	21-12-1						
gioved	dì 16 dicembre 2	2021 18:51					
AL	WNI	ESERUZ	1				
1)	RISON	vi i se	GUENTI	SISTER	MI		
		. V.	Lima) (عنا 1812			
	, X	+ X ₃ = 1 - X _L = O + X ₃ : 2	(11	ر عاا حادددا			
	ν.	+ X - : 7					
	(^'	~3 •					
	(x.	. x 2		5 = 12	1		
	1 2x	+ X ₃ = 2 2 · X ₃ = 4 + 2 X ₂ · 6		$S = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$			
	X,	+ 2 X, . 6					
	ſx,	+X: 2		5-1	2 \ _	1-1	10\>
	2x	+X3:2 2-2X3=	- 2		-1	< (1)	0
					0/	\ 0/	\ ĭ /
	2×	+ 2X2 - X3 41 + 2XL = 2					
(2)	RICAN	IA UNA	BASE E	CALLOL	A LA	DIMENSIC	ME
		. SEGVEN					_
	W=	< 2×3+×	, x4-2x	², 2×,	x4_ 2X	24 2x>	
						\	
	(d.	E. W m	, B:	$= \left\{ 2x^3 + 3 \right\}$	x, x4-2	x2, 2x 3	
	•				•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
3	DATI	1708 1	088021	We	U o	l: R ^s	
		femina re					
		2 0π 0 2					

W - < (2 \	U : \	X4 - X5 = 0	
$W = \left\langle \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \right\rangle$	1	X1 - X2 = 0	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
RISPOSTA. Di W abbiono que un	ومط		
0 (1) (0)	1.		
	1,		
$U \cap W = \left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right)$ $U + W = \mathbb{R}^5$			
U+W = K			
4 (ALLOLA IL DETERMNANTE DI A = (0 2) (1 0 -1 -1) (R = 0)			
A = (0 2 \			
$\begin{pmatrix} 1 & 0 & -1 & -1 \\ 1 & 0 & -1 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
5 DETERMINARE Ker(f), Im(f) e la	MAT	لانت	
ASSOCIATA NEW BASI CANONICHE			
$F \colon \; R^{n} \to R^{s}$			
$ \begin{array}{ccc} & \mathcal{F} : & \mathbb{R}^h \longrightarrow \mathbb{R}^3 \\ & \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \end{pmatrix} & \mapsto \begin{pmatrix} \chi_{1} + \chi_{2} + \chi_{4} \\ \chi_{2} + \chi_{3} \\ \chi_{1} - \chi_{3} + \chi_{4} \end{pmatrix} $			
$\begin{pmatrix} x_3 \\ x_{i_1} \end{pmatrix} \begin{pmatrix} x_{i-1}x_3 + x_{i_1} \end{pmatrix}$			
R: Ker(F) = < (-1) (-1)			
$\mathcal{R}: \text{Ker}(\mathcal{E}) = \left\langle \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} \right\rangle$			

	Im(+) = < () , ())
	$ \Delta = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & -1 & 1 \end{pmatrix} $
6	$f: \mathbb{R}^3 \to \mathbb{R}^2$
	Scrivere to matrice $A = M_{E_3}^{E_3}(f)$ e $B = M_{E_1}^{E_2}(f)$
	CON E3 BASE CANONILL & C = { e1+e3, e2+e3, 2e1+e2}
R :	$A = \begin{pmatrix} 3 & -1 & 0 \\ 0 & 2 & 1 \\ 3 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 3 & -1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
(1) B	$S = \begin{cases} e_{1} + e_{2}, & e_{1} - e_{2} \end{cases}$ bose d. \mathbb{R}^{2} $S = \begin{cases} e_{1}, & e_{1} + e_{2}, & e_{1} + e_{2} + e_{3} \end{cases}$ bose d. \mathbb{R}^{3}
t	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$(e_2) = e_1 + e_2 + e_3$ $A = M_B^g(f)$
₹:	$A = \begin{pmatrix} -1 & -1 \\ 2 & 2 \\ 2 & 0 \end{pmatrix}$
R3	$T_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} T_2 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$
	$\mathcal{J}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \qquad \mathcal{J}_2 = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix} \qquad \mathcal{J}_3 = \begin{pmatrix} -3 \\ 1 \\ -2 \end{pmatrix}$

$$\begin{array}{c} U_{1},U_{2}=0-2-3=-5\\ 11\,U_{1}11=\sqrt{U_{1},U_{1}}=\sqrt{2}\,X_{1}^{4}=\sqrt{1+4+1}=16\\ \infty 0=\frac{U_{1},U_{2}}{11\,U_{1}11}\frac{1}{11\,U_{2}11}+\frac{16}{16}\,\sqrt{16}\,2=\frac{1}{2}\,\sqrt{\frac{3}{3}}\\ 0=\frac{1}{2}\,\sqrt{\frac{3}{3}}=\frac{1}{2}\,\sqrt{\frac{3}{3}}\\ 0=\frac{1}{2}\,\sqrt{\frac{3}{3}}=\frac{1}{2}\,\sqrt{\frac{3}{3}}=\frac{1}{2}\,\sqrt{\frac{3}{3}}\\ 0=\frac{1}{2}\,\sqrt{\frac{3}{3}}=\frac{1}{2}\,\sqrt{\frac{3}}=\frac{1}{2}\,\sqrt{\frac{3}}=\frac{1}{2}\,\sqrt{\frac{3}}=\frac{1}{2}\,\sqrt$$

1) ORTONO RMALIZIA RE UNA BASE DI U
$$\begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0
\end{pmatrix} \xrightarrow{\mathbf{II}-\mathbf{I}} \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{pmatrix}$$

$$\mathbf{III}-\mathbf{II} \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0
\end{pmatrix} \xrightarrow{\mathbf{IV}+\mathbf{III}} \begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0
\end{pmatrix}$$

$$\mathbf{rk} = \mathbf{A}$$

$$\mathbf{B} = \begin{cases}
\begin{pmatrix}
1 \\ 0 \\ 1 \\ 0 \\ 0
\end{pmatrix}, \begin{pmatrix}
1 \\ 1 \\ 0 \\ 0 \\ 0
\end{pmatrix}, \begin{pmatrix}
1 \\ 1 \\ 0 \\ 0 \\ 0
\end{pmatrix}, \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix}$$

$$\mathbf{J}_{1} = \underbrace{\mathbf{U}_{2}}_{\mathbf{IU},\mathbf{II}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{IU},\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{II}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{\mathbf{III}} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III}}_{2} = \underbrace{\mathbf{III}}_{2} \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix} \xrightarrow{\mathbf{III$$

	X	,+X	3 =	9	_	į	X	2-	Xs	·	X	3 = (5				
Y) X	1+2	XZ.	Xs	. 0	;	2	X1 +	2X2	= 0	,	- ;	X1=	- X2	,	X	2 = <
	, ,	in :	^2-	X3 2	0	;	Х	1 +	X ₁ + ;	X ₁ =	0	j		XISC)		
	V	J =	1	0				U	= /		0 \)					
				0					•			/					
			\	0 X5						1	ĭ/						
			•														
R	3			()		1	1	\	1	1 /							
I				O	- (0	•		0-1	>						
					U	1, \			1	J	U2						
1)	T	ROJ	4 81	E	UN!	4	Bı	₹ F	• (PLTO) NC	PLM	١.				
Ĭ																	
	J,	:	U	1	•		1		6)								
			11	u,II			2	1	1/								
	. •	ı					- \				/ ₁ \				1	1 \	
	U,	L :		U2	- (U2.	0,)	U.	=			-	1	. I		o	
			-	1!	١.	1	1.	[]	•	1	1/2	1		1	1	1	\
				o)		2		1/	J		-1/	2/		Ź	1	2 -1	
															_		
	U	2	:	υ _λ		:	2		1	12		=					
				IIU	<u>'</u> '		7	6	K	-1	J		16	\ -	ı J		

$$B = \frac{1}{16} \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \frac{1}{16} \left(\begin{array}{c} 1 \\ -1 \end{array} \right)$$

$$W = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + C \quad \begin{cases} Y_1 + X_2 = 0 \\ X_1 + 2X_2 - X_3 = 0 \end{cases} \quad \begin{cases} Y_1 - - X_2 \\ 2X_2 - 2X_3 = 0 \end{cases}$$

$$\begin{cases} X_1 = -X_2 \\ X_2 = X_3 \end{cases}$$

$$W = \begin{pmatrix} -X_3 \\ X_3 \\ X_3 \end{pmatrix} \qquad \begin{cases} U^2 = \langle \begin{pmatrix} -1 \\ 1 \end{pmatrix} \rangle = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle \end{cases}$$

$$MATRICE \quad DELLA \quad PROJECIONE \quad SV \quad U \quad \begin{cases} Base \quad coronea \\ Base \quad coronea \end{cases}$$

$$R^5 = U \oplus U^4 = \langle \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1$$

$$\Pi_{U}^{V}(e_{2}) = (e_{2} \cdot v_{1}) U_{1} + (e_{2} \cdot v_{2}) U_{2}$$

$$= 0 + \frac{2}{16} U_{2} = \frac{2}{16} \cdot \frac{1}{16} \left(\frac{1}{2}\right) = \frac{1}{3} \left(\frac{1}{2}\right) = \left(\frac{1/3}{2/3}\right)$$

$$\Pi_{U}^{V}(e_{3}) = (e_{3} \cdot v_{1}) v_{1} + (e_{3} \cdot v_{2}) v_{2}$$

$$= \frac{1}{12} U_{1} - \frac{1}{13} v_{2} = \frac{1}{12} \frac{1}{12} \left(\frac{1}{0}\right) - \frac{1}{16} \frac{1}{16} \left(\frac{1}{2}\right)$$

$$= \frac{1}{2} \left(\frac{1}{0}\right) - \frac{1}{6} \left(\frac{1}{2}\right) = \left(\frac{1/3}{13}\right)$$

$$M_{E_{3}}^{E_{3}}(\Pi_{U}^{V}) = \left(\frac{2/3}{13} \frac{1/3}{1/3} + \frac{1/3}{2/3}\right)$$

$$MATRICE RIFIESSIONE DI ASSE U^{L}$$

$$V^{L}$$

$$MATRICE RIFIESSIONE DI ASSE U^{L}$$