ALGEBRA LINEARE E GEOMETRIA

Lezioni 22-23, 28/10/2021

Prof. Luis García-Naranjo)
	,

Richiamo dalla lezione precedente: U, W sottesp. di V [dim(U+W) = dimU+dimW - dim(UNW)] FORMULA DI GRASSMANN. Es. $V=\mathbb{R}^3$ U sottospatio di equazione x₁-2x₂+4x₃=0 dim U = ? Base di U = ? Sistema di (una) equatione in 3 incognite. x, = 2x2 - 4x3

2 parametri liberi di variare Inti-ite soluzioni. Una per agal valore di xo, xz. Corrisponde $\begin{pmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{13} & C_{14} \end{pmatrix}$ $\begin{pmatrix} C_{11} & C_{12} & C_{14} \\ C_{12} & C_{14} & C_{14} \\ C_{11} & C_{14} & C_{14} \end{pmatrix}$ $\begin{pmatrix} C_{11} & C_{12} & C_{14} \\ C_{12} & C_{14} & C_{14} \\ C_{12} & C_{14} & C_{14} \end{pmatrix}$ Poriamo $x_2 = \lambda_1, x_3 = \lambda_2$ $x_1 = 2\lambda_1 - 4\lambda_2$ $V = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathcal{J} \Rightarrow V = \begin{pmatrix} 2\lambda_1 - 4\lambda_2 \\ \lambda_2 \end{pmatrix} = \lambda_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} -4 \\ 0 \\ 1 \end{pmatrix}$

Camb. lineare di V, N2, N2, N4 uguale a 3. $(J_2 + J_3)V_1 + (5J_1 + 5J_2)V_2 + (-J_2 - J_3)V_3 + (-J_1 + J_3)V_4 = 0$ $\begin{cases}
 \lambda_2 = -\lambda_3 \\
 \lambda_1 = \lambda_3 \\
 0 = 0 \\
 0 = 0
 \end{cases}$ 2, = -22 0=0 Intuite soluzioni, una per ogni 23. 3 I setteri sono lin. dip. $2_3 = 1$, $2_2 = -1$, $2_1 = 1$ $2_1 - u_2 + u_3 = 0$ U3 = -4,+42 T= (u,,u,) U, uz sono lin. indip.? U, e uz non Sono paralleli. 2, u, + 2242 = 3 2, (2v2-V4) + -... U1, U2 sono lin indip. => du, uz? formano na base di J. Im U=2. Slano $w_1 = v_1 + v_4$ $Sla W = \langle w_1, w_2, w_3, w_4 \rangle$ W2 = V2 + 2N2 W2 =- V2 + V3 + V4 dimW=? base diW=? W4 = 24,+343+344

	2, w, + 22 w2 + 2	5 W2 + 24 W4 =	6	
	7, (v, + v4) + 22(-) + . ~ . =	5-8	
	Si trova en 8	sistema di	4 equation	
	1:000	1' 'L		
	Una incognita	rimane lib	era di Vaviave	soluzioni
	=> W1, W2, W3, W4			
	S) trai	a che wy	$= 2w_1 + w_2 + w_2$	3
	$W = \langle w_1, w_2, w_3 \rangle$	V ₃		
	2, w, +2	12 W2 + Z3 W3 5	= 5 8	trova 7,20 2,20
	\Rightarrow w_1, w_2, w_3	una lin. h	dip.	
	\Rightarrow $\frac{1}{2}$	è wa bose	1; W > 3	un W =3,
1,	Povave d'un e	basi di	JNV e	J+W.
7	J = 441,42>	11mU=2		
V	$\sqrt{=}$ $\langle w_1, w_2, w_3 \rangle$	1mW=3		
G	rassmann: d	im (U+W):	- Ilm U + Ili	mW-dim(t/NW)
	\leq \vee	<u> </u>	=2 =	nW-dim(tNW)

```
5- din (UNW) < 4 ( din (UNW) >1
              La dimensione li UNW à almeno 1.
     SIL VETINW => V = d, U, + d2U2 = B, W, + B2W2+B3W3
           \Rightarrow \alpha_1(2v_2-v_4)+\alpha_2(v_1+2v_2-v_3)=\beta_1(v_1+v_4)+\beta_2(v_2+2v_3)
                                                             +B3 (-45 + 1/3 + 1/4)
(d2-b1)V, + (2a, +2d2-b2+b3)V2+ (-d2-2b2-b3)V3+(-d,-B,-B3)V4

\begin{cases}
\beta_1 = d_2 \\
\beta_2 = 2d_1 + 2d_2 + \beta_3
\end{cases}

            ( d2 - b, = 0
            20,+202-B2+B3=0
            - d2 - 2 B2 - B3 = 0
                                                  -d2-4d1-4d2-2B3-B3=0
             (-d,-B,-B) =0
                                                   -d_1-d_2-\beta_3=0
             \beta_1 = \alpha_2
\beta_2 = 2\alpha_1 + 2\alpha_2 + \beta_3
             \begin{cases}
-4d, -5d_2 - 3\beta_3 = 0 \\
d, = -d_2 - \beta_3
\end{cases}
                                                   )4d2+4B3-5d2-3B3=0
                                                      d_1 = -d_2 - \beta_3
                                                   \begin{cases} d_2 = \beta_3 \\ d_1 = -2\beta_3 \end{cases}
                1 B, = B3
                                                          ) B1 = B3
               A B2=-4B3+2B3+B3=-B3
                                                          4 b2 = - B3
                d_1 = \beta_3
d_1 = -2\beta_3
                                                             d_{1} = -2\beta_{3}
                                                              d2= B3
```

Intinte soluzioni, un parametro libero di variare. 1=(WNV)=1 Se $\beta_3 = 1 \Rightarrow \beta_1 = 1$, $\beta_2 = -1$ $\Rightarrow V \in U \cap W$ $V = -2u_1 + u_2$ $\beta_1 W_1 + \beta_2 W_2 + \beta_3 W_3 = W_1 - W_2 + W_3$ $V = -2u_1 + u_2 = -2(2v_2 - v_4) + (v_1 + 2v_2 - v_3)$ $V = W_1 - W_2 + W_3 = (V_1 + V_4) - (V_2 + 2V_5) + (-V_2 + V_3 + V_4)$ $= V_1 - 2V_2 - V_3 + 2V_4$ Una base di TMV è data dal vettare V= v,-2v,-v3+2v4, Bare di TMV è ?v? dim (U+W) = dim U + dim W - dim (UNW) => U+W=V Base di THV è gralriasi base di V. Ad esempio du, , v2 , v3 , v47.

Es. Six
$$T \subset \mathbb{R}^{V}$$
 il softest generals

dai value: $u_1 = (2,1,3,-1)$
 $u_2 = (1,2,-1,4)$

a) Verificare due $u = (5,1,10,-7)$ apportiene

a T .

 $u = d_1 u_1 + d_2 u_1 \hookrightarrow \begin{pmatrix} 5 \\ 12 \\ 24 \end{pmatrix} = d_1 \begin{pmatrix} 2 \\ 12 \\ 24 \end{pmatrix} + d_2 \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$
 $2d_1 + d_2 = 5$
 $3d_1 - d_2 = (0)$
 $3d_1 -$

c) Verificare che UCV e completare la base du, 142} di U ad una base di V. TCV (=> u, e uz soddistano 2x, -3x2 +x420 2(2)-3(1)+(-1)=4-3-1=01 $u_1 = (2, 1, 3, -1)$ 2(1)-3(2)+4=2-6+4=0~ U2=(1,2,-1,4) U1, U2 € V. Per completure lu,, u2 y a va base di V. Per completure du, u24 a una base di V prendo u3 = (0,0,1,0) Verifico che u, uz, uz sono lin. indip. 3, u, +22 u2 + 23 u3 = 3 $7_{1}\begin{pmatrix}2\\1\\3\\1\end{pmatrix}+2_{1}\begin{pmatrix}2\\1\\4\end{pmatrix}+2_{3}\begin{pmatrix}6\\6\\0\end{pmatrix}=\begin{pmatrix}6\\0\\0\end{pmatrix}$ 12=-22, 122, +22 =0 J-32=0 9 71+545=0 32, -22 +23 =0 -21+422 = 27250 ⇒ du,,u2,u3} è una base di V

d) Sia WCRY il sottosp. di equatione $x_1 - x_3 + 2x_4 = 0$ li VNW e di V+W. Trovave una base $V: 2x_1 - 3x_2 + x_4 = 0$ $VNW: \begin{cases} 2x_1 - 3x_2 + x_4 = 0 \\ x_1 - x_3 + 2x_4 = 0 \end{cases}$ $W: X_1 - X_3 + 2x_4 = 0$ Base di $V \cap W$: $\begin{cases} 0 \\ -3 \\ -2 \end{cases}$ Base di V+W? den (V+W)=? Gracsmann. Lim (v+W) = Lim V + Lim W - Lim (v/M) => x1 = x3 -2xy dim (v+w)=4 W: x,-x3+2x4=0 3 parametri liberi Li variare x2, x3, xy din W = 3

V+W = RY dim (v+W)=Y Allora VtW = RY Base di V+W à qualuque base di PY Ad esempio:) (0) (0) (0) (0) } Base canonica. e) È possibile travare un sottosp. vettoriale 2 C RY tale che W= J D 2? dim 1 Dal pruto di viste della dimensione L potrebbe esistère. Ma, se W= JDL allora JCW. U, uz soddistano l'eq. Li W? $u_1 = (2, 1, 3, -1)$ W:x,-x3+2x4=0 $u_2 = (7, 2, -1, 4)$ $2-3+2(-1)=-3\neq0\ni u, \notin W$ 1-(-1)+2(4)=10+0=) uz &W e un tale L non estate. WAU is niso

f) din UNW=? Unwè on sottorp. di U. U¢W allora Sim(UNW) < Sim U=2 Grassmann: 4 = dim(RY) = dim (T+W) = dim T + dim W - dim (TNW) 4 ≥ 5 - dim (JNW) 1 < dim (vnw) < 2 => [dim (Unw) = 1] Base di JAW è (23, 16, 27, 2)