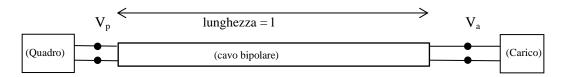
Compito di Applicazioni Industriali Elettriche

per Ingegneria Meccanica, a.a. 2014-15

15 settembre 2015



TRACCIA SOLUZIONE

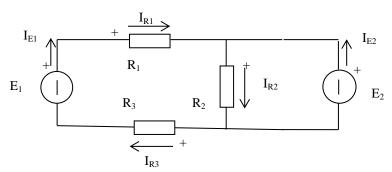
ESERCIZIO 1 – Un quadro elettrico alimenta il carico monofase di figura attraverso un cavo bipolare di lunghezza 1=30m. I conduttori del cavo sono in rame e ciascuno di essi presenta una induttanza per unità di lunghezza pari a $L_1=0.3~\mu$ H/m. Nel funzionamento in condizioni nominali il carico è alimentato con una tensione efficace $V_a=230V$, alla frequenza di f=50 Hz e assorbe una potenza di P=5kW con $cos\phi=0.8$ (induttivo).

Determinare nelle condizioni nominali suddette:

- a. la corrente efficace I che percorre ciascuno dei conduttori del cavo
- b. la sezione del cavo per avere una caduta di tensione industriale non superiore al 4% della tensione efficace V_a.
- c. la potenza attiva P_p alla partenza del cavo (ai morsetti del quadro)\

La resistenza di ciascuno dei due conduttori del cavo vale $R = \rho l/S$ dove $\rho = 0.018 \div 0.02 \ \Omega \text{ mm}^2/\text{m}$, l = 30m e S è l'incognita.

La reattanza di ciascuno dei due conduttori del cavo vale $X=2\pi f(L_1 1)=314 (0.3 \ 10^{-6} \ 30)=\dots$


La caduta di tensione industriale di una linea monofase si calcola con la

$$\Delta V=2 I (R \cos \varphi + X \sin \varphi)$$
 e deve essere $\Delta V=0.09x230=...$

La corrente vale I=P/V cos \varphi = ...

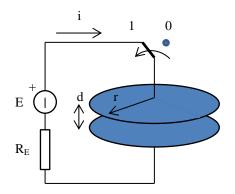
A questo punto nella formula della ΔV la sola incognita è R dal cui valore poi si ricava S.

ESERCIZIO 2 – E' dato il circuito di figura con R_1 =8 ohm, R_2 = 20 ohm, R_3 = 4 ohm. I generatori ideali di tensione hanno fem E_1 = 360V e E_2 = 180 V. Calcolare le potenze P_{R1} , P_{R2} , P_{R3} assorbite dalle resistenze e le potenza P_{E1} e P_{E2} erogate dai generatori.

Si fissino i versi positivi delle tensioni e delle corrente, per esempio, convenientemente, come in figura (convenz. di segno utilizzatori per R, generatori per E)

La tensione sulla R_2 è imposta da E_2 : $V_{R2}=E_2$ (principio di Kirchhoff delle tensioni) e quindi $I_{R2}=V_{R2}/R_2=E_2/R_2$.

Nella maglia di sinistra vale ovviamente $I_{R3} = I_{EI} = I_{RI}$ e il principio di K. delle tensioni porge:


$$E_1 = V_{R1} + V_{R2} + V_{R3} = R_1 I_{R1} + E_2 + R_3 I_{R3} = R_1 I_{E1} + E_2 + R_3 I_{E1}$$
 da cui si ricava $I_{E1} = I_{R3} = I_{R1}$.

Il principio di K. per le correnti permette di scrivere:

 $I_{RI} + I_{E2} = I_{R2}$ (somma delle correnti entranti= somma delle correnti uscenti nel nodo centrale in alto) da cui I_{E2} .

Infine per ogni R: $P_R = R I_R^2$ (potenze assorbite) e per ogni E: $P_E = E I_E$ (potenze erogate).

Si può verificare che sia : $\Sigma P_R = \Sigma P_E$.

ESERCIZIO 3 – Un condensatore in aria è formato da due armature circolari dal diametro raggio r = 1m e distanti d = 1 cm. Esso è inizialmente scarico con il deviatore di figura in posizioni 0.

Nell'istante t=0 il condensatore è caricato attraverso il generatore reale di tensione E=1000V con resistenza interna $R_E=10~\Omega$ portando il deviatore in posizione 1.

Determinare l'andamento della corrente di carica per $i \ge 0$.

Basta ricordare che la corrente di carico di un condensatore con un generatore di tensione E e una R_E in serie è:

$$i(t) = (E/R_E) e^{-t/\tau}$$

La costante di tempo $\tau = R_E C$. R_E è dato mentre C si ottiene da:

$$C = \varepsilon_r \varepsilon_0 \, \text{S/d}$$
 dove $\varepsilon_r = 1$ (aria), $\varepsilon_0 = 8.86 \, 10^{-12}$, $d = 0.01 \, \text{m}$ (dato) $S = \pi \, r^2$ ($r \, \grave{e} \, dato$).

NB Il valore massimo della corrente si ha per t=0 e vale E/R_E . La corrente poi decade esponenzialmente per annullarsi per $t=\infty$, di fatto in pratica per $t=(4\div5)$ τ .