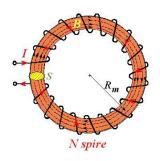

Compito di Applicazioni Industriali Elettriche 21 giugno 2017 Traccia soluzione

TEMPO A DISPOSIZIONE: 120 minuti. (AL PUNTEGGIO DEL COMPITO, SE SUFFICIENTE, SI SOMMA QUELLO DEL LABORATORIO. IL COMPITO E' SUFFICIENTE RAGGIUNGENDO PUNTI 16; IL MASSIMO E' 26).


ESERCIZIO 1 (punti 6) – Un piccolo forno di un camper impiega due resistenze elettriche identiche in serie ciascuna realizzata con una serpentina di filo di NiCr della lunghezza di l=.... m e del diametro di d=.... mm. Assumendo che il forno sia alimentata da una batteria di V=24 V determinare (trascurando la resistenza interna della batteria):

- a) la corrente I_R , la tensione V_R e la potenza P_R di ciascuna resistenza;
- b) la corrente di batteria I e la potenza P assorbita dall'intero forno;
- c) il consumo di energia elettrica per un funzionamento continuativo di \dots ore.
- La resistenza si calcola con la $R=\varrho l/S=\varrho l/(\pi d^2/4)$. La resistività ϱ si trova sugli appunti o sul libro suggerito: per esempio $\varrho=1\ \Omega mm^2/m=1\ 10^{-6}\ \Omega m$.
- Le due R sono in serie e quindi R_{tot} =2R. Essendoci una sola maglia I_R =I= V/R_{tot} =V/2R.
- La tensione su ciascuna resistenza vale $V_R=RI_R=V/2=12\ V$ come peraltro si poteva dedurre dalle formule del partitore di tensione (la tensione di batteria si ripartisce metà su una R e metà sull'altra identica in serie.
- Le potenze sono: $P_R = RI_R^2 = V_RI_R$; $P = VI = R_{tot}I^2 = 2P_R$
- L'energia è per esempio $En_{[Wh]}=P_{[W]}\Delta t_{[h]}$ oppure $En_{[Ws=J]}=P_{[W]}\Delta t_{[s]}$

ESERCIZIO 2 (punti 10) – Il carico di un'utenza a V=230 V, f=50 Hz è costituito da un'impedenza RL che assorbe la potenza di $P_{RL}=...$ W con una corrente efficace di $I_{RL}=...$ A e da un puro resistore R da Ω , disposti in parallelo come in figura. Trovare:

- a) la corrente efficace I_{carico} totale del carico (vedi figura).
- b) la capacità C da inserire per ottenere il rifasamento dell'intero impianto a cosφ=1;
- c) la corrente efficace I_{rete} dell'intero impianto (cioè quella vista dalla rete a 230V) dopo aver attivato il rifasamento.
- Vale $I_R = V/R$ (valore efficace). $P_R = VI_R = RI_R^2$.
- NON vale $I_{carico} = I_R + I_{RL}$ (NON si sommano i valori efficaci!). $La \ S_{RL} = VI_{RL} \ e \ Q_{RL} = \sqrt{(S_{RL}^2 - P_{RL}^2)}$; quindi $P_{carico} = P_{RL} + P_R$; $Q_{carico} = Q_{RL}$; $S_{carico} = \sqrt{(P_{carico}^2 + Q_{carico}^2)}$. Infine $I_{carico} = S_{carico}/V$.
- Se l'intero impianto ha $\cos \varphi = 1$ significa che $Q_{rete} = Q_{carico[var]} Q_{rif[vac]} = 0$ cioè $Q_{carico[var]} = Q_{rif[vac]} = V^2 2\pi f C_{rif}$ da cui si calcola la capacità.
- Infine $S_{rete} = \sqrt{(P_{rete}^2 + Q_{rete}^2)} = P_{carico} = P_{RL} + P_R = V I_{rete}$ da cui I_{rete} .

ESERCIZIO 3 (punti 10) – Un solenoide toroidale snello è realizzato avvolgendo uniformemente $N=\dots$ spire su un nucleo di materiale ferromagnetico avente sezione $S=\dots$ cm², raggio medio $R_m=\dots$ cm e permeabilità magnetica relativa pari a $\mu_r=\dots$ Trovare:

- a) <u>il valore dell'induttanza L presentata dal circuito</u>
- b) <u>l'induzione magnetica media B nella sezione S del nucleo quando le spire sono percorse da una corrente di I= A</u>
 - c) <u>l'energia accumulata nel nucleo del solenoide nelle condizioni del punto B.</u>
- Per il teorema della circuitazione nel nucleo si ha $H=NI/(2\pi R_m)$; quindi la $B=\mu_o \mu_r H$;
- Il flusso nel nucleo Φ =BS e quello concatenato con l'avvolgimento Λ =N Φ =NBS da cui L= Λ/I = $\mu_o \mu_r N^2 S/(2\pi R_m)$.
- L'energia è $En=LI^2/2$ = anche (BH/2)*volume nucleo.

Domande Laboratorio

<u>Domanda per coloro che hanno fatto il laboratorio</u> nell'a.a. 2016-17 – Si è svolta una misura volt-amperometrica in corrente continua su una resistenza di costantana e quindi una seconda misura sulla serie della stessa resistenza con un'altra di valore simile (ma non uguale) (*quindi su una Rtot maggiore*) ricavando le due sequenze seguenti di dati di misura

prova	V(V)	1	2	4	8	12	16	20	24
1^	I (A)	0.28	0.57	1.14	2.28	3.43	4.55	5.71	6.85
prova	V(V)	4	7	8	10	12	14	18	24

Individuare quale delle due prove (1^o o 2^o) si riferisce alle misure sulla resistenza e quale a quella sulla serie, giustificando la risposta. (la misura sulla serie è la seconda perché a parità di tensione ha corrente minore; ovvero ha rapporto R=V/I maggiore)

<u>Domanda per coloro che hanno fatto il laboratorio</u> nell'a.a. 2016-17 – Si è svolta una misura volt-amperometrica in corrente continua su una resistenza di costantana e quindi una seconda misura sul parallelo della stessa resistenza con un'altra di valore simile (ma non uguale) (*quindi su una Rtot minore*) ricavando le due sequenze seguenti di dati di misura

prova	V(V)	1	2	4	8	12	16	20	24
1^	I (A)	0.28	0.57	1.14	2.28	3.43	4.55	5.71	6.85
prova	V(V)	4	7	8	10	12	14	18	24

Individuare quale delle due prove (1^o o 2^o) si riferisce alle misure sulla resistenza singola e quale invece al parallelo delle due resistenze, giustificando la risposta. (la misura sul parallelo è la prima perché a parità di tensione ha corrente maggiore; ovvero ha rapporto R=V/I minore)

<u>Domanda per coloro che hanno fatto il laboratorio</u> nell'a.a. 2016-17 – Si è svolta una serie di misure volt-amperometriche in corrente alternata a diversa frequenza su un carico **R-X parallelo** ottenendo la serie seguente di dati di misura

dati	f (Hz)	50	100	200	400
prova	V(V)	10	10	10	10
	I (A)	1.12	1.41	2.23	4.12

Individuare se il carico R-X è costituito da un parallelo RC o da un parallelo RL, giustificando la risposta.

(è un parallelo RC perché la corrente cresce con la frequenza a causa del contributo crescente della corrente in C pari a VωC)

<u>Domanda per coloro che hanno fatto il laboratorio</u> nell'a.a. 2016-17 – Si è svolta una serie di misure volt-amperometriche in corrente alternata a diversa frequenza su un carico **R-X parallelo** ottenendo la serie seguente di dati di misura

dati	f (Hz)	50	100	200	400
prova	V(V)	10	10	10	10
	I (A)	2.23	1.41	1.12	1.03

Individuare se il carico R-X è costituito da un parallelo RC o da un parallelo RL, giustificando la risposta. (è un parallelo RL perché la corrente cala con la frequenza a causa del contributo calante della corrente in L pari a V/ωL)