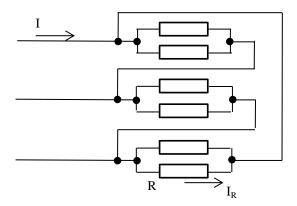
TRACCIA SOLUZIONE

Compito di Applicazioni Industriali Elettriche

per Ingegneria Meccanica, a.a. 2013-14
2 Settembre 2014


TEMPO A DISPOSIZIONE: 120 minuti.

ESERCIZIO 1 (punti 12) – Un forno elettrico industriale usa 6 resistori identici di resistenza R collegati come in figura e alimentati da una rete trifase avente una tensione concatenata di V=400V efficaci e con frequenza f=50 Hz.

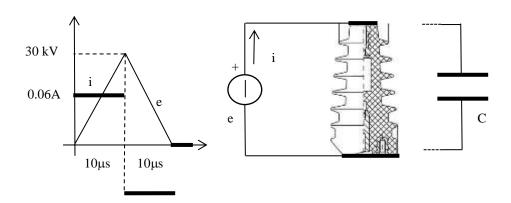
Ciascun resistore è realizzato avvolgendo su un supporto di ceramica un filo di nickel-cromo avente il diametro d=1 mm e la lunghezza l=18 m.

Calcolare

- a. il valore della resistenza R alla temperatura di 100 °C;
- b. il valore efficace della corrente I_R che percorre ciascun resistore e di quella I della linea trifase;
- c. la potenza attiva P, reattiva Q e apparente N del forno;
- d. l'energia E consumata espressa in kWh in ogni ciclo di essiccazione della durata di 45 min.

La resistività del NiCr a 0°C si può assumere pari a 1Ω mm²/m (ovvero anche $1~10^{-6}~\Omega$ m). Il coefficiente di temperatura α =0.15 $10^{-3}~^{\circ}C^{-1}$.

Alla temperatura di 100 °C vale allora: $\rho_{100} = \rho_0 (1 + \alpha * 100)$ e la $R = \rho_{100} * l/(\pi d^2/4)$.


Ogni R è connessa fra due fili di linea e quindi sottoposta alla tensione concatenata di 400 V. Per ciascuna vale allora $P_R = V^2/R$ e $I_R = V/R$.

La potenza complessiva P=6 P_R . La potenza reattiva è ovviamente nulla trattandosi di un carico puramente resistivo ($\cos \varphi=1$) e quindi la N=P.

La $I=N/(\sqrt{3}V)$ che è anche pari a $I=\sqrt{3}I_{lato\ triangolo}=\sqrt{3}*2I_R$ essendo ogni lato di triangolo costituito da due R in parallelo.

L'energia consumata è pari a E=P*t. Volendola esprimere in kWh si userà la potenza in kW e il tempo in ore (45min=0.75~h).

ESERCIZIO 2 (punti 10) – Un isolatore in vetro è assimilabile ad un condensatore di capacità C=20 pF. Durante una prova di laboratorio è sottoposto alla tensione di un generatore ideale di tensione con il profilo di figura.

Calcolare:

- a) il profilo della corrente durante la prova;
- b) l'energia accumulata nel condensatore nel momento di picco della tensione.
- c) la totale energia erogata dal generatore ideale durante tutta la prova.

Per un condensatore vale i=C (dv/dt) che fornisce la corrente data la tensione.

Nei primi 10 μ s sarà allora i = $20\ 10^{-12}\ (30\ 10^{-3}/10\ 10^{-6}) = 0.06\ A\ costanti\ (perché la derivata è costante nell'intervallo). Nei secondi 10 <math>\mu$ s sarà -0.06 A. Altrove zero (vedi figura, tratto marcato)

L'energia di un condensatore vale $C V^2/2$. Pertanto al picco della tensione sarà $20 \cdot 10^{-12} (30 \cdot 10^{-3})^2/2 = 0.009 \text{ J}$.

Non essendoci perdite (C è ideale)la totale energia erogata nella prova è pari all'energia nel condensatore alla fine della prova. Alla fine della prova il condensatore è scarico, pertanto con energia immagazzinata nulla: quindi l'energia totale erogata è nulla (durante i primi 10 µs il generatore eroga quanto assorbe durante i successivi 10 µs; dalla figura si ha conferma che il prodotto e*i è positivo nei primi 10 µs e uguale e contrario nei secondi 10 µs).