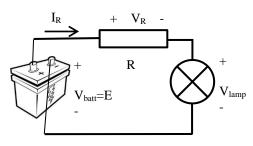

Compito di Applicazioni Industriali Elettriche


per Ingegneria Meccanica, a.a. 2018-19

19 giugno 2019

VALIDITA' DEL VOTO FINO A TUTTO Giugno 2020

Traccia della soluzione.

ESERCIZIO 1 (max punti 6) – È data una lampada ad incandescenza da 12 V, 48 W. Si vuole alimentarla con una batteria avente tensione ai morsetti E=24 V. Determinare (trascurando la resistenza interna della batteria):

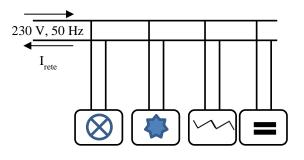
- a) La resistenza R da porre in serie alla lampada affinché quest'ultima risulti alimentata alla sua tensione nominale;
 - b) La corrente I_R , la tensione V_R e la potenza P_R della resistenza;
- c) La potenza P_E erogata dalla batteria e la potenza P assorbita dalla lampada;
- d) L'energia elettrica erogata dalla batteria per un funzionamento continuativo del circuito di 12 ore.

1^ metodo:

$$V_R = E - V_{lamp}$$
 (2[^] princ. K.)

$$I_R = I_{lamp} = P_{lamp} / V_{lamp}$$

$$R = V_R / I_R$$


<u>2^ metodo:</u>

$$V_{lamp} = E \left(R_{lamp} / (R_{lamp} + R) \right) \quad (partitore \ di \ tensione)$$

ove
$$R_{lamp} = V^2_{lamp} / P_{lamp}$$
 (da $P = V^2/R$)

dopo di che dalla prima eq. si ricava R.

Si può usare anche il partitore di tensione che fornisce V_R invece di V_{lamp} .

a) Luce b) Frigo c) Forno d) Rifas.

ESERCIZIO 2 (max punti 10) – L'impianto elettrico di un piccolo negozio prevede a) un linea luce che alimenta l'impianto di illuminazione con lampade a fluorescenza avente complessivamente 300 W con $\cos\phi$ =0.9, b) una linea per il motore del banco frigo che assorbe un potenza apparente di 500 VA e una potenza attiva di 400W, c) una linea che alimenta la resistenza di un forno elettrico che assorbe una corrente di 8 A e, infine, d) un banco di condensatori di rifasamento avente una capacità equivalente complessiva pari a $22\mu F$, (vedi figura). Trovare:

- a) la corrente efficace I_{rete} dell'intero impianto (cioè quella vista dalla rete a 230V, vedi figura).
- b) la potenza attiva P_{rete} e reattiva Q_{rete} dell'intero impianto
- c) il fattore di potenza $cos\phi_{rete}$ dell'intero impianto

L'esercizio si risolve agevolmente con il bilancio delle potenze P e Q calcolando per ciascuna linea di carico:

- a) linea luce: $Q=P \tan \varphi$ (P e $\cos \varphi \det i$)
- b) linea frigo: $Q = \sqrt{(S^2 P^2)}$ (P e S dati)
- c) linea forno: Q=0; $P=VI\cos\varphi=VI$ (per una resistenza $\cos\varphi=1$; $\sin\varphi=0$)

d) linea rifas.: $Q = -\omega CV^2$; P = 0 (per una capacità $\cos \varphi = 0$; $\sin \varphi = -1$)

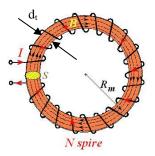
Quindi

$$P_{rete} = P_{luce} + P_{frigo} + P_{forno} + P_{rifas}$$

 $Q_{rete} = Q_{luce} + Q_{frigo} + Q_{forno} + Q_{rifas}$ (somma algebrica, ogni addendo con il suo segno (tutti espressi in var)!!!)

 $S_{rete} = \sqrt{(P_{rete}^2 + Q_{rete}^2)}$ (che NON e la somma delle S delle singole linee di carico!!!)

 $I_{rete} = S_{rete}/V$ (che NON e la somma delle I (efficaci) delle singole linee di carico!!!)


 $cos \varphi_{rete} = P_{rete} / S_{rete}$

NB: si può risolvere anche con il 1[^] princ. di K. calcolando la corrente di rete come somma delle 4 correnti dei singoli carichi, ma NON con i valori efficaci, bensì calcolando le rappresentazioni simboliche (complesse) di ciascuna corrente, ponendo per esempio V=230 + j0. Questa procedura è più complicata (ma non molto).

ESERCIZIO 3 (max punti 10) – Un solenoide toroidale snello è realizzato avvolgendo uniformemente N=100 spire su un nucleo di materiale ferromagnetico avente sezione circolare $S=1 cm^2$, raggio medio $R_m=10$ cm e permeabilità magnetica relativa pari a $\mu_r=500$. E' usato filo di manganina ($\rho=0.45~\Omega~mm^2/m$) avente sezione pari a 1 mm². Trovare:

- b) il valore della resistenza R del circuito;
- c) <u>la potenza dissipata per effetto Joule quando la corrente I di figura è pari a 20 A;</u>
- d) l'energia magnetica accumulata nel solenoide con la stessa corrente I di 20 A.

Per l'induttanza toroidale è nota la formula

$$L = \mu_0 \mu_r N^2 S / (2\pi R_m)$$

(tutte le grandezze sono date; $2\pi R_m$ =lunghezza media delle linee del campo magnetico = lunghezza del nucleo toroidale).

Il diametro del nucleo toroidale di sezione circolare S vale $d_t = \sqrt{(4S/\pi)}$ (dall'area del cerchio $S = \pi d_t^2/4$).

Quindi la lunghezza di una spira è $l_{sp} = \pi d_t$ e quella dell'intero filo: $l_{filo} = N l_{sp}$.

Quindi la resistenza è (formula del resistore filiforme):

$$R = \rho l_{filo} / S_{filo}$$
 (S_{filo} e ρ sono dati dell'esercizio)

Infine $P = R I^2$; $W = \frac{1}{2} L I^2$ (I è un dato dell'esercizio)