GRAVITY CHAMBER SETTLING

General concepts

- □ Gravity settling chamber is used to remove **large** and abrasive particles greater than 50 µm from a gas stream.
- ☐ This is a **simple particulate** collection device using the principle of gravity to settle the particulate matter in a gas stream passing through its long chamber.
- ☐ The primary requirement of such a device would be a chamber in which the carrier gas velocity is reduced so as to allow the particulate matter to settle out of the moving gas stream under the action of gravity.
- ☐ This particulate matter is then collected at the bottom of the chamber.
- ☐ The chamber is cleaned manually to dispose the waste.

Operating principles

Operating principles and design parameters

- ☐ The gas velocities in the settling chamber must be sufficiently low for the particles to settle due to gravitational force.
- □ Literature indicates that gas velocity less than about 3 m/s is needed to prevent re-entrainment of the settled particles. The gas velocity of less than 0.3 m/s will produce good results.
- ☐ For 100 % efficiency

$$t = \frac{H}{v_t} = \frac{L}{v_H}$$

Where,

H= height of settling chamber

L = Length of settling chamber

Vt = Velocity of settling

VH = velocity of flow

$$\mathbf{v}_{t} = \frac{\operatorname{Cu} \, \mathbf{d}_{p}^{2} \, \rho_{p} \, \mathbf{g}}{18 \mu}$$

Operating principles and design parameters

$$\frac{v_H \cdot H}{L} = \frac{g \cdot d_p^2 \cdot \rho_p}{18 \cdot \mu}$$

Therefore,

$$d_{p,min} = \sqrt{\frac{18 \cdot \mu \cdot \nu_H \cdot H}{g \cdot L \cdot \rho_p}}$$

 $d_{p,\text{min}}$ is min size of particle that can be removed with 100 % efficiency. For better and conservative results multiplying factor 2 can be taken to define $d_{p,\text{min}}$

$$d^*_{p, min} = \sqrt{\frac{2 \cdot 18 \cdot \mu \cdot \nu_H \cdot H}{g \cdot L \cdot \rho_p}}$$

Gravity chamber settling with trays

Settling trays can be used to improve removal efficiency.

If, n = number of trays, then equation becomes

$$d_{p,min} = \sqrt{\frac{18 \cdot \mu \cdot \nu_H \cdot H}{n \cdot g \cdot L \cdot \rho_p}}$$

Advantages and disadvantages

ADVANTAGES

- Low initial cost
- Simple construction
- Low maintenance cost
- Low pressure drop
- Dry and continuous disposal of collected solids
- Can be constructed of any material
- Temperature and pressure limitations are imposed by type of material used

DISADVANTAGES

- Large space requirement
- Only comparatively large particles can be collected

Exercise

Calculate the minimum size of the particle that will be removed with 100 percent efficiency (theoretically) from a settling chamber under the following conditions:

- Viscosity of air is 2.1*10⁻⁵ kg/m*s
- Horizontal velocity is 0.3 m/s;
- Temperature is 77°C;
- Particulate density is 2000 kg/m³
- Chamber: lenght is 7.5 m; height is 1.5 m.

