Compito di Applicazioni Industriali Elettriche

per Ingegneria Meccanica, a.a. 2015-16
22 giugno 2016

TRACCIA SOLUZIONE (la soluzione letterale è valida per tutte le versioni di tema)

ESERCIZIO 1 (punti 10) – Una lavatrice domestica impiega, per scaldare l'acqua, una resistenza elettrica realizzata con una serpentina di filo di NiCr della lunghezza di l=4 m e del diametro d=0.45 mm. Assumendo che la lavatrice sia alimentata dalla rete pubblica a V=230 V, 50 Hz, determinare:

La resistenza elettrica si calcola con la formula $R=\rho l/S$ con $S=\pi d^2/4$ (si può assumere ρ fisso in assenza di informazioni sul coefficiente termico della resistività). In alternativa si potrebbe assumere la resistività alla temperatura media.

a) la corrente assorbita dal resistore elettrico;

Trattandosi di una resistenza I=V/R (valore efficace come lo è quello della tensione data)

b) la potenza elettrica corrispondente;

 $P=I^2R=VIcosfi$ (con cosfi=1)

c) il tempo necessario per portare il carico d'acqua di q=50 litri da 10°C a 60°C, assumendo che il serbatoio sia adiabatico e trascurabile l'effetto degli indumenti;

L'energia è pari a $En=q*\Delta T*c$ con $\Delta T=(60-10)$ e c=1 Kcal/(°C litro)=4185J/(°C litro) Il tempo è pari $\Delta t_{[s]}=En_{[J]}/P_{[W=Js]}$

d) il costo del consumo di energia elettrica se di essa è noto il prezzo vale:

 $Costo = prezzo_{f \in kWhl} *(P_{fW}/1000)_{fkWl} * (\Delta t_{fs}/3600)_{fhl}$

ESERCIZIO 2 (punti 8) – Una veicolo usa una batteria di avviamento che presenta una tensione a vuoto (correnti nulle o quasi nulle) pari a V_0 =12,4 V e una tensione V_{100} =11,5V quando eroga una corrente di 100 A.

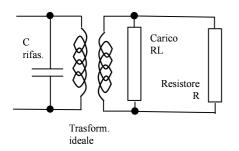
Ciò significa che la batteria è rappresentabile con un generatore reale di tensione con fem pari a V_0 [V] e resistenza interna R_i = $(V_0$ - $V_{100})/100$. La diminuzione della tensione ai morsetti dal funzionamento a vuoto (corrente nulla) al funzionamento con 100 A è dovuto proprio alla caduta di tensione su R_i .

La batteria è collegata al motorino di avviamento con un cavo di rame da 25 mm² e dalla lunghezza complessiva (andata e ritorno) di 3 m.

La resistenza complessiva del cavo si calcola con la $R_{cavo} = \rho l/S$.

Il motorino di avviamento è, allo spunto (rotore ancora fermo), assimilabile ad una resistenza di 85 m Ω . Trovare

a) la corrente I erogata dalla batteria allo spunto del motorino e


Il circuito complessivo vede la fem V_0 chiusa su tre resistenze in serie R_i , R_{cavo} , R_{mot} . La corrente allo spunto è allora $I=V_0/(R_i+R_{cavo}+R_{mot})$

b) la tensione V_{batt} sulla batteria e

 $V_{batt} = V_0 - R_i I$ oppure $V_{batt} = (R_{cavo} + R_i)I$

c) la tensione V_{mot} sul motorino sempre all'istante dello spunto.

 $V_{mot} = (R_{mot})I$

ESERCIZIO 3 (punti 8) – Un'utenza a 48 V, 50 Hz è alimentata da un trasformatore (si assuma che sia ideale) con rapporto di trasformazione 230V/48V. L'impianto a 48 V è costituito da un carico RL che assorbe la potenza di 1200 W con $\cos \varphi = 0.6$

...quindi la sua $Q=Ptan\varphi$ [var]

e da un resistore R da 5 Ω , disposti come in figura.

...quindi la P_R è pari a $V/R^2 = 48/R^2$

Trovare:

a) la capacità C da inserire al primario del trasformatore per ottenere il

rifasamento dell'intero impianto a cosφ=1;

Se $\cos \varphi = 1$ significa che la Q del carico è totalmente rifasata da uguale $Q_{C[vac]} = Q_{var]}$ del condensatore. Essendo $Q_{C[vac]} = V^2 \omega C$ si calcola la C con V = 230V.

b) la potenza apparente dell'intero impianto (cioè quella vista dalla rete a 230V) dopo il rifasamento.

Siccome non c'è potenza reattiva ($\cos \varphi = 1$, Q=0) allora $S=P=P_{RL}+P_R$.

<u>Domanda per coloro che hanno fatto il laboratorio</u> nell'a.a. 2015-16 (punti 3) – Si sono svolte una misura volt-amperometrica in corrente continua su una resistenza di costantana e quindi su una lampada da 24 V ad incandescenza ottenendo le seguenti due serie di dati di misura:

prova	V(V)	1	2	4	8	12	16	20	24
1^		0,95	1,21	1,59	2,28	2,82	3,31	3,69	4,10
prova	V(V)	4	7	8	10	12	14	18	24
2^	I (A)	0.87	1.53	1.75	2.18	2.62	3.06	3.93	5.24

Individuare quale delle due prove (1^o o 2^o si riferisce alle misure sulla resistenza e quale a quelle sulla lampada, giustificando la risposta.

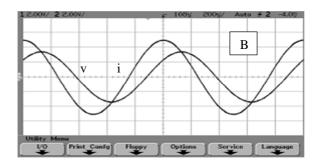
La resistenza di un resistore in costantana rimane invariata a tutte le tensioni, anche se il filo si scaldasse. Quella della lampadina ad incandescenza è maggiore alla tensione nominale (filamento incandescente) rispetto a quella a tensione piccola (filamento freddo). Le resistenze sono date dal rapporto V/I. Si riconosce allora che la prima prova si riferisce alla lampadina e la seconda alla resistenza di costantana.

<u>Domanda per coloro che hanno fatto il laboratorio</u> nell'a.a. 2015-16 (punti 3) – Si è svolta una misura volt-amperometrica in corrente continua su una resistenza di costantana ottenendo la seguente serie di dati di misura:

dati	V(V)	4	7	8	10	12	14	18	24
misura	I (A)	0.87	1.52	1.74	2.18	2.62	3.06	3.39	5.24

Una coppia di dati di tensione e corrente è stata erroneamente riportata. Individuare quale, giustificando la risposta.

La resistenza di un resistore in costantana rimane invariata a tutte le tensioni, anche se il filo si scaldasse. La resistenza ai vari test è data dal rapporto V/I e dovrebbe essere sempre la stessa a meno degli errori di misura. Facendo i rapporti V/I si riconosce che sono tutti circa uguale tranne quello alla tensione di 18 V.


PS: La corrente misurata era di 3.93 A e non di 3.39 A

<u>Domanda per coloro che hanno fatto il laboratorio</u> nell'a.a. 2015-16 (punti 3) – Si è svolta una misura volt-amperometrica in corrente alternata su un carico RC serie, con l'impiego di un oscilloscopio. Le due figure seguenti mostrano i rilievi della tensione applicata e della corrente assorbita riportati da due differenti esecutori della prova.

i V

Utility Menu

100 Print Confg Floppy Options Service Language

Uno dei due rilievi è stato erroneamente contrassegnato. Individuare quale e giustificare la risposta.

Trattandosi di carico RC la corrente deve essere in anticipo rispetto alla tensione (fare "prima" quello che farà "dopo" la tensione"). Mettendo a confronto per esempio gli istanti in cui la tensione e la corrente raggiungono il loro rispettivo massimo positivo, si riconosce che il rilievo corretto è il secondo ove la corrente è massima "prima" (per tempi più piccoli) della tensione. Nessuna importanza hanno le ampiezze delle due curve, perché dipendono dalla scelta fatta di A/cm e V/cm e comunque sono grandezze non omogenee.

Domanda per coloro che hanno fatto il laboratorio nell'a.a. 2015-16 (punti 3) – Si sono svolte due prove di carica di un condensatore $C=100~\mu F$ mediante una fem costante E e una resistenza $R=10~\Omega$ e quindi $R=100~\Omega$. Le due figure seguenti mostrano la corrente e la tensione di carica di una delle due prove.

Dire se i rilievi si riferiscono alla carica con la $R=10~\Omega$ oppure con la $R=100~\Omega$, giustificando la risposta.

Durante la carica la tensione del condensatore sale da zero al valore E con andamento esponenziale caratterizzato da costante di tempo τ =RC. Allo stesso tempo la corrente di carica decade dal valore iniziale E/R a zero con andamento esponenziale avente la stessa costante di tempo. Dopo 4-5 τ si raggiunge all'incirca la condizione di regime (V_C =E; I=0). Dai dati e dagli andamenti si riconosce quindi che i rilievi riportati si riferiscono alla prova con R=10 Ω .