Compito di Applicazioni Industriali Elettriche 15 luglio 2021

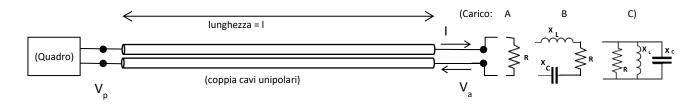
Traccia soluzione

ESERCIZIO 1 (max punti 12) – Un quadro elettrico alimenta un carico monofase attraverso una coppia di cavi unipolari di lunghezza 1 = 80m. I conduttori del cavo sono in rame con sezione di 6 mm² e ciascuno di essi presenta una induttanza per unità di lunghezza pari a L_x =0.8 μ H/m. La frequenza è f = 50 Hz. Per il carico si presentano 3 casi (vedi figura):

- A) una resistenza $R = 6.5 \Omega$;
- B) la serie della resistenza R= 6.5 Ω con una reattanza induttiva X_L = 6.5 Ω e una reattanza capacitiva X_C = 6.5 Ω ;
- C) il parallelo della resistenza R= 6.5 Ω con una reattanza induttiva X_L = 6.5 Ω e una reattanza capacitiva X_C = 6.5 Ω .

Assumendo che la tensione in arrivo sul carico abbia il valore efficace V_a = 230 V, determinare per i 3 casi A, B e C:

- a. la corrente efficace I che percorre ciascuno dei conduttori del cavo;
- b. il valore efficace della tensione V_p in partenza al cavo (ai morsetti del quadro);
- c. la potenza attiva P_p e la potenza reattiva Q_p alla partenza del cavo (ai morsetti del quadro).



Si calcolano preliminarmente le caratteristiche del carico:

Caso A:

$$\dot{Z} = R$$

Quindi $\varphi=0$, $\cos\varphi=1$, $\sin\varphi=0$ (risultati banali trattandosi di un puro resistore)

Caso B:

$$\dot{Z} = R + jX_L - jX_C$$

(serie dei tre bipoli R, L e C); ma $X_L = X_C$ (risonanza serie) e pertanto $\dot{Z} = R$, come per il caso A!

Quindi ancora $\varphi=0$, $\cos\varphi=1$, $\sin\varphi=0$

Caso C:

$$\dot{Z} = \frac{1}{\frac{1}{R} + \frac{1}{jX_L} + \frac{1}{jX_C}}$$

(parallelo dei tre bipoli R, L e C); ma $X_L = X_C$ (risonanza parallelo) e pertanto $\dot{Z} = R$, come per il caso A!

Per la linea i tre carichi sono equivalenti e per tutti e tre i casi vale:

$$I=V/Z=V/R$$
; $P=VI\cos\varphi=V^2/R$; $Q=VI\sin\varphi=0$

I parametri della linea sono

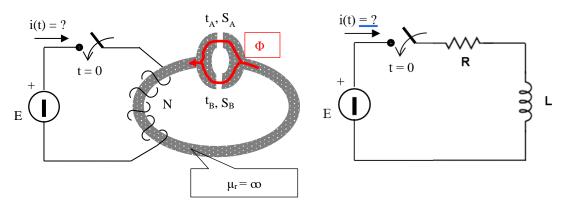
$$R_{linea} = \rho l_{linea} / S_{conduttore}$$
; $X_{linea} = \omega (l_{linea} L_x)$

Le potenze in partenza sono allora

$$P_p = P + 2 R_{linea} I^2;$$
 $Q_p = Q + 2 X_{linea} I^2 = 2 X_{linea} I^2;$ $S_p = \sqrt{(P_p^2 + Q_p^2)};$ $V_p = S_p/I$

NB: Per la V_p si può usare anche $V_p = V_a + \Delta V$ con, dalla la formula di Kapp: $\Delta V = 2I(R_{linea}cos\phi + X_{linea}sin\phi)$

ESERCIZIO 2 (max punti 12) – Sul circuito magnetico di figura, realizzato con materiale ferromagnetico di permeabilità relativa $\mu_r = \infty$, è disposto un avvolgimento avente N = 100 spire e resistenza elettrica propria R = 1 Ω . I due traferri hanno spessori $t_A = 1.0$ mm e $t_B = 1.5$ mm e sezioni $S_A = 2$ cm² e $S_B = 3$ cm². Il generatore di tensione ideale ha fem costante E = 10 V. L'interruttore si chiude in t = 0.



Assumendo il campo magnetico perfettamente canalizzato nel circuito magnetico (compresi i traferri) e solo lì presente, determinare

- a) l'andamento i(t) della corrente per t>0 (dopo la chiusura dell'interruttore);
- b) la potenza P_E erogata dal generatore di tensione E e l'energia W_L immagazzinata nel circuito magnetico per t=∞ (a regime stazionario raggiunto).

Il sistema elettromagnetico è modellabile come a destra sopra; R è data mentre $L=N^2/\mathcal{R}$ con \mathcal{R} pari alla riluttanza del circuito magnetico. Questo è un circuito magnetico con una parte ferromagnetica a riluttanza nulla ($\mu_r=\infty$) e due traferri in parallelo (il flusso Φ del circuito magnetico si divide e attraversa i due traferri) di riluttanze

$$\mathcal{R}_A = t_A/(\mu_0 S_A)$$
; $\mathcal{R}_B = t_B/(\mu_0 S_B)$; e poi $\mathcal{R} = \mathcal{R}_A \mathcal{R}_B / (\mathcal{R}_A + \mathcal{R}_B)$ (formula del parallelo)

L'andamento i(t) della corrente è quello di carica di un induttore con un circuito E-R e vale

$$i(t) = I (1-e^{-t/\tau})$$
 con $I = E/R$ $e \tau = L/R$

A regime (t= ∞) si ha $P_E = E*I$ e $W_L = (1/2) L I^2$

ESERCIZIO 3 (max punti 6) – Si è svolta una misura volt-amperometrica in corrente alternata su un carico RL serie trovando i valori efficaci V= 100 V e I=20 A e una potenza attiva assorbita pari a P=1600 W. Sapendo che la frequenza è f = 60 Hz dedurre i valori di R e L.

Vale Z=V/I (modulo dell'impedenza pari al rapporto dei valori efficaci)

La corrente I percorre la R e la L e allora

$$P=R*I^2$$
 da cui $R=P/I^2$

Sapendo che $Z = \sqrt{(R^2 + X_L^2)}$ si ottiene $X_L = \sqrt{(Z^2 - R^2)}$ e poi $L = X_L/(2\pi f)$

Oppure (altra via):

S=VI;
$$Q = \sqrt{(S^2 - P^2)}$$
; $X_L = Q/I^2$

Per altre vie ancora si può ricordare che vale anche $\cos \varphi = P/S = R/Z$, $\sin \varphi = Q/S = X_L/Z$.

