Exercise 1.10. Absorption of competitive species: SO₂ vs. CO₂

A flue gas contains 44,000 ppm of CO₂ and 300 ppm of SO₂; the scrubbing liquor pH is 7. Flue gas stream: 42,500 m³/h (= 11.8 m³/s), at 66 °C. Blow-down: 1.0 m³/h (liquor discharged). <u>At pH 7</u>: $K_{H(CO2)} = 0.2 M/atm; K_{H(SO2)} = 3 \times 10^5 M/atm.$ (Both: H_{eff}!)

- A) Calculate [CO₂]aq.;
- B) To keep $(SO_2)_g < 5$ ppm in the cleaned gas, what can be the max SO_2 concentration in the scrubbing liquor?
- C) the amount of SO_2 to be removed in mol/h, and kg/h;
- D) $[SO_2]aq$ in the scrubbing liquor (= blow-down conc.!).

Effective Henry's Law Constant of SO₂ as a Function of pH

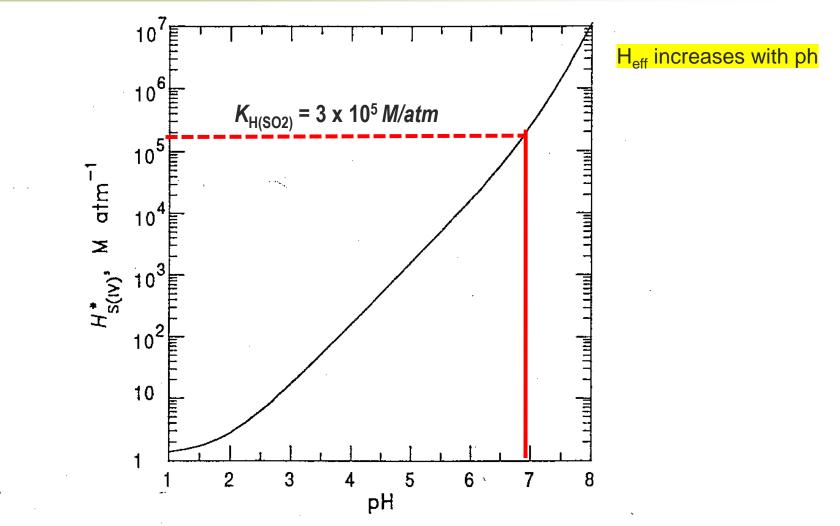
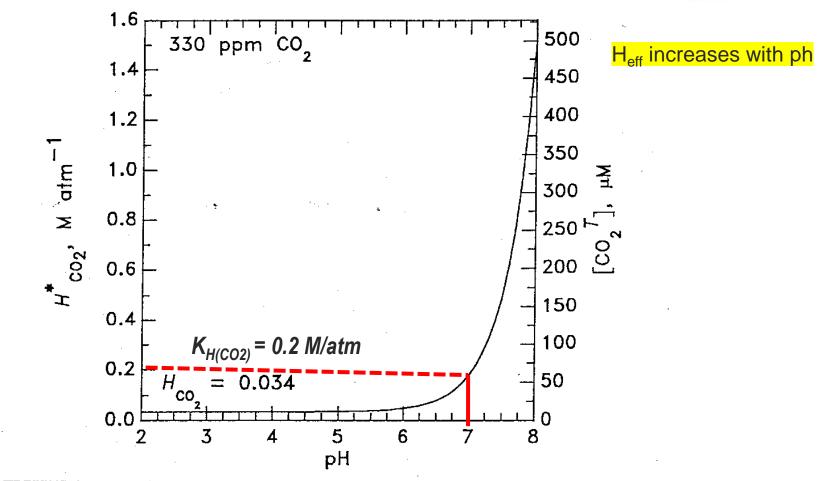
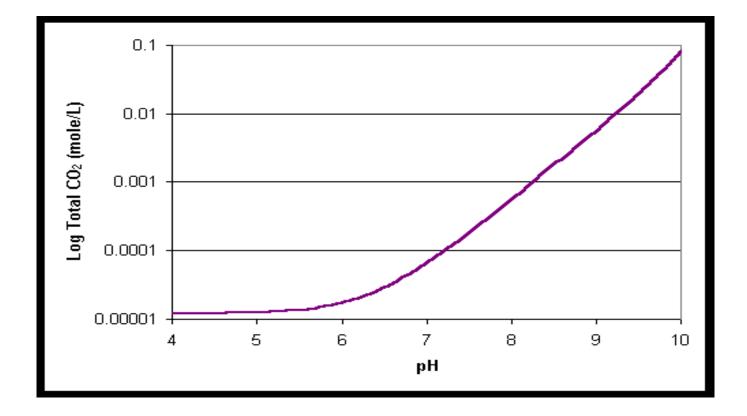



FIGURE 6.6 Effective Henry's law constant for SO₂ as a function of solution pH at 298 K.


Fundamentals

Air Pollution Control

Effective Henry's Law Constant of CO₂ as a Function of pH

FIGURE 6.4 Effective Henry's law constant for CO_2 as a function of the solution pH. Also shown is the corresponding equilibrium total dissolved CO_2 concentration $[CO_2^T]$ for a CO_2 mixing ratio of 330 ppm.

Exercise 1.10. Absorption of competitive species: SO_2 vs. CO_2 - solution

A) $CO_{2(g)}=44,000 \text{ ppm} = 4.4\% \text{ v/v}; P_{CO2}=x_{CO2}P=0.044 \text{ x } 1 = 0.044 \text{ atm}$ $[CO_2]_{aq} = K_H P_{CO2}$ $[CO_2]_{aq} = 0.2 \text{ x } p_{CO2} = 0.2 \text{ x } 0,044 = 8.8 \text{ mM} (=0.4 \text{ g/L}; \text{ CO}_2 \text{ absorbed} \approx 1\%)$

B)
$$SO_{2(g)} = 5 \text{ ppm}; P_{SO2} = x_{SO2} \cdot P = 5 \cdot 10^{-6} \cdot 1 = 5.0 \cdot 10^{-6} \text{ atm}$$

 $[SO_2]_{aq} \text{ in eq. with } SO_2 \text{ gas 5 ppm} = K_H P_{SO2}$
 $[SO_2]_{aq} = 3 \cdot 10^5 \text{ M/atm} \times 5 \cdot 10^{-6} \text{ atm} = 1.5 \text{ M} \text{ (max. conc. in solution in eq. with 5 ppm SO_2 in the gas phase)}$

C) SO_{2(g)} to be removed: (300-5) ppm x 42,500 $m^3/h = 12.5 m^3/h$

The flue gas is at 66°C and 1 atm (actual condition). In order to convert to reference conditions (t=0°C; p=1 atm) you can apply the following expression previously introduced:

$$\mathbf{Q}_{a} = \mathbf{Q}_{n} \frac{\mathbf{P}_{n} \cdot \mathbf{T}_{a}}{\mathbf{P}_{a} \cdot \mathbf{T}_{n}}$$

Therefore,

 $SO_{2(g)}$ to be removed: = 12.5 m³/h = 10.1 Nm³/h According to Avogadro's rule at T=0°C (273 K) and P=1 atm ,1 mole of any ideal gas has a volume of 22,4 l. $SO_{2(g)}$ to be removed: = 10.1 / 22.4 = 0.45 kmol/h The MW of SO₂ is 64, then: $SO_{2(g)}$ to be removed: = 0.45 *64 = 28.8 kg SO₂/h

Fundamentals

Air Pollution Control

Exercise 1.10. Absorption of competitive species: SO_2 vs. CO_2 - solution

D) Concentration of " SO_2 " in the liquor:

 $[SO_2]_{aa}$ blowdown = Nr moles /Volume = 0.45 kmol/h / 1.0 m³/h = 0.45 mol/L = 0.45 M

<u>Note 1</u>. The system can really work! In fact, the concentration of SO₂ in the blow-down liquor is < than the maximum conc. permitted by Henry law, that is 1.5 M. If SO₂ conc. in the blow-down is > than 1.5 M, you cannot reduce the SO₂ conc. down to 5 ppm in the cleaned gas ! The higher the blow-down, the lower the pollutants concentrations in the cleaned gas!) Note 2. At pH 7 there is no SO₂ in the aq. phase, but only HSO_3^- (\approx 70%) and SO_3^{2-} (\approx 30%) (see Figure in the next slides)

<u>Conclusion</u>: At pH = 7, flue gases can be efficiently desulfurated ,whilst keeping CO₂ absorption at low levels! What about pH 8? What about pH 6?