TRACCIA SOLUZIONE

Compito di Applicazioni Industriali Elettriche

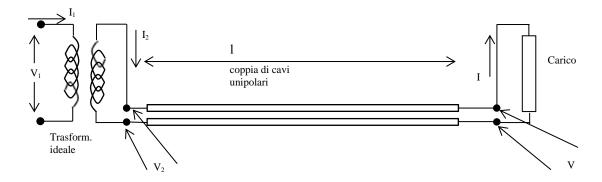
per Ingegneria Meccanica, a.a. 2013-14 **7 luglio 2014**

NB: I dati numerici sono quelli del compito tipo A, ma il procedimento è valido anche per gli altri compiti.

ESERCIZIO 1 (punti 12) – Il carico monofase di figura, avente i seguenti dati nominali: V=230V, 2 kW, cosfi=0.6, f=50 Hz è alimentato da una linea realizzata con una coppia di cavi unipolari in rame di sezione S=2,5 mm² e di lunghezza l=50 m.

A sua volta la linea è alimentato da un trasformatore (secondario lato linea) che si assume ideale e che ha un rapporto di trasformazione pari a t = 13. Assumendo che l'induttanza per unità di lunghezza di ciascun cavo sia $L_1 = 0.8 \mu H/m$, determinare:

- a. la tensione V₂ al secondario del trasformatore (e all'inizio della linea) per avere la tensione nominale sul carico;
- b. la tensione V_1 e la corrente I_1 al primario del trasformatore;
- c. la potenza attiva P_1 , reattiva Q_1 e apparente N_1 al primario del trasformatore.



Il carico ha P = 2000W, $N = P/\cos fi = 3333VA$, sinfi = 0.8, $Q = N sinfi = \sqrt{N^2 - P^2} = 2667 \text{ var}$, I = N/V = 14.5 A

La R di ciascun cavo è $R=\rho l/S$, la reattanza di ciascun cavo $X=2\pi f*(L_l*l)$

Le perdite joule della linea (2 cavi) $P_{jl} = 2 * R * I^2$ La potenza reattiva impegnata dalla linea (2 cavi) $Q_l = 2 * X * I^2$

Le potenze all'inizio della linea (al secondario del trasformatore) sono $P_2 = P + P_{jb}$ $Q_2 = q + Q_b$ $N_2 = \sqrt{P_2^2 + Q_2^2}$ da cui anche (non richiesto) $\cos f_2 = P_2/N_2$ e $\sin f_2 = Q_2/N_2$ che sono diversi da cosfi e sinfi.

Infine $V_2=N_2/I$

Si poteva anche fare:

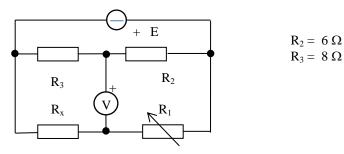
La tensione $V_2=V+\Delta V_{ind}$ ove $\Delta V_{ind}=2I(Rcosfi+Xsinfi)$ (formula pratica di Kapp) con R e X resistenza e reattanza di ciascun cavo.

NB: Non vale $V_2=V+Z*I$ con $Z=\sqrt{R^2+X^2}$!! perché corrisponde ad applicare il principio di K. con i valori efficaci mentre lo si deve sempre fare solo con le rappresentazioni simboliche.

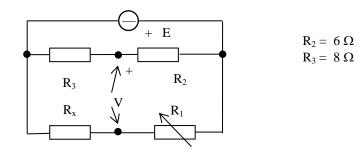
Essendo il trasformatore ideale i valori delle potenze al primario sono gli stessi che si trovano al secondario e quindi alla partenza della linea.

La tensione di primario $V_1=V_2*t$, la corrente di primario $I_1=I_2/t=I/t$.

ESERCIZIO 2 (punti 10) - Del circuito di laboratorio in regime stazionario in figura sono noti i valori delle due resistenze fisse R₂ e R₃ mentre la resistenza R₁ è aggiustata fino a che il voltmetro ideale indicata tensione nulla. Assumendo che ciò accada con $R_1 = 12,4 \Omega$, dedurre il valore di R_x .



Il voltmetro è assimilabile and un circuito ideale aperto quindi il circuito si può disegnare come sotto



Se V=0 vuol dire che la tensioni su R_3 è uguale a quella su R_x . Applicando la regola del partitore di tensione si scrive allora:

 $E R_3/(R_3 + R_2) = E R_x/(R_x + R_1)$ che dopo aver semplificato E ha come sola incognita R_x .

NB: Applicando alla proporzione la proprietà dello scomporre si ha anche

 $R_3/R_2 = R_x/R_1$ da cui $R_1 R_3/R_2 = R_x$ (formula del ponte di Wheatstone, vedi testo)

ESERCIZIO 3 (punti 10) – Un cisterna contenente un liquido con resistività elettrica $\rho = 20 \Omega m$ utilizza un misuratore di livello costituito dal resistore cilindrico schematizzato in figura realizzato con

V

due cilindri coassiali verticali di materiale metallico a bassissima resistività. Il diametro del cilindro interno è pari a $2r_i = 3$ cm.

La corona tra i due cilindri ha spessore s = 0.5 cm.

La lunghezza del misuratore è l = 1m.

Assumendo che la parte non immersa del resistore sia in aria, determinare come varia la corrente I(h) al variare del livello h del liquido fra 0 e 1000 mm (fare un grafico o calcolare per alcuni valori di h) quando il resistore è alimentato con una tensione E=12V.

Si tratta di una resistenza a corona cilindrica, con linee di corrente radiali che si sviluppa per l'estensione h ove c'è liquido fra i due cilindri coassiali, mentre nella parte sovrastante non c'è passaggio di corrente. La formula della resistenza cilindrica è:

 $R(h) = (\rho/2\pi h) ln(r_{esterno}/r_i)$ con $r_{esterno} = r_i + s$

La corrente è allora $I(h)=E/R(h)=E*2\pi h/(\rho \ln(r_{esterno}/r_i))$ che cresce linearmente con h.