the
dispersion of this current. With σ = js∆µ, the bound (77) implies a bound on the Fano factor [41]

F ≡ 2D/js ≥ (n/N)∗ coth[(∆µ/2)(n/N)∗], (79)

where (n/N)∗ is the smallest value for the ratio between number of products n and number of states N among all cycles.
For a simple Michaelis–Menten scheme with only three states (E → ES →EP →E, i.e., N = 3, n = 1) the bound reads
F ≥ [coth(∆µ/6)]/3. Any measurement that leads to a smaller value for F implies either that (at least) a fourth state is
involved or that the enzyme is able to bind two substrates [41], see Fig. 4.
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Fig. 4. Left panel: Simple Michaelis–Menten scheme for an enzyme E binding a substrate S, transforming it into a product P and releasing it. Middle panel:
Network for an enzyme that can bind two substrates and transform them into products. Right panel: Lower bound of the Fano factor (79) as a function of
∆µ for various values for N/n = 3 and 5, the latter being relevant for the 5-state cycle ES→ESS→ESP→EPP→EP→ES. The colored region in between is
allowed for the scheme in the middle and excluded for the simple scheme from the left.

9. Concluding remark

The basic principles of stochastic thermodynamics as recalled here are by now firmly established. Whenever a driven
system is connected to a heat bath and a set of slow variables can be identifiedwhose dynamics iswell-separated from that of
the unobserved fast degrees of freedom, thermodynamic quantities likework, heat and entropy production can be identified.
Their distributions obey universal fluctuation relations that have been measured computationally and experimentally in
many systems. As the second part of these lectures is supposed to demonstrate, we are arguably now entering a second
stagewhere inequalities like the thermodynamic uncertainty relation, which have been derived by following the consistency
conditions imposed by stochastic thermodynamics, are used to infer hidden properties of a system, a strategy that could be
called ‘‘thermodynamic inference’’ [42]. Quite likely, many exciting insights into the operation of small machines will be
unraveled as these concepts are combined with single molecule experiments. These insights will not be confined to the
isothermal realm of biomolecular systems. Analogous progress has indeed been made for heat engines operating between
baths of two different temperatures as the identification of a universal trade-off between power, efficiency and constancy
of operation paradigmatically shows [43].
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