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Abstract

Species sensitivity distributions (SSDs) are increasingly incorporated into ecological risk assessment procedures. Although these

new techniques offer a more transparent approach to risk assessment they demand more and superior quality data. Issues of data

quantity and quality are especially important for marine datasets that tend to be smaller (and have fewer standard test methods)

when compared with freshwater data. An additional source of uncertainty when using SSDs is appropriate selection from the range

of methods used in their construction. We show through examples the influence of data quantity, data quality, and choice of model.

We then show how regulatory decisions may be affected by these factors.
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1. Introduction

Species sensitivity distributions (SSDs) are increas-
ingly used in ecological risk assessment procedures (e.g.,
Solomon et al., 1996; Steen et al., 1999) and formulation
of water quality guidelines (ANZECC and ARMCANZ,
2000). This is because, when used correctly, they can
introduce greater statistical confidence into risk assess-
ment processes when compared to traditional quotient
and assessment factor approaches. In Europe, risk as-
sessment methods for new and existing chemicals are
described in the technical guidance document (TGD)
developed by the European Commission, the European
Union member states and the European Chemical In-
dustries (Crane et al., 2001). The TGD is currently under
revision, and the inclusion of statistical extrapolation
methods using SSDs is likely to be adopted.
The aim of a SSD analysis is to determine a chemical

concentration protective of most species in the envi-
ronment. Usually a point estimate known as the HC5
(hazardous concentration for 5% of species), or the 95%
protection level (van Straalen and van Rijn, 1998) is
calculated. This is a concentration that will exceed no

more than 5% of species effects levels, usually based on
chronic no observed effect concentrations (NOECs). It
has been proposed that the lower confidence interval of
the HC5, possibly with an additional safety factor of up
to 10, be used to derive predicted no effect concentra-
tions (PNECs) for risk assessment (Feibicke and Ahlers,
2001). SSDs are constructed using a cumulative plot of
logarithmically transformed NOECs against rank as-
signed percentiles for each value to which a statistical
distribution is fitted. In Europe and the United States
this is typically a log-normal (Wagner and Lokke, 1991)
or log-logistic (Aldenberg and Slob, 1993) model, whilst
in Australia and New Zealand the Burr Type III method
is used (Shao, 2000). From each of these models the
HC5 endpoint is extrapolated.
To date most published ecological risk assessments

using SSDs have centred on freshwater environments for
which there is an abundance of good quality data, pre-
dominantly for pesticides (Solomon et al., 1996; Giesy
et al., 1999; Campbell et al., 2000). There are generally
fewer data available for saltwater species than for
freshwater species, especially for organic compounds
(e.g., Solbe et al., 1993), which presents fundamental
problems when attempting to apply the SSD approach
to ecological risk assessments for substances in marine
environments (Leung et al., 2001). This raises questions
about how much data is enough, what effect data quality
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has on the overall result, and whether different methods
are more suitable for analysing smaller datasets.

2. Data quantity and quality

The usefulness of SSD analyses is likely to depend, at
least in part, upon the quality of input data. Inclusion of
poor data will compound the problems of interpreting
‘natural’ variance, and will probably generate bad pre-
dictions. But how bad? SSDs are effectively statistical
extrapolation techniques that require a minimum, al-
though unknown, amount of data in order to produce
reliable estimates uponwhich regulatory decisionsmay be
based. We enlarged the ECETOC (European Centre for
Ecotoxicology and Toxicology of Chemicals) database
(Solbe et al., 1998) and adapted it to include a data quality
criteria classification. Data were quality assessed accord-
ing to criteria in Box 1. The SSDs were then constructed
using acute data to examine the effects of dataset size.

Box 1. Data quality criteria used to assess data included
in the ECETOC database.

The effect of data quantity was assessed using a re-
sampling approach in which resamples were drawn
randomly (from a uniform distribution) without re-
placement, in sizes ranging from four to the original
sample size of n. For each resample, 100 replicates were
generated and curves were fitted using both the log-
logistic and log-normal distributions. Regression pa-
rameters, their mean values and associated standard
deviations were recorded at each resample size. Com-
parable results were found for both model descriptions.
Here, for conciseness, results for the log-logistic distri-
butions are given. Plots of log-logistic regression pa-
rameters, a values (location), b values (scatter) and
coefficients of determination (r2) were used to establish
the minimum number of data at which stabilisation of
the respective parameter value occurred. Stabilisation is

QA1 Study of highest reliability
Studies assigned a reliability score of 1 meet all of the
following criteria:

• Published or well-documented procedures cited
) If a ‘standard’ method is given, it should be assumed
to have been followed unless indicated to the contrary.
When a ‘non-standard’ method is cited, the reference
should be obtained for assessment

• Control performance (including solvent control) re-
ported and satisfactory

• Measured concentrations (at least t0 and tend). End-
points calculated in terms of geometric mean of the
measured concentrations (or nominal if measured
concentrations are within 20% of nominal)

QA2 (a) Study of moderate reliability
Studies assigned a score of 2 (a) are characterised by
features such as:

• Only the concentrations of stock solutions were mea-
sured (but on the basis of physical and chemical
properties of test substance no loss would be ex-
pected)

• Description of the methodology incomplete
• Control mortality not reported
• No solvent control when solvent used

QA2 (b) Study of moderate reliability
Studies assigned a score of 2 (b) are characterised by
features such as:

• Toxicant concentrations were not measured (but on
basis of physical and chemical properties of test
substance no loss would be expected)

• Description of the methodology incomplete
• Control mortality not reported
• No solvent control when solvent used

QA3 Study of limited reliability
Studies assigned a score of 3 have limited reliability
but are still included in the database. They are
characterised by features such as:

• Method section shows weaknesses in experimental
procedures

• Unacceptable control (and/or for solvent) mortality
• As a rule of thumb the following should be followed
for assessing acceptability of control mortality:
) egg or early life stage tests––accept control mortality
6 40%
) >10 organisms/concentration: accept 6 10% con-
trol mortality (according to OECD criteria)

• 6 10 organisms (minimum 7/concentration): accept 1
death (according to OECD criteria). Alternatively, test
classed unacceptable for any other reason on the
basis of scientific judgement

QA4 Study unreliable
Studies assigned a score of 4 do not meet criteria for
reliability and were not included in the database. They
may be characterised by features such as:

• Toxicant concentration not measured and on the
basis of physical and chemical properties of test sub-
stances losses would be expected

• Endpoint extrapolated beyond range of concentra-
tions tested

• Endpoint greater than the limit of solubility
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achieved where parameter standard deviations converge
with increasing sample size. Fig. 1 shows the outcomes
for acute data for copper. These plots show that sta-
bilisation occurred at a sample size of 10–15 data points.
Stabilisation profiles of pentacholorophenol were also
achieved using at least 10 data points. Below 10 data
points the parameter values varied widely, and would
not yield a reliable estimate of a particular endpoint (e.g.
the HC5). At least for these example datasets, 10–15
randomly selected data points were sufficient to obtain
an effective estimation of the sub-population of data
available to us (which we assume is representative of the
total population). A minimum of data for 10 species sug-
gested here is also in good agreement with other au-
thors, for aquatic risk assessment (Solomon et al., 1996)
and soil quality objectives (Vega et al., 1999). Although
smaller datasets (n < 10) are often used (Aldenberg and
Slob, 1993; Hakanson, 1995) this would be at the point
of greatest variability in model output and may well
produce unreliable estimates for specified effect levels.
The influence of data quality on resulting HC5 values

was investigated by removing certain qualities of data
from analyses. Removal of data in blocks, according to
quality, has the confounding effect of removing partic-

ular species. This is because certain types of toxicity
experiments, such as the Daphnia magna 48-h LC50 test,
following standard protocols nearly always fell into
quality category 1 while, in contrast, tests with non-
standard test method species tend to fall into lower
quality categories. In order to account for this, we
generated expected HC5 values based on the number of
species present. This was achieved by adapting a method
described by Vega et al. (1999) whereby SSD outputs
(e.g., HC5) were recalculated with a progressive increase
in the number of data included in each analysis.
Randomised removal of data enabled a range of values
for the new number of species (after removal due to
quality) to be calculated. Employing this method, we
examined the effect of data quality on the SSD outputs
for acute freshwater copper data, and showed that there
was a two-fold change in the HC5 value between using
data of all qualities to only using QA 1 (the best qual-
ity), yielding HC5 values of 0.0068 and 0.011 mg/l
respectively (Table 1). Although the difference is of
marginal significance, it is not likely to be a func-
tion of the number of species, as the expected HC5 is
0.007 mg/l. Consequently we may conclude that more
stringent criteria for data inclusion would lead to a

Fig. 1. Influence of data inclusion on calculation of regression parameters for the copper log-logistic distributions. The solid line connects parameter

mean values computed over 100 replicates for each sample size, vertical bars show the associated standard deviations. Both freshwater and saltwater

a (A and B), b (C and D) and coefficient of determination (E and F) values stabilise after 10 data points.
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higher concentration protection level in the case of
copper. However, the opposite was observed for pen-
tachlorophenol where HC5 results varied between
0.0024 (all data) and 0.001 mg/l (QA1 data only) (Table
1). There is no a priori reason to expect that there should
be a relationship between sensitivity and quality. It is,
however, worth noting that where the test endpoint is a
NOEC, there is evidence to indicate that poorly de-
signed studies can yield higher NOEC estimates because
frequently there is low statistical power in the signifi-
cance test (Crane and Newman, 2000).

3. Distribution construction

Ecotoxicology databases often contain multiple en-
tries for the same species and chemicals, because several
toxicity tests have been performed. Risk assessors must
then choose how best to summarise such multiple data
when constructing SSDs. Cumulative plots of species
responses are used, and because multiple data for a
species exist the ‘total’ species response is usually esti-
mated by calculating a mean from reliable test end-

points. However, there are four possible options for
incorporating multiple species values in SSD analyses:

1. include only the single most sensitive value for each
species;

2. include all reliable available data;
3. geometric mean species summaries; or
4. arithmetic mean species summaries.

Here we investigate the effect of each of these multi-
ple species summaries. Acute saltwater lethality data
for six substances were extracted from the US-EPA
AQUIRE aquatic toxicology database (http://www.
epa.gov/ecotox/). In all cases the log-logistic distribution
proved to be a good model fit and for consistency was
used throughout. Four SSDs were constructed for each
substance using the most sensitive endpoint, all data,
and geometric or arithmetic means. We summarised and
compared the results of these analyses by using HC5
point estimates with associated lower 95% confidence
intervals (one tailed) (Table 2). As we might expect,
there was a general trend in HC5s and their left
sided confidence intervals: the most sensitive endpoint

Table 1

Effect of removing data of different qualities (derived from the Quality Assured criteria)

QA 1, 2(a), 2(b), 3 QA 1, 2(a), 2(b) QA 1, 2(a) QA 1

Copper

n 45 40 29 29

a �0.5572 �0.5934 �0.7386 �0.6965
SD 0.9954 1.0317 0.8210 0.7755

b 0.54747 0.567435 0.45155 0.426525

r2 0.9493 0.9414 0.9446 0.9500

HC5 (mg/l) 0.0068 0.0054 0.0086 0.011

Expected HC5 – 0:0062� 0:0009 0:0070� 0:0014 0:0070� 0:0014

Pentachlorophenol

n 39 36 – 31

a �0.8184 �0.9852 – �1.1202
SD 1.1158 1.1336 – 1.1517

b 0.61369 0.62348 – 0.633435

r2 0.8929 0.8496 – 0.8490

HC5 (mg/l) 0.0024 0.0015 – 0.0010

Expected HC5 – 0:0021� 0:0003 – 0:0025� 0:0003
n is the number of species, a (location) and b (scatter) parameters of the log-logistic regression, SD standard deviation of log toxicity values, HC5
(mg/l). The expected HC5 represents a value from the same number of species with all data qualities included, repeated for five different random

combinations of the data, plus or minus the standard deviation of these values.

Table 2

HC5 values (lg/l) calculated from saltwater SSDs with four multiple data summaries for species

Substance Most sensitive Geometric mean Arithmetic mean All values

Cadmium 6.592 (0.978) 8.220 (1.070) 8.337 (1.102) 16.56 (8.476)

Chlordane 0.532 (0.041) 0.562 (0.036) 0.570 (0.039) 0.638 (0.134)

Dieldrin 0.200 (0.039) 0.817 (0.060) 0.931 (0.222) 0.783 (0.481)

Endosulfan 0.007 (0.0005) 0.014 (0.001) 0.017 (0.001) 0.040 (0.017)

Nickel 375.0 (15.01) 529.7 (25.20) 563.6 (35.56) 615.2 (63.66)

Toluene 2818 (95.31) 4271 (180.2) 4519 (189.4) 2864 (718.0)

Lower left-sided 95% confidence limit (one tailed) calculated according to Aldenberg and Slob, 1993 in parentheses.
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approach yielded the lowest value. Thereafter it was
followed by the geometric mean, the arithmetic mean
and then all values (Table 2). More importantly, values
could differ by a factor of two or more (nickel, toluene,
cadmium and endosulfan). However, for both dieldrin
and toluene inclusion of all values provided a more
conservative HC5 than mean summaries (Table 2). This
is a direct result of the data points influencing the po-
sition of the curve fitted; Fig. 2 illustrates this for
chlordane. A preponderance of low effect data is liable
to shift the fitted curve to the left by virtue of the greater
number of points plotted. For the most sensitive data or
mean species summaries this is less likely to occur.
Analyses using only the most sensitive values in the

dataset are an attractive regulatory option as, by defi-
nition, they are very conservative. However such an
approach does not use all of the available data and is
consequently more likely to be biased by outliers. The
most sensitive species value may also discourage further
data generation, as the larger the dataset the greater the
probability that it will include extreme (low) values
(Smith and Cairns, 1993). Including all the available
data, capturing inter- and intra-species variation in re-
sponse to a substance in one analysis, could resolve this.
Operationally this would entail assigning a percentile to

individual data points. However, this complicates the
interpretation of the analysis and would require a new
definition of the HC5, as such measures are no longer at
the species level. This is contrary to the purpose of the
SSD, namely to derive a protection level for a specified
percentage of species (Toll et al., 2001). Therefore we are
left with more traditional data summaries that, at least,
are influenced by every data point but still keep the
currency of species response. The geometric mean, de-
spite recent criticism (Parkhurst, 1998), is often used as
a summary statistic for aquatic toxicity data (Stephan
et al., 1985). It is the back-transformed mean of a log-
arithmically transformed variable, and gives a conser-
vative estimate due to the curvature of the logarithmic
function. This conservative property is desirable for risk
management decisions, so its use is recommended by
the Ecological Committee on FIFRA Risk Assessment
Methods, or ECOFRAM (www.epa.gov/oppefed1/eco-
risk/aquareport.pdf). The geometric mean will always be
either smaller than or equal to the arithmetic mean
(Streiner, 2000). The arithmetic mean assumes that the
differences between values are linear, and not a non-
linear function as in the geometric mean. In addition it
has been demonstrated, at least for log-normal data,
that the mean squared errors (a measure of bias and
variance of an estimator) are larger for arithmetic
compared to geometric means (Smothers et al., 1999).

4. Model choice

Several approaches to forming SSD analyses have
evolved over recent years. Differences between these ap-
proaches lie in the choice of underlying distribution such
as the log-normal (Wagner and Lokke, 1991), log-logistic
(Aldenberg and Slob, 1993) or Burr Type III (Shao,
2000). However, some authors argue that there is no
reason to assume, or the ability to verify in small data-
sets, an underlying distribution for species sensitivities
(Smith and Cairns, 1993; Forbes and Forbes, 1993). An
alternative resampling (bootstrap) technique has been
proposed (Jagoe and Newman, 1996), which does not
rely on any assumed distribution. More recently a com-
bined bootstrap regression approach has been developed,
by smoothing the bootstrap with an assumed distribu-
tion, such as the log-logistic (Grist et al., in press).

4.1. Parametric methods

The linearised log-normal method has become the
approach tentatively adopted by regulators following its
use in several high profile probabilistic risk assessments
for pesticides (Solomon et al., 1996; Giesy et al., 1999;
Hall et al., 2000). Its major advantage is mathematical
simplicity, because simple least squares regression can
be applied to probit and log transformed data, and

Fig. 2. Species sensitivity distribution for chlordane illustrating dif-

ferent positions of curves depending on which data summary is used.

Inserted figure amplifies the lower percentile region. Where symbols

overlap, the graphical sequence is: closed circle, open triangle, open

square, closed square.
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confidence intervals can be calculated from assumptions
of the normal distribution. If, in addition, chemical
monitoring data or exposure estimates are available, an
exceedence or joint probability curve (JPC) may be
constructed (e.g., Giesy et al., 1999). The simple linear
curves allow the JPC combination to communicate
risk clearly and allow fairly simple assessment of the
implications of different environmental management
decisions. However, the log-normal distribution may
also be limited by its simplicity, as it has been shown
that 15 out of 30 datasets tested failed conformity
tests for the log-normal distribution (Newman et al.,
2000). It has also been suggested that datasets may
contain several sub-distributions, possibly related to
taxonomic differences in sensitivity (Newman et al.,
2000) that may not be adequately described by a single
straight line.
The log-logistic distribution, as noted earlier, gener-

ally provides a good fit to SSD data. The log-logistic
function has extended tails and therefore has built-in
conservatism (Aldenberg and Slob, 1993). Mathemati-
cally it is more complex than the log-normal model,
especially when calculating confidence intervals. Ex-
trapolation factors used to calculate confidence intervals
have been derived through Monte Carlo simulation, and
tabulated (Aldenberg and Slob, 1993). The factors,
however, are restricted to a one tailed 95% interval
(equivalent to two tailed 90% interval), whereas we are
often interested in confidence at the two tailed 95% level.
Also, for sample sizes between tabulated values linear
interpolation must be used to determine an approxi-
mation of the factor.

4.2. Non-parametric bootstrap method

The application of the bootstrap to SSD analyses was
proposed by Jagoe and Newman (1996) as an alternative
to fitting a distribution to data. Bootstrapping obtains
an HC5 estimate within a range calculated over many
resamples (typically 5000) drawn at random from the
original sample, with replacement (Efron and Tibsh-
irani, 1993). Despite the obvious advantages of the
bootstrap method in not requiring a priori distribution
assumptions, and the simplicity in calculating bootstrap
confidence intervals, this is a data-demanding approach
requiring at least 20 data points to define HC5 and as-
sociated confidence intervals (Grist et al., in press).

4.3. Bootstrap regression method

Bootstrap regression can be considered a compromise
between the power of resampling and fitting an under-
lying distribution. This hybrid-technique allows the use
of smaller toxicity datasets and the calculation of con-
fidence intervals around the point estimate (Grist et al.,

in press). When there are few data, that do not ade-
quately fit one of the standard distributions, bootstrap
regression with an appropriate underlying model pro-
vides a suitable alternative.

4.4. Comparisons of the methods

Here we extracted 15 saltwater datasets (covering
various modes of action) from the AQUIRE database.
Multiple data for the same species were summarised as
geometric means. The datasets were analyzed using the
following methods:

1. log-normal model;
2. log-logistic model, LHC5 was calculated using the
method of Aldenberg and Slob (1993);

3. standard non-parametric bootstrap method (Grist
et al., in press); and

4. bootstrap regression based on a log-logistic regres-
sion model (Grist et al., in press).

We calculated HC5 values and lower confidence limits
(LHC5; 95% one-tailed) along with the appropriate re-
gression parameters for each of the chemicals (Table 3).
Results were compared visually by the goodness of
‘curve fit’ at the lower percentile region, and the parity
and conservativeness of the HC5 and LHC5 values.
In general, the various methods yielded different HC5

and LHC5 values (Table 3). For example, the standard
bootstrap was the best method for fitting a model dis-
tribution to the cadmium dataset (Fig. 3C) and it gen-
erated a substantially lower HC5 at 0.511 lg/l (Table 3).
In contrast, the HC5 estimate for cadmium produced by
the conventional log-logistic method was some 16 times
higher than the value generated by the standard boot-
strap (Table 3). Nevertheless, in most cases, differences
in the HC5 and LHC5 values are within a factor of 2.
Bootstrap regression was found to be especially useful

for small datasets where a good model fit is achieved.
We combined a log-logistic regression with the boot-
strap to improve the fit to the data. For example, both
parametric models achieved a good fit to the small nickel
dataset (Table 3; Fig. 4). Although the conventional log-
logistic model implied a nickel HC5 estimate of 529.7
lg/l, bootstrap regression further improved the model fit
but generated a more conservative HC5 at 321.7 lg/l
(Table 3; Fig. 4).
The choice of an appropriate method for SSD ana-

lysis is important because the various methods may
generate different HC5 and LHC5 values. In order to
obtain the best HCp estimate, we suggest that the col-
lected data should be analyzed by all four approaches.
The method providing the best fit, especially in the lower
tail can be identified by considering the coefficient of
determination (r2) in tandem with visual inspection.
Subsequently, the final HCp can be estimated more
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Table 3

Comparison of the HC5 value and its lower confidence limit (LHC5) for 95% one tail (equivalently, 90% two-tailed) confidence intervals calculated by the different approachesa

Chemicals Ammo-

nia

Cadmium Chlordane Copper Dieldrin Endosul-

fan

Lead Lindane Mala-

thion

Nickel Penta-

cholro-

phenol

Phenol Potassium

dichromate

Trichloro-

ethane

Toluene

Sample size 14 31 8 24 33 25 36 35 28 9 30 28 33 12 7

Log-normal

a 1.162 0.656 1.177 1.490 0.893 0.572 0.977 0.661 0.716 0.962 1.399 1.356 1.541 2.424 1.121

b �5.185 �2.022 �0.985 �3.477 �1.302 �0.346 �3.733 �1.262 �1.638 �3.936 �3.871 �6.167 �6.437 �11.71 �5.344
r2 0.964 0.913 0.945 0.984 0.847 0.904 0.904 0.914 0.932 0.979 0.980 0.941 0.961 0.841 0.981

HC5 1110 3.76 0.275 16.96 0.412 0.005 137.1 0.263 0.979 241.3 38.99 2166 1288 14206 1994

LHC5 529.2 0.608 0.084 12.06 0.068 0.001 32.39 0.044 0.222 109.1 26.21 1046 772.0 5897 961.3

Log-logistic

a 4.460 3.083 0.837 2.333 1.458 0.604 3.820 1.909 2.287 4.093 2.767 4.549 4.178 4.831 4.767

b 0.402 0.737 0.367 0.332 0.525 0.830 0.490 0.738 0.679 0.465 0.358 0.360 0.324 0.177 0.386

r2 0.979 0.940 0.947 0.971 0.913 0.897 0.901 0.914 0.955 0.970 0.973 0.977 0.942 0.771 0.887

HC5 1892 8.22 0.570 22.67 0.817 0.014 238.2 0.545 1.941 529.7 51.52 3083 1675 20417 4271

LHC5 442.4 1.07 0.039 6.842 0.060 0.001 62.01 0.072 0.167 25.24 19.34 834.8 691.0 8110 180.2

Basic bootstrap

HC5 ND 0.511 ND 25.10 2.795 0.049 314.1 0.178 2.780 ND 49.79 1495 1796 ND ND

LHC5 ND 0.200 ND 24.00 2.356 0.040 20.70 0.170 2.047 ND 37.00 510.0 1700 ND ND

Bootstrap regression based on log-logistic model

HC5 1819 12.96 0.480 13.07 0.863 0.008 795.9 0.546 1.448 321.7 30.14 2670 919.7 16375 1605

LHC5 238.9 0.983 0.034 5.652 0.384 0.001 120.7 0.087 0.327 33.04 13.97 1261 520.8 8354 330.0

Notes: Log-normal model: Y ¼ aX þ b where Y is percentile in probit scale, X is concentration in log scale, a is the slope and b is a y-intercept.
Log-logistic model: Y ¼ 1=½1þ expð�ðX�aÞ=bÞ	, where Y is percentage of affected species, X is concentration in log scale, a and b are constants.
a Both values are expressed as lg/l. Model parameters for log-normal and log-logistic models are also presented. ND: not defined, due to small sample size (n < 20).
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reliably by the best method. As a general guideline, (1)
the standard bootstrap method is recommended when
there are enough data (species) and (2) the bootstrap
regression is especially useful for small datasets for which
a good fit is achieved by a specified regression model.

5. Discussion

The diversity of SSD approaches developed is testa-
ment to the fact that toxicity data do not uniformly fit

into a single class of model. This coupled with the
variety of data summaries leaves a wide range of
approaches available to the risk assessor. However, it
appears that in the recent literature the full variety of
methods are generally not applied. Table 4 indicates
that the use of the most sensitive toxicity data fitted
by the log-normal model is most commonly used. We
have demonstrated that data quality, quantity, summary
and model choice all influence analyses to a greater
or lesser extent. We believe an acknowledgement of
these differences is important to the transparency of

Fig. 3. SSDs for cadmium obtained by different methods: (A) log-normal (y-axis in probit scale); (B) log-logistic; (C), standard bootstrap and (D)
bootstrap regression. Solid line denotes HCp while dashed lines are the two-tailed 90% confidence intervals. Inserted figures amplify the lower

percentile region. Curves fitted by both the conventional model approaches deviated substantially from actual data points at the lower end of the

SSD (A, B). In contrast, the HCp calculated by the standard bootstrap closely followed the entire data distribution (C). The bootstrap regression

technique generated a curve which closely matched the conventional log-logistic model (D).
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the risk assessment process based on probabilistic
methods.
We have shown that SSD analysis outputs (both log-

normal and log-logistic) appear to stabilise with 10–15

data points, suggesting 10 data points as a minimum
data requirement to generate reliable estimates upon
which regulatory decisions may be based. At present the
minimum data requirements are generally below 10

Table 4

Published probabilistic risk assessments data summaries and distribution applied to SSD analyses

Substance Media Data summary Model Reference

Atrazine Freshwater Most sensitive Log-normal Solomon et al. (1996)

Diquatdibromide Freshwater Most sensitive Log-normal Campbell et al. (2000)

Phthalates Freshwater, saltwater, soil Geometric Log-logistic van Wezel et al. (2000)

Pyrethroids Freshwater Geometric mean Log-normal Solomon et al. (2001)

Tributyltin Freshwater and saltwater Most sensitive Log-normal Hall et al. (2000)

Fig. 4. SSDs for nickel using the different methods: (A) log-normal (y-axis in probit scale); (B) log-logistic and (C) bootstrap regression. Solid line
denotes HCp while dashed lines are the two-tailed 90% confidence intervals. Inserted figures amplify the lower percentile region. For such a small

dataset, a good fit was achieved by both parametric methods (r2 ¼ 0:98 [log-normal] and 0.97 [log-logistic]) (A, B). The bootstrap regression gave a
better fitting curve (thus HCp estimate) in the lower tail compared to the log-logistic method (C).
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where SSDs are used to derive water quality objectives
(e.g., OECD recommends at least 5 data points). We
have also demonstrated that the quality of the input
data can have an effect on SSD outputs, highlighting the
need for stringent quality criteria for inclusion of data.
Quality schemes such as used here (Box 1) or those being
developed for ecological (ecotoxicological) benchmarks
(Durda and Preziosi, 2000) need to be applied to SSD
analyses.
Data summaries inevitably lead to a loss of useful

information from the available dataset. An awareness
of variability in single species tests is required despite
the need to estimate an average response for each spe-
cies. We currently lack a mathematical solution that
will allow inclusion of all data whilst retaining protec-
tion at the species level. Therefore we are left with a
trade-off in favour of simplicity and ease of use, which
in itself may be an argument for the application of
a modest safety factor to the results of an SSD ana-
lysis.
A wide range of different models are available as risk

assessment tools. Each method will be more appropriate
under different circumstances. For instance if there are
sufficient data and a log-normal model fits well (espe-
cially at the lower tail), it will adequately describe risk
and communicate implications for management strate-
gies. However, in some circumstances the log-logistic
distribution will provide a superior fit to the data and
yield more realistic, and therefore useful, results. If both
of these parametric descriptors do not adequately de-
scribe the data (fail to fit the data at the lower percentile
region) then an assessor may wish to turn to a boot-
strapping technique where, if sufficient data are avail-
able (n > 20 for HC5 or n > 10 for HC10), a normal
resampling method may be applied (Grist et al., in
press). Alternatively, if data are limited, a bootstrap
regression procedure will provide a point estimate
(HC5) and an associated confidence interval that could
not be determined using standard bootstrapping, due to
insufficient sample size.
In general, we recommend the consideration of all the

techniques available so that regulatory decisions are
only based on information from the most appropriate
method. Risk assessments often present problems that
may be substance or site specific, so flexibility in pro-
cedures can be a positive advantage. We believe, how-
ever, that application of the range of methods needs
standardisation to ultimately ensure the transparency of
the entire process.
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