FABRIC FILTERS - Exercitation

EXAMPLE:SIZING FF

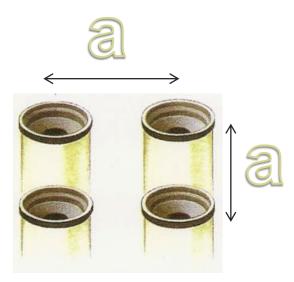
Example: Sizing FF

Calculate the number of bags required for an 8-compartment pulse-jet baghouse with the following process information and bag *dimensions*:

Q, process gas exhaust rate: $45 \text{ (m}^3\text{/s)} (=162000 \text{ m}^3\text{/h})$

A/C, air (flow)-to-cloth ratio: 0.02 (m³/s)/m² (= v_f filtration velocity!)

 $v_f = A/C = 0.02 \text{ m/s } (1.2 \text{ m/min})$


Bag size

bag diameter: 0.15 m (6")

bag height: 3.6 m

Bag spacing: 5 cm

Finally, calculate the can velocity in the baghouse

a = bag diameter + bag spacing = 15 + 5 = 20 cm = 0.2 m

EXAMPLE:PRESSURE DROP ESTIMATION

Example: PRESSURE DROP IN A BH

Calculate the design pressure drop in a baghouse after 70 minutes of operation with dust loading (L)=5.0 g/m³ and superficial filtering velocity (v)=0.9 m/min. Base the estimate on the test carried out on a clean fabric at the same operating conditions.

Test data at planned operating conditions:

Time [min]	∆P [Pa]
0	150
5	380
10	505
20	610
30	690
60	990

Note: the pressure drop increase with the time