

SPERIMENTAZIONI DI FISICA 1 – LT FISICA

PRIMA PARTE - STATISTICA

NOME E COGNOME:	
MATRICOLA:	

ESERCIZIO 1 (OBBLIGATORIO)

Si stimi il parametro A pari a 1/10 volte il valore della dispersione massima delle cifre costituenti il proprio numero di matricola, A espresso con una sola cifra significativa. Riportare tale valore anche nel campo di testo moodle. Motivare la risposta.

ESERCIZIO 2

Sia f(x) densità di probabilità della variabile casuale reale x definita come segue:

$$f(x) = \{ y = ax + q \quad per \ x \in [-1 + A; 0] \ y = bx + q \quad per \ x \in [0; 1 + A] \ 0 \ altrove$$

con a, b costanti da determinarsi e A il parametro ottenuto dall'Esercizio 1 della presente prova. Definire e stimare la speranza matematica E(x) la funzione di distribuzione F(x) e la probabilità che x appartenga a $[0; \frac{1}{4}]$ e la varianza var(x). Motivare le risposte nell'elaborato.

ESERCIZIO 3

Siano x,y,z variabili casuale reale con z=f(x,y)=3e^{-x}·[1+A+sin(x+y)], sostituendo ad A il parametro ottenuto dall'Esercizio 1 della presente prova. Si assumano x e y variabili dipendenti con cov(x,y)= - 0.01. Si assuma che siano state effettuate N=100 misure ripetute della grandezza x e M=90 misure ripetute della grandezza y ottenendo i seguenti valori medi: $\bar{x} = \bar{y} = \pi/4$ con deviazione standard della media espressa in relativo pari a 0.5%.

Stimare la deviazione standard di z in un generico punto $z_0=f(x_0,y_0)$ con x_0 e y_0 entro una deviazione standard dal rispettivo valor vero. Stimare inoltre la sovrastima/sottostima che si otterrebbe se si calcolasse la deviazione standard trascurando il termine di covarianza. Motivare le risposte.

ESERCIZIO 4

Si consideri il seguente campione di misure ripetute della grandezza fisica X in cui f_X è la frequenza assoluta, sostituendo ad A la cifra ottenuta come risultato dell'Esercizio 1 della presente prova.

Definire e stimare rispettivamente:

X(cm)	f _X		
A+0.00	1		
A+0.01	7		
A+0.02	17		
A+0.03	28		
A+0.04	31		
A+0.05	22		
A+0.06	15		
A+0.07	3		
Tab.1			

- a) la numerosità del campione;
- b) la deviazione standard della singola misura σ;
- c) la moda e la mediana;
- d) il valor medio e relativa incertezza;
- e) la compatibilità di tale valor medio con il valore di riferimento $x_{REF} = (A+0.04 \pm 0.01)cm$;
- f) l'intervallo di confidenza I centrato sul valor medio e di ampiezza 3σ;
- g) l'espressione analitica della curva normale (Gauss) che meglio rappresenta i dati sperimentali di cui al campione di Tab.1;
- h) indicare se è necessario effettuare la reiezione di dati qualora si assuma il criterio del 3σ. Motivare le risposte nell'elaborato.

DIPARTIMENTO DI FISICA E ASTRONOMIA

Un gruppo di 112 persone prenota un volo Venezia-Francoforte presso le compagnie aeree Lufthansa, Eurowings e Airfrance. Si supponga che 62 di essi volino con Lufthansa e 25 con Eurowings: sapendo che mediamente nessun volo di Lufthansa presenta un ritardo nell'atterraggio, 4 voli su 15 di Eurowings è in ritardo e 6 voli su 82 di Airfrance non atterrano in tempo. Stimare:

- a) la probabilità che il volo di un passeggero scelto a caso fra i 112 sia in ritardo;
- b) la probabilità che un passeggero scelto a caso nel gruppo abbia volato con Eurowings, sapendo che il suo volo è in ritardo nell'atterraggio;
- c) la percentuale di persone che non atterrerà in tempo.